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Topical Review

Mesolimbic dopamine signaling in acute and
chronic pain: implications formotivation, analgesia,
and addiction
Anna M.W. Taylora,*, Susanne Beckerb, Petra Schweinhardtc, Catherine Cahilld

1. Introduction

The mesolimbic dopamine system comprises neurons in the
ventral tegmental area (VTA) andsubstantia nigra (SN), projecting to
the ventral striatum. This system was originally described to
mediate pleasure and goal-directed movement associated with
rewarding stimuli.70 However, it is now clear that dopamine,
although crucial for reward processing, drives not the hedonic
experience of reward (“liking”) but rather the instrumental behavior
of reward-driven actions (“wanting”).6 Phasic dopamine acts as an
incentive salience signal underlying reinforcement learning.57,59

Moreover, aversive stimuli, such as pain, also stimulate dopamine,
further diminishing the idea of dopamine as a “reward” signal.9,10

Recent studies suggest that dopamine neurons in the VTA and SN
form a heterogeneous population tuned to either (or both) aversive
or rewarding stimuli.3,8,30,39 This review will summarize our current
understanding of the role of the mesolimbic dopamine system in
acute pain and the changes that occur in chronic pain.

2. Dopamine signaling, reward, and punishment

Although nociceptive events and their conditioned predictive cues
depress activity in most dopaminergic neurons,68 5% to 15% of
VTA dopaminergic neurons fire preferentially for aversive stim-
uli,8,13,30,39,41 or for both aversive and rewarding stimuli.30 These
neurons are probably responsible for the dopamine release after
aversive stimuli, such as psychosocial stress3,53 or pain.61,73

The heterogeneity of dopamine neurons in response to aversive
and rewarding stimuli suggests that they serve unique functional
roles. Cells activated by reward and inhibited by punishment are well
suited to code motivational valence, whereas neurons activated by

both rewarding and punishing stimuli are likely to code motivational
salience.9 Neurons coding motivational valence would provide
a signal for reward seeking, evaluation, and value learning, in linewith
current theories on the role of dopamine in reward processing.7,58 In
contrast, neurons coding motivational salience would provide
a signal for detection and prediction of highly important events
independent of valence, pursuant to dopamine’s role in salience
processing.54 These distinct aspects of dopamine neurotransmis-
sion might be neuroanatomically separate: dopaminergic neurons
codingmotivational valence have been foundmore commonly in the
ventromedial SN and lateral VTA with projections to nucleus
accumbens shell, whereas neurons coding motivational salience
aremore often reported in the dorsolateral SNwith projections to the
nucleus accumbens core (Fig. 1).10,39,41,49

3. Dopamine signaling in pain: antinociception or
motivational salience?

A common suggestion, based on animal studies focusing on pain
behavior, some clinical data, and genetic associations, is that
dopamine is antinociceptive by D2 receptors.24,27,33,52,71 Some
experimental works in humans supports this notion by showing
increased affective pain ratings after dietary dopamine depletion65

and increased conditioned pain modulation with D2-receptor
activation.67 However, more often, no effects of dopaminergic
manipulations on a variety of pain tests have been reported.5,65–67 It
seems that ascribing an antinociceptive role to dopamine is too
simplistic. Examining under which conditions antinociception is
mostly observed suggests that the common feature is
a motivational–emotional component of the pain tests. In rodent
studies, tonic pain assays such as the formalin or writhing test reveal
more often decreases in pain behavior with D2-receptor activation
than brief phasic pain stimuli, such as tail flick, hot plate, or paw
pressure.2 In a study in rats with ongoing postsurgical pain, blocking
dopamine release prevented conditioned place preference (CPP)
associated with peripheral analgesia, clearly indicating the impor-
tance of dopamine for motivated behavior.46 Similarly, in humans,
dopaminergic manipulations have only been found to affect the
affective component of pain65 or strong behaviorally relevant stimuli
such as immersion of the hand in icewater.66 Interestingly, evenwith
this stimulus, cold pain tolerance initially decreasedwithD2-receptor
activation and increased only after 2 hours.66 Moreover, striatal
dopamine release positively correlates with the magnitude of
perceivedpain,61,73which strongly contradicts direct antinociceptive
effects of dopamine release. Finally, we reported that increasing
synaptic dopamine levels by a pharmacological intervention
augmented endogenous pain inhibition induced by reward, and
enhanced endogenous pain facilitation by punishment,5 again
opposing a simplistic view of dopamine as an antinociceptive agent.
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When these results are considered as a whole, we posit that
dopamine modulates the salience of pain stimuli and thereby
mediates themotivation to avoid or endure pain depending on the
situational context. The observation that mesolimbic dopamine
neurons activated by aversive stimuli also respond to appetitive
stimuli supports the idea that dopamine codes the motivational
salience of pain and may act as a “decision aid” whether pain
should be endured to obtain a reward. Thereby, they would
subserve an important function of Fields’ Motivation-Decision
Model of Pain.17 This framework means that dopamine would
play a crucial role in pain avoidance and coping responses, 2
processes that are of high clinical importance.

4. Dopamine dysfunction in chronic pain

There is now ample evidence from both the animal and human
literature to suggest that chronic pain results in a hypodopami-
nergic tone that impairs motivated behavior. Human imaging
studies have found lowered responsiveness within the meso-
limbic dopamine system in response to salient stimuli in patients
with chronic pain.34,36 For example, patients with chronic pain
have lower D2-receptor binding22,23,36,73 and presynaptic
dopamine activity26,72 in the striatum at rest and after an acute
pain stimulus. In animal studies, chronic pain results in decreased
c-Fos activation in the VTA42 and decreased overall dopamine
levels and striatal D2 receptors.12,56,64,74

Dopamine signaling is important for motivating approach or
avoidance behavior following presentation of a salient stimulus,
rather than the hedonic value. In this way, chronic pain results in

behavior indicative of a hypodopaminergic state. When food
rewards are easily available (ie, under a fixed ratio operant
responding task), there is no difference in reward consumption
between chronic pain and control groups.37,69 However, as the
energy required to solicit a food reward increases (eg, under
a progressive ratio schedule), animals with chronic pain
consume significantly less food than controls.25,60 Thus, we
conclude that although the hedonic value of food is unaffected
in animals with chronic pain, the drive to obtain these rewards is
reduced. Moreover, persistent and chronic pain decreases
intracranial self-stimulation of the medial forebrain bun-
dle,31,32,51 an effect that can be recovered by pharmacological
intervention that increases dopamine levels.40,55 Taken to-
gether, these results indicate that chronic pain leads to
a significant impairment of mesolimbic dopamine activity that
interferes with motivated behavior.

5. Opioid reward and chronic pain

The mesolimbic dopamine system drives approach or avoidance
behavior following a salient cue, such as acute pain. In conditions
of chronic pain, deficits in dopamine signaling emerge that impair
motivated behavior. Reinforcing drugs, such as opioids, also
stimulate the dopamine system, a function that underscores their
highly salient and rewarding attributes. Long-term exposure to
opioids disrupts dopamine signaling,21,62,76 a phenomenon that
contributes to the downward shift in the allostatic state
associated with addiction.29 Coincident with the exponential rise
of opioids for the treatment of chronic pain has been the growing
concern of the risk of iatrogenic addiction in this population.1

Given the association of dopamine signaling with addiction
behaviors, it is possible that the chronic pain–induced disruptions
in dopamine signaling may alter the addiction liability of opioids
used for pain management. Recent research has begun to
address these issues by assessing how opioids interact with the
dopamine system in chronic pain models.

On a mechanistic level, opioids are less effective at stimulating
mesolimbic dopamine neurons in chronic pain. For example,
morphine-stimulated GTPϒS (a measure of m-opioid receptor
activation) is significantly reduced in the VTA,44 and systemic
opioids fail to stimulate extracellular dopamine in the striatum in
animals with chronic pain.25,50,63

The deficits in opioid-stimulated dopamine in chronic pain
suggest alterations in salience andmotivated behavior. However,
assessing opioid reward in chronic pain has an added level of
complexity, because systemic opioids will engage dopamine
signaling and stimulate motivated approach behavior through 2
distinct mechanisms: direct activation of the mesolimbic dopa-
mine neurons and indirectly through analgesic effects mediated
by the inhibition of pain pathways throughout the peripheral and
central nervous system. Direct inhibition of pain pathways is
rewarding in the context of pain, as evidenced by the fact that
peripherally or spinally restricted analgesics, such as lidocaine
and intrathecal clonidine, stimulate dopamine release, are self-
administered, and produce a place preference in animals with
pain.28,37,38,46,75 The rewarding effects of opioid analgesia also
involve supraspinal circuits outside the VTA. For example,
localized injection of opioids into the anterior cingulate cortex is
sufficient to stimulate striatal dopamine and produce a place
preference.45 Therefore, the salience of opioids is context-
dependent and may engage different circuits depending on the
preexisting behavioral state of the subject.17,19 The challenge in
the chronic pain literature is to tease out these factors when
assessing opioid reward in the whole animal.

Figure 1. The role of mesolimbic dopamine neuron subpopulations in
motivated behavior. Dopamine neurons in the dorsolateral substantia nigra
(SN) project to the nucleus accumbens (NAc) core and encode motivational
salience (stimulus awareness). Dopamine neurons in the ventromedial SN and
lateral ventral tegmental area (VTA) project to the NAc shell and encode
motivational valence (whether the stimulus is positive or negative in value).
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When opioid reward is assessed using self-administration,
motivated behavior is reduced only at doses that fail to effectively
mitigate pain.25,35,37,69 In fact, the presence of analgesia is
required for opioid reward behavior in chronic pain, given that
spinally blocking pain interferes with opioid self-administration
and CPP.35,37,38 Equivocal findings have been reported when
opioid reward is assessed with the CPP assay,11,43–45,48,50,63,77

perhaps because systemic drug administration is engaging
circuits outside the midbrain dopamine system. However, when
opioids are administered directly into the VTA, they do not
produce a place preference,47,63 and the potentiating effect of
opioids on VTA intracranial self-stimulation is diminished in
animals with chronic pain.16 Taken together, we conclude that
although the mesolimbic dopamine system is less responsive in
chronic pain, systemic opioids remain reinforcing through their
analgesic effects. Importantly, analgesia seems to be required for
systemic opioids to be reinforcing in chronic pain.

6. Conclusions

Our understanding of the mesolimbic dopamine system has
evolved significantly over the past decade, and now the integration
of this system in the context of acute and chronic pain needs
refinement. We no longer equate dopamine release with pleasure
or reward but rather acknowledge that dopamine neurons are
a heterogeneous population of neurons that respond to both
appetitive and aversive stimuli to mediate motivated behavior.
Release of dopamine after an acute painful stimulus acts as
a salience cue and is critical for approach or avoidance behavior.

There are nowmultiple lines of evidence that show chronic pain
leads to a hypodopaminergic state that impairs motivated
behavior (Fig. 2). Decreased reward responsivity may underlie
a key system mediating the anhedonia and depression common
with chronic pain.15,20,27 Strategies to restore dopamine signaling
may represent a novel approach to manage these affective
sequelae of chronic pain.

The story becomes more nuanced when assessing motivated
behavior toward opioids in chronic pain. Research shows that the
ability of opioids to stimulate the mesolimbic dopamine system is
impaired, and this seems to translate into reduced responsiveness
to appetitive stimuli. However, opioids maintain their reinforcement
in subjects with chronic pain through their analgesic properties,
emphasizing the notion that motivated behavior and reward are
context-dependent.

A final question asks whether these changes affect opioid
addiction liability. Unfortunately, it remains difficult to draw such
conclusions from the animal literature, and clinical reports of rates

of opioid addiction among the chronic pain population remain
divisive4,14 (for review, see Reference 18). One issue is that
chronic pain states are not static, and as the pain condition
progresses or resolves so might the function of the dopamine
system. This idea is supported by an animal study that found self-
administration of low doses of opioids returned to normal as the
chronic pain state resolved.35 This study highlights the fact that
the motivational drive for opioids is constantly adapting with the
internal states of the subject. Discussing addiction liability in
a population with possibly fluctuating pain states is a difficult task
requiring a nuanced appreciation of the motivational state in
chronic pain.
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