
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning Accurate and Interpretable Decision Rule Sets from Neural Networks

Permalink
https://escholarship.org/uc/item/3jm4s6df

Author
Qiao, Litao

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jm4s6df
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning Accurate and Interpretable Decision Rule Sets from Neural

Networks

A thesis submitted in partial satisfaction of the requirements

for the degree Master of Science

in

Computer Science

Litao Qiao

Committee in charge:

Professor Bill Lin, Chair

Professor Sanjoy Dasgupta

Professor Yoav Freund

2020

Copyright

Litao Qiao, 2020

All rights reserved.

iii

The Thesis of Litao Qiao is approved, and it is acceptable in quality and form for

publication on microfilm and electronically:

 Chair

University of California San Diego

2020

iv

TABLE OF CONTENTS

Signature Page ... iii

Table of Contents ... iv

List of Figures ... v

List of Tables .. vi

Acknowledgement .. vii

Abstract of the Thesis .. viii

Chapter 1 Introduction .. 1

Chapter 2 Related Work .. 5

Chapter 3 Problem Formulation.. 8

3.1 Threshold Functions ... 10

3.2 Rules Generation from Threshold Fuunctions ... 10

Chapter 4 Neurons as Threshold Functions .. 17

4.1 OR-of-Neurons .. 19

4.2 Back-Propagation through Discretized Activations 21

Chapter 5 Experiments .. 24

5.1 Classification Performance .. 27

5.2 Accuracy-Complexity trade-off ... 30

Chapter 6 Conclusion .. 33

References ... 36

v

LIST OF FIGURES

Figure 1: Recursive algorithm to generate primes from threshold function 16

Figure 2: An example of the OON architecture with two neurons (i.e., threshold

functions denoted by 𝐹𝑖) in rules layer. ... 21

Figure 3: Accuracy-Complexity trade-offs on the adult dataset. Pareto efficient

points are connected by line segments .. 32

vi

LIST OF TABLES

Table 1: Test accuracy based on the 5-fold cross-validation (%, standard error in

parentheses)... 29

Table 2: Model complexity and rule complexity based on the 5-fold cross-validation.

... 29

vii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Bill Lin for his support as the chair

of my committee. Through multiple drafts and many long nights, his guidance has

proved to be invaluable. I would also like to acknowledge Weijia Wang, without

whom my research would have no doubt taken five times as long. He has helped

me in immeasurable ways.

Chapters 1 to 6, in full are currently being prepared for submission for

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the

primary investigator and author of this material.

Chapters 1 to 6 are also coauthored with Wang, Weijia. The thesis author

was the primary author of these chapters.

viii

ABSTRACT OF THE THESIS

Learning Accurate and Interpretable Decision Rule Sets from Neural Networks

By

Litao Qiao

Master of Science in Computer Science

University of California San Diego, 2020

Professor Bill Lin, Chair

This thesis proposes a novel way to learn a set of the Boolean rules in

disjunctive normal form as an interpretable model for binary classifications. We

consider the problem of learning an interpretable decision rule set as training a

neural network in a specific architecture and converting each neuron in the

network into a set of minimal decision rules. This approach can easily find a set of

interpretable decision rules that has similarly high predictive performance as a

full-precision fully-connected deep neural network, and the method can balance

between accuracy and complexity. Moreover, we prove that the set of decision

rules derived from each neuron is minimum, unique, and irredundant with respect

ix

to the original neuron. Our method is competitive with several other state-of-the-

art rule learning algorithms, even with fewer rules and simpler rule conditions

1

Chapter 1

Introduction

2

Machine learning has made tremendous advances in recent years,

particularly in the area of deep learning based on neural networks. However, the

black box nature of neural networks makes it hard for humans to understand the

reasoning behind their decision making. This creates a huge barrier for their

widespread adoption in the mainstream, especially as machine learning is being

considered in many aspects of our society, including healthcare, legal assistance,

financial services, and even criminal justice. In highly-consequential applications

like medical diagnosis or recidivism analysis, the lack of interpretability in the

models or explainability in their decisions makes it difficult to gain public trust for

their use [1]. While there have been some effort in developing explainable machine

learning methods, these explanation methods are often just simplified (but

inaccurate) post-hoc approximations of the original models [2, 3, 4].

On the other hand, a considerable amount of work around interpretable

machine learning methods has been based on logical models, like various forms of

rule sets or decision trees [5, 6, 7, 8, 9]. They are interpretable by design in the

sense that decisions are made by activating some subset of logical rules or some

path through a decision tree, where each logical rule in a rule set or each decision

condition in a decision tree has a human-understandable interpretation. However,

3

existing methods for generating these interpretable models have lagged behind

state-of-the-art neural network approaches in terms of accuracy and generalization.

In this thesis, we pose the following question: can we get the best of both

worlds? To answer this question, we propose a novel approach for automatically

converting a restricted form of neural network into a set of interpretable decision

rules that implements the same input/output behavior. Our approach is applicable

to binary classification problems with categorical inputs. In particular, Boolean

decision rules are learned by training a restricted two-layer neural network structure

with state-of-the-art stochastic gradient descent (SGD) training algorithms. Our

proposed two-layer neural network structure, called a OR-of-Neuron (OON)

architecture, is designed so that it can be readily mapped to a set of decision rules

once trained. Further, we propose to employ 𝐿0 regularization [10] in our

training algorithm to achieve rule simplifications through neural net sparsity.

Different tradeoffs between accuracy and complexity can be explored via the

degree of 𝐿0 regularization. In contrast to some previous methods for generating

decision rules, our approach does not require the premining of frequent association

rules.

Experimental results show that our method is very competitive with other

4

rule learners in terms of the predictive accuracy on the unseen instances of 5

datasets. When compared with RIPPER [11], a state-of-the-art rule learner, more

detailed analysis shows that our method can achieve much better accuracy when

comparing models with similar complexities.

Chapter 1, in full is currently being prepared for submission for publication

of the material. Qiao, Litao; Wang, Weijia. The thesis author was the primary

investigator and author of this material. Chapter 1 is also coauthored with Wang,

Weijia. The thesis author was the primary author of this chapter.

5

Chapter 2

Related Work

6

As already mentioned, there has been increasing interest in the field of

explainable machine learning in recent years. Similar to our work, some of these

papers derive explanations as Boolean logic rules in the disjunctive normal form

(DNF) or the conjunctive normal form (CNF). In particular, [9, 12] propose to

formulate their models as integer programming problems, where the objective

loss function is defined as the Hamming loss that measures the training accuracy

and they bound the maximum model complexity in the constraint. [9]

approximately solves the problem by relaxing it into a linear programming

problem and applying the column generation algorithm, whereas the later utilizes

various optimization approaches, including linear programming relaxation, block

coordinate descent, alternating minimization algorithm, and redundancy aware

binarization. In addition, [13] presents a Bayesian framework for learning

decision rule sets in which they approximately construct the maximum a

posteriori (MAP) estimation using a combination of a couple of cutting-plane

methods.

There works are related to our work in the sense that we both derive

Boolean rule set. However, these works are concentrating on the training

algorithm of the model, whereas our main contribution is to propose a neural

7

network architecture that can precisely mapped to sets of logical rules. Since

neural networks are commonly considered to have a remarkable generalization

capability, our approach also inherits this generalization capability in the rule sets

that we generate. Further, as training methods for neural networks continue to

advance, our approach will also benefit from these advances.

Chapter 2, in full is currently being prepared for submission for

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the

primary investigator and author of this material. Chapter 2 is also coauthored with

Wang, Weijia. The thesis author was the primary author of this chapter.

8

Chapter 3

Problem Formulation

9

In this work, given a binary classification dataset with binarized input

features, our goal is to train a classifier in the form of a Boolean logic function in

disjunctive normal form (OR-of-ANDs). In particular, in the first level of the

function (the logical ANDs), each clause consists of a subset of input features or

their negations, which serves as a decision rule. A clause sufficiently gives a

positive prediction if all its features are presented in the input vector. In the upper

level of the function (the logical OR), a positive final prediction is produced if at

least one of the conjunctive clauses is satisfied; otherwise, a negative final

prediction is produced.

Mathematically, the training set contains 𝑁 data samples (𝐱𝑛, 𝑦𝑛), where

𝐱𝑛 comprises 𝐷 binarized features 𝑥𝑖,𝑛 ∈ {0,1} and 𝑦𝑛 ∈ {0,1}. We define a

literal to be either an input feature 𝑥𝑖 or its negation 𝑥̅𝑖 and a clause 𝑐 is a

conjunction of 𝑘 literals where 1 ≤ 𝑘 ≤ 𝐷. If a feature of the feature space is

not present in the clause 𝑐, then we say that feature is a “don't care” in clause 𝑐.

A clause is constructed to be intuitive by itself due to fact that it can be directly

translated to a rule: an input instance matches a clause (rule) if all literals of the

clause are present in the input vector, and we denote this as 𝐱 → 𝑐. The output

rule set 𝐶 learned from the neural network is thus defined as a set of conjunction

10

clauses 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}.

3.1 Threshold Functions

A neuron with binary inputs and full-precision weights can be viewed as a

threshold function with a full-precision bias term added to the output side. We

start from a simple linear function 𝑓 of the form:

𝑧 = 𝑓(𝐱) = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝐷
𝑖=1 (1)

where 𝑤𝑖 is the weight of each feature and 𝑏 is the bias term. This equation

represents the dot product operation used in a single neuron in a neural network.

The threshold function, in essence, is a single neuron with a step activation

function:

𝐴(𝑧) = {
1, if 𝑧 ≥ 0

0, otherwise
 (2)

3.2 Rule Generation from Threshold Functions

We first define some terminologies that describe the properties of clauses.

Definition 1. (Value of Clause) The value of a clause 𝑐 with respect to a

threshold function 𝑓 with weights {𝑤1, 𝑤2, … , 𝑤𝐷} and bias 𝑏 is equal to the

minimum value of 𝑓(𝐱) where 𝐱 matches 𝑐.

11

𝑓(𝑐) = min(𝑓(𝐱)) s. t. 𝐱 → 𝑐 (3)

Since the rules that we want to generate should give a positive label, we

are more interested in the clauses that turn on the threshold function. Thus, we

name the clauses of function 𝑓 to be ``positive clauses'' if their values are greater

or equal to 0.

Definition 2. (Prime Clause) A clause 𝑐 is a prime clause of a linear

function 𝑓 if and only if 𝑐 is a positive clause of 𝑓 and is not a superset of any

other positive clause of 𝑓.

The set of the prime clauses are the only clauses that we desire because

each threshold function has only one unique and irredundant set of prime clauses.

The definition of prime clause enables us to represent an arbitrary threshold

function as an equivalent set of minimal rules, thus giving a way to convert the

function to its most succinct form.

Definition 3. (Max Span) The max span 𝑧max of a linear function 𝑓 is

the maximum output value that 𝑓 can attain.

𝑧max = max(𝑓(𝑥)) (4)

Definition 4. (Max Clause) The max clause 𝑐max of a linear function 𝑓

is the minimum clause whose value is the linear function's max span.

12

𝑐max = min(|𝑐|) s. t. 𝑓(𝑐) = 𝑧max (5)

By definition, there is only one pair of max span and max clause for a given

threshold function. We can use the one-to-one relationship between a threshold

function's weights and its max clause to find its max clause and max span pair.

Given a threshold function with the set of weights {𝑤1, 𝑤2, … , 𝑤𝐷}, its max

clause is computed by applying a step function to its non-zero weights and its max

span is obtained by plugging the max clause into the threshold function.

Next we present the primary theorem in our prime clause generation

procedure and several properties that can be derived from the theorem.

Lemma 1. Given a threshold logic function, all prime clauses contain the

max clause.

Proof: We prove this by contradiction. We assume that a prime clause 𝑝

exists such that it does not contain the max clause. If 𝑓(𝑝) < 0, then by

definition it is not a prime. Next we consider the case when 𝑓(𝑝) ≥ 0. Since 𝑝

does not contain the max clause, then there exists at least a literal ℓ in 𝑝 such

that the max clause has its negation version ℓ̅. Because of the definition of a max

clause, replacing ℓ with ℓ̅ gives a new clause 𝑝 whose value 𝑓(𝑝) is larger

than 𝑓(𝑝) and is thus also ≥ 0. Since both 𝑓(𝑝) and 𝑓(𝑝) are ≥ 0, it follows

13

that the clause 𝑝 ∖ {ℓ} is also ≥ 0 and by definition is a subset of 𝑝. Thus, 𝑝

by definition is not a prime. In both cases, we have a contradiction.

Theorem 1. All primes for a given threshold function correspond to the

maximal removal of some subset 𝑆𝑚𝑎𝑥 of literals from 𝑧max such that

∑ |𝑤𝑖| ≤ 𝑧max

𝑖∈𝑆max

 (6)

Proof: We already proved in Lemma 1 that all prime clauses must contain

𝑐max, which means a prime clause 𝑝 corresponds to some removal of literals

from 𝑐max. According to the definition of prime clause, if a literal can be

removed from the clause 𝑐 without making the 𝑐 's value to be negative, then 𝑐

is not a prime clause. The removal of a literal for 𝑥𝑖 from 𝑐 corresponds to

consider both 𝑥𝑖 is a feature and 𝑥𝑖 as the negation of a feature. When 𝑤𝑖 is

positive, the maximum decrease to 𝑓(𝐱) occurs when we change 𝑥𝑖 from 1 to 0,

which would reduce 𝑓(𝐱) by 𝑤𝐼. Similarly, when 𝑤𝑖 is negative, the

maximum decrease to 𝑓(𝐱) occurs when we change 𝑥𝑖 from 0 to 1, which

would also reduce 𝑓(𝐱) by 𝑤𝑖. For the value of the corresponding clause to

remain to be positive, it must be the case that the sum of the absolute weights

corresponding to the removed literals is less or equal to the max span. The

maximal removal of a subset 𝑆max of literals such that ∑ |𝑤𝑖| ≤ 𝑧max𝑖∈𝑆max

14

means that no more literals can be removed from 𝑐max, and therefore the

resulting clause is a prime clause.

Corollary 1. The set of prime clauses for a threshold function is unique.

Proof: We already proved in Lemma 1 that all prime clauses must contain

𝑐max, and we already proved in Theorem 1 that all prime clauses correspond to

the maximal removal of some subset 𝑆max of literals from 𝑐max. It follows that

the set of prime clauses for a threshold function is unique because the set of

maximal subsets that satisfies the equation 6 in Theorem 1 is unique.

Corollary 2. The set of primes for a threshold function is irredundant.

Proof: We prove this corollary by contradiction. Given a prime clause 𝑝

for a threshold function, denote by 𝑃 and 𝑃 ∖ {𝑝} the set of prime clauses for

that threshold function and 𝑃 excluding 𝑝, respectively. Assume every point

matching 𝑝 also matches 𝑃 ∖ {𝑝}. Then, consider the point 𝐱 that matches 𝑝

and has:

𝐱 = argmin
𝑥

(𝑓(𝑥)) s. t. 𝐱 → 𝑐 (7)

In other words, for all features that are don't cares in 𝑝, they are present in 𝐱

such that 𝑓(𝐱) is minimized. According to the assumption, there must exist

another prime clause 𝑝 ∈ 𝑃 ∖ {𝑝} such that 𝐱 matches 𝑝. Since flipping any

15

feature in 𝐱 that is a don't care in 𝑝 only monotonically increases the weighted

sum, all don't-care features of 𝑝 can also be removed from 𝑝, and hence 𝑝 is

covered by 𝑝 (𝑝 ⊂ 𝑝), which is contradictory to the premise that 𝑝 is a prime

clause.

Theorem 1 leads to the recursive algorithm described in the Algorithm 1,

which computes the maximal subsets of weights that could be removed to

generate the prime clauses. The algorithm we proposed here is a simple yet

effective depth-first tree search over the entire input space. In the worst case,

however, our algorithm admittedly will require exponentially large processing

time as the input space grows, and we will address the problem of reducing search

space in the next section. After we get all the maximal subsets of weights whose

absolute sum value is less than the max span, the prime clauses can be easily

computed by converting the remaining weights of each found subset to max

clause by the one-to-one relationship mentioned above.

Chapter 3, in full is currently being prepared for submission for

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the

primary investigator and author of this material. Chapter 3 is also coauthored with

Wang, Weijia. The thesis author was the primary author of this chapter.

16

Figure 1: Recursive algorithm to generate primes from threshold function

17

Chapter 4

Neurons as Threshold Functions

18

As previously discussed, explainable rules can be effectively extracted

from threshold functions whose formulation perfectly matches the arithmetic

performed by a single neuron (a.k.a. a single-layer perceptron). In particular, with

the set of weights 𝑤𝑖, the bias term 𝑏, and sigmoid as the activation function, a

perceptron classifier exactly encodes the threshold function described in

Equations 1 and 2 since the threshold in Equation 2 is mapped by sigmoid to the

classification boundary of the neuron.

Therefore, we propose to utilize stochastic gradient descent to train our

model as a single neuron with the sigmoid activation function and binary cross-

entropy loss. Note that this essentially composes a logistic regression model.

However, classic logistic regression barely has any zero weights, while as

discussed above, zero and non-zero weights of a threshold function translate into

literals and don't-cares, respectively. As a result, the max clause computed from a

classic logistic regression model generally has the identical length with an input

vector, which is not commonly considered interpretable. To improve the sparsity

of weights, we employ the 𝐿0 norm regularization technique proposed in [10],

which penalizes the non-zero weights in a differentiable manner and allows to

adjust the sparsity of weights by tuning the 𝐿0 coefficient. We will show in the

19

experiment section that with such a regularization approach, the trained threshold

function translates well into concise rules that are human-interpretable.

4.1 OR-of-Neurons

Since a single-layer perceptron is generally considered as a linear model, it

has a limited classification capability. Thus, we further propose a two-layer neural

network structure, called OR-of-Neurons (OON) architecture, that is capable of

learning more complicated decision boundaries.

The first layer of our OON model, called the Rules Layer, consists of a

number of neurons with 𝐿0 norm regularization applied, each of which performs

the linear function 𝑓 described in Equation 1. The outputs 𝐳 are then binarized

according to the activation function in Equation 2. In other words, every neuron in

the first layer individually learns a threshold function and it outputs 1 when the

threshold function is activated, or 0 otherwise.

We call the second layer the OR Layer, which is constructed with a single

neuron whose weights all equal to 1 and the bias is -0.5. We do not train the

parameters in this layer so it, with the sigmoid activation function and binary

cross entropy loss, behaves as an OR gate: it by default makes a negative

20

prediction when all its inputs being 0, whereas every activated threshold function

sufficiently turns on this OR-gate and produces a positive output. Furthermore,

since a threshold function also can be decomposed into the disjunction of a set of

clauses (rules), this DNF pattern is propagated to the final output side according

to the associative and idempotent laws, which results in a final prediction

composed by a set of rules OR-ed together. For example, suppose the first layer

encodes two threshold functions that can be converted into rules as follows: 𝐹1 =

𝑟1 ∨ 𝑟2 and 𝐹2 = 𝑟2 ∨ 𝑟3. The overall network can be then represented as follows:

𝐹𝑜𝑢𝑡 = 𝐹1 ∨ 𝐹2 = (𝑟1 ∨ 𝑟2) ∨ (𝑟2 ∨ 𝑟3) = 𝑟1 ∨ 𝑟2 ∨ 𝑟3 (8)

Since it has no impact on the rule-level complexity (number of literals in the rule),

this OON model introduces the support of non-linear decision boundaries without

any degradation of interpretability.

21

Figure 2: An example of the OON architecture with two neurons (i.e., threshold

functions denoted by 𝐹𝑖) in rules layer.

4.2 Back-Propagation through Discretized Activations

With 𝐿0 norm regularization applied to the Rules Layer, the overall loss

function we optimize for can be expressed as follows:

𝐿 = 𝐿𝐵𝐶𝐸 + 𝜆𝐿𝑅

where 𝐿𝐵𝐶𝐸 is the binary cross-entropy loss, 𝐿𝑅 stands for the regularization

penalty, and 𝜆 is the regularization coefficient that balances the classification

accuracy and rule simplicity. However, as can be observed, the activations of the

first layer are discretized into binary integers that are not naturally differentiable

and the classic gradient computation approach does not apply. Therefore, we

utilize the straight-through estimator discussed in [14] with the gradient clipping

22

technique. Denoted by 𝑧̂𝑖 as the binarized activation based on 𝑧𝑖, we compute

the gradient as follows:

𝑔𝑧̂𝑖
= {

0, if 𝑧𝑖 < 0 or 𝑧𝑖 > 1,
𝛿𝐿

𝛿𝑧𝑖
< 0

𝑔𝑧𝑖
, otherwise

 (10)

where 𝑔𝑧̂𝑖
 and 𝑔𝑧𝑖

 are the gradients of classification loss w.r.t. 𝑔𝑧̂𝑖
 and 𝑧𝑖,

respectively. The condition 𝑧𝑖 < 0 simulates the backward computation of the

ReLU function, which introduces non-linearity into the training process and

empirically improves the performance, whereas our motivation of the second

condition is to address the saturation effect: we suppress the update of the full-

precision activations that are greater than 1 and are still driven by the gradient to

increase, since further raising activations does not produce any difference after

binarization.

Based on empirical observations, we practically train the model by first

training a full-precision version of the network with 𝐿0 norm regularization

applied, in which the binarization activation function is replaced, during the

forward pass, with a clipped ReLU function whose ceiling value equals 1, and we

clip its gradient using the same approach described in Equation 10 so that the

training is rather consistent before and after introducing binarization. After the

convergence of the full-precision model, we suppress the weight regularization

23

and train the binarized network by only updating the non-zero weights. We will

show in the experiment section this procedure leads to decent performance.

Chapter 4, in full is currently being prepared for submission for

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the

primary investigator and author of this material. Chapter 4 is also coauthored with

Wang, Weijia. The thesis author was the primary author of this chapter.

24

Chapter 5

Experiments

25

The numerical experiments are evaluated on 5 publicly available datasets

with binary labels, which all have more than 10000 instances and more than 10

features before binarization. We only include the large datasets for evaluation

because it is not our goal to generate optimized rules on small datasets. The first

two selected datasets are from UCI Machine Learning Repository [15]: MAGIC

gamma telescope (magic) and adult census (adult), which are also used in the

recent works on rule set classifiers [9, 13, 16]. The magic is a dataset of pure

numerical attributes while the adult dataset has mixed of both numerical attributes

and categorical attributes. The recidivism predictions in North Carolina (reci)

dataset has lots of binary attributes and is used to evaluate the models'

performances on the datasets whose features are originally binary. The last one is

a relatively recent dataset: FICO HELOC dataset (heloc), which has all continues

features.

All the datasets except bank dataset are divided into 5 partitions using 5-

fold stratified cross-validation method. To make sure the test results are

comparable across the all the models, all models are trained and tested on the

same training-test splits of the datasets that are preprocessed using the same

method. For the binary attributes, we leave the value as it is while we applied the

26

standard one-hot encoding to transform the value 𝑥 to a vector of binary values

for the categorical attributes. We used the same procedure recommended in the

work [13] to binarize the numerical attributes: each value is compared with 9

quantile thresholds and encode 1 if it is less than the threshold and 0 otherwise.

Note that one difference in the binarization procedure with other work is that we

don't append negations in the one-hot encoding and comparison to simplify the

training space.

Our goal is to learn a set of decision rules using our OON method and

compare our result with other state-of-the-art rule learners and machine learning

models. The results include models' test accuracy and interpretability. We define

the model complexity the same way as in [9]: the number of rules plus the total

number of conditions in the rule set and rule complexity is the average number of

conditions in each rule of the model. We consider three other rule learner

algorithms to directly compare with our work for both accuracy and

interpretability: RIPPER algorithm , Bayesian Rule Sets (BRS) [13] and the

column generation (CG) algorithm from [9]. The first one is an old rule set

learning algorithm that is a variant of the Sequential Covering algorithm, while

the other two are the representatives of the recent works on rule learning

27

classifier. We used the open-source implementations we found on Github for all

three algorithms. Other interpretable models used for comparison are the scikit-

learn [17] implementations of decision tree of CART algorithm (CART) [18] and

a fully connected layer of full-precision weights with ReLU activation function

and 1 hidden layer of 10 neurons (FP-NN). The full-precision neural network is

included in comparison as the representative of the best performance that black-

box models can achieve on these datasets.

5.1 Classification Performance

We evaluate the predictive performance of our methods by comparing

both test accuracy and interpretability with other state-of-the-art machine learning

models. Nested cross validation was employed to select the parameters for other

rule learners that explicitly trade-off between accuracy and interpretability to

maximize the training set accuracies. To ensure that the final rule learner models

are interpretable, we constrain the possible parameters for nested cross validation

to a range which results in a low model complexity. Although there are many

parameters in BRS to control the rule complexity, we only varied the multiplier 𝜅

in prior hyperparameter to save running time, which is also used in [9]. For

28

RIPPER, we varied the maximum number of conditions and maximum number of

rules, which are directly related to the complexity of the model. The

implementation of the CG algorithm [19] is a different variation from the one

discussed in [9]. The CG implementation in [19] doesn't have the complexity

bound 𝐶 parameter but instead provides two parameters to specify the costs of

each clause and of each condition, which are used in our experiment to control the

rule set complexity. We leave all other parameters for these three algorithms as

default. Since the range of our rule set complexity can vary a lot, which naturally

corresponds to a wide accuracy range, we manually tune 𝜆 to generate the rule

sets whose complexities are comparable to those of other rule learners, and test

those rule sets on each test set. For CART, we constrained the maximum depth of

trees to be 100 for all datasets to achieve better generalization. The test accuracy

results of all models on all 5 datasets are shown in the table 1 and the

corresponding complexities are shown in the table 2. We omitted the complexity

results of CART and FP-NN because they have a different notion of model

complexity and rule complexity.

29

Table 1: Test accuracy based on the 5-fold cross-validation (%, standard error in

parentheses).

dataset adult magic reci heloc

OON 82.36 (0.55) 82.23 (0.50) 64.14 (0.56) 69.81 (3.83)

CG 81.33 (0.31) 72.17 (0.32) 53.41 (0.21) 65.96 (2.72)

BRS 81.05 (0.56) 82.38 (0.71) 65.43 (0.58) 68.68 (0.31)

RIPPER 82.00 (0.60) 83.01 (0.77) 64.89 (0.38) 69.76 (1.14)

CART 78.87 (0.12) 80.56 (0.86) 58.12 (0.52) 60.61 (2.83)

FP-NN 84.35 (0.33) 86.19 (0.61) 66.18 (0.59) 70.83 (3.42)

Table 2: Model complexity and rule complexity based on the 5-fold cross-validation.

dataset adult magic reci heloc

OON 23.80 | 3.10 135.8 | 4.43 12.82 | 3.27 33.20 | 4.35

CG 14.50 | 1.90 41.80| 2.35 19.61 | 7.76 5.80 | 1.90

BRS 50.20 | 3.28 141.0 | 2.98 14.29 | 2.95 23.20 | 3.00

RIPPER 73.00 | 4.54 241.0 | 5.96 50.20 | 5.41 109.4 | 6.92

While we constrained model complexity of OON to be similar to that of

other rule learner algorithms, which were already tuned to have the best

performance on each dataset, our method still generally beat all other rule learners

on adult, bank and heloc datasets and were on par with FP-NN on bank, reci and

heloc datasets. For those of the datasets where our method failed to be comparable

with other rule learners, the accuracy differences are less than 2% and our

models consistently have low complexity. Compared with RIPPER, which

30

greedily mines good rules in each iteration to maximize the training accuracy,

OON is very competitive in the sense that it has similar or equal test performance

while consistently maintaining a lower model complexity and a rule complexity.

The advantage of the CG algorithm over OON is that it consistently generate very

sparse models despite that we varied the cost of each clause and the cost of each

condition in a very wide range (10−2 to 10−20). We suspect that this is due to

that the version we found implements a heuristic beam search instead of the

integer programming described in the paper. The CART decision tree algorithm

turns out to be the worst performing models in the experiment, which might result

from over-fitting.

5.2 Accuracy-Complexity trade-off

In this experiment, we compared the accuracy-complexity trade-off of our

OON method with RIPPER. Both CG algorithm and BRS are ruled out in this

experiment because we noticed that they didn't display expected trade-off

capabilities in the first experiment. We varied 𝜆 and number of neurons in the

hidden layer for OON method and maximum number of conditions and maximum

number of rules for RIPPER to control the complexity of the rule set, resulting in

31

two different sets of accuracy-complexity pairs. We run the experiment on adult

dataset and the result is shown in the figure 3. The points that are connected by

the lines are Pareto efficient, which are the accuracy-complexity pairs with less

complexity and higher accuracy. From the figure 3, OON displays a better

accuracy-complexity trade-off capability in two aspects. First, OON's Pareto

frontier is strictly higher than RIPPER method, which is especially true in the

lower complexity range. This confirms with the observation that we had in the

first experiment: OON can get higher accuracy with lower complexity. Second,

while the points of RIPPER method are clustered in a two narrow ranges despite

that we evenly selected the parameters, OON has a much wider and smoother

distribution of the trade-off.

Chapter 5, in full is currently being prepared for submission for

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the

primary investigator and author of this material. Chapter 5 is also coauthored with

Wang, Weijia. The thesis author was the primary author of this chapter.

32

Figure 3: Accuracy-Complexity trade-offs on the adult dataset. Pareto efficient

points are connected by line segments

33

Chapter 6

Conclusion

34

We have developed a neural network training method to learn accurate and

interpretable decision rule sets for binary classification. A simple algorithm is

proposed to convert threshold functions to decision rules with optimality

guarantees. The rule set converted from the neural network inherits its good

generalization capability and the experiments have shown that the our method

achieved a superior predictive performance.

Although our method demonstrated competitive experimental results in

Table 1 and 2, it comes with the sacrifice of the training time. Due to the specialty

of neural network structure, the training of our method with 𝐿0 regularization

typically takes longer time to converge than other rule learners or machine

learning models. Another challenge of putting our method for practical use is the

best hyperparameter selection, which varies for different datasets. We believe

those problems can be solved by integrating our method with some of the state-of-

the-art neural training techniques and we leave these possible improvements for

future work.

Chapter 6, in full is currently being prepared for submission for

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the

primary investigator and author of this material. Chapter 6 is also coauthored with

35

Wang, Weijia. The thesis author was the primary author of this chapter.

36

References

[1] A. Flores, K. Bechtel and C. Lowenkamp, "False Positives, False Negatives,

and False Analyses: A Rejoinder to “Machine Bias: There’s Software Used

Across the Country to Predict Future Criminals. And it’s Biased Against

Blacks.”," Federal probation, vol. 80, 9 2016.

[2] M. T. Ribeiro, S. Singh and C. Guestrin, "Anchors: High-Precision Model-

Agnostic Explanations," in AAAI, 2018.

[3] M. T. Ribeiro, S. Singh and C. Guestrin, "Why Should I Trust You?":

Explaining the Predictions of Any Classifier, 2016.

[4] H. Lakkaraju, E. Kamar, R. Caruana and J. Leskovec, "Faithful and

Customizable Explanations of Black Box Models," in Proceedings of the

2019 AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA,

2019.

[5] H. Lakkaraju, S. H. Bach and J. Leskovec, "Interpretable Decision Sets: A

Joint Framework for Description and Prediction," in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, New York, NY, USA, 2016.

[6] D. Nauck and R. Kruse, "Obtaining interpretable fuzzy classification rules

from medical data," Artificial Intelligence in Medicine, vol. 16, pp. 149-169,

1999.

[7] J. Zeng, B. Ustun and C. Rudin, "Interpretable classification models for

recidivism prediction," Journal of the Royal Statistical Society: Series A

(Statistics in Society), vol. 180, p. 689–722, 9 2016.

[8] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm and N. Elhadad,

"Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital

30-Day Readmission," in Proceedings of the 21th ACM SIGKDD

37

International Conference on Knowledge Discovery and Data Mining, New

York, NY, USA, 2015.

[9] S. Dash, O. Günlük and D. Wei, "Boolean Decision Rules via Column

Generation," in Proceedings of the 32nd International Conference on Neural

Information Processing Systems, Red Hook, NY, USA, 2018.

[10] C. Louizos, M. Welling and D. P. Kingma, Learning Sparse Neural Networks

through L_0 Regularization, 2017.

[11] W. W. Cohen, "Fast Effective Rule Induction," in In Proceedings of the

Twelfth International Conference on Machine Learning, 1995.

[12] G. Su, D. Wei, K. R. Varshney and D. M. Malioutov, Interpretable Two-level

Boolean Rule Learning for Classification, 2015.

[13] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl and P. MacNeille, "A

Bayesian Framework for Learning Rule Sets for Interpretable Classification,"

Journal of Machine Learning Research, vol. 18, pp. 1-37, 2017.

[14] Y. Bengio, N. Léonard and A. Courville, Estimating or Propagating

Gradients Through Stochastic Neurons for Conditional Computation, 2013.

[15] D. Dua and C. Graff, UCI Machine Learning Repository, 2017.

[16] S. Dash, D. M. Malioutov and K. R. Varshney, "Screening for learning

classification rules via Boolean compressed sensing," in 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2014.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, "Scikit-learn:

Machine Learning in Python," Journal of Machine Learning Research, vol.

12, p. 2825–2830, 2011.

38

[18] L. Breiman, J. Friedman, C. J. Stone and R. A. Olshen, Classification and

Regression Trees, Taylor & Francis, 1984.

[19] V. Arya, R. K. E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. C.

Hoffman, S. Houde, Q. V. Liao, R. Luss, A. Mojsilović, S. Mourad, P.

Pedemonte, R. Raghavendra, J. Richards, P. Sattigeri, K. Shanmugam, M.

Singh, K. R. Varshney, D. Wei and Y. Zhang, One Explanation Does Not Fit

All: A Toolkit and Taxonomy of AI Explainability Techniques, 2019.

