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ABSTRACT OF THE THESIS 

 

Learning Accurate and Interpretable Decision Rule Sets from Neural Networks 

 

By 

 

Litao Qiao 

 

Master of Science in Computer Science 

 

University of California San Diego, 2020 

 

Professor Bill Lin, Chair 

 

This thesis proposes a novel way to learn a set of the Boolean rules in 

disjunctive normal form as an interpretable model for binary classifications. We 

consider the problem of learning an interpretable decision rule set as training a 

neural network in a specific architecture and converting each neuron in the 

network into a set of minimal decision rules. This approach can easily find a set of 

interpretable decision rules that has similarly high predictive performance as a 

full-precision fully-connected deep neural network, and the method can balance 

between accuracy and complexity. Moreover, we prove that the set of decision 

rules derived from each neuron is minimum, unique, and irredundant with respect 
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to the original neuron. Our method is competitive with several other state-of-the-

art rule learning algorithms, even with fewer rules and simpler rule conditions 
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Chapter 1  

 

Introduction   
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Machine learning has made tremendous advances in recent years, 

particularly in the area of deep learning based on neural networks. However, the 

black box nature of neural networks makes it hard for humans to understand the 

reasoning behind their decision making. This creates a huge barrier for their 

widespread adoption in the mainstream, especially as machine learning is being 

considered in many aspects of our society, including healthcare, legal assistance, 

financial services, and even criminal justice. In highly-consequential applications 

like medical diagnosis or recidivism analysis, the lack of interpretability in the 

models or explainability in their decisions makes it difficult to gain public trust for 

their use [1]. While there have been some effort in developing explainable machine 

learning methods, these explanation methods are often just simplified (but 

inaccurate) post-hoc approximations of the original models [2, 3, 4]. 

On the other hand, a considerable amount of work around interpretable 

machine learning methods has been based on logical models, like various forms of 

rule sets or decision trees [5, 6, 7, 8, 9]. They are interpretable by design in the 

sense that decisions are made by activating some subset of logical rules or some 

path through a decision tree, where each logical rule in a rule set or each decision 

condition in a decision tree has a human-understandable interpretation. However, 
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existing methods for generating these interpretable models have lagged behind 

state-of-the-art neural network approaches in terms of accuracy and generalization. 

In this thesis, we pose the following question: can we get the best of both 

worlds? To answer this question, we propose a novel approach for automatically 

converting a restricted form of neural network into a set of interpretable decision 

rules that implements the same input/output behavior. Our approach is applicable 

to binary classification problems with categorical inputs. In particular, Boolean 

decision rules are learned by training a restricted two-layer neural network structure 

with state-of-the-art stochastic gradient descent (SGD) training algorithms. Our 

proposed two-layer neural network structure, called a OR-of-Neuron (OON) 

architecture, is designed so that it can be readily mapped to a set of decision rules 

once trained.  Further, we propose to employ 𝐿0  regularization [10] in our 

training algorithm to achieve rule simplifications through neural net sparsity. 

Different tradeoffs between accuracy and complexity can be explored via the 

degree of 𝐿0 regularization. In contrast to some previous methods for generating 

decision rules, our approach does not require the premining of frequent association 

rules. 

Experimental results show that our method is very competitive with other 
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rule learners in terms of the predictive accuracy on the unseen instances of 5 

datasets. When compared with RIPPER [11], a state-of-the-art rule learner, more 

detailed analysis shows that our method can achieve much better accuracy when 

comparing models with similar complexities.  

Chapter 1, in full is currently being prepared for submission for publication 

of the material. Qiao, Litao; Wang, Weijia. The thesis author was the primary 

investigator and author of this material. Chapter 1 is also coauthored with Wang, 

Weijia. The thesis author was the primary author of this chapter.  
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Related Work   
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As already mentioned, there has been increasing interest in the field of 

explainable machine learning in recent years. Similar to our work, some of these 

papers derive explanations as Boolean logic rules in the disjunctive normal form 

(DNF) or the conjunctive normal form (CNF). In particular, [9, 12] propose to 

formulate their models as integer programming problems, where the objective 

loss function is defined as the Hamming loss that measures the training accuracy 

and they bound the maximum model complexity in the constraint. [9] 

approximately solves the problem by relaxing it into a linear programming 

problem and applying the column generation algorithm, whereas the later utilizes 

various optimization approaches, including linear programming relaxation, block 

coordinate descent, alternating minimization algorithm, and redundancy aware 

binarization. In addition, [13] presents a Bayesian framework for learning 

decision rule sets in which they approximately construct the maximum a 

posteriori (MAP) estimation using a combination of a couple of cutting-plane 

methods. 

There works are related to our work in the sense that we both derive 

Boolean rule set. However, these works are concentrating on the training 

algorithm of the model, whereas our main contribution is to propose a neural 
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network architecture that can precisely mapped to sets of logical rules. Since 

neural networks are commonly considered to have a remarkable generalization 

capability, our approach also inherits this generalization capability in the rule sets 

that we generate. Further, as training methods for neural networks continue to 

advance, our approach will also benefit from these advances. 

Chapter 2, in full is currently being prepared for submission for 

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the 

primary investigator and author of this material. Chapter 2 is also coauthored with 

Wang, Weijia. The thesis author was the primary author of this chapter.  
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Problem Formulation   
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In this work, given a binary classification dataset with binarized input 

features, our goal is to train a classifier in the form of a Boolean logic function in 

disjunctive normal form (OR-of-ANDs). In particular, in the first level of the 

function (the logical ANDs), each clause consists of a subset of input features or 

their negations, which serves as a decision rule. A clause sufficiently gives a 

positive prediction if all its features are presented in the input vector. In the upper 

level of the function (the logical OR), a positive final prediction is produced if at 

least one of the conjunctive clauses is satisfied; otherwise, a negative final 

prediction is produced. 

Mathematically, the training set contains 𝑁 data samples (𝐱𝑛, 𝑦𝑛), where 

𝐱𝑛 comprises 𝐷 binarized features 𝑥𝑖,𝑛 ∈ {0,1} and 𝑦𝑛 ∈ {0,1}. We define a 

literal to be either an input feature 𝑥𝑖 or its negation 𝑥̅𝑖 and a clause 𝑐 is a 

conjunction of 𝑘 literals where 1 ≤ 𝑘 ≤ 𝐷. If a feature of the feature space is 

not present in the clause 𝑐, then we say that feature is a “don't care” in clause 𝑐. 

A clause is constructed to be intuitive by itself due to fact that it can be directly 

translated to a rule: an input instance matches a clause (rule) if all literals of the 

clause are present in the input vector, and we denote this as 𝐱 → 𝑐. The output 

rule set 𝐶 learned from the neural network is thus defined as a set of conjunction 
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clauses 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}. 

 

3.1 Threshold Functions 

A neuron with binary inputs and full-precision weights can be viewed as a 

threshold function with a full-precision bias term added to the output side. We 

start from a simple linear function 𝑓 of the form: 

𝑧 = 𝑓(𝐱) = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝐷
𝑖=1  (1) 

where 𝑤𝑖 is the weight of each feature and 𝑏 is the bias term. This equation 

represents the dot product operation used in a single neuron in a neural network. 

The threshold function, in essence, is a single neuron with a step activation 

function: 

𝐴(𝑧) = {
1, if 𝑧 ≥ 0

0, otherwise
 (2) 

 

3.2 Rule Generation from Threshold Functions 

We first define some terminologies that describe the properties of clauses.  

Definition 1. (Value of Clause) The value of a clause 𝑐 with respect to a 

threshold function 𝑓 with weights {𝑤1, 𝑤2, … , 𝑤𝐷} and bias 𝑏 is equal to the 

minimum value of 𝑓(𝐱) where 𝐱 matches 𝑐. 
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𝑓(𝑐) = min(𝑓(𝐱))    s. t.  𝐱 → 𝑐 (3) 

Since the rules that we want to generate should give a positive label, we 

are more interested in the clauses that turn on the threshold function. Thus, we 

name the clauses of function 𝑓 to be ``positive clauses'' if their values are greater 

or equal to 0.  

Definition 2. (Prime Clause) A clause 𝑐 is a prime clause of a linear 

function 𝑓 if and only if 𝑐 is a positive clause of 𝑓 and is not a superset of any 

other positive clause of 𝑓.  

The set of the prime clauses are the only clauses that we desire because 

each threshold function has only one unique and irredundant set of prime clauses. 

The definition of prime clause enables us to represent an arbitrary threshold 

function as an equivalent set of minimal rules, thus giving a way to convert the 

function to its most succinct form.  

Definition 3. (Max Span) The max span 𝑧max of a linear function 𝑓 is 

the maximum output value that 𝑓 can attain. 

𝑧max = max(𝑓(𝑥)) (4) 

Definition 4. (Max Clause) The max clause 𝑐max of a linear function 𝑓 

is the minimum clause whose value is the linear function's max span. 
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𝑐max = min(|𝑐|)    s. t.  𝑓(𝑐) = 𝑧max (5) 

By definition, there is only one pair of max span and max clause for a given 

threshold function. We can use the one-to-one relationship between a threshold 

function's weights and its max clause to find its max clause and max span pair. 

Given a threshold function with the set of weights {𝑤1, 𝑤2, … , 𝑤𝐷}, its max 

clause is computed by applying a step function to its non-zero weights and its max 

span is obtained by plugging the max clause into the threshold function.  

Next we present the primary theorem in our prime clause generation 

procedure and several properties that can be derived from the theorem. 

Lemma 1. Given a threshold logic function, all prime clauses contain the 

max clause. 

Proof: We prove this by contradiction. We assume that a prime clause 𝑝 

exists such that it does not contain the max clause. If 𝑓(𝑝) < 0, then by 

definition it is not a prime. Next we consider the case when 𝑓(𝑝) ≥ 0. Since 𝑝 

does not contain the max clause, then there exists at least a literal ℓ in 𝑝 such 

that the max clause has its negation version ℓ̅. Because of the definition of a max 

clause, replacing ℓ with ℓ̅ gives a new clause 𝑝 whose value 𝑓(𝑝) is larger 

than 𝑓(𝑝) and is thus also ≥ 0. Since both 𝑓(𝑝) and 𝑓(𝑝) are ≥ 0, it follows 
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that the clause 𝑝 ∖ {ℓ} is also ≥ 0 and by definition is a subset of 𝑝. Thus, 𝑝 

by definition is not a prime. In both cases, we have a contradiction. 

Theorem 1. All primes for a given threshold function correspond to the 

maximal removal of some subset 𝑆𝑚𝑎𝑥 of literals from 𝑧max such that 

∑ |𝑤𝑖| ≤ 𝑧max

𝑖∈𝑆max

 (6) 

Proof: We already proved in Lemma 1 that all prime clauses must contain 

𝑐max, which means a prime clause 𝑝 corresponds to some removal of literals 

from 𝑐max. According to the definition of prime clause, if a literal can be 

removed from the clause 𝑐 without making the 𝑐 's value to be negative, then 𝑐 

is not a prime clause. The removal of a literal for 𝑥𝑖 from 𝑐 corresponds to 

consider both 𝑥𝑖 is a feature and 𝑥𝑖 as the negation of a feature. When 𝑤𝑖 is 

positive, the maximum decrease to 𝑓(𝐱) occurs when we change 𝑥𝑖 from 1 to 0, 

which would reduce 𝑓(𝐱) by 𝑤𝐼.  Similarly, when 𝑤𝑖 is negative, the 

maximum decrease to 𝑓(𝐱) occurs when we change 𝑥𝑖 from 0 to 1, which 

would also reduce 𝑓(𝐱) by 𝑤𝑖. For the value of the corresponding clause to 

remain to be positive, it must be the case that the sum of the absolute weights 

corresponding to the removed literals is less or equal to the max span. The 

maximal removal of a subset 𝑆max of literals such that ∑ |𝑤𝑖| ≤ 𝑧max𝑖∈𝑆max
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means that no more literals can be removed from 𝑐max, and therefore the 

resulting clause is a prime clause. 

Corollary 1. The set of prime clauses for a threshold function is unique. 

Proof: We already proved in Lemma 1 that all prime clauses must contain 

𝑐max, and we already proved in Theorem 1 that all prime clauses correspond to 

the maximal removal of some subset 𝑆max of literals from 𝑐max.  It follows that 

the set of prime clauses for a threshold function is unique because the set of 

maximal subsets that satisfies the equation 6 in Theorem 1 is unique. 

Corollary 2. The set of primes for a threshold function is irredundant. 

Proof: We prove this corollary by contradiction. Given a prime clause 𝑝 

for a threshold function, denote by 𝑃 and 𝑃 ∖ {𝑝} the set of prime clauses for 

that threshold function and 𝑃 excluding 𝑝, respectively. Assume every point 

matching 𝑝 also matches 𝑃 ∖ {𝑝}. Then, consider the point 𝐱 that matches 𝑝 

and has: 

𝐱 = argmin
𝑥

(𝑓(𝑥))    s. t.  𝐱 → 𝑐 (7) 

In other words, for all features that are don't cares in 𝑝, they are present in 𝐱 

such that 𝑓(𝐱) is minimized. According to the assumption, there must exist 

another prime clause  𝑝 ∈ 𝑃 ∖ {𝑝} such that 𝐱 matches 𝑝. Since flipping any 
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feature in 𝐱 that is a don't care in 𝑝 only monotonically increases the weighted 

sum, all don't-care features of 𝑝 can also be removed from 𝑝, and hence 𝑝 is 

covered by 𝑝 (𝑝 ⊂ 𝑝), which is contradictory to the premise that 𝑝 is a prime 

clause. 

Theorem 1 leads to the recursive algorithm described in the Algorithm 1, 

which computes the maximal subsets of weights that could be removed to 

generate the prime clauses. The algorithm we proposed here is a simple yet 

effective depth-first tree search over the entire input space. In the worst case, 

however, our algorithm admittedly will require exponentially large processing 

time as the input space grows, and we will address the problem of reducing search 

space in the next section. After we get all the maximal subsets of weights whose 

absolute sum value is less than the max span, the prime clauses can be easily 

computed by converting the remaining weights of each found subset to max 

clause by the one-to-one relationship mentioned above. 

Chapter 3, in full is currently being prepared for submission for 

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the 

primary investigator and author of this material. Chapter 3 is also coauthored with 

Wang, Weijia. The thesis author was the primary author of this chapter. 
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Figure 1: Recursive algorithm to generate primes from threshold function  
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Chapter 4  

 

Neurons as Threshold Functions   
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As previously discussed, explainable rules can be effectively extracted 

from threshold functions whose formulation perfectly matches the arithmetic 

performed by a single neuron (a.k.a. a single-layer perceptron). In particular, with 

the set of weights 𝑤𝑖, the bias term 𝑏, and sigmoid as the activation function, a 

perceptron classifier exactly encodes the threshold function described in 

Equations 1 and 2 since the threshold in Equation 2 is mapped by sigmoid to the 

classification boundary of the neuron. 

Therefore, we propose to utilize stochastic gradient descent to train our 

model as a single neuron with the sigmoid activation function and binary cross-

entropy loss. Note that this essentially composes a logistic regression model. 

However, classic logistic regression barely has any zero weights, while as 

discussed above, zero and non-zero weights of a threshold function translate into 

literals and don't-cares, respectively. As a result, the max clause computed from a 

classic logistic regression model generally has the identical length with an input 

vector, which is not commonly considered interpretable. To improve the sparsity 

of weights, we employ the 𝐿0 norm regularization technique proposed in [10], 

which penalizes the non-zero weights in a differentiable manner and allows to 

adjust the sparsity of weights by tuning the 𝐿0 coefficient. We will show in the 
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experiment section that with such a regularization approach, the trained threshold 

function translates well into concise rules that are human-interpretable. 

 

4.1 OR-of-Neurons 

Since a single-layer perceptron is generally considered as a linear model, it 

has a limited classification capability. Thus, we further propose a two-layer neural 

network structure, called OR-of-Neurons (OON) architecture, that is capable of 

learning more complicated decision boundaries. 

The first layer of our OON model, called the Rules Layer, consists of a 

number of neurons with 𝐿0 norm regularization applied, each of which performs 

the linear function 𝑓 described in Equation 1. The outputs 𝐳 are then binarized 

according to the activation function in Equation 2. In other words, every neuron in 

the first layer individually learns a threshold function and it outputs 1 when the 

threshold function is activated, or 0 otherwise. 

We call the second layer the OR Layer, which is constructed with a single 

neuron whose weights all equal to 1 and the bias is -0.5. We do not train the 

parameters in this layer so it, with the sigmoid activation function and binary 

cross entropy loss, behaves as an OR gate: it by default makes a negative 
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prediction when all its inputs being 0, whereas every activated threshold function 

sufficiently turns on this OR-gate and produces a positive output. Furthermore, 

since a threshold function also can be decomposed into the disjunction of a set of 

clauses (rules), this DNF pattern is propagated to the final output side according 

to the associative and idempotent laws, which results in a final prediction 

composed by a set of rules OR-ed together. For example, suppose the first layer 

encodes two threshold functions that can be converted into rules as follows: 𝐹1 =

𝑟1 ∨ 𝑟2 and 𝐹2 = 𝑟2 ∨ 𝑟3. The overall network can be then represented as follows: 

𝐹𝑜𝑢𝑡 = 𝐹1 ∨ 𝐹2 = (𝑟1 ∨ 𝑟2) ∨ (𝑟2 ∨ 𝑟3) = 𝑟1 ∨ 𝑟2 ∨ 𝑟3 (8) 

Since it has no impact on the rule-level complexity (number of literals in the rule), 

this OON model introduces the support of non-linear decision boundaries without 

any degradation of interpretability. 
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Figure 2: An example of the OON architecture with two neurons (i.e., threshold 

functions denoted by 𝐹𝑖) in rules layer. 

 

4.2 Back-Propagation through Discretized Activations 

With 𝐿0 norm regularization applied to the Rules Layer, the overall loss 

function we optimize for can be expressed as follows: 

𝐿 = 𝐿𝐵𝐶𝐸 + 𝜆𝐿𝑅 

where 𝐿𝐵𝐶𝐸 is the binary cross-entropy loss, 𝐿𝑅 stands for the regularization 

penalty, and 𝜆 is the regularization coefficient that balances the classification 

accuracy and rule simplicity. However, as can be observed, the activations of the 

first layer are discretized into binary integers that are not naturally differentiable 

and the classic gradient computation approach does not apply. Therefore, we 

utilize the straight-through estimator discussed in [14] with the gradient clipping 
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technique. Denoted by  𝑧̂𝑖 as the binarized activation based on 𝑧𝑖, we compute 

the gradient as follows: 

𝑔𝑧̂𝑖
= {

0,   if 𝑧𝑖 < 0 or 𝑧𝑖 > 1,
𝛿𝐿

𝛿𝑧𝑖
< 0

𝑔𝑧𝑖
,   otherwise

 (10) 

where 𝑔𝑧̂𝑖
 and 𝑔𝑧𝑖

 are the gradients of classification loss w.r.t. 𝑔𝑧̂𝑖
 and 𝑧𝑖, 

respectively. The condition 𝑧𝑖 < 0 simulates the backward computation of the 

ReLU function, which introduces non-linearity into the training process and 

empirically improves the performance, whereas our motivation of the second 

condition is to address the saturation effect: we suppress the update of the full-

precision activations that are greater than 1 and are still driven by the gradient to 

increase, since further raising activations does not produce any difference after 

binarization. 

Based on empirical observations, we practically train the model by first 

training a full-precision version of the network with 𝐿0 norm regularization 

applied, in which the binarization activation function is replaced, during the 

forward pass, with a clipped ReLU function whose ceiling value equals 1, and we 

clip its gradient using the same approach described in Equation 10 so that the 

training is rather consistent before and after introducing binarization. After the 

convergence of the full-precision model, we suppress the weight regularization 
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and train the binarized network by only updating the non-zero weights. We will 

show in the experiment section this procedure leads to decent performance. 

Chapter 4, in full is currently being prepared for submission for 

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the 

primary investigator and author of this material. Chapter 4 is also coauthored with 

Wang, Weijia. The thesis author was the primary author of this chapter.  
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Chapter 5  

 

Experiments   
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The numerical experiments are evaluated on 5 publicly available datasets 

with binary labels, which all have more than 10000 instances and more than 10 

features before binarization. We only include the large datasets for evaluation 

because it is not our goal to generate optimized rules on small datasets. The first 

two selected datasets are from UCI Machine Learning Repository [15]: MAGIC 

gamma telescope (magic) and adult census (adult), which are also used in the 

recent works on rule set classifiers [9, 13, 16]. The magic is a dataset of pure 

numerical attributes while the adult dataset has mixed of both numerical attributes 

and categorical attributes. The recidivism predictions in North Carolina (reci) 

dataset has lots of binary attributes and is used to evaluate the models' 

performances on the datasets whose features are originally binary. The last one is 

a relatively recent dataset: FICO HELOC dataset (heloc), which has all continues 

features.  

All the datasets except bank dataset are divided into 5 partitions using 5-

fold stratified cross-validation method. To make sure the test results are 

comparable across the all the models, all models are trained and tested on the 

same training-test splits of the datasets that are preprocessed using the same 

method. For the binary attributes, we leave the value as it is while we applied the 
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standard one-hot encoding to transform the value 𝑥 to a vector of binary values 

for the categorical attributes. We used the same procedure recommended in the 

work [13] to binarize the numerical attributes: each value is compared with 9 

quantile thresholds and encode 1 if it is less than the threshold and 0 otherwise. 

Note that one difference in the binarization procedure with other work is that we 

don't append negations in the one-hot encoding and comparison to simplify the 

training space. 

Our goal is to learn a set of decision rules using our OON method and 

compare our result with other state-of-the-art rule learners and machine learning 

models. The results include models' test accuracy and interpretability. We define 

the model complexity the same way as in [9]: the number of rules plus the total 

number of conditions in the rule set and rule complexity is the average number of 

conditions in each rule of the model. We consider three other rule learner 

algorithms to directly compare with our work for both accuracy and 

interpretability: RIPPER algorithm , Bayesian Rule Sets (BRS) [13] and the 

column generation (CG) algorithm from [9]. The first one is an old rule set 

learning algorithm that is a variant of the Sequential Covering algorithm, while 

the other two are the representatives of the recent works on rule learning 
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classifier. We used the open-source implementations we found on Github for all 

three algorithms. Other interpretable models used for comparison are the scikit-

learn [17] implementations of decision tree of CART algorithm (CART) [18] and 

a fully connected layer of full-precision weights with ReLU activation function 

and 1 hidden layer of 10 neurons (FP-NN). The full-precision neural network is 

included in comparison as the representative of the best performance that black-

box models can achieve on these datasets. 

 

5.1 Classification Performance 

We evaluate the predictive performance of our methods by comparing 

both test accuracy and interpretability with other state-of-the-art machine learning 

models. Nested cross validation was employed to select the parameters for other 

rule learners that explicitly trade-off between accuracy and interpretability to 

maximize the training set accuracies. To ensure that the final rule learner models 

are interpretable, we constrain the possible parameters for nested cross validation 

to a range which results in a low model complexity. Although there are many 

parameters in BRS to control the rule complexity, we only varied the multiplier 𝜅 

in prior hyperparameter to save running time, which is also used in [9]. For 
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RIPPER, we varied the maximum number of conditions and maximum number of 

rules, which are directly related to the complexity of the model. The 

implementation of the CG algorithm [19] is a different variation from the one 

discussed in [9]. The CG implementation in [19] doesn't have the complexity 

bound 𝐶 parameter but instead provides two parameters to specify the costs of 

each clause and of each condition, which are used in our experiment to control the 

rule set complexity. We leave all other parameters for these three algorithms as 

default. Since the range of our rule set complexity can vary a lot, which naturally 

corresponds to a wide accuracy range, we manually tune 𝜆 to generate the rule 

sets whose complexities are comparable to those of other rule learners, and test 

those rule sets on each test set. For CART, we constrained the maximum depth of 

trees to be 100 for all datasets to achieve better generalization. The test accuracy 

results of all models on all 5 datasets are shown in the table 1 and the 

corresponding complexities are shown in the table 2. We omitted the complexity 

results of CART and FP-NN because they have a different notion of model 

complexity and rule complexity. 
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Table 1: Test accuracy based on the 5-fold cross-validation (%, standard error in 

parentheses). 

dataset adult magic reci heloc 

OON 82.36 (0.55) 82.23 (0.50) 64.14 (0.56) 69.81 (3.83) 

CG 81.33 (0.31) 72.17 (0.32) 53.41 (0.21) 65.96 (2.72) 

BRS 81.05 (0.56) 82.38 (0.71) 65.43 (0.58) 68.68 (0.31) 

RIPPER 82.00 (0.60) 83.01 (0.77) 64.89 (0.38) 69.76 (1.14) 

CART 78.87 (0.12) 80.56 (0.86) 58.12 (0.52) 60.61 (2.83) 

FP-NN 84.35 (0.33) 86.19 (0.61) 66.18 (0.59) 70.83 (3.42) 

 

Table 2: Model complexity and rule complexity based on the 5-fold cross-validation. 

dataset adult magic reci heloc 

OON 23.80 | 3.10 135.8 | 4.43 12.82 | 3.27 33.20 | 4.35 

CG 14.50 | 1.90 41.80| 2.35 19.61 | 7.76 5.80 | 1.90 

BRS 50.20 | 3.28 141.0 | 2.98 14.29 | 2.95 23.20 | 3.00 

RIPPER 73.00 | 4.54 241.0 | 5.96 50.20 | 5.41 109.4 | 6.92 

 

While we constrained model complexity of OON to be similar to that of 

other rule learner algorithms, which were already tuned to have the best 

performance on each dataset, our method still generally beat all other rule learners 

on adult, bank and heloc datasets and were on par with FP-NN on bank, reci and 

heloc datasets. For those of the datasets where our method failed to be comparable 

with other rule learners, the accuracy differences are less than 2% and our 

models consistently have low complexity. Compared with RIPPER, which 
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greedily mines good rules in each iteration to maximize the training accuracy, 

OON is very competitive in the sense that it has similar or equal test performance 

while consistently maintaining a lower model complexity and a rule complexity. 

The advantage of the CG algorithm over OON is that it consistently generate very 

sparse models despite that we varied the cost of each clause and the cost of each 

condition in a very wide range (10−2 to 10−20). We suspect that this is due to 

that the version we found implements a heuristic beam search instead of the 

integer programming described in the paper. The CART decision tree algorithm 

turns out to be the worst performing models in the experiment, which might result 

from over-fitting. 

 

5.2 Accuracy-Complexity trade-off 

In this experiment, we compared the accuracy-complexity trade-off of our 

OON method with RIPPER. Both CG algorithm and BRS are ruled out in this 

experiment because we noticed that they didn't display expected trade-off 

capabilities in the first experiment. We varied 𝜆 and number of neurons in the 

hidden layer for OON method and maximum number of conditions and maximum 

number of rules for RIPPER to control the complexity of the rule set, resulting in 
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two different sets of accuracy-complexity pairs. We run the experiment on adult 

dataset and the result is shown in the figure 3. The points that are connected by 

the lines are Pareto efficient, which are the accuracy-complexity pairs with less 

complexity and higher accuracy. From the figure 3, OON displays a better 

accuracy-complexity trade-off capability in two aspects. First, OON's Pareto 

frontier is strictly higher than RIPPER method, which is especially true in the 

lower complexity range. This confirms with the observation that we had in the 

first experiment: OON can get higher accuracy with lower complexity. Second, 

while the points of RIPPER method are clustered in a two narrow ranges despite 

that we evenly selected the parameters, OON has a much wider and smoother 

distribution of the trade-off.  

Chapter 5, in full is currently being prepared for submission for 

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the 

primary investigator and author of this material. Chapter 5 is also coauthored with 

Wang, Weijia. The thesis author was the primary author of this chapter. 
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Figure 3: Accuracy-Complexity trade-offs on the adult dataset. Pareto efficient 

points are connected by line segments  
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Chapter 6  

 

Conclusion   
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We have developed a neural network training method to learn accurate and 

interpretable decision rule sets for binary classification. A simple algorithm is 

proposed to convert threshold functions to decision rules with optimality 

guarantees. The rule set converted from the neural network inherits its good 

generalization capability and the experiments have shown that the our method 

achieved a superior predictive performance.  

Although our method demonstrated competitive experimental results in 

Table 1 and 2, it comes with the sacrifice of the training time. Due to the specialty 

of neural network structure, the training of our method with 𝐿0 regularization 

typically takes longer time to converge than other rule learners or machine 

learning models. Another challenge of putting our method for practical use is the 

best hyperparameter selection, which varies for different datasets. We believe 

those problems can be solved by integrating our method with some of the state-of-

the-art neural training techniques and we leave these possible improvements for 

future work. 

Chapter 6, in full is currently being prepared for submission for 

publication of the material. Qiao, Litao; Wang, Weijia. The thesis author was the 

primary investigator and author of this material. Chapter 6 is also coauthored with 
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Wang, Weijia. The thesis author was the primary author of this chapter.  
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