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Abstract

Area/Entropy Laws, Traversable Wormholes, and the Connections Between Geometry

and Entanglement

by

Brianna Michelle Grado-White

We study the relationship between the geometry of spacetime and quantum informa-

tion. This is motivated by recent insights which suggest that geometry is an emergent

phenomenon in quantum gravity, and in particular that geometry is built from quantum

entanglement.

Part I of this thesis is focused on the relationship between area and entropy. Area/entropy

relations are ubiquitous in gravitating systems. One manifestation of this relationship

comes from the AdS/CFT correspondence, which posits a duality between quantum grav-

ity in asymptotically Anti-de Sitter space and certain quantum field theories that can

be thought of as living on the boundary of the Anti-de Sitter spacetime. When the field

theory has a large number of strongly coupled fields, the dual quantum gravity space-

time is described to good approximation by classical General Relativity. In this limit, the

Hubeny-Rangamani-Takayanagi (HRT) formula relates the area of surfaces in the bulk

spacetime to the entanglement entropy of associated subregions in the dual field theory.

A second potential incarnation of the relationship between area and entropy comes in

the form of black hole area laws and a more locally-defined generalization known as a

holographic screens. We explore connections between these different notions of area and

entropy by studying the properties of holographic screens in Anti-de Sitter space. We

also study a (modified version) of HRT like surfaces attached to arbitrary boundaries

(that need not be an Anti-de Sitter boundary).
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Part II of this thesis involves the study of traversable wormholes. Physicists have

long believed that wormholes that could be crossed by an observer or signal would be

impossible to build. In fact it can be shown that, with only classical matter, traversable

wormholes cannot exist. While it remained possible that subtle quantum effects might

be able to provide the negative energy needed to build them, there were no successful

attempts at doing so. Recently, however, examples were constructed in AdS that relied

on putting interactions in the dual, entangled quantum systems, and thus illustrated the

intimate relation between quantum entanglement and spacetime geometry. Below, we de-

scribe a general method by which to construct traversable wormholes that can be applied

to any spacetime, including asymptotically flat space. We explicitly construct several ex-

amples in AdS and in flat space, and generalize the result to construct multi-mouthed

wormholes. We further use these multi-mouthed wormholes to study the entanglement

structure of the spacetime they reside in.
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Chapter 1

Introduction

Within their own respective regimes of validity, quantum mechanics and general relativity

have offered eloquent descriptions of physics on the smallest and largest observable scales,

and each theory has been experimentally verified to extremely high accuracy. While these

theories are separately successful, arguably the most important unresolved problem in

theoretical physics is to understand how they combine into a consistent, agreed upon

theory of quantum gravity. In particular, both the early stages of the universe and the

interiors of black holes intertwine the large energies governed by general relativity and the

small length scales governed by quantum mechanics. Moreover, questions surrounding

black hole information and entropy, for example, have often led to paradoxes and potential

violations of central tenants of at least one theory, underscoring the tension between them.

While string theory offers a viable candidate theory of quantum gravity, calculations

can often quickly become cumbersome (if not completely intractable), leaving many fun-

damental properties of our universe obscure. String theory has, however, given us a

powerful tool in the form of the Anti de Sitter/Conformal Field theory (AdS/CFT)

correspondence. This duality gives a nonperturbative formulation of quantum gravity

by stating that a string theory living in a spacetime with asymptotically Anti-de Sit-
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Introduction Chapter 1

ter boundary conditions is dual to a Conformal Field Theory (CFT) living in one less

dimension. This CFT is often thought of as living on the boundary of AdS.

To get a feel for this correspondence, we can relate parameters on each side. The ’t

Hooft coupling of the CFT, λ = g2N (for g the gauge coupling and N the rank of the

gauge theory), can be related to the string length, `s, and the radius of curvature in the

asymptotically AdS spacetime, `, by `s
`
∝ λ−1/4. N can be related to the Planck length,

`p, and ` by `p
`
∝ N−1/4. We thus see that when the quantum field theory is strongly

coupled and N is large, the bulk is well described by the classical gravity limit of string

theory. Conversely, when the quantum field theory is weakly coupled with small N , the

corresponding bulk will consist of strongly interacting strings.

In general, a purely quantum system in fewer dimensions would seem easier to un-

derstand than a higher dimensional quantum gravitational system. Indeed, studying this

duality has revealed many hints about the fundamental structure of quantum gravity,

and even aspects of semiclassical gravity in AdS spacetimes. One such hint has been

the importance of the relationship between geometry and entanglement, and the sugges-

tion that spacetime is not a fundamental property in quantum gravity, but instead is a

property emerging from entanglement in the dual quantum system.

A caveat, however, is that these insights do not immediately translate into an under-

standing of the early universe or black holes that we might observe. Anti-de Sitter space

is the maximally symmetric spacetime with a negative cosmological constant, whereas

the apparent acceleration of the expansion of our universe means we live in a spacetime

with a positive cosmological constant.

There is, however, some hope that notions of holography — the idea that certain grav-

itating systems can actually be described by dual systems that live in fewer dimensions

— persist in general spacetimes. The first signs of this come from studying black holes,

which have the surprising property that their entropy scales with the area of their event

2



Introduction Chapter 1

horizon, instead of the volume inside. Various conjectures discussed in the next section

have also been put forth which generalize this result to bound the entropy of general

spacetime regions in terms of some characteristic area associated with the system.

The work below focuses on importing the insights about quantum gravity revealed by

holography into our own universe. In particular, we focus on two particular avenues to

understanding the relation between geometry and entanglement: area/entropy formulas

and traversable wormholes.

1.1 Area/Entropy Relations

Though entropy is normally thought of as an extensive quantity, systems for which

entropy scales with area are ubiquitous in gravity. Perhaps the most familiar example

of this is a black hole, whose thermodynamic entropy scales with the area of its event

horizon. AdS/CFT provides its own examples of area/entropy laws, in which entangle-

ment entropies of the boundary quantum system can be measured by the areas of bulk

surfaces. These two area/entropy relations are reviewed below, and potential connections

between them are explored.

1.1.1 Black Hole Thermodynamics and Entropy Bounds

A cornerstone of gravitational physics is the realization that black holes behave as

thermodynamic objects. The first hint of this came from Hawking, who showed that

in physically allowed processes, the area of a black hole must increase [1]. This was

shown by imposing the Null Energy Condition (a condition on the stress tensor requiring

Tabk
akb > 0 for k any null vector in the spacetime) which is broadly obeyed by classical

matter.

While this area increase is reminiscent of the second law of thermodynamics, it was

3



Introduction Chapter 1

then unclear whether this should be considered simply an analogy, or as indicative of

some deeper principle. Bekenstein, however, observed that black holes could be used to

apparently violate the second law of thermodynamics. To see this, note that to an outside

observer, black holes can be completely characterized by their mass, charge, and angular

momentum. Thus, dropping an entropic object into a black hole could effectively hide

degrees of freedom behind the horizon. This led Bekenstein to conclude that, in fact, black

holes themselves must carry some notion of entropy. Based on Hawking’s observation, the

area of the black hole’s event horizon provides a natural candidate. Bekenstein proposed,

in turn, that a generalized notion of entropy — the sum of the black hole’s area and the

entropy of matter outside — would obey the second law of thermodynamics (now deemed

the Generalized Second Law) [2]. It has been further shown that black holes also satisfy

an analogue of all of the laws of thermodynamics, with the surface gravity playing the

role of temperature, and the mass M of the black hole playing the role of energy [3].

Here, however, another tension perhaps arises: if black holes do have a temperature

given by their surface gravity, then they should radiate. The defining feature of black

holes, however, is that they are regions of spacetime so curved that no information, not

even light, can escape. Fortunately, this confusion was partially resolved by Hawking,

who showed that once quantum effects (which can generally violate the Null Energy

Condition, as discussed more below) are considered, black holes in fact radiate at a

temperature proportional to their surface gravity [4]. This again underscores that black

holes satisfy actual thermodynamic laws, and not some merely analogous properties.

Beyond black holes, the Generalized Second Law has motivated various conjectures

bounding the information content of general spacetimes. One version of such a general

bound, known as the Covariant Entropy Bound, conjectures that the entropy passing

through non-expanding null sheets emanating from a surface is bound by the area of

that surface [5]. In this vein, the notion of a holographic screen can also be introduced.

4
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Figure 1.1: A holographic screen can be constructed by the null foliation produced by
an observer’s light cones. Given an spacetime path x(τ) (shown in red above), on each
future lightcone emanating from that path (in orange), we can find the maximal area
cross-section surface, if it exists (in black). This surface will then have non-expanding
area along the lightcone (and in particular will have null expansion θ = 0). Stitching
together all these surfaces on all of the future lightcones associated with the observer
will give us our holographic screen (in purple).

Assuming the Covariant Entropy Bound, the degrees of freedom on a light cone can be

bound by the area of that lighcone’s largest area cross-section (the light sheet will then

have non-increasing area both to the future and past of this leaf). See figure 1.1.1. Note

that when the gravitational effects are great enough for this cross-section of largest area to

be compact, it is also known as a marginally trapped surface. Foliating the spacetime by

the lightcones of an observer and stitching together the various largest area cross-sections

(called leaves) forms a holographic screen, and the areas of its leaves would bound the

degrees of freedom for the entire spacetime [6]. In [7, 8], it was shown that the areas of

the leaves increase monotonically along the screen, suggesting a thermodynamic law for

general spacetimes.

5
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1.1.2 Area/Entropy Relations in AdS/CFT

While the above area/entropy relations give a vague notion of holography, as noted

above the AdS/CFT correspondence gives a concrete realization of this principal, where

a precise dual theory living in fewer dimensions is known. Furthermore, AdS/CFT gives

rise to its own area/entropy laws, where the entanglement entropy of subregions of the

boundary field theory can be measured by the area of surfaces living in the bulk.

The first proposed version of this relation was the Ryu-Takayanagi (RT) formula.

Suppose we start with a static state in the dual field theory, given by a density matrix ρ.

Further suppose we are interested in calculating the entanglement entropy of some spatial

subregion A of a fixed time slice of the boundary. This is given by TrρA log ρA, where ρA

is the reduced density matrix of A, formed by tracing out the degrees of freedom of the

complement of A. In a quantum field theory, this quantity is UV divergent; however, if

a cutoff ε is introduced, the leading order behavior of the entanglement entropy is given

by SEE(A) = Area(∂A)
εd−2 +O(εd−4), for boundary dimension d > 2.

If we work at large N and strong coupling, the bulk will be described by a classical,

static geometry. In particular, the constant time slice of the boundary can be extended

into a constant time slice in the bulk. Then, the RT formula states that entanglement

entropy of A is given by the area of the minimal surface MA on this bulk slice that

contains ∂A, and is homologous to A [9],

SEE(A) =
Area(MA)

4GN~
. (1.1)

This formula is notably reminiscent of the Bekenstein-Hawking formula for the entropy

of a black hole. As noted above, the entanglement entropy is UV divergent, and must

be regulated. Likewise, the area of a minimal surface extending out to boundary is IR

divergent, but can be regulated by introducing a cutoff at distance 1/ε from the boundary.
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As a consistency check, one can see that the areas of these bulk surfaces satisfy

conditions known to hold for entanglement entropy. In particular, it was shown in [10]

that RT surfaces satisfy Strong Subadditivity, which states that for subregions A,B and

C, the corresponding entropies satisfy S(AB)+S(BC) ≥ S(ABC)+S(B). Additionally,

the RT formula has been used to show that inequalities that need not be satisfied by

general quantum systems are satisfied by holographic systems. Monogamy of Mutual

information, which bounds tripartite mutual information, is one such example. Moreover,

the RT formula has been derived (with certain assumptions) [11].

One major limitation of the Ryu-Takayanagi formula, however, is that it only applies

to static spacetimes. In dynamical spacetimes, the bulk will not have any preferred

time slicing. Without the restriction to a particular fixed time slice, minimal surfaces

of arbitrarily small area can be constructed by considering slices arbitrarily close to

being lightlike. Hubeny, Rangamani, and Takayanagi (HRT) proposed instead that for

general spacetimes, the correct entropy measuring surface for a boundary subregion A

is the bulk extremal surface anchored to ∂A, and homologous to A [12]. An equivalent

formulation was given in [13], which noted that this extremal surface could be constructed

by considering the minimal area surfaces on every possible spatial slice containing ∂A.

Maximizing the area of these minimal surfaces over the set of spatial slices then results

in the HRT surface. This procedure is known as maximin. As yet another formulation, it

can also be noted that because HRT surfaces are stationary points of the area functional,

they can also be characterized by the fact that the area of light sheets emanating from

them are neither expanding nor contracting.

7
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1.1.3 Holographic Screens in AdS, and Maximin in General

Spacetimes

In Chapter 2, we attempt to connect the area/entropy relations of general spacetimes

and those of AdS/CFT by studying the properties of holographic screens in asymptoti-

cally AdS space. Despite the apparent thermodynamic properties of holographic screens

suggested by their monotonic area laws, the nature of the entropy described by holo-

graphic screens is unclear. In contrast, the HRT surfaces compute a fine grained, von

Neumann entropy of the dual CFT density matrix, and thus the precise boundary quan-

tity is well understood. However, there are no dynamical, thermodynamic properties

associated with these HRT surfaces.

Note, as mentioned above however, that HRT surfaces also have non-expanding null

congruences, and can thus be thought of as marginally trapped surfaces. In particular,

HRT surfaces are thus compatible with being leaves of a holographic screen. In Chapter 2,

we exploit this observation by exploring the properties of holographic screens anchored to

the AdS boundary, and containing an HRT surface as a leaf. In particular, we generalize

the results of [7, 8] to show that these non-compact, boundary anchored holographic

screens also obey a monotonic area law, with the HRT surface being the leaf of smallest

area. This result is consistent with a thermodynamic interpretation in which moving

along the holographic screen represents a progressive coarse graining of the fine grained

von Neumann entropy. In related work, [14] further showed that for black holes in AdS,

the area of a marginally trapped surface associated with a black hole measures a coarse-

grained entropy, where the coarse-graining is over all solutions of the interior of the black

hole, keeping the geometry of the exterior fixed. Though the above properties apply

to marginally trapped surfaces and holographic screens in anti-de Sitter space, studying

their properties there will hopefully give way to progress in understanding these same

8
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properties in general spacetimes.

In Chapter 3, we study the complementary problem of understanding HRT like sur-

faces in general spacetimes. In particular, we study HRT like surfaces anchored to an

arbitrarily chosen boundary (instead of an AdS boundary). Unlike the AdS boundary, for

an arbitrary boundary there is no known quantum theory living on it that is dual to its

interior. Therefore, no such entropy measuring surface is guaranteed to exist. However,

the question remains of whether some set of bulk surfaces could be consistent with an

entropic interpretation, and in particular satisfy quantum entropy relations like Strong

Subadditivity. In dynamical asymptotically AdS spacetimes, a naive application of the

HRT prescription to surfaces anchored to a finite, cutoff boundary can in fact fail to

satisfy Strong Subadditivity.

Thus, we consider different construction for holographic entropy in the presence of

a radial cutoff. In particular, we use a restricted maximin procedure, where the spatial

slices that are varied over in the maximin procedure must contain an entire, fixed codi-

mension 2 surface, which can be thought of as a fixed time slice of the arbitrary boundary.

This is in contrast to the the normal (un-restricted) maximin procedure, in which slices

need only contain ∂A. While in cutoff free cases the maximin and restricted maximin

procedures both provide an equivalent definition of HRT, in the case with a finite cut-

off, the restricted and unrestricted formulations can generally differ. In the cutoff case,

choosing the restricted prescription can be justified as follows: imposing some cutoff can

be thought of as creating some open system that continues to interact with the exterior.

Time evolution can then generally change the entropies being studied, so one must fix a

slice of the codimension 1 boundary to obtain a well-defined entropy.

We then show that this restricted maximin prescription satisfies the requisite quantum

Strong Subadditivity, in addition to the holographic Monogamy of Mutual Information

inequality. Having a consistent bulk formulation for entropy in the presence of a radial

9
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cutoff may represent a first step in understanding any potential dual quantum theory to

arbitrary regions in spacetime.

With these connections between various area/entropy laws, we turn to a different

potential avenue for understanding the relation between geometry and entanglement, in

the form of traversable wormholes.

1.2 Traversable Wormholes

Though traversable wormholes are familiar entries in the lexicon of general relativity,

their use has largely been relegated to the realm of science fiction. There, they help-

fully serve as bridges allowing intrepid travelers to journey to distant or disconnected

portions of the universe, often faster than light. The fantastical possibilities suggested

by traversable wormholes however, from a more pragmatic perspective, seem to preclude

their existence. As such, physicists have long suspected that wormholes that could be

crossed by an observer or signal would be impossible to build, even theoretically.

The first attempts at a naive analysis indeed bear out this suspicion, and it can

be shown that using, for example, only classical matter, wormholes cannot be made

traversable. The section below reviews some of these analyses, explains how they can be

circumvented, and introduces the traversable wormhole constructions to be detailed in

later chapters. It further gives an overview of how these constructions could lend insight

into the connection between geometry and entanglement.

1.2.1 Topological Censorship and Energy Conditions

A traversable wormhole can be defined as the set of causal curves that cannot be

deformed (while remaining causal) to lie entirely in the boundary of a spacetime. In

other words, a spacetime possesses a traversable wormhole if is contains some non-trivial

10
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topology that is not hidden behind a horizon, such that an observer could start from

infinitely far away, jump in, thread itself through the topologically non-trivial handle of

the wormhole, and still escape back out to infinity. Topological Censorship theorems,

described below, seek to rule out this possibility.

First, however, it helps to understand different energy conditions and their role in

general relativity. As mentioned above, reasonable classical matter is assumed to satisfy

the Null Energy Condition, Tabk
akb > 0 for k any null vector. This condition guarantees

that matter always causes null rays to focus, and Topological Censorship can be proven

assuming it. The spirit behind this proof is that light rays will converge as they enter the

wormhole throat, and any matter used to construct the traversable wormhole will ensure

that light rays will only continue to focus. In particular, the light rays cannot defocus as

needed to leave the wormhole throat and escape out to the other side.

While classical matter generally satisfies the Null Energy Condition, as noted above

quantum fluctuations can generally violate it. However, while local, negative energy

quantum fluctuations may cause a local violation of the Null Energy Condition, one might

expect that these fluctuations will average out with local, positive quantum fluctuations.

For example, the Casimir energy produced by two parallel conducting plates will cause

a negative null stress energy to be accumulated by light rays traveling across the plates;

however, this will be overcome by the positive stress energy produced by the mass of

the plates themselves. On average then, light rays traveling across the plates focus. By

imposing an Average Null Energy Condition

∫ +∞

−∞
Tabk

akbdλ > 0 (1.2)

for λ an affine parameter, Topological Censorship theorems can again be proven.

However, even this stronger Average Null Energy Condition can be violated by quan-

11
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tum effects, this time with the addition of nontrivial topology. For example, in a 1 + 1

dimensional spacetime with the topology of a cylinder, a null geodesic that winds around

the cylinder will pick up a negative Casimir energy, and now no massive plates exist to

give a compensating positive stress energy.

Despite this, topological censorship theorems can still be proven using an Achronal

Average Null Energy Condition, in which the Average Null Energy Condition is imposed

only on those geodesics which are achronal, meaning that no two points on the null

geodesic are timelike related (as they would be in a compact space). Though Topological

Censorship then only applies to achronal null geodesics, we might expect the chronal

geodesics to simply wind around a compact direction, and thus never escape out to

infinity anyway.

More concretely, if a null geodesic between two points is the fastest curve between

them, it means it must be achronal. Otherwise, there would be a timelike geodesic

connecting two points, which would mean a faster curve could be found. The Average

Achronal Null Energy Condition can thus be immediately used to rule out traversable

wormholes connecting otherwise disconnected universes, as the only null geodesics (and

therefore fastest null geodesic) connecting the two sides go through the wormhole, and

thus some null geodesic through the wormhole is achronal. In the same manner, topo-

logical censorship applied to achronal null geodesics also rules out traversable wormholes

which provide the fastest path between two boundary points, as this fastest path would be

achronal. This limit on short wormholes in turn limits the use of traversable wormholes

as time machines.

Thus, while it remained possible that quantum effects on non-trivial topology could

conspire to give rise to some traversable wormhole (though one which was sufficiently

slow, and connected points in the same universe), the Achronal Average Null Energy

Condition proved restrictive enough that for many years none were constructed.
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1.2.2 Examples of Traversable Wormholes and Their Ties to

Entanglement

Despite this obstacle, recently several examples of traversable wormholes were suc-

cessfully constructed in asymptotically AdS spacetimes. In particular, the example of

Gao, Jafferis, and Wall [15] starts by considering a Schwarzschild black hole in a 3 di-

mensional asymptotically AdS spacetime. This two sided black hole looks like an almost

traversable wormhole, as an observer starting in the infinitely far past in one asymptotic

region will only make it to the other asymptotic region infinitely far into the future (see

figure 1.2). This near traversability makes it so that a small perturbation could render

the wormhole traversable. The boundary dual of this AdS black hole consists of two

copies of a conformal field theory, one for each asymptotic region the wormhole. Further,

the two copies will be in a highly entangled thermal state, known as the thermofield

double. Just as on the gravitational side, though the quantum systems are entangled,

signals cannot yet propagate from one side to the other.

On the quantum side however, standard quantum teleportation protocols tell us that

signals can be made to propagate between two entangled systems, so long as classical

information is transferred between the two sides (or couplings are added, as in the case

below). [15] used this quantum intuition to show that indeed, adding simple couplings

between the two dual quantum systems renders the bulk AdS wormhole traversable.

While it is not surprising that adding a nonlocal (from the perspective of the bulk)

interaction could allow information to be exchanged between distant regions, it perhaps

is surprising that these simple couplings in fact modify the interior of the bulk to create

a smooth, classical, geometric path for the information to travel through. However,

from the bulk perspective, this interaction modifies the boundary conditions of fields

propagating in the background spacetime, giving rise to a negative Casimir energy along

13
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Figure 1.2: Left: An AdS black hole, which can be thought of as an almost traversable
wormhole, as the observer (in pink) leaving infinitely far in the past in the left asymp-
totic region makes it to the right asymptotic region infinitely far in the future. Right:
The traversable wormholes of [15], in which a coupling between the two boundaries
is added (denoted in purple). The backreaction from quantum fields will modify this
geometry (though by causality the coupling does not modify the geometry in the yel-
low region). Changes to the geometry outside this region cause the even horizon to
recede, such that an observer can traverse to the other side.

the horizon. This interaction also modifies the causal structure of the spacetime, making

it so that the geodesic that traverses the wormhole is chronal — in particular, a path

passing directly through the boundary interactions can jump between asymptotic regions

faster than by traveling through the wormhole.

While the construction of [15] relied heavily on the AdS/CFT duality, in Chapter 4 we

argue that a broad class of wormholes in different spacetimes will become traversable after

including the Casimir energy from linear quantum fields propagating on the spacetime,

without the need for nonlocal interactions at infinity. As in the case of [15], we start

with an almost traversable wormhole connecting two asymptotic regions. Performing

an additional quotient that identifies points in the two asymptotic regions creates an

almost traversable wormhole between the same asymptotic region (see figure 1.3). This

quotienting creates the nontrivial topology necessary to create chronal geodesics and a

negative Casimir energy.

14
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Figure 1.3: Left: A quotient of the maximally-extended Schwarzschild black hole. The
quotient acts on the above conformal diagram by reflection across the dashed line,
and simultaneously acts as the antipodal map on the suppressed sphere. Right: A
small perturbation of maximally-extended Schwarzschild renders the quotient worm-
hole traversable. This results in a causal curve running between past and future null
infinity that is not deformable to the boundary

In Chapter 5, we use the methods of Chapter 4 to explicitly construct an example

of a traversable wormhole in asymptotically flat space in the more familiar form of a

handle connecting two mouths in the same asymptotic region (see figure 5.1). This is

done by noting that wormholes of this form can be formed by taking a quotient of a

spacetime containing two asymptotic regions (each with a pair of two-sided black holes)

that identifies a point with the point obtained in the other black hole in the other asymp-

totic region. A pair of cosmic strings can be used to provide a tension that keeps the

black holes from falling into one another. An additional compact cosmic string that

wraps around the throat of the wormhole will provide the quantum fluctuations needed

to render the wormhole traversable.

Finally, in Chapter 6, we then note that the asymptotically flat wormholes constructed

above can be modified to form multi-mouthed traversable wormholes, where an observer

can travel through any pair of mouths. In particular, we can start with a two mouthed

wormhole and perturb this solution by adding a small black hole in the throat. If this

black hole is small enough, traversability can be maintained between the original two

mouths. This small black hole can then be used to make an additional wormhole be-

15



Introduction Chapter 1

Figure 1.4: Left: A moment of time of wormhole with two mouths in the same
asymptotic region. Quantum fluctuations of a compact cosmic string (blue) provide
the negative Casimir energy necessary for traversability. A cosmic string that runs
through the wormhole throat and stretches to infinity provides a tension that prevents
the mouths from colliding (black). Right: The wormhole in the left figure can be
formed by taking a quotient of the space depicted on the right, which contains a pair
of two sided black holes, and three cosmic strings. In particular, the quotient identifies
a point with a π rotation about the imaginary black dot in the figure.

Figure 1.5: A multi-mouth wormhole, with all three mouths in the same asymptotic
region, as constructed in Chapter 6. The cosmic strings necessary for stability and
Casimir energy are omitted for illustrational clarity.

tween this throat and another distant region As with the two mouthed wormholes above,

this three mouthed configuration can be put into mechanical equilibrium and be made

traversable by the proper placement of cosmic strings.

In addition to being interesting gravitational solutions, wormholes (the traversable

and non-traversable kind) are illustrative of the connection between geometry and entan-

glement. In particular, a useful slogan for this connection has been “ER=EPR,” which

roughly suggests that entangled quantum systems (like EPR pairs) are connected by a

wormhole (or Einstein-Rosen bridge) [16]. In the AdS example, this relation is more or

less explicit, as interactions between an entangled, dual quantum system modifies the

geometry of a wormhole in the bulk.
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In flat space, there is no known holographic, dual quantum system. However, know-

ing the structure and connections between various wormhole solutions could be used to

study the underlying entanglement structure of spacetime and potential dual systems. In

AdS, non-traversable multiboundary wormholes have previously been a tool for studying

multipartite entanglement [17] — entanglement between more than two subregions that

cannot be distilled into bell pairs between pairs of regions. In holography, while some

results constraining multiparty holographic entanglement exist (including Monogamy of

Mutual Information), the results and tools are limited. Thus, in Chapter 6, we use the

gravitational construction of multi-mouth wormholes to study the multipartite entangle-

ment between the mouths in flat space.
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Part I

Area/Entropy Relations
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Chapter 2

Marginally Trapped Surfaces and

AdS/CFT

2.1 Introduction

One of the central and most striking pillars of black hole thermodynamics is the

Bekenstein-Hawking entropy formula, which relates the entropy of a black hole to the

area of its event horizon [1, 2]. The notion that the microscopic degrees of freedom of

a spacetime are controlled by degrees of freedom on a codimension-one surface is known

as holography, and the area/entropy formula has been generalized in various directions.

One such generalization comes from the AdS/CFT correspondence in the form of the

Ryu-Takayanagi formula (or its covariant generalization by Hubeny, Rangamani, and

Takayanagi [HRT]) [19, 9, 12]. This formula relates the entropy of the dual CFT in

some boundary region with the area of an extremal surface through the bulk. A second

generalization comes from the conjectured Covariant Entropy Bound (or Bousso bound)

which states that the area of an achronal codimension-two surface having non-positive

expansion (θ ≤ 0). As noted in [5], marginally trapped surfaces have a special status with
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respect to this bound, as the two future-directed congruences have θ = 0 and θ ≤ 0. When

the Null Curvature condition holds, the bound would then apply to both congruences

(and both future and past directions of the θ = 0 congruence). Such surfaces can be

stitched together to form a continuous codimension-one surface, called a holographic

screen, in which case the marginally trapped surfaces are called leaves of the screen. It

was further shown in [8, 7] that the leaves of the holographic screen obey a monotonic

area law, and thus presumably a thermodynamic second law.

Despite this thermodynamic property, the nature of the entropy described by holo-

graphic screens has remained unclear.1 In contrast, the Ryu-Takayanagi formula com-

putes the von Neumann entropy, tr(ρ log ρ), of the dual CFT density matrix ρ. A natural

question, then, is whether these two notions can be connected. A first step in this di-

rection is to notice that the extremal surface used by RT has vanishing expansions in

both of its orthogonal null directions. Though the usual definitions of marginally trapped

surfaces require that they be compact, if we generalize to the non-compact case the ex-

tremal surface can be thought of as a leaf of a holographic screen.2 This suggests that

it may be useful to define a general notion of non-compact holographic screen anchored

to appropriate boundary sets ∂A on an asymptotically locally anti-de Sitter (AlAdS)

boundary.

We explore the properties of such screens below when all leaves are anchored to the

same boundary set ∂A, whereas for RT/HRT we take ∂A to be the boundary of a partial

Cauchy surface A for the boundary spacetime. In contrast, as can be seen by considering

screens where every leaf is an extremal surface, letting the anchor set vary from leaf

to leaf would generally result in infinite area-differences of either sign between nearby

1During the preparation of this work, [14] appeared which further clarified this issue. See Section 6.4
for further comments on [14]

2The connection between AdS/CFT holography and the Covariant Entropy Bound was explored in
[12]
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leaves, so such screens do not appear to satisfy a useful second law of thermodynamics.

However, many of our results would nevertheless apply to that case as well.

We begin in Section 3.3 with a brief review and discussion of the method we will

use to construct marginally trapped surfaces anchored to the AdS boundary. Section 2.3

then shows that, with certain assumptions, a marginally trapped surface must lie inside

the entanglement wedge but outside the causal wedge associated with the same boundary

region. We further show that the area of the marginally trapped surface equals or exceeds

that of the corresponding extremal surface, suggesting that it describes a coarse graining

of the von Neumann entropy. In addition, when a marginally-trapped surface anchored at

∂A lies in the past horizon defined by an appropriate boundary region S (with ∂S = ∂A),

a construction naturally called future causal holographic information also gives on upper

bound on the marginally-trapped area. Section 2.4 studies divergences in the area of the

marginally trapped surfaces associated with the region near the AdS boundary and shows

that, while the leading order divergences of our marginally trapped surfaces match those

of the extremal surface, the subleading divergences generally differ. Section 2.5 then

generalizes the thermodynamic results of [8, 7] to holographic screens with non-compact

leaves. We close with some brief discussion in Section 6.4. In particular, for surfaces

on the past horizon of a boundary set S as above, we note that the results of Section

2.5 can take the form of a standard second law in that they imply non-decrease in area

under arbitrary deformations of S toward the future, so long as ∂S remains fixed and

the holographic screen moves in a spacelike direction.

2.2 Preliminaries

This section provides some definitions and lemmas that will be used throughout the

work below. It also summarizes the method we use to construct boundary-anchored
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holographic screens and thus defines the class of such surfaces to be studied.

We assume that the bulk spacetime obeys the Null Curvature Condition, Rabk
akb ≥ 0

for any null vector ka and is AdS globally hyperbolic. The latter condition (see e.g. [20])

means that there is an achronal surface Σ for which the AdS-domain of dependence

D(Σ) = D+(Σ) ∪ D−(Σ) is the entire spacetime. Here D+(Σ) (D−(Σ)) is the set of

points p for which all past-inextendible (future-inextendible) causal curve through p in-

tersects either Σ or the AlAdS boundary.

Definition: A future holographic screen H is a smooth hypersurface which admits a

foliation by marginally trapped surfaces, called leaves. A marginally trapped surface is

a smooth, codimension-two achronal spacelike surface whose future directed orthogonal

null congruences, k and `, have expansions satisfying

θk = 0,

θ` ≤ 0.

(2.1)

Similarly, we can define a past holographic screen as a smooth hypersurface which admits

a foliation by marginally anti-trapped surfaces, so that θl ≥ 0. Note that an extremal

surface will have θ` = θk = 0.

Holographic screens are also known as marginally trapped tubes [21], and are a gen-

eralization of dynamical horizons and future outer trapped horizons [22], removing the

restriction [8] that the surface be spacelike. Since we focus on the boundary-anchored

case, we also omit the usual requirement that the marginally trapped surfaces be com-

pact. In addition, we require such boundary-anchored marginally trapped surfaces σ to

be homologous to some partial Cauchy surface A for the boundary spacetime. Here by
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‘homologous to A’, we mean that there is a bulk AdS-Cauchy surface Σ = Σ1 ∪ Σ2 with

∂Σ = σ ∪ A. As a result, ∂σ = ∂A. In this work we use the symbol ∂X to denote

the boundary of any set X as computed in the conformal compactification of our AlAdS

spacetime; i.e., ∂X will include any limit points of X in the AlAdS boundary. In con-

trast, we will use the notation Ẋ to refer to the boundary of X as defined by the natural

topology of the bulk spacetime in which the bulk is an open set. As a result, Ẋ cannot

intersect the AlAdS boundary, but ∂Ẋ := ∂(Ẋ) contains precisely those points in the

AlAdS boundary which are limit points of Ẋ.

We will focus in particular on future holographic screens where, for the boundary-

anchored case, we define the k, ` null congruences as follows: consider a boundary region

A and a marginally trapped surface σ homologous to A as above. We define the k null

congruence orthogonal to σ to be the one launched towards the future from the Σ1 side

of σ, while the l null congruence orthogonal to σ is the one launched toward the future

from the Σ2 side. Note that AdS-global hyperbolicity requires Ḋ+(Σ1)\Σ1 = İ+(Σ2),

and in fact Ḋ+(Σ1) \Σ1 ⊂ İ+(σ), which implies that it is generated by the k-congruence

just defined.

A well known property of holographic screens is that they are highly non-unique:

changing the foliation of the spacetime generally changes the holographic screen (see, e.g.

[7]). Previous work has focused on generating them from null foliations (e.g. [8, 7, 23]),

building the leaves of the holographic screen by finding a codimension-two surface with

maximal area on each null slice (see Figure 3.6). In the case where the null foliations are

taken to be the set of past or future light cones emanating from an observer’s worldine,

the foliation dependence of screens can be thought of as an observer dependence.

However, if we were to use this null construction in empty AdS, then the maximal

cut of any null surface would lie on the AdS boundary. The holographic screen would

then just be the usual conformal boundary of the spacetime. This is consistent with the
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Figure 2.1: A holographic screen can be constructed by null foliation from an ob-
server’s light cones. For example, given an spacetime path x(τ), on each future
lightcone emanating from that path, we can find the maximal area codimension-two
surface, if it exists. This surface will then have θ = 0 along the lightcone. Stitching
together all these surfaces on all of the future lightcones associated with the observer
will give us our holographic screen.

Bousso-bound picture, in that the degrees of freedom in the boundary CFT control the

bulk degrees of freedom, but seems rather trivial. In particular, even the renormalized

area is strictly infinite.

For a fixed subset A of some boundary Cauchy surface C, we instead wish to construct

a marginally trapped surface through the bulk and anchored to the boundary ∂A of that

region. To do so, instead of using a null foliation as above, we pick any foliation of our

bulk spacetime such that each slice Σi contains ∂A. On Σi, we can then attempt to solve

for a marginally trapped surface also anchored to ∂A, giving us our leaf σi(A). See Figure

2.2 for a depiction. Although we leave a complete analysis for future investigation, in

practice we find that solutions exist. While the leaves of the screen are required to be
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spacelike, the same need not be true of the slices Σi used to construct them.

Figure 2.2: For a fixed boundary region A, we construct our holographic screens by
first fixing a foliation (pictured here as green slices), such that each slice contains
∂A (where A is the pink section). Then, on each slice, we solve for the trapped
surface (the purple curves). Each trapped surface is a leaf of a holographic screen,
and stitched together, the collection of leaves comprises our holographic screen. In
practice, we find that solutions typically exist. The figure is based on numerical results
in Schwarzschild-AdS.

Indeed, we solve for our leaves in the following manner (see [12] for a similar setup):

a general codimension-two surface S can be specified by two constraints,

F (xµ) = 0,

G(xµ) = 0.

(2.2)

The gradients ∇νF (xµ) and ∇νG(xµ) are then vectors orthogonal to S. When they are
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independent and S is spacelike, we can write the orthogonal null vectors as some linear

combinations

nν,a = ∇νF (xµ) + ca∇νG(xµ), (2.3)

for ca constants and a = `, k with kµ = nµ,k, `µ = nµ,`. The null extrinsic curvatures are

then

χµν,a = g̃ρµg̃
λ
ν∇ρnλ,a, (2.4)

where g̃ is the induced metric on S:

g̃µν = gµν + `µkν + `µkν . (2.5)

Finally, each expansion is the trace of the appropriate null extrinsic curvature:

θa = χµµ,a. (2.6)

The extremal surface anchored to ∂A is then found by solving θk = θ` = 0 to find

F and G. But for our marginally trapped surfaces, only θk need vanish so the solution

is underdetermined. We may hope to specify a unique solution by taking G(xµ) =

t− Ĝ(xi) = 0, for some particular Ĝ (with {xµ} = {t, xi}), and to then solve θk = 0 for

F .

Once we have found our holographic screen, we will want to compare it to both the

causal wedge and entanglement wedge as defined below (following [12]).

Definition: For a given boundary region A, we will denote the boundary domain of

dependence by Dbndy(A). The causal wedge is then defined as the intersection of the bulk

past and future of this domain of dependence, C(A) = I−(Dbndy(A))∩I+(Dbndy(A)). The
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causal information surface or causal surface ΞA lies on the boundary of this region, and

is given by the intersection of the past and future bulk horizons of the boundary domain

of dependence of A, ΞA = İ−(Dbndy(A)) ∩ İ+(Dbndy(A)).

Definition: Let the HRT surface m(A) be the codimension-two surface with extremal

area in the bulk, anchored to the boundary ∂A of A. We also require that m(A) be

homologous to A in the sense discussed above for marginally trapped surfaces. If there

are multiple extremal surfaces satisfying this constraint, take the one with least area.

The entanglement wedge E(A) is then the bulk AdS-domain of dependence D(Σ) of any

partial AdS-Cauchy surface Σ satisfying ∂Σ = A ∪m(A).

We can also define a similar wedge M(σ) associated with any marginally trapped

surface.

Definition: For any marginally trapped surface σ homologous to A we define the

marginally trapped wedge M(σ) to be the bulk domain of dependence D(Σ) of any par-

tial AdS-Cauchy surface Σ satisfying ∂Σ = σ ∪ A.

In addition to the above definitions, we will repeatedly use the following Lemma.

Lemma 2.1: (From [13]) Suppose N1 and N2 are two null hypersurfaces that are tan-

gent at some point x on some slice Σ. Then if there exists some neighborhood of x on

Σ, such that N2 is nowhere to the past of N1, then θN2 ≥ θN1 at p.

This Lemma is especially useful when combined with the following result (often left

implicit in applications of Lemma 2.1).
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Figure 2.3: Left: Depiction of the Entanglement Wedge (blue) and Causal Wedge
(orange). The entanglement wedge E(A) is the domain of dependence lying be-
tween the extremal surface m(A) and the boundary. In contrast, the causal wedge
I−(Dbndy(A))∩I+(Dbndy(A)) is defined as the intersection of the bulk past and future
of the domain of dependence Dbndy(A) in the boundary. The intersection of the past
and future horizons defines the causal surface. Right: Depiction of the marginally
trapped surface σ(A) which (as shown in Section 2.3) must lie in the entanglement
wedge but above the future horizon of Dbndy(A). The associated marginally trapped
wedge M(σ) is also shown (purple).

Lemma 2.2 If a smooth spacelike curve γ intersects the boundary of the future I+(S)

of some set S at a point p, then either i) γ enters the chronological future I+(S) or ii)

all null generators of İ+(S) through p intersect γ orthogonally.

Proof: By e.g. Theorem 8.1.6 of [3], p lies on a null geodesic λ (perhaps with a past

endpoint) that (at least to the past of p) lies entirely in İ+(S). Let ka and ζa be vectors

respectively tangent to λ and γ at p. Since ka is null and ζa is spacelike, then either a)

ka and ζa span a timelike plane or b) ka and ζa span a null plane, and are orthogonal.

So if any null generator λ through p fails to intersect γ orthogonally, case (a) must hold

for that generator. We can then find a local Lorentz frame where ka∂a ∝ ∂t + ∂x and

ζa ∝ ∂x, so γ clearly enters I+(S).
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Figure 2.4: The lines depict intersecting spacelike cuts of null congruences N1 and
N2. N2 is nowhere to the past of N1 and is thus expanding faster by Lemma 2.1.

Combining Lemmas 2.1 and 2.2 gives us the following:

Corollary 2.3 If a codimension-two surface σ intersects İ+(S) at p then either σ enters

I+(S) or every generator λ of I+(S) at p has a well-defined expansion θλ(p) that is equal

to or greater than the expansion θσ(p) along the same null geodesic as defined by the

associated null congruence orthogonal to σ.

Proof: If σ fails to enter I+(S), then by Lemma 2.2, all null generators of I+(S)

at p intersect σ orthogonally. Consider such a generator λ, together with the nearby

generators in İ+(S). Unless λ has a conjugate point at p, at least in a neighborhood of

p these generators define a smooth null surface N nowhere to the past of σ. As a result,

in a neighborhood of p the orthogonal null congruence to σ containing λ is also smooth

and lies nowhere to its future. Thus θN (p) ≥ θσ(p) by Lemma 2.1. Furthermore, if the

expansion along λ at p is ill-defined (i.e. if p is a conjugate point of λ), then any point

q ∈ λ to the future of p also lies in the chronological future of geodesic generators λ′ of

I+(S) close to λ, and which differ from λ only to first order in q − p. As a result, such
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geodesics λ′ also lie in front (i.e. to the past) of the infinitesimal null plane N defined

by λ by an amount that is first order3 in the separation δλ between λ and λ′. But since

σ is smooth, it can bend in front of this null plane only at second order. Thus σ enters

the future of some λ′ and thus enters I+(S).

2.3 Ordering of Surfaces

The RT and HRT surfaces measure the fine-grained entropy of the dual CFT in the

associated domain. In addition, the Causal Surface has been conjectured to give a coarse-

grained measure of the entropy known as the Causal Holographic Information [24]; see

related discussion in [25, 26, 27]. The idea that the latter is a coarse-graining of the

former is associated with the fact that the causal surface lies closer to the boundary and

has larger area than the extremal surface anchored to the same region [12, 13].

In this section, we argue that any marginally trapped surface σ anchored to the

boundary at ∂A lies in some sense between the above two surfaces. Specifically, we show

it to lie inside the entanglement wedge but above the future horizon associated with A.

We also show the area of σ to be bounded below by the area of the extremal surface and –

in certain cases– bounded above by the area of a cut of the causal horizon associated with

future causal holographic information (fCHI). So in such cases we expect the area of σ to

describe a coarse-grained entropy for the dual CFT that is finer than the coarse-graining

associated with fCHI.

The proofs regarding the ordering of wedges are similar to proofs in [3, 13]. For

arguments in Section 3.2, we assume that our marginal surface σ can be approximated

3We believe this to be true. What is straightforward to argue rigorously is that if the expansion of
İ+(S) remains bounded when approaching p from any direction, then we may argue just as in the case
where p is not a conjugate point. If a direction-dependent limit diverges along some spacelike cut, then
the cut must deviate from N strictly faster than quadratically. Furthermore, it must do so by lying in
front (to the past) of N so that λ can enter its future immediately after the conjugate point at p. As a
result, since σ is tangent to N , it also lies to the past of σ. I.e., σ enters I+(S).
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by a sequence σi of surfaces anchored to the same ∂A, lying in a common AdS-Cauchy

surface Σ in which all of the surfaces σ, σi are homologous to A, and maintaining θ` ≤ 0

but having θk > 0. We can call such σ deformable, indicating that they may be deformed

to cases with θk > 0, θ` ≤ 0.

2.3.1 Leaves Lie Outside of the Causal Wedge

Our first result generalizes the well-known theorem that apparent horizons lie to the

future of event horizons [3].

Theorem 3.1.1: Let σ be a marginally trapped surface, anchored to a boundary region

A. Then it will lie above the future horizon of Dbndy(A), and in particular outside the

causal wedge C(A).

Proof: We assume A to be connected, as otherwise we can simply work with each

connected component. If σ fails to lie above the future horizon of Dbndy(A), then some

p ∈ Dbndy(A) lies in the future of σ. But by the homology constraint, σ lies on a Cauchy

surface Σ containing A, so A is not in the future of Σ. Thus, there are points in Dbndy(A)

that are not to the future of σ. But since A is connected, so is Dbndy(A), and so some

q ∈ Dbndy(A) must lie on the boundary of the future of σ. Since q is in the interior of

Dbndy(A), there is an open set U 3 q, U ⊂ Dbndy(A) that does not intersect the future of

∂A. As a result, the closure K of the set of points r ∈ σ that can send future-directed

timelike curves to U is compact.

Thus q lies on the boundary of the future of K. Since K is compact, this means

there is a null generator λ of İ+(K) that reaches q, and which in particular reaches the

AlAdS boundary. Thus λ maintains θ = 0 for infinite affine parameter. It follows that

adding any perturbation which makes all null generators of the k-congruence from σ

satisfy the generic condition (i.e. that there exists non-vanishing null-curvature or shear
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along any segment of any null congruence) moves ∂I+(σ) off of Dbndy(A). For example,

we can throw null particles into the bulk from Dbndy(A) just below every point of ∂I+(σ).

Then, however, such particles clearly intersect the generators of İ+(σ) near the AlAdS

boundary and can only move ∂I+(σ) by a small amount. But this contradicts the fact

that Dbndy(A) is an open set, so a small change in ∂I+(σ) cannot in fact remove the

intersection with Dbndy(A). We thus conclude I+(σ)∩Dbndy(A) = ∅ so that no part of σ

is below the future horizon.

For a certain class of extremal surfaces, we can also use a cut of the causal horizon

to bound the area of the marginally trapped surface in the following sense:4

Theorem 3.1.2: Suppose a marginally trapped surface σ anchored to ∂A lies on the

boundary of I+(S) of some S in the AlAdS boundary for which ∂S = ∂A. Then the

boundary of I+(S) will also intersect the future causal horizon defined by Dbndy(A) in

some cut Y , and the generators of İ+(S) define a map from σ into Y under which the

local area element is everywhere non-decreasing.

Proof: Note that since the expansion of İ+(S) vanishes on the AlAdS boundary it

is negative or zero everywhere on İ+(S). By Theorem 3.1.1, any generator of İ+(S)

that reaches σ does so after (or simultaneously with) passing through Y . Thus the map

defined by these generators from σ to Y cannot decrease local areas.

The surface Y that gives the bound was introduced in [26] as a modification of causal

holographic information conjectured to be associated with the future boundary domain

of dependence D+
bndy(Y ). The quantity A/4G for Y is thus naturally called future causal

holographic information.

Now, Theorem 3.1.2 provides a sense in which the area of σ is bounded below by

4We thank Aron Wall for a discussion regarding this point.
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that of Y . But one should be careful to ask to what extent the local non-decrease of

area guaranteed by this theorem implies non-decrease of meaningful measures of the

total area. The subtlety is that since both σ and Y have infinite area, comparing them

requires some process of regularization. Specifically, we impose that one must regularize

the areas using a cut-off z = z0 in terms of some Fefferman-Graham coordinate z. We

then consider the difference between the areas in the limit z0 → 0 in which the regulator

is removed5. One should thus ask to what extent the map of Theorem 3.1.2 can take

some piece of σ that is before the cutoff (i.e., with z > z0) into the part of Y beyond the

cutoff (i.e., with z < z0). If this effect is large enough as z0 → 0, Theorem 3.1.2 might

still allow the regulated area to decrease even at leading order in z0.

To analyze this issue, we must understand how many generators of İ+(S) cross the

regulator surface z = z0 between Y and σ in the limit z0 → 0. The limiting flux of such

generators is known to be finite [28] when the boundary of Dbndy(S) is a boundary Killing

horizon, but extrapolating those results to the more general case suggests that the flux

generally diverges as z
−(d−2)
0 and that this divergence can take either sign. Indeed, the

total area of İ+(S) lost through the z = z0 regulator surface takes the form

Lost Area ∼
∫ σ

Y

dλ

∫
∂Az0

ld−2z−(d−2)
√
q̃0

1

z

∂z

∂λ
, (2.7)

where l is the AdS scale, ∂Az0 is a regulated version of ∂A located at z = z0,
√
q̃(0)

is the area element on ∂A of the finite-but-unphysical metric on the AlAdS conformal

boundary (see Section 2.4.1), and λ is a smooth parameter along each geodesics between

Y and σ. If Y and σ admit power series expansions in z (perhaps with possible log terms

at order zd) we generally have 1
z
∂z
∂λ
∼ 1, and also

∫ σ
Y
dλ ∼ z since Y and σ both intersect

5One may also attempt to renormalize each quantity by subtracting an appropriate set of counter-
terms. However, since both intersect the boundary in the same set ∂A, any counter-terms locally
constructed from boundary information at ∂A will cancel when computing the area difference between
σ and Y .
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the AlAdS boundary at ∂A. The lost area is then O(z−(d−3)), so we learn that if the

areas of Y and σ differ by a term more divergent than z−(d−3), then the regulated area of

Y does indeed exceed that of σ. In particular, the bound applies to the coefficient of the

leading divergence at O(z−(d−2)). However, if the areas are already known to coincide to

higher order, then Theorem 3.1.2 tells us nothing further.

On the other hand, we expect the case of most interest to occur when both Y and σ

coincide asymptotically with the extremal surface m(A) anchored at ∂A. Consider then

the renormalized areas of Y and σ defined by subtracting the known counter-terms for

extremal surfaces areas. Since the regulated areas (before subtracting counter-terms) are

of the form

Regulated Areas ∼
∫
z0

dz

z

∫
∂Az0

ld−2z−(d−2)
√
q̃(0), (2.8)

the renormalized areas of Y and σ are generally finite only when these surfaces coincide

with m(A) up to corrections vanishing faster than zd−2 by some power law. Comparing

with (2.7) immediately yields the following result:

Theorem 3.1.3: Suppose σ and Y in theorem 3.1.2 both agree with m(A) up to

corrections vanishing faster than zd−2 by some power law. Then the renormalized areas

of σ and Y are finite, and the renormalized area of Y equals or exceeds that of σ.

2.3.2 Leaves Lie Inside of the Extremal Wedge

We now show that boundary anchored marginally trapped surfaces lie inside the

extremal wedge E(A), as long as there is an appropriate region through which we can

deform extremal surfaces while keeping them extremal. This condition is related to the

absence of extremal surface barriers as defined in [20].

Theorem 3.2.1 Let σ be a deformable marginally trapped surface anchored to ∂A,
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with a sequence of approximating surfaces σi. All σi lie in some AdS-Cauchy surface

Σ, such that ∂Σ ⊃ A. Suppose there is a one parameter family m(I) of extremal

surfaces6 anchored to the boundary on non-overlapping sets ∂AI ⊂ ∂Σ such that i)

m(I) is continuous in I for I ∈ [0, 1], ii) m(I = 0) = m(A) but ∂AI ⊂ ∂Σ \A. for I > 0,

iii) each σi is contained in the extremal wedge associated with m(I = 1), and iv) each

∂AI is the boundary of some boundary set AI homologous to m(I). Then σ lies in the

closure of the entanglement wedge E(A).

Proof: Define Σ1i, Σ2i to be the regions in Σ such that Σ1i∪Σ2i = Σ and ∂Σ1i = σi∪A.

For m(I), we similarly define ΣI , Σ1I , and Σ2I . Note that we may choose Σ1I to be

continuous in I.7 We can also define the wedges associated to each of the surfaces of

interest: E(I) = D(Σ1I), and M(σi) = D(Σ1i). Let Ii be the smallest I for which the

closure E(I) of E(I) containsM(σi); see figure 2.5. Then, since E(I) is continuous in Σ1I

(and thus in I), if Ii 6= 0 there must be some point p that lies in the boundaries of both

E(Ii) and M(σi). Note that in this case the point p cannot lie on the AdS boundary

since ∂AIi ⊂ ∂Σ \ Ā.

Now, since p ∈ Ṁ(σi), it is connected to σi by a null geodesic λ ⊂ M(σi) ⊂ E(Ii).

But no point of λ can lie in the interior of E(Ii), as then p would also lie in the interior of

E(Ii) and not on the boundary of E(Ii). So if q is the past endpoint of λ on σi we must

also have q lying in the boundary of E(Ii). Furthermore, it is clear that the k-congruence

from σi is the one that locally does not enter I+(Σ2Ii). By the null convergence condition

and Corollary 2.3 we then have that the expansions through q defined by the orthogonal

null congruences from m(Ii) and σi satisfy 0 ≥ θm(Ii) ≥ θσi > 0. This is a contradiction,

so Ii = 0 for all i. In particular, σi ⊂ E(A) and thus σ ⊂ E(A) as desired.

6Note that a general m(I) need not be an HRT surface, as it need not be the extremal surface of
minimal area.

7This continuity is automatic unless there is a connected component of the bulk spacetime that does
not have an AdS boundary; i.e. the bulk contains a closed cosmology in addition to the asymptotic AdS
piece. Such cases do not appear to be allowed in AdS/CFT, but for completeness we include them here.
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Note that condition (iii) that each σi be contained in the wedge associated with

m(I = 1) is realized whenever we can deform the boundary region ∂A to a point through

Σ \ Ā.

Figure 2.5: If a marginally trapped surface (or one of its approximating curves) σi(A)
lies outside the corresponding entanglement wedge E(A), we can continuously deform
our boundary to larger regions, until at some point the entanglement wedge just
touches the wedge associated with σi. This results in a contradiction.

We can also use the extremal surface anchored at ∂A to bound the area of appropriate

similarly-anchored marginally trapped surfaces. The useful notions of ‘appropriate’ are

defined by issues involving the regulator surfaces z = z0 as in the discussion of Theorems

3.1.2 and 3.1.3.

Theorem 3.2.2: Given a marginally-trapped surface σ and an HRT surface m(A)

both anchored to ∂A, the renormalized area Arearen of σ equals or exceeds that of m(A)

if i) ∂A lies on a Killing horizon of the boundary or ii) σ coincides with m(A) up to

corrections vanishing faster than zd−2 by some power law. More generally, the coefficient

of the leading divergence in the area of σ equals or exceeds that for m(A).

Proof: We can use the maximin construction of HRT surfaces [13] to find an AdS-

Cauchy surface Σ on which m(A) is the minimal surface. Let N be the surface formed by

following the `-orthogonal null congruence from σ toward the future and by also following

the k-orthogonal null congruence from σ toward the past, with the convention that a given

geodesic remains in N only so long as it lies on the boundary of the future/past of σ.

Define σ̃ as the intersection of N with Σ, N∩Σ. Now, the future directed portion of N has

θ ≤ 0 at σ, while the past directed portion has θ = 0 at σ. The null curvature condition

37



Marginally Trapped Surfaces and AdS/CFT Chapter 2

implies that null rays can only focus as they move away from σ, decreasing the the total

area of N . As in the discussion of theorems 3.1.1 and 3.1.2, either condition (i) or (ii)

suffices to guarantee that the flux of area through any regulator surface z = z0 vanishes

as z0 → 0, and otherwise we discuss only the coefficient of the leading divergence. Since

m(A) is minimal on Σ we thus find Arearen(σ) ≥ Arearen(σ̃) ≥ Arearen(m(A)).

2.4 Divergences

Entanglement entropy and Causal Holographic Information are both infinite, as are

the areas of the boundary anchored surfaces that measure them. In particular, it has been

shown [25] that subleading divergences in the area of the causal surface generally differ

from those of extremal surface: while the entanglement divergences can be written as the

integral of local geometric quantities on ∂A, subleading divergences of the causal surface

generally cannot. However, [25] conjectured that the leading-order divergences agree for

d > 2. We investigate the analogous issues below for marginally trapped surfaces σ

anchored to ∂A, showing first that leading area-divergence of σ does in fact agree with

that of m(A), and then demonstrating that subleading divergences generally differ.

2.4.1 Leading Order Divergences

It is useful to begin with the Fefferman-Graham expansion of the metric [29]. In

d ≥ 2 dimensions, this takes the form

ds2 = gabdx
adxb =

l2

z2
(dz2 + γ̃ij(x, z)dx

idxj), (2.9)
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where l is the AdS length scale, x ranges over the boundary coordinates, and8

γ̃ij(x, z) = γ̃
(0)
ij (x) + z2γ̃

(2)
ij (x) + ...zd

(
γ̃

(d)
ij (x) + ¯̃γ

(d)
ij (x)log(z2)

)
. (2.10)

Here, γ̃
(0)
ij is the metric on the boundary, and the logarithmic term only appears for

even d. Note that ds2 = l2

z2
(dz2 + γ̃

(0)
ij (x)dxidxj) + O(z0). In particular, the unphysical

conformally-rescaled metric

d̃s
2

= g̃abdx
adxb =

z2

l2
ds2 (2.11)

is finite as z → 0 and gives the bulk the structure of a manifold M̃ with boundary.

Consider any marginally-trapped surface σ whose derivatives that are C1 in M̃ . Then

tangent vectors to σ are well-defined both on M̃ and on the AlAdS boundary, and the

geodesic equation on σ is also well-defined. We expect this condition to hold for surfaces

constructed as in Section 3.3.

Near the boundary, we can use (generalized) Riemann normal coordinates {x̂α} =

{x̂i, z} on σ defined by using the unphysical metric (2.11) to construct a congruence of

geodesics orthogonal to the AlAdS boundary. Here we have generalized the notion of

Riemann normal coordinates slightly by not requiring z to be proper distance. The x̂i

are constant along the geodesics and agree with xi on the AlAdS boundary; however,

they do not generally agree with the Fefferman-Graham xi in the interior.

In terms of the coordinates x̂α on σ, the tangents to the above geodesics are τα∂α =

∂z|x̂i . As a result, the metric induced by (2.11) takes the form

h̃αβdx
αdxβ = q̃ij(z)dx̂idx̂j + |̃τ |

2
dz2, (2.12)

8At least when there are no operators or non-metric sources with conformal dimension d ≥ ∆ ≥ 0
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with q̃ij(z) = q̃
(0)
ij + O(z) for q̃(0)j

i the projector onto the anchor set ∂A and where the

error term allows for ∂A to have non-vanishing extrinsic curvature in σ (as computed

with respect to (2.11)) even though the extrinsic curvature of the full AlAdS boundary

vanishes with respect to this metric. We remind the reader that we use γ̃
(0)
ij to raise and

lower i, j indices on the boundary. In (2.12), |̃τ |
2

is the norm of τα in the rescaled metric

(2.11). Note that while σ is spacelike in the bulk, a priori the norm |̃τ |2 might vanish as

z → 0.

Since σ is marginally trapped, it has θk = 0. We are free to choose k to have Fefferman-

Graham components ka that vanish like z as z → 0 so that k̃a := ka/z remains finite.

We also define a rescaled extrinsic curvature tensor K̃abc such that for any null vector

field va orthogonal to σ we have

vaK̃abc := zvaKabc =
1

2
z£v

(
l2

z2
h̃bc

)
, (2.13)

where £v denotes the Lie derivative along v and hcb is the projector onto σ. Then the

condition θk = 0 is then equivalent to k̃aK̃abc
l2

z2
h̃bc = 0, where h̃bc is obtained from h̃bc by

raising indices with g̃ab. Note that converting (2.12) to Fefferman-Graham coordinates

{xa} = {xi, z} gives

h̃ab = q̃ab +
τ̃aτ̃bdx

adxb

|̃τ |
2 , (2.14)

where τ̃a = g̃abτ
b and q̃ab = g̃acq̃b

c, where q̃b
c is the projection onto the space tangent to

σ. We may therefore compute as follows:

2k̃aK̃abc = z£k̃

(
l2

z2
h̃bc

)
(2.15)

=
l2

z
£k̃q̃bc − 2l2

£k̃z

z2
q̃bc − l2z−1

(
£k̃ ln |̃τ |

2) τ̃aτ̃b
|̃τ |

2 +
l2

z |̃τ |
2 (τ̃a£k̃τ̃b + τ̃b£k̃τ̃a) .(2.16)
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Since τa is annihilated by q̃ab, we can derive the useful relation

τ bτ c£k̃q̃bc = τ b£k̃(τ
cq̃bc)− τ bq̃bc£k̃τ

c = 0. (2.17)

Contracting (2.15) with l2

z2
h̃bc thus yields

0 = 2
l2

z2
h̃bck̃aK̃abc = z£k̃

(
l2

z2
h̃bc

)
(2.18)

= O(z)− 2(d− 1) (£k̃z)− z
(

£k̃ ln |̃τ |
2)

+
2z

|̃τ |
2 τ

b£k̃τ̃b. (2.19)

But we also find

τa£k̃τ̃a = τa£k̃(g̃abτ
a) =

1

2
£k̃ |̃τ |

2
− 1

2
τaτ b£k̃g̃ab (2.20)

=
1

2
£k̃ |̃τ |

2
− τaτ b∇̃ak̃b =

1

2
£k̃ |̃τ |

2
− τa∇̃a(τ

bk̃b) =
1

2
£k̃ |̃τ |

2
, (2.21)

where ∇̃a is the covariant derivative for g̃ab and the steps on the last line follow from the

(non-affinely parametrized) geodesic equation τ b∇̃bτ
a ∝ τa and the orthogonality of τa

and k̃a. As a result, (2.18) yields

0 =
l2

z2
h̃bck̃aK̃abc = −2(d− 1) (£k̃z) +O(z) = −2(d− 1)k̃z +O(z). (2.22)

I.e., to this order k̃ is tangent to the AlAdS boundary and is thus a null normal to ∂A

with respect to the boundary metric γ̃
(0)
ij .

On the other hand, since k̃ is orthogonal to σ we have k̃aτa

|τ |2 = 0, so τa lies in the null

plane defined by k̃a. And since τa is by definition orthogonal to ∂A, we may use the C1

nature of τ , the fact that τα∂α = ∂z|x̂i , and the equality of the z-component of τ in {x̂α}

coordinates with that in Fefferman-Graham coordinates to write τa = τ kk̃a+∂zx
a+O(z)
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for some finite coefficient τ k and where the O(z) term is again orthogonal to k̃. Since k̃a

is both null and (to order z) orthogonal to ∂z, we find |̃τ 2| = 1 + O(z); in particular, τa

remains spacelike at z = 0.

We are now ready to calculate the leading area-divergence of σ. This is simplest

in the coordinates xα = {x̂i, z} where τα∂α = τ z∂z|x̂i and the metric induced by g̃ab is

(2.12). It is clear that the physical area of σ takes the form

Area[σ] =

∫
∂A

dd−2x

∫
dz
ld−1

√
q(0)

zd−1
+O(z−(d−1)), (2.23)

where the leading term agrees with the leading area-divergence for an extremal surface

anchored to ∂A (as it must, since an extremal surface is also marginally-trapped and we

have shown this term to be the same for all marginally-trapped surfaces).

Though we leave the details for future work, since we found |̃τ 2| = 1 +O(z) but used

only limz→0 |̃τ 2| = 1 it seems clear that this result also extends to marginally-trapped

surfaces which are more singular at the boundary. This plausibly includes all cases where

the constraints F,G of Section 3.3 admit expansions in fractional powers of z.

2.4.2 Subleading Divergences

While the are of σ agrees with that of an extremal surface to leading order, the

subleading divergences do not generally match. We can show this by example. Consider

the d+ 1 = 5 dimensional bulk metric,

ds2 =
1

z2
(−dt2 + dz2 + dy2 +X(x, y, u)dx2 + du2), (2.24)

where X(x, y, u) is an arbitrary function. We will take our boundary region to be a strip

with y ∈ [−f0, f0] and t = g0 and take the constraints to be t−G(z) = 0 and y−F (z) = 0.
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We can take both the constraints and the metric to be expandable in power series:

F (z) = f0 + f1z + f2z
2 + f3z

3 + ..., (2.25)

G(z) = g0 + g1z + g2z
2 + g3z

3 + ..., (2.26)

X(x, y, u) = X0(x, u) + F (z)X1(x, u) + F 2(z)X2(x, u) + F 3(z)X3(x, u) + ...,(2.27)

for some functions Xi and constants fi, gi. A calculation shows that for any F and G the

two σ-orthogonal null congruences have

θ± = ±
3z
(
f1g

2
1 − f 3

1 − f1 ± g1

√
f 2

1 − g2
1 + 1

)
(f 2

1 + 1)
√
f 2

1 − g2
1 + 1

+O(z2). (2.28)

(2.29)

Choosing θ+ = 0 would then impose f1 = g1, while θ− = 0 would impose f1 = −g1. We

can similarly solve θ+ = 0 or θ− = 0 to second order, and we find

f2 =
f 2

0X2(y, u) + 2f0X1(y, u) + 3X0(y, u)

8f0 (f 3
0X3(y, u) + f 2

0X2(y, u) + f0X1(y, u) +X0(y, u))
± g2 −

3

8f0

. (2.30)

Now, the area of the marginally trapped surface will be given by

A =

∫
dzdudx

1

z3

√
1 + F ′(z)2 −G′(z)2

√
X(x, y, u). (2.31)

Evaluating (2.31) on our solutions for f1 and f2, yields

A =

∫
dzdudx

1

z3

(√
X0(x, u) + f0X1(x, u) + f 2

0X2(x, u) + f 3
0X3(x, u)

)
+

∫
dzdudx

1

z2

(
g1X1(x, u) + 2f0g1X2(x, u) + 3f 2

0 g1X3(x, u)

4
√
X0(x, u) + f0X1(x, u) + f 2

0X2(x, u) + f 3
0X3(x, u)

)
+O(lnz).

(2.32)
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As expected, the leading divergence is fixed by boundary conditions only, as seen by

the fact that it depends only on f0. The subleading divergence, however, depends on g1

as well. This g1 is the asymptotic slope of the slice determined by G(z), and thus will

generally differ from that of the the extremal surface.

Since the divergence depends on the slope of the slice, we expect it to have some

relation to the tangent plane to the marginally trapped surface. Consider the unique

tangent vector

τa = (t, x, y, u, z) =
∂

∂z
(G(z), x, F (z), u, z). (2.33)

that is orthogonal to the boundary of σ. We expect the divergence to be in part deter-

mined by τa, though it must be contracted with some one index object that contains

information about the boundary region A. A natural candidate is the trace of the ex-

trinsic curvature of ∂A,

K(b),i
i = ∇in(A)

i, (2.34)

where the i index runs over the boundary indices, the b index runs over the 2 vectors

orthogonal to our boundary subregion (and contained in the boundary), and n is the

normal to ∂A that points outwardly away from A. The only nonzero component is

K(y),i
i =

X1(x, u) + 2X2(x, u)y + 3X3(x, u)y2 + ...

2 (X0(x, u) +X1(X, u)y +X2(x, u)y2 + 3X3(x, u)y3 + ...)
. (2.35)

Define τ‖ to be the projection of τa into the AdS boundary. We can then contract

with K = (Kt, 0, Ky, 0) = (0, Ky, 0). This gives

K · τ‖ =
(X1(x, u) + 2X2(x, u)y + 3y2X3(x, u) + ...) f1

2 (X0(x, u) +X1(x, u)x+X2(x, u)y2 +X3(x, u)y3 + ...)
. (2.36)
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Integrating (2.36) over ∂A and using y = f0 gives

∫
∂A

dudx
√
X(x, y, u)K · τ‖

=

∫
dudx

g1 (X1(x, u) + 2f0X2(x, u) + 3f 2
0X3(x, u) + ...)

2
√
X0(x, u) + f0X1(x, u) + f 2

0X2(x, u) + f 3
0X3(x, u) + ...

,
(2.37)

so that

A =

∫
dz

1

z3

∫
∂A

dudx
√
X(x, y, u)K · τ‖

=

∫
A

√
hA

(
− 1

2z2
− 1

z
K · τ‖

)
.

(2.38)

for hA the induced metric on A from the boundary metric. Thus, the subleading diver-

gence is given by the integral of the trace of the extrinsic curvature of ∂A contracted

with the tangent vector orthogonal to the boundary of the marginally trapped surface.

2.5 Thermodynamics

It has been previously shown that, when they are compact, the areas of leaves of

holographic screens monotonically increase [8, 7]. In this section, we generalize this proof

to the case of non-compact leaves. The main difficulty in the original proof is constraining

the ways in which holographic screens can change from spacelike to timelike. If, for

instance, we knew that flowing along our screen moved a given leaf only toward the past

and/or toward the boundary, we could quickly conclude that the area increased. If it was

toward the past, we could first flow infinitesimally to the past along the k-congruence

(i.e., in the negative k direction), and then to the past along the `-congruence (i.e., in the

negative k direction). Along the k-congruence, the area remains constant to first order

as one moves away from any leaf. Since the expansion is non-negative in the negative `

direction, to first order the area cannot decrease. The net change is then non-negative,

and the area of the leaves will not decrease. Likewise, if the nearby leaf was spacelike
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and towards the boundary, we could first flow along the future θk = 0 direction, then

along the past θ` > 0 direction, leading again to non-decreasing area. Reversing these

arguments, if the nearby leaf were to the future or spacelike away from the boundary,

the area would decrease. We therefore would like to rule out transitions – like moving

towards the past and then away from the boundary – that would lead to a non-monotonic

area change.

Before we rule out out the problematic flow directions, we will review the assumptions

of [7], and those made here.

Definition: We can define a set of leaf-orthogonal curves γ such that every point p in

our holographic screen H lies on one curve. We can further choose a parameter r that is

constant along each leaf σ but increases monotonically along each curve γ.

Since γ is taken to be orthogonal to each leaf, its tangent vector hµ can be written as

a linear combination of the null congruences,

hµ = α`µ + βkµ. (2.39)

where h is normalized such that r increases at unit length along h. Note that α and β

cannot be both zero, though they may approach zero at the AlAdS boundary.

We will then use the following assumptions about the spacetime, following [7]. As

above, we assume the null curvature condition, Rab = kakb ≥ 0. We also assume two

generic conditions. One, that Rabk
akb + ξabξ

ab > 0 at every point on our holographic

screen for the k-directed congruence. Two, if we denote by H0, H+, and H− the sets where

respectively α = 0, α > 0, and α < 0 on H, then H0 = ∂H− = ∂H+. Further, we assume

that every inextendible portion of our holographic screen is either entirely timelike, or

contains a complete leaf. Finally, we assume that every leaf σ on our screen splits a

Cauchy surface Σ into two disjoint components. The extent to which such assumptions
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are reasonable for compact leaves is discussed in [7]; similar comments apply here. From

these assumptions, it follows that at least one leaf will have definite sign of α. We can

take r = 0 on this leaf, and orient r such that α < 0. It suffices to consider each

connected component of H separately, so we may take H to be connected for the rest of

the argument.

We make one additional assumption beyond those of [7], namely that H can be

deformed continuously into a sequence of screens Ha by deforming the anchor sets of

each leaf σa(ri) in a spacelike direction such that A(σa(ri)) ⊃ A(σa(rj)) for ri < rj, and

A(σa(ri)) ⊂ A(σb(ri)) for a < b, with H0 = H.

We can now quickly reduce our setting to (almost) the one considered in [7]. We

proceed by first recalling that, as discussed above, the essence of the argument is really a

theorem about certain changes of sign as one moves along the holographic screen. Those

signs are conformally invariant, as they do not depend on the metric. So it suffices to

prove the ‘restricted changes of sign’ version of the theorem for our screen as embedded in

the unphysical conformally-rescaled spacetime associated with the metric d̃s
2

of (2.11).

The area increase theorem then follows for the original screen in the physical spacetime

by using the conditions θk = 0, θ` ≤ 0 that hold there.

In this unphysical spacetime the leaves are now compact, but they have boundaries

at the AlAdS boundary. To reduce this to the no-boundary case considered in [7], we

now consider two copies of the unphysical conformally rescaled spacetime and identify

them along their AlAdS boundaries. The resulting Z2-symmetric spacetime is compact,

globally-hyperbolic (in the usual non-AdS sense), and has no boundary. This procedure

also glues together the two copies of Ha and H to make holographic screens with compact

leaves.

The only remaining difference from the setting of [7] is that, in the doubled spacetime,

the leaves are generally only continuous and may not be smooth. However, the proof of [7]
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proceeds by firing null congruences from various leaves and studying their intersections

(or, at least the intersection of the associated boundaries of future and/or past sets)

with the screen. Having shown that these intersections lie entirely on one side of the

r = 0 leaf, continuity and compactness guarantee the intersection to have a minimum

(or maximum) r. Smoothness is then used to argue that the intersection it tangent to

the leaf at this minimum (maximum) r, and to find a contradiction with our Corrollary

2.3. In our case, taking Ha to be small deformations of H satisfying the above conditions

guarantees that there can be no intersection on the AlAdS boundary, and so in particular

the minimum (maximum) r does not occur there. Since the doubled screen is smooth

away from the AlAdS boundary, the rest of the argument then proceeds as in [7] to yield:

Theorem 5.1 Let H be a future holographic screen satisfying the above assumptions,

with a leaf orthogonal tangent vector field ha = α`a + βka. Then α ≤ 0 on all of H.

The desired result then follows immediately.

Theorem 5.2 The area of the leaves of H increases monotonically as measured by the

physical bulk metric ds2.

2.6 Discussion

We have shown that boundary-anchored holographic screens anchored in AlAdS

spacetimes have several interesting properties. First, for a boundary “spatial region”

(partial Cauchy surface) A with no extremal surface barriers between the screen and

the compliment of A in the boundary Cauchy surface, any screen anchored to ∂A lies

above the future horizon of Dbndy(A) but inside of the entanglement wedge of A. We

further showed that the area of the holographic screen is bound below by the area of the

extremal surface, and in certain cases, bounded above by the quantity we called future

causal holographic information (fCHI) defined by the area of a cut of the causal horizon.
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We also studied the divergences in area of the holographic screens. While the lead-

ing divergence of a holographic screen matches that of the extremal surface, the first

subleading divergence generally differs from that of extremal surfaces. Finally, we have

shown that, under a continuous choice of flow along leaves, there is a monotonic change

in area, generalizing the results of [7] to the case of non-compact leaves.

A technical complication in our work is the large set of assumptions (matching those

of [7]) used to prove the 2nd law in Section 2.5. Most of these are clearly true in the

generic case, but this is far from clear for the assumption that every inextendible portion

of the screen is either entirely timelike or contains a complete leaf. Another complication

is that the various bounds on the area of boundary-anchored marginally-trapped surfaces

are generally useful only for surfaces already known to coincide with extremal surfaces

up to corrections vanishing faster than zd−2 – the order required to make the area only

finitely different from that of an HRT surface. It would be much more natural to find

a simple construction of marginally-trapped surfaces for which these assumptions were

guaranteed to be satisfied, or which forced the desired results to apply more generally.

It would also be interesting to (perhaps numerically) explore whether the inextendible

portion assumption holds in general, either in our boundary-anchored setting or in the

original compact context of [7]. However, we leave such explorations for future work.

Since the holographic screen lies inside the entanglement wedge, it should describe

some property of any dual field theory in Dbndy(A). Interestingly, this differs substantially

from the original conjecture of [30] regarding the holographic properties of such screens

which took the screen to describe degrees of freedom on what we would call the ‘inside’

(i.e., the `-congruence side) of the screen. In contrast, our result suggests the screen

to describe properties of Dbndy(A) and the associated part of the entanglement wedge

‘outside’ the screen (i.e., on the k-congruence side). As described in Section 2.3, the

above-mentioned bounds on the area of any leaf suggest such areas to measure a coarse-

49



Marginally Trapped Surfaces and AdS/CFT Chapter 2

grained entropy for the dual CFT (though one that is finer-grained than that associated

with fCHI).

Indeed, while this work was in preparation, ref. [14] appeared which studied a closely

related issue. Their work shows that the area of a black hole’s apparent horizon measures

a coarse-grained entropy, where the coarse-graining is over all solutions in the interior,

keeping the geometry of the exterior fixed. In particular, they show that the appar-

ent horizon area agrees with that of the largest HRT surface consistent with the above

constraints. Although [14] does not study boundary anchored surfaces, we anticipate it

to admit an extension to boundary anchored leaves whose divergences match those of

extremal surfaces. In contrast, however, the analogous result is clearly forbidden when

the divergences of the leaf fail to match all state-independent divergences of the extremal

surface.

Now, as in [8], the area-increase result of Section 2.5 suggests a thermodynamic

interpretation for the area. Here we find that the area increases toward the boundary,

in the sense that one moves in the direction along the holographic screen that is most

closely associated with the k-congruence, when the screen moves in a spacelike direction.

Interestingly, on a timelike part of the screen this corresponds to moving the leaf toward

the past [8]. There is also the somewhat uncomfortable property that the area-increase

theorem requires comparing entire leaves; deforming a cut of the screen locally toward the

future (so that it no longer coincides with a leaf) is not generally guaranteed to increase

the area.

Recall, however, that Section 2.3 noted that the area of a leaf is also bounded above

by the area of a cut Y of the future horizon when the leaf is constructed by requiring it to

lie in the boundary of the future İ+(S) of some set S in the AlAdS boundary satisfying

∂S = ∂A. This Y is the intersection of the future horizon with İ+(S) introduced in

[26], and its A/4G is naturally called future causal holographic information. Here we
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again emphasize the difference in perspective from constructions of marginally-trapped

surfaces from light cones in [30], as the light cones of [30] were generated at σ by the

k-congruence while our İ+(S) is generated at σ by the l-congruence.

Since deformations of S toward the future now move İ+(S) outward when the screen is

spacelike, in such cases our second law makes the associated areas of marginally-trapped

surfaces monotonically non-decreasing under any such flow. This reinterpretation of the

results of Section 2.5 would then remove the discomforts mentioned above. In particular,

when the screen is spacelike we now find non-increase toward what is clearly the future

and, in addition, the system may be pushed forward in time independently at each point.

We therefore hope to investigate this construction further in the future, as always with

an eye toward better understanding the interpretation in the dual CFT.

Finally, as always in such discussions, one would like to progress beyond leading order

in the bulk semi-classical expansion. This would presumably involve replacing the area

of each leaf with the generalized entropy as in [31, 20, 32, 33]. However, it is unclear

just how the bulk entanglement term should be defined for bulk gravitons. While the

arguments of [32] and [33] can be used to define this entanglement across an HRT surface,

at least at present there is no general understanding of how to define such entanglement

across a general bulk surface – or even a general one that is marginally trapped. The

issue is a classic one associated with the failure of the linearized graviton action to be

gauge invariant on off-shell backgrounds such as those that would naturally be used in

attempting to define this entanglement using the replica trick. Nevertheless, it would

still be natural to explore the effects of entanglement terms associated with other bulk

fields while awaiting a better understanding of graviton entanglement.
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Chapter 3

Radial Cutoffs and Holographic

Entanglement

3.1 Introduction

3.2 Introduction

There is a great deal of interest in generalizing the AdS/CFT correspondence so as

to rely less on the presence of an asymptotically AdS boundary. An ultimate goal would

be understand a notion of gravitational duality relevant to cosmology, and in particular

to our own apparently-inflating spacetime.

A possible first step toward this goal is start with a standard asymptotically-AdS

holographic set up, and then to remove the AdS boundary by introducing a finite radial

cutoff. This was idea behind the work of [34] and its generalizations (e.g. [35, 36]; see

also [37]), which posited that the introduction of such cutoffs was related to irrelevant

deformations of the dual CFT. Such radial cutoffs are naturally taken to define codimen-

sion 1 boundaries at finite distance from the bulk, though we will emphasize the study
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Figure 3.1: A tensor network is a graphical depiction of a quantum state in a multi-
partite Hilbert space. It also represents a circuit that prepares the state, consisting of
tensors Uk contracted over internal indices il. Left: A tensor network representing a
state |ψ〉 ∈ He1 ⊗ ...⊗Hen and a magenta curve along which this network will be cut
off. We use ej to denote the links at the boundary of the network, though only one is
labelled explicitly in the figure. Right: Cutting off the tensor network at left defines
a new tensor network which constructs a different state |ψ′〉 ∈ He′1 ⊗ ... ⊗ He′m in a
different Hilbert space associated with the new boundary links e′j (again with only
one labelled explicitly in the figure).

of codimension 2 boundaries in sections 3.3-6.4.

More generally, the idea that some notion of holography should persist in the presence

of a radial cutoff is strongly motivated by tensor network models; see e.g.[38, 39, 40, 41, 42,

43, 44, 45]. In any tensor network, an arbitrary cut through the interior (perhaps defined

by a cutoff surface) will define a state living on that cut; see figure 3.1. Furthermore,

in many cases where the original tensor network defines an isometric embedding of a

bulk Hilbert space into a boundary dual, the same will be true of the cutoff network.

Such ideas are closely related to the surface/state correspondence suggested in [46], the

entanglement of purification conjecture [47, 48], and the construction of tensor networks

on sub-AdS scales described in [49, 50]. See also [51, 52].

However, there remains the question of how to access the supposed quantum state

on the cutoff surface using bulk techniques, and in particular how to compute quantities

related to quantum information. In the time symmetric context, it would appear that the
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Ryu-Takayanagi (RT) formula [53, 9] continues to give consistent results for entanglement

entropy in the presence of such cutoffs. In particular, in addition to the explicit checks

performed in [54], it is easy to see that the original proof of strong subadditivity (SSA)

[10] for contexts without cutoffs in fact continues to hold when one is present. Indeed,

the argument of [10] relies only on the fact that RT surfaces are minimal subsurfaces on

a common time slice, without regard to the nature of the geometry on that slice.

In dynamical contexts, however Hubeny-Rangamani-Takayanagi (HRT) surfaces an-

chored to a finite boundary may fail to be minimal subsurfaces of a common achronal

surface, even when their boundary anchor sets are spacelike separated with respect to

the bulk. In this context, SSA may simply fail to hold.

We discuss several examples of such SSA violations in sections 3.3.1 and 3.3.1 below.

Other cases violating HRT-SSA with a radial cutoff were recently studied in [55], where it

was found that entanglement wedge nesting failed as well. See also [56] for discussions of

SSA failures in de Sitter space. The examples of [55] were associated with a discrepancy

between bulk and boundary causality, as regions of the cutoff surface were spacelike

separated with respect to the induced metric on the cutoff surface but were nevertheless

causally related through the bulk. One might thus think that the SSA issue could be

resolved by restricting to boundary regions that are also spacelike separated through the

bulk. However, the examples of 3.3.1 below will show explicitly that SSA violations can

occur even in contexts that respect bulk causality in this way.

Instead, the key feature of all violations turns out to be the failure of the relevant

extremal surfaces to be contained in a single domain of dependence within the cutoff

bulk. In the terminology of [46], this is called a failure of convexity. This means that

entanglement wedge nesting also fails again. But with regard to SSA, the domain of

dependence issue in particular implies that there cannot be a bulk achronal slice contain-

ing both the relevant slice of the cutoff boundary and all of the extremal surfaces. As
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a result, and consistent with the explicit violation in our examples, one cannot readily

use the same proof strategy of [10] as in the RT case. In particular, the HRT-SSA proof

given for the cutoff free case in [13] does not apply.

Improving the situation appears to require a new proposal for holographic entropy

in the presence of a radial cutoff. The above comparison with [13] immediately suggests

that we consider instead a maximin based construction, which in simple cutoff free cases

provides an alternate definition of holographic entanglement that turns out to be equiv-

alent to HRT. The maximin approach can also be used to establish SSA in the the case

of a convex cutoff surface [23]; see also [57, 58]. Now, as shown by the example in section

3.3.1, the original maximin construction of [13] does not suffice. But realizing that we do

not currently understand what notion of causality might govern the propagation of in-

formation and excitations in a (likely nonlocal) dual description on the cutoff surface, we

will take one further step and consider instead the restricted maximin procedure of [59]

associated with a codimension 2 cutoff surface γ rather than a codimension 1 radial cutoff.

Restricted maximin surfaces are confined by construction to the domain of dependence

of an achronal surface that ends on γ, so any extremal surface outside this domain must

differ from the associated restricted maximin surface. We will show below that the areas

of our restricted maximin surfaces do satisfy SSA, suggesting that these surfaces give a

better definition of holographic entanglement in settings with a radial cutoff. Indeed,

we will see that in time-symmetric settings this prescription reproduces the successful

RT prescription much better than does naive application of HRT. Entanglement wedge

nesting and monogamy of mutual information [60] will follow as well.

In fact, we will work below with a very general notion of “cutoff.” We consider any

smooth codimension 2 surface in any spacetime satisfying basic positive energy properties

(to be detailed below). In particular, we make no assumption that our spacetime with

boundary be constructed from an asymptotically AdS spacetime, or that its dynamics
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Figure 3.2: Left: A restricted maximin surface is defined by a maximin construction
on Cauchy slices which are constrained to contain a codimension 2 surface γ. Right:
For an (unrestricted) maximin surface, Σ′ need not contain γ or A, but may instead
meet γ only on the subset ∂A.

involve a negative cosmological constant.

Before proceeding, we pause to give a very brief summary of the restricted maximin

approach from [59]. The construction begins by choosing a slice γ of the cutoff boundary,

so that γ is a codimension 2 surface with respect to the bulk. It then constructs a bulk

entangling surface for A ⊂ γ using a two step procedure that first minimizes the area of

surfaces homologous to A on each bulk achronal surface with boundary γ. We call these

achronal surfaces ‘Cauchy surfaces’ as we are interested only in the corresponding domain

of dependence. The second step then maximizes the above minima over all such Cauchy

surfaces. We use Mmγ(A) to denote the resulting restricted maximin surface. Here the

term ‘restricted’ refers to the fact that in the second step, the boundary of the Cauchy

surfaces is held fixed, whereas the original (unrestricted) maximin procedure considered

all bulk Cauchy surfaces that include the much smaller set ∂A. In the contexts originally

studied in [13], unrestricted and restricted maximin surfaces turn out to coincide [59].

Interestingly, the recent works [61, 62, 63, 64, 65, 66, 67, 68, 69, 70] on recovering

the Page curve from quantum extremal surfaces suggest a rather different motivation
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for fixing a codimension 2 surface γ. In those works it was noted that codimension 2

boundaries are natural when the bulk is not an isolated system. Time evolution then

generally changes the entropies being studied, so one must fix a slice of the codimension

1 boundary (and thus effectively a codimension 2 boundary) to obtain a well-defined

answer. Fixing a codimension 2 boundary is thus natural if the bulk inside the supposed

cutoff surface continues to interact with the exterior; i.e., it is natural if one regards the

codimension 1 “cutoff” as merely a slice through a larger bulk system as opposed to a

true cutoff on the dynamics.

The remainder of the paper is organized as follows. We begin in section 3.3 by

reviewing known violations of strong subadditivity for HRT areas in the presence of a

radial cutoffs. This section also states various definitions and reviews certain useful results

from prior works. The proofs of restricted maximin strong subadditivity, entanglement

wedge nesting, and monogamy of mutual information for an arbitrary codimension 2

boundary γ are given in section 3.4. Section 6.4 concludes with a brief discussion. An

appendix contains some additional results (not required for the main argument) showing

that up to sets of measure zero our restricted maximin surfaces either coincide with γ or

are spacelike separated from γ; i.e., null separations from γ are rare.

3.3 Preliminaries

We begin by reviewing known violations of strong subadditivity (SSA) for HRT areas

in the presence of a finite radius cutoff. In each case, we will see that SSA is nevertheless

satisfied by restricted maximin areas. We then establish notation for the remainder of

the paper, formally define our restricted maximin surfaces, and review useful results from

[13] regarding null congruences that touch at a point.
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3.3.1 Violations of HRT Strong Subadditivity

We now review several examples of strong subadditivity violations for HRT areas

from [23] and [71]. In each example, we will see that the restricted maximin areas in fact

satisfy SSA.

Violations of Subadditivity Deep in the Bulk

Our first class of examples was described in [23]. In these situations, the HRT areas

violate not only strong subadditivity but also the weaker subadditivity inequality SA +

SB ≥ SAB. For simplicity, we consider the case of d + 1 = 3 bulk dimensions so that

the codimension 2 cutoff surface γ is a curve. Specifically, we consider a case where γ

contains two null geodesic segments A and B, whose past ends coincide at some point

p, and where A and B are small enough that we may approximate the spacetime near

them as flat Minkowski space; see figure 3.3. In particular, A and B will then lie in a

common timelike plane. In the approximation that the spacetime is flat, the extremal

surface x(A) associated with subregion A coincides with A. Similarly, x(B) then coincides

with B. However, the extremal surface x(AB) will be a spacelike curve with S(AB) =

|x(AB)| > 0, where |a| denotes the proper length of the surface a. But A and B are null,

so S(A) = |x(A)| and S(B) = |x(B)| both vanish, violating subadditivity.

Suppose that we instead wish to use a standard maximin construction as in [13]. This

would require the specification of a codimension 1 cutoff surface. If we take this cutoff

to include the entire timelike plane containing A and B, then the maximin surfaces will

again be given by the extremal surfaces x(A) = A, x(B) = B, and x(AB) given above.

So the same violation would remain.

In contrast, the restricted maximin surfaces Mmγ(A), Mmγ(B), and Mmγ(AB) of

A,B, and AB are Mmγ(A) = A, Mmγ(B) = B, and Mmγ(AB) = AB. This is clear from
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Figure 3.3: An example violating HRT subadditivity with a cutoff in an approximately
flat (2+1) dimensional bulk. On a codimension 2 cutoff γ (solid curve), we choose two
subregions, A (blue) and B (green). The cutoff γ is constructed so that A and B are
null segments intersecting in a timelike plane. The extremal surfaces x(A) and x(B)
associated with A and B respectively coincide with A and B. However, the extremal
surface x(AB) (dotted pink) associated with AB is a spacelike curve whose non-zero
area violates subadditivity.

the fact that their areas all vanish, so they must be minimal on each allowed Cauchy

surface. Maximizing zero over all Cauchy surfaces gives zero, so they are restricted

maximin surfaces as claimed. Note that their vanishing areas satisfy both SA and SSA.

Violations of Strong Subadditivity Near the Boundary

A second violation of HRT-SSA arises when one imposes a simple radial cutoff on

empty global AdS3 [71]. Here we think of the cutoff as defined by a codimension 1

cylinder near the boundary (see figure 3.4). The construction of the example proceeds in

stages. One first finds a situation saturating strong subadditivity. This may be done by

starting with a null plane in the bulk, and considering two spacelike boundary intervals

A0 and C0 formed by the intersection of this null plane and the cutoff cylinder. One also

chooses another spacelike segment B0 that connects A0 and C0 as in figure 3.4. In the

limit where the cutoff surface becomes the original AdS boundary, A and C become null

and the setup resembles both that of [72] and [55].

Since the bulk spacetime is just empty AdS3, the HRT surfaces are known exactly. In

particular, the familiar statement that entanglement wedges and causal wedges coincide

in empty AdS3 means that the HRT surfaces associated with any combination of the
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Figure 3.4: An example where HRT areas saturate strong subadditivity on a cutoff
surface. Left: A null plane (green) in vacuum AdS3 with a cylindrical cutoff, marked
intervals A0, B0, C0, and the corresponding extremal surfaces x(A0), x(B0), x(C0).
Right: A rough sketch of the same setting in Poincaré coordinates centered on B0.
The sketch becomes an exact representation of the conformal structure in the limit
where the spacelike intervals A0, B0, and C0 are small in the sense that they are
contained in a small neighborhood near the top of the ellipse in the left panel.

regions A0, B0, C0 must lie in the above null plane for any value of the cutoff. And since

the expansion of the null congruence generating this null plane vanishes, curves in the

plane can be deformed along the plane without changing their length so long as the

endpoints of the curves are held fixed. One thus finds

|x(A0B0C0)|+ |x(B0)| = |x(A0)|+ 2|x(B0)|+ |x(C0)|

= |x(A0B0)|+ |x(B0C0)|
(3.1)

so that strong subadditivity is saturated.

The key point is then that this example can be perturbed by translating the future
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Figure 3.5: An example violating of strong subadditivity for HRT areas with a cutoff
in vacuum AdS3. The setting in figure 3.4 has been deformed by acting with a small
time translation on the future endpoints qA0 and qC0 of A0 and C0 to define new
future endpoints qA, qC , and new intervals A,B, and C.

endpoints qA0 and qC0 of A0 and C0 in a future timelike direction to define new future

endpoints qA and qC (still spacelike separated from pA0 , pC0) and new intervals A,B and

C. Since the translation is an isometry, one finds |x(B)| = |x(B0)|. Further, since the

past endpoints pA0 , pC0 do not move, we have x(ABC) = x(A0B0C0) as shown in figure

3.4. But x(AB) and x(BC) become closer to being null, so their lengths decrease. As a

result, the HRT areas now violate SSA.

Note that since the new endpoints lie to the future of the original null slice, the

extremal surfaces and intervals can no longer be placed in a common Cauchy slice. In

particular, though ABC remains achronal, x(ABC) is now in the past of B. Thus,

x(ABC) cannot be a restricted maximin surface. The actual restricted maximin surfaces

are harder to identify, but must satisfy SSA by Corollary 3 in section 3.4 below.
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3.3.2 Definitions and Lemmas

We now state the notation and conventions that will be used in the remainder of the

paper.

Throughout this work we will take the bulk spacetime to be classical, smooth. The

spacetime is also assumed to satisfy 1) the Null Curvature Condition (NCC), Rabk
akb ≥ 0,

for any null vector ka and 2) a so-called generic condition such that there is nonzero null

curvature Rabk
akb or shear σabσ

ab along any segment of any null curve. Note, however,

that strong subadditivity is a closed inequality (e.g. saturation is allowed) and that the

generic condition allows the above curvature or shear to be arbitrarily small. As a result, a

proof of strong subadditivity using the generic condition immediately implies that strong

subadditivity continues to hold even when the generic condition is not enforced. To see

this, one need only approximate the spacetime in which the generic condition fails (but

all other assumptions hold) by a sequence of generic spacetimes and take an appropriate

limit.

In principle, we would like to allow the cutoff surface γ to be any closed codimension 2

achronal submanifold of the bulk spacetime. We emphasize that achronality is defined by

the bulk causal structure. Indeed, we introduce no notion of a codimension 1 boundary.

In fact, we could weaken the above condition to also allow portions of γ to lie along any

asymptotically locally anti-de Sitter (AlAdS) boundary (and so, in particular, we do not

require γ to be compact).

While the examples considered above include cutoff surfaces γ with sharp corners or

null components, we will take γ to be smooth and spacelike for the purposes of making

the arguments below. But again, because strong subadditivity is a closed inequality, a

proof for smooth spacelike γ immediately implies that strong subadditivity holds for e.g.

all piecewise smooth, achronal γ, as such a γ can be approximated by the appropriate
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limit of a sequence of smooth spacelike curves.

The fact that we treat γ as a cutoff means that our bulk spacetime is the domain of

dependence D(γ) of an anchronal surface Σ with boundary ∂Σ = γ, so that we effectively

work in a the globally hyperbolic spacetime D(γ). We thus use the term Cauchy surface

to refer to Σ or any other achronal Σ′ with the same domain of dependence. We use Cγ

to denote the set of all such Cauchy surfaces for D(γ).

There are various possible subtleties associated with the fact that general Cauchy

surfaces need not be smooth. It is not clear that all such subtleties were explicitly

addressed in the original maximin paper [13], and we will not attempt to do so here.

We will instead assume below that all relevant Cauchy surfaces Σ are at least piecewise

smooth and leave treatment of the more general case for future work. Note that the

piecewise smooth case allows points p on Σ where the space of tangent vectors at p

depends on the direction from which p is approached. We expect this generalization of

the smooth case to be important, as our maximin procedure may give rise to surfaces Σ

that partially coincide with the boundary ∂D(γ). Failures of smoothness will certainly

occur at caustics of the null congruences along this boundary, and they may also arise

when p lies at the boundary of Σ ∪ ∂D(γ). We will similarly assume below that any

maximin surface is piecewise smooth.

As one may expect, we will make significant use of the ingoing and outgoing future

pointing null congruences orthogonal to γ. We denote their affinely parametrized tangent

vectors respectively by ka and la respectively, with θk and θl the corresponding null

expansions.

Having established this notation and the above conventions, we now define our re-

stricted maximin surfaces in two steps.

Definition 3.3.1. For any subregion A ⊂ γ, and for each element Σ ∈ Cγ, let min(A,Σ)

be the codimension 2 surface in Σ which is anchored to ∂A, homologous to A within Σ,
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and has minimal area consistent with the above constraints. If there are multiple such

surfaces, min(A,Σ) can refer to any of them.

Definition 3.3.2. The restricted maximin surface Mmγ(A) is then the minimal surface

min(A,Σ) whose area is maximal with respect to variations over surfaces Σ ∈ Cγ. By

contrast, x(A) will by used to denote the smallest extremal surface anchored to ∂A.

We also mention the following two lemmas that will be used in the next section.

Lemma 1. The boundary of D(γ) is ∂D(γ) = L+ ∪ L− ∪ γ where L+ is the set of points

p /∈ γ that are reached by null geodesics along the vector field k which start at γ and

which have not arrived at any conjugate point or nonlocal geodesic intersection before

reaching p. L− is defined similarly with k replaced by −l. Note that L± includes points

on caustics.

This lemma is precisely Theorem 1 of [73] restated in our particular context using

the above notation. As a result, it follows immediately from their argument.

Lemma 2. Suppose N1 and N2 are two smooth null congruences that are tangent at some

point p on a Cauchy surface Σ. If N2 is nowhere to the (chronological) past of N1, then in

any sufficiently small neighborhood of p, either i) N1 and N2 coincide, or ii) there exists

a point y at which θN2 > θN1 . Here we may use any smooth map between N1 and N2 to

compare points on the two surfaces.

This lemma is Theorem 4 of [13]. Because we will often wish to study congruences

which are not obviously smooth, we pause to state the following immediate corollary,

which we number zero for later convenience.

Corollary 0. Note that both cases (i) and (ii) of Lemma 2 require θN2(x) ≥ θN1(x).

Indeed, equality is manifest in case (i), and otherwise θN2(y) > θN1(y) in sufficiently

small neighborhoods of x. Since the inequality θN2(x) ≥ θN1(x) is closed, it must also hold

whenever N1, N2 can be approximated by pairs of smooth congruences that are tangent
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at x, even if N1, N2 are not smooth themselves. When θN2(x) or θN1(x) is ill-defined,

we understand the inequality to hold for all smooth approximating congruences1. This

allows one to deal with the case where N1, N2 have caustics or non-local intersections

at x. And this in turn means that we can apply the result to congruences launched

orthogonally from codimension 2 surfaces that are only piecewise smooth, and perhaps

in worse cases as well.

Figure 3.6: The lines depict spacelike cuts of null congruences N1 and N2, tangent at
a point. N2 is nowhere to the past of N1 and is thus expanding faster by Lemma 2

As a final preliminary remark, we recall that [13] suggested that one may always

choose a maximin surface that is stable in the following sense: when a Cauchy surface Σ

on which Mmγ(A) is minimal is deformed to a nearby Cauchy surface Σε, the minimal

surface on Σε should remain close to Mmγ(A). Indeed, it was suggested that when

Mmγ(A) is unique it is always stable and, when it is not, that at least one of the allowed

1Alternatively, one may treat the corresponding null expansions as having delta-function-like terms
at places where piece-wise smooth codimension 2 surfaces from which they are orthogonally launched
fail to be C1.
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choices will be stable (and one should make such a choice). When Mmγ(A) is both

spacelike and smooth, this follows by the technical argument in section 3.5 of [13]. But

more generally the proof is incomplete. Below, we follow both [13] and [59] in simply

assuming this property to hold and studying its implications.

3.4 Main Results

In deriving the desired results, we will follow the same basic proof strategy as in

[13]. The first ingredient in this strategy is the realization that the expansions of null

congruences orthogonal to maximin surfaces Mmγ(A) are significantly constrained. In

particular, Claim 2 below will establish that at any point p ∈ Mmγ(A) with p 6∈ γ,

null congruences orthogonal to Mmγ(A) that do not immediately leave D(γ) have non-

positive expansion. For example, if p ∈ L+, then it can have positive expansion θl, but

the expansions θk, θ−k, θ−l must be non-positive. In particular, θk = −θ−k will vanish.

The second ingredient is the notion of joint (restricted-) maximin surfaces. Such

surfaces are defined by choosing arbitrary c, d > 0 and considering the quantity Z =

cArea(XA)+dArea(XB). In particular, for each Σ′ ∈ Cγ, we define the surfaces min(Z,Σ′)A

and min(Z,Σ′)B to be the surfaces that minimize Z, subject to the constraint that XA

and XB are codimension 2 surfaces in Σ′ anchored respectively to ∂A and ∂B, and sat-

isfying associated homology constraints on Σ′. Note that since c, d > 0, the surfaces

min(Z,Σ′)A and min(Z,Σ′)B must each be separately minimal on Σ′. So for all such c, d,

we have min(Z,Σ′)A = min(A,Σ′) and min(Z,Σ′)B = min(B,Σ′). The joint restricted-

maximin surfaces YA and YB are then defined by maximizing Z with respect to variations

of Σ′. We assume that YA and YB are stable in parallel with our assumption regarding

Mmγ(A).

By construction, the joint restricted-maximin surfaces are both minimal on the same
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slice Σ. As a result, for such surfaces we can use the minimal surface argument of [10]

to establish SSA. Indeed, while SSA involves three regions of γ, and thus three surfaces

in the bulk, it turns out to be enough to work with pairs A,B of regions of γ that are

nested in the sense that A ⊂ B. As a result, SSA for the original restricted maximin

surfaces will follow if we can show that they agree with joint restricted-maximin surfaces

for nested pairs B ⊃ A.

An important component of doing so is to show that, at least when B ⊃ A, the

expansions of null congruences orthogonal to YA, YB obey precisely the same constraints

as those described above for null congruences orthogonal to Mmγ(A) and Mmγ(B). For

clarity, we state such results for YA, YB below as corollaries to the corresponding claims

for Mmγ(A),Mmγ(B), explaining any additional relevant details.

With the above-mentioned results about null expansions in hand, at least when B ⊃

A, one can indeed establish that YA = Mmγ(A) and YB = Mmγ(B). The main idea is to

use the above results for null expansions to show that failure to coincide is inconsistent

with Mmγ(A) or Mmγ(B) being minimal on any Cauchy slice Σ. A key tool in such

comparisons is the notion introduced in [13] of the representative ỹ(Σ) on a Cauchy slice

Σ of a codimension 2 achronal surface y. The precise definition we use largely follows

the presentation in [59], but fixes issues associated with the fact that Cauchy surfaces Σ

become null:

Definition 3.4.1. We begin with a spacetime-codimension 2 achronal surface y lying in a

Cauchy slice Σ′, and which is homologous within Σ′ to some boundary region A. (Note

that since Σ′ is codimension 1 in the spacetime, y is codimension 1 with respect to Σ′.)

Given another Cauchy surface Σ, representatives ỹ(Σ) are defined by observing that y

splits the original slice Σ′ into two pieces: Σ′A (with boundary y ∪ A) and Σ′
Ā

(with

boundary y ∪ Ā). Let the associated domains of dependence be D(Σ′A) and D(Σ′
Ā

) with

boundaries ∂D(Σ′A) and ∂D(Σ′
Ā

). A representative ỹ(Σ) on Σ of y is a codimension 2
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surface homologous to A within Σ that contains y ∩ γ and lies in both Σ and ∂D(Σ′A) ∪

∂D(Σ′
Ā

). Note that at least one representative must exist on any Σ since both Σ and

Σ′ are Cauchy surfaces for Dγ and thus both contain γ itself. In particular, when Σ is

spacelike, two possible choices of representative are Σ ∩ ∂D(Σ′A) and Σ ∩ ∂D(Σ′
Ā

). One

may sometimes wish to state which such representative one chooses, but in fact the choice

of representative will not matter for our purposes below.

This definition becomes useful when combined with the above results about null

expansions. Since ỹ(Σ) ⊂ ∂D(Σ′A) ∪ ∂D(Σ′
Ā

), each point on y(Σ) can be reached from

a distinct point on y by following a generator of a null congruence orthogonal to y that

remains in D(γ), and where the generator is free of conjugate points or non-local self-

intersections. If y is a connected component of a restricted maximin surface or a joint

restricted-maximin surface then, and if y itself does not lie in Σ, the generic condition

and the above-mentioned results from Claim 2 and Corollary 2 guarantee the area of

ỹ(Σ) to be strictly smaller than that of y. Here it is important that ỹ(Σ) contains y ∩ γ

so that, at such points (where the null expansions are not controlled), the null geodesic

is followed only for vanishing affine-parameter distance.

One can now quickly conclude that YA = Mmγ(A). Since both surfaces are of the form

min(Σ′, A), the maximization step of the maximin procedure implies Area(Mmγ(A)) ≥

Area(YA). But if YA does not coincide with Mmγ(A), then we may choose the Cauchy

surface Σ on which Mmγ(A) is minimal so that at least part of YA does not lie on this

surface2. The representative ỸA(Σ) on Σ of YA must then have smaller area than YA,

contradicting minimality of Mmγ(A) on Σ. The identical argument also proves that YB

coincides with Mmγ(B). Entanglement wedge nesting then follows from the fact that

YA, YB are minimal on the same slice Σ and thus cannot cross. Strong Subadditivity and

2The stability condition implies that if Mmγ(A) is minimal on some Σ0, then it is also minimal on all
nearby slices Σε that coincide with Σ0 on some open set around Mmγ(A). So since maximality forbids
YA ⊂ Mmγ(A) with YA 6= Mmγ(A), for YA 6= Mmγ(A) the condition will hold for some Σε.
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Monogamy of mutual information follow as well.

This completes our summary of the overall proof strategy. As in [59], the full proofs

below repeatedly use the fact that portions of Mmγ(A) lying entirely in the interior of

D(γ) will behave much like the maximin surfaces of [13]. As a result, we typically proceed

by studying various cases, depending on whether relevant points lie in the interior, on

L+ or L−, or on γ. When dealing with L±, we will focus on studying L+ with the

understanding that analogous results immediately follow for L−. Furthermore, even in

dealing with issues associated with the boundary of D(γ), the arguments below largely

follow the structure of the derivations in [13].

Before proceeding, we remind the reader that we will treat every relevant Cauchy

surface and every restricted maximin surface as being piecewise smooth. Proving this to

be the case, or showing that the results hold more generally is an important open issue

that is beyond the scope of this work.

3.4.1 Details of the argument

We now fill in the details of the argument sketched above, breaking the derivation

into three separate claims regarding Mmγ(A), together with two corollaries for joint

restricted-maximin surfaces. The third claim establishes entanglement wedge nesting,

and the other main results of SSA and Monogamy of Mutual Information are then an

additional corollary.

Claim 1. Suppose p, q ∈ Mmγ(A), with p 6= q and neither p nor q in γ. Then p, q are

spacelike separated.

Proof:

Since p, q ∈ Mmγ(A), the points lie in a common Cauchy surface. This means that

they cannot be connected by any timelike curve. So to establish the desired result, we
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need only exclude the possibility that they might be connected by a null curve. The

argument proceeds in two steps: (a) We first show that p, q cannot be connected by a

null curve η lying in Mmγ(A). (b) We then show that p, q cannot be connected by any

null curve η.

(a) As argued in [13], (unrestricted) maximin surfaces cannot become null at any

point y. This can be seen by realizing that, if they were null at some y, then the Cauchy

slice containing the surface could be deformed slightly in a neighborhood of y to be

everywhere spacelike. Stability of maximin surfaces then requires the minimal surface in

the new Cauchy surface be nearby. The fact that a spacelike piece of the new surface is

obtained by deforming a null and nearly null piece of the maximin surface means that its

area is greater than that of the maximin surface at first order in the deformation. But

this contradicts the fact that the maximin surface is maximal with respect to variations

in the Cauchy slice. Thus there can be no point y at which the unrestricted maximin

surface becomes null, and the surface can contain no null curves.

This argument depends only on variations in a neighborhood of y, and thus carries

over unchanged to our restricted maximin construction if any portion of the null curve

η ∈ Mmγ(A) lies in the interior of D(γ). But in fact the argument also holds when the

case where η lies in ∂D(γ), as the Cauchy surface can still be deformed to a spacelike

slice using a diffeomorphism generated by a vector field that points into the interior on

∂D(γ).

(b) We now extend this result to null curves η that are not contained in Mmγ(A).

We argue by contradiction, assuming that η exists and, without loss of generality, taking

p to lie to the future of q. We consider in detail the case where p and q lie in L+, so any

null curve connecting them must be a null generator of L+. Other cases follow similarly,

or by arguments that are even more nearly identical to those of Thm 14 of [13]. As in

[13], the proof is unchanged if we take p and q to be contained in distinct members of a
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pair of joint restricted-maximin surfaces YA, YB. The latter case (which we list a separate

corollary below) will be critical in the proof of Claim 3 below. To make it clear that the

argument also applies in that context, in the remainder of this proof we will write q ∈ YB

and p ∈ YA, where YA and YB can be either different joint restricted-maximin surfaces or

just different subsets of Mmγ(A).

Since p ∈ L+, it lies on some null generator of L+. Because Σ is an achronal surface

containing p and γ, Σ must also contain the part of that null generator lying to the

past of p. As in figure 3.7, we can compare the future-directed ingoing null congruence

NB orthogonal to YB with the future-directed ingoing null congruence orthogonal to YA.

Note that NB must contain p since NB ⊂ D(γ) and the only such future-directed null

geodesic at q ∈ L+ which remains in D(γ) is the generator of L+ that connects q with p.

Now, since YA and YB lie on the same achronal slice, YB cannot enter the chronological

past of YA. Similarly, the part of NB to the future of YB cannot enter the chronological

past of YA, and must in fact be nowhere to the past of NA near p. We may thus apply

Corollary 0 from Section 3.3, so that θk(B, p) ≥ θk(A, p). The generic condition then

implies that either θk(B, q) > 0 or θk(A, p) < 0.

To proceed, we introduce the extrinsic curvature one-form tr(KB) ≡ KB
i dx

i of YB.

Since Σ contains the entire null generator of L+ to the past of p (down to, but not

including γ), it must be smooth along k at q. Using the fact that YB is minimal on Σ

then yields KB
i k

i = 0 at q, and thus θk(B, q) = 0.

Our dichotomy above then requires θk(A, p) < 0, and thus that θ−k(A, p) > 0. The

latter refers to the past-directed null congruence. We may also say that −k points

outward (towards YB) along Σ from YA. But YA will also have an inward pointing normal

in Σ, which we denote v. (If Σ is only piecewise smooth then v can differ from k.) Since

YA is minimal on Σ, we have KA
i v

i ≥ 0. Note the the codimension 2 extrinsic curvature
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KA
i of Mmγ(A) is well-defined3 even if Σ fails to be smooth at Mmγ(A). Since the above

null expansion requires −KA
i k

i > 0, the vectors −ki and vi cannot be diametrically

opposed so, to remain tangent to the achronal surface Σ, vi must point in a spacelike or

null past-inward direction; see again figure 3.7.

We can now consider deforming Σ to the past infinitesimally at p. Since the area of

YA (or a positively weighted sum involving the area of YA) is maximal with respect to

variations of Σ, there must be some vector ui at p that is orthogonal to YA, points to the

past of Σ, and which has KA
i u

i ≤ 0. But since YA has spacetime codimension two, this

ui must be a linear combination of vi and −ki. Furthermore, since ui points to the past

of Σ, it must be a positive linear combination of these vectors (see again figure 3.7). But

this implies KA
i u

i > 0, contradicting the conclusion above.

By contrast, note that if q ∈ γ then θk(B, q) need not be strictly zero (as minimality

on Σ only requires θk(B, q) ≥ 0). And if θk(B, q) > 0, then θk(A, p) may also be positive.

Thus, we cannot rule out possible null separations between p and q if q ∈ γ (as consistent

with the statement of the claim).

Corollary 1. Consider the joint restricted-maximin surfaces YA, YB defined by choosing

c, d > 0 and performing restricted maximin using quantity Z = cArea(XA)+dArea(XB).

Here we require that XA, XB are codimension 2 surfaces anchored respectively to ∂A and

∂B and satisfying associated homology constraints on each Cauchy slice. As described

above, this results in a pair of surfaces YA, YB that are minimal on the same slice Σ. Let

p ∈ YA and q ∈ YB. If neither p nor q are in γ, then either p = q or p, q are spacelike

separated.

The argument is identical to that for Claim 1. This corollary will be useful below in

much the same way as in [13].

3If Mmγ(A) is only piece-wise smooth, one may consider a family of smooth approximating surfaces.
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Figure 3.7: Consider two surfaces YA and YB as in Claim 1 which are constructed
on the same slice Σ. Points q on YB and p on YA cannot have null separated points.
NB(q) is the null congruence orthogonal to YB at q and NA(p) is the null congruence
orthogonal to YA at p. This null congruence must bend towards the orthogonal vector
v, because YA must stay contained in Σ (and so remain spacelike separated to YB).
This places constraints of the relative signs of the expansions of the null congruences,
which can in turn be used to contradict the maximality of the areas YA and YB along
Σ.

Claim 2. Suppose p ∈ Mmγ(A) with p /∈ ∂D(γ). Then, Mmγ(A) is extremal at p. If

p ∈ L±, then θ(p) ≤ 0 for any null congruence orthogonal to Mmγ(A) that is directed

into the interior of D(γ). Furthermore, θk = 0 for p ∈ L+ and θl = 0 for p ∈ L−. As

a result, at any point p ∈ Mmγ(A) with p 6∈ γ, null congruences orthogonal to Mmγ(A)

that do not immediately leave D(γ) have non-positive expansion.

Proof: The analogous result for unrestricted maximin surfaces was proven in [13].

Since the arguments are local at p, they also establish Claim 2 for p /∈ ∂D(γ). By similar

reasoning, even if p ∈ L+ minimality of Mmγ(A) on Σ implies that Mmγ(A) is extremal

along directions within Σ.

Note that the arguments of Claim 1 above show that Σ must be smooth at p. Other-

wise, minimality along the two tangent vectors of Σ, −k and v, would imply that the area

of Mmγ(A) could be increased by varying Σ to the past at p, contradicting maximality
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of Mmγ(A).

Since Σ is smooth at p, it must be tangent to the k direction at p. Minimality of

Mmγ(A) on Σ then gives KA
i k

i = 0, and hence θk = 0.

We can now consider the null expansion in the l direction. In the maximization step

of the maximin procedure, Σ can be freely varied in the l direction into the interior of

∂D(γ) at points near p. Maximality over these variations implies KA
i l

i ≤ 0, which in

turn implies θl ≤ 0. Of course, similar arguments hold for p ∈ L−.

Again, the argument generalizes to yield analogous results for the joint restricted-

maximin surfaces YA, YB defined as in Corollary 1 by performing a restricted maximin

procedure on Z = cArea(XA) + dArea(XB). However, this time the generalization re-

quires a bit more work as explained below:

Corollary 2. Let YA, YB be defined as in Corollary 1 for nested regions B ⊃ A, and

consider p ∈ YA ∪ YB with p /∈ ∂D(γ). Then, YA ∪ YB is locally an extremal surface at p.

In particular, if YA and YB coincide at p then they must do so in a neighborhood of p.

Furthermore, if p ∈ L±, then θ(p) ≤ 0 for any null congruence emanating from YA ∪ YB

that is directed into the interior of D(γ). We also have θk = 0 for p ∈ L+ and θl = 0 for

p ∈ L−. As a result, at any point p ∈ Mmγ(A) with p 6∈ γ, null congruences orthogonal

to YA or YB that do not immediately leave D(γ) have non-positive expansion.

Proof: For p /∈ ∂Dγ, the key fact is that minimal surfaces on the same slice Σ′

cannot touch, cross, or coincide, except in the case where an entire connected component

of min(A,Σ′) coincides with an entire connected component of min(B,Σ′). At a point p

where the surfaces coincide, maximizing one area under local variations of the Cauchy

surface also clearly maximizes the other4. So extremality of YA and YB at such points

follows from the same argument as for Mmγ(A). Furthermore, Corollary 1 states that

4The fact that variations of Σ may cause YA, YB to separate from each other can affect the areas only
at second order since both surfaces are minimal on the original Cauchy slice, and since we now consider
only interior points where such minimal surfaces must be smooth.
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(except on full connected components where YA, YB coincide), points on YA are spacelike

separated from points on YB. On portions where they do not coincide, the stability

requirement implies that we may then freely vary the Cauchy slice in the neighborhood

of one surface without affecting the area of the other. So again extremality of YA, YB

follows in precisely the same way as for Mmγ(A).

It remains only to consider p ∈ L±. We focus on the case p ∈ L+, with the under-

standing that the time-reversed remarks hold for L−. There are three cases to consider

below.

Case 1 : Suppose p ∈ L+ lies in YA but not in YB. Recall that Corollary 1 states that

no two points on these surfaces can be null separated if neither one is on γ. (They cannot

be separated by a null ray that runs through the bulk, nor by a null generator contained

in ∂D(γ)). Because minimal surfaces on the same slice cannot cross, if YA has a point

on some generator k of L+, then YB must have a point q ∈ γ along the same generator.

Since q ∈ γ, it lies in all Cauchy surfaces and changes in Z resulting from local variations

of the Cauchy surface near the generator k receive no contributions from YB. Applying

the arguments of Claim 2 to such variations then establish the desired results for YA (and

the results for YB hold vacuously).

Case 2 : Suppose p ∈ L+ lies in YB but not in YA. Then we may again use Corollary

1 to show that if YB has a point in L+ on some generator k then YA cannot intersect

that generator at all. As a result, one is free to vary the Cauchy surface near k without

affecting the area of YA. Applying the arguments of Claim 2 to such variations then

proves the desired results for YB (and the results for YA hold vacuously).

Case 3 : Finally, suppose that YA and YB coincide at p ∈ L+. Below, we will show

that YA and YB cannot just touch at such a point p, but must in fact must coincide on

finite regions whose boundaries must lie in γ. Applying the arguments of Claim 2 then

shows that a weighted sum of the A,B null expansions at p will satisfy the claim. But
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since both surfaces define the same null congruences and null expansions near p, the same

must be true for the expansions of the individual null congruences orthogonal to YA and

YB.

The argument for coincidence of YA and YB on the above finite region will roughly

follow the proof of Claim 1, though now p and q coincide. As above, we can compare the

k directed null congruence NB(p) from YB at p to the k directed null congruence NA(p)

from YA at p. As in Claim 1, because YA and YB lie on the same achronal slice, because

minimal surfaces on the same slice cannot cross, and because A ⊂ B, we must have NA

nowhere to the past of NB. Corollary 0 then requires θk(B, p) ≥ θk(A, p).

We further consider the extrinsic curvature tr(KB) ≡ KB
i dx

i of YB and the analogous

tr(KA) ≡ KA
i dx

i. Note that Σ must contain the full generator of L+ to the past of p.

Because YA and YB are minimal on Σ, we have KB
i (−ki) ≥ 0 and KA

i (−ki) ≥ 0, where

−ki is the past-directed tangent vector to Σ which points along the generators of L+ at

p. Thus, θk(B, p) ≤ 0 and θk(A, p) ≤ 0.

Combining the two preceding paragraphs then requires either θk(A, p) = θk(B, p) = 0

or θk(A, p) < 0. In the latter case, we can continue to follow the arguments of Claim 1.

Σ will possess some other tangent vector normal to YA, which points to the interior. We

call this vector vi. Minimality on Σ implies KA
i v

i ≤ 0. However, because θk(A, p) < 0,

KA
i (−k)i > 0, Thus, vi cannot point along the k direction, and vi must point in a

spacelike or null past direction into the interior of YA. We can now consider pushing

Σ to the past infinitesimally at p. Since YA and YB have maximal area with respect to

variations of Σ, pushing Σ to the past, along some vector ui must decrease the area of YA

and YB, such that Kiu
i ≤ 0. But ui must be a positive linear combination of vi and −ki,

implying Kiu
i > 0 and contradicting the previous line. Thus, θk(A, p) = θk(B, p) = 0.

We now consider the set C on which the surfaces coincide, and in particular the

connected component C0 ⊂ C that contains p. Since the surfaces are continuous, C0 must
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be closed. Thus any point q in the boundary of C0 must also lie in C. But if q lies in

the interior of D(γ), then we have θk(A) = θk(B) = 0 at all points near q (as these

also lie in the interior). Lemma 2 then requires our surfaces to coincide on a larger set,

contradicting the fact that q lies at the boundary of C0.

Similarly, if q ∈ L+, then all nearby points are in L+ or the interior. So by the

arguments of the above cases θk for each surface must vanish on a larger set. Thus Lemma

2 again requires the surfaces to coincide on a larger set and yields a contradiction. The

case q ∈ L− is similarly forbidden by the time-reversed argument. The only remaining

possibility is that ∂C0 ⊂ γ as claimed. This completes the proof of Corollary 2.

As described in the introduction to this section, the above results are sufficient to guar-

antee that for A ⊂ B the joint restricted-maximin surfaces YA, YB agree with Mmγ(A)

and Mmγ(B). It then follows that Mmγ(A) and Mmγ(B) lie on a common Cauchy sur-

face Σ0, on which they are both minimal. Nesting of the associated entanglement wedges

then follows from the fact that minimal surfaces on Σ0 cannot cross. We use the notation

EW (A) to denote the entanglement wedge of A and thus write EW (A) ⊂ EW (B). As

usual, we use bulk causality to covariantly define EW (A). Thus we have:

Claim 3. If A and B are regions with A ⊂ B, Mmγ(A) and Mmγ(B) are minimal on a

common Cauchy slice Σ ∈ Cγ. This also implies EW(A) ⊂ EW(B).

Proof: The full proof was given in the introduction to this section. Note that

as opposed to the original maximin surfaces of [13], for boundary regions A ⊂ B the

intersection Mmγ(A)∩Mmγ(B) can be very general. But as in the proof of Corollary 2,

except when Mmγ(A) and Mmγ(B) coincide on finite regions, non-trivial intersections of

Mmγ(A) with Mmγ(B) are confined to the boundary γ and thus lie in all Cauchy slices.

Having established that the maximin surfaces of nested subregions are minimal on

a common Cauchy slice, SSA and monogamy of mutual information follow quickly by
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adapting the original SSA argument of [10] and the monogamy argument of [60]. This

discussion is identical to that of [13], but we repeat it for completeness below.

Corollary 3. Our restricted maximin construction satisfies strong subadditivity and neg-

ativity of tripartite mutual information (aka monogamy of mutual information).

Proof: Let A,B and C be non-overlapping regions in γ. Since B ⊂ A ∪B ∪ C, we

know that there exists a single surface Σ ∈ Cγ with Mmγ(B) and Mmγ(A∪B ∪C) both

minimal on Σ. As shown in figure 3.8, the same surgery argument as in [10, 13] requires

Area(Mmγ(B)) + Area(Mmγ(A∪B ∪C)) ≤ Area(min(A∪B,Σ)) + Area(min(B ∪C,Σ))

. But Area(min(A∪B,Σ)) < Area(Mmγ(A∪B)) and Area(min(B∪C,Σ)) < Area(Mmγ(B∪

C)) by the definition of Mmγ.

Figure 3.8: The argument for strong subadditivity, with boundary subregions A,B,
and C. By Claim 3, the surfaces Mmγ(ABC) and Mmγ(B) are minimal on a common
Cauchy slice Σ. Note that we can also form a curve anchored to ∂(ABC) by following
dashed lines along min(AB)1 and min(BC)1. A curve anchored to ∂B can likewise
be found by following the dotted lines along min(AB)2 and min(BC)2. However,
minimality on Σ means that Area[Mmγ(ABC)] ≤ Area[min(AB)1 ∪ min(AB)1]
and Area[Mmγ(B)] ≤ Area[min(AB)2 ∪ min(AB)2]. Furthermore,
Area[min(AB)] ≤ Area[Mmγ(AB)] and Area[min(BC)] ≤ Area[Mmγ(BC)] by the
maximization step of restricted maximin. Thus Area[Mmγ(ABC)] + Area[Mmγ(B)]
≤ Area[(min(AB)1)] + Area[(min(AB)2)] + Area[min(BC)1] + Area[min(BC)2]
≤ Area[Mmγ(AB)] + Area[Mmγ(BC)] and strong subadditivity holds. A similar
argument holds in cases where regions A,B,C do not meet at their boundaries.
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Monogamy of mutual information is handled similarly. We take Σ such that Mmγ(A),

Mmγ(B), Mmγ(C) and Mmγ(A ∪ B ∪ C) are all simultaneously minimized on Σ. then,

the surgery argument implies that

Area(Mmγ(A)) + Area(Mmγ(B)) + Area(Mmγ(C)) + Area(Mmγ(A ∪B ∪ C))

≤Area(min(A ∪B,Σ)) + Area(min(A ∪ C,Σ)) + Area(min(B ∪ C,Σ))

from which the inequality follows. �

3.5 Discussion

Our work above studied possible definitions of holographic entropy in bulk spacetimes

with a radial cutoff. In particular, we focused on globally hyperbolic bulk regions that

one may think of as domains of dependence for some achronal surface Σ with boundary

∂Σ = γ. We think of the surface γ as defining the cutoff, even though it is codimension

2 in the full spacetime. It may also be useful to think of γ as an achronal slice of some

codimension 1 timelike surface, whether the latter is a strict cutoff or just a partition of

the bulk into two parts. While the areas of HRT surfaces anchored to γ can generally

violate strong subadditivity (SSA), or even just subadditivity, we argued that the areas

of similarly anchored restricted maximin surfaces will satisfy both SSA and monogamy

of mutual information. Any other maximin-provable holographic entropy inequality [74]

will of course follow as well.

The above qualifier ‘restricted’ means that the maximization is only with respect

to achronal surfaces Σ with boundary ∂Σ = γ. This restriction is important, as the

example of section 3.3.1 shows that SSA can fail for the areas of unrestricted maximin

surfaces in precisely the same manner as for HRT areas. Appendix ?? establishes further
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properties of our restricted maximin surfaces not required for the main argument, but

which may be useful in the future. In particular, up to sets of measure zero it shows that

our restricted maximin surfaces either coincide with γ or are spacelike separated from γ;

i.e., null separations from γ are rare.

As in the previous works [13, 59] we have neglected certain technical issues associated

with proving that our restricted maximin surfaces can be chosen to be stable, and also

with the fact that general Cauchy surfaces are not piece-wise smooth. We hope that

such points will be addressed in the near future, though we note that almost 30 years

past before similar issues were fully resolved by [75] in the context of the Hawking area

theorem [76].

An interesting feature of our construction is that restricted maximin surfaces often

have regions that coincide exactly with portions of γ. This would not occur for an HRT

surface except on portions of γ that happen to be extremal. However, it is clear that

the same phenomenon does often occur for RT surfaces defined by minimizing areas over

subsurfaces of some time-symmetric slice Σ. For example, in flat space it occurs whenever

Σ fails to be convex; see figure 3.9. Our restricted maximin procedure is thus more similar

to the RT prescription in the presence of a cutoff than is naive application of HRT.

Figure 3.9: A time-symmetric example where γ fails to be convex, and consequently
Mmγ(A) (and the RT surface associated with A) would coincide with γ along some
portion.
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In retrospect, the reason that HRT surfaces behave so differently is simple to state.

It is well known that extrema of a function can occur either at stationary points, or at

the edge of the allowed domain. In the absence of a cutoff and with natural boundary

conditions, the latter can be ruled out. But finite cutoffs provide an edge where extrema

can arise, so an HRT-like prescription that involves solving differential equations for

stationary points of the area functional can give very different results from applying a

minimization procedure, or indeed from restricted maximin.

One would like to derive our prescription from an appropriate path integral in par-

allel with the cutoff-free arguments of [11] and [77]. One class of obstacles to doing so

are uncertainties regarding physics of the cutoff surface. If we momentarily ignore these

issues we may proceed as in [54]; see also [78, 79]. While those references focused on

convex spacetimes, in more general cases one would expect end-point effects similar to

those described above to naturally arise in studying the path integral. For example, if we

study replica geometries by preserving the original boundary conditions but introducing

codimension 2 cosmic branes which source conical singularities, the path integral over

cosmic brane locations will again often receive important contributions from configura-

tions in which the brane partially coincides with the boundary of the spacetime. This is

particularly clear in the Euclidean context where the dominant contribution comes from

the configuration with minimum action. As above, this minimum may well arise on the

boundary of the space of allowed cosmic brane solutions, and in particular where the

cosmic brane itself partially coincides with the boundary of spacetime5.

The fact that our restricted maximin procedure succeeds may be taken as evidence

supporting the utility of cutoff holography. However, it remains to better understand

what further structures might be implied. For example, the success of our procedure

may also suggest that when a slice γ of the cutoff surface is achronal with respect to the

5We thank Xi Dong and Henry Maxfield for discussions of this point.
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bulk causal structre, distinct points on γ correspond to independent degrees of freedom

for any bulk dual. This is also natural from the bulk point of view. But this viewpoint

would in turn imply that the entropy of a boundary region A should depend only on

the appropriate notion of a domain of dependence of A, perhaps as determined by the

causal structure of the bulk rather than the causal structure of the boundary. And

this statement is precisely what fails in the example of section 3.3.1, where the area of

the restricted maximin surface for AB depends in detail on the choice of codimension

2 surface γ. It would thus be interesting to investigate such issues further, perhaps by

studying T T̄ deformations or their analogues in higher dimensions.
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Traversable Wormholes
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Chapter 4

A Perturbative Perspective on

Self-Supporting Wormholes

4.1 Introduction

Wormholes have long been of interest to both scientists (see e.g. [80, 81, 82]) and

the general public, especially in the context of their possible use for rapid transit or

communication over long distances. While the topological censorship theorems [83, 84]

forbid traversable wormholes in Einstein-Hilbert gravity coupled to matter satisfying the

null energy condition (NEC) Tabk
akb ≥ 0, the fact that quantum fields can violate the

NEC (and that higher-derivative corrections can alter the dynamics away from Einstein-

Hilbert) has led to speculation (e.g. [82]) that traversable wormholes might nevertheless

be constructed by sufficiently advanced civilizations.

Indeed, an Einstein-Hilbert traversable wormhole supported by quantum fields was re-

cently constructed in [15]. Their wormhole connects two asymptotically 2+1-dimensional

anti-de Sitter (AdS) regions that are otherwise disconnected in the bulk spacetime. How-

ever, the model contains an explicit non-geometric time-dependent coupling of quantum
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Figure 4.1: A moment of time in a spacetime with a wormhole (shaded region) formed
by adding a handle to a space with a single asymptotic region.

field degrees of freedom near one AdS boundary to similar degrees of freedom near the

other. Turning on this coupling briefly near t = 0 allows causal curves that begin at one

AdS boundary in the far past to traverse the wormhole and reach the other boundary

in some finite time. Though the wormhole collapses and becomes non-traversable at

later times, the negative energy induced by the boundary coupling supports a transient

traversable wormhole. The extension to the rotating case was performed in [85].

Here and below, we define the term “traversable wormhole” to mean a violation of the

topological censorship results of [83, 84]; i.e., it represents causal curves that cannot be

deformed (while remaining causal) to lie entirely in the boundary of the given spacetime.

Note that there exist interesting solutions of Einstein-Hilbert gravity involving thin necks

connecting large regions (e.g. [86]) which are not wormholes in this sense. In addition,

an analogue of the effect in [15] without wormholes was recently discussed in [87].

From the perspective of the bulk spacetime, boundary interactions like those used

in [15] are both non-local and acausal. However, it is expected that similar boundary

couplings can be induced by starting with local causal dynamics on a spacetime of the

form described by figure 5.1, in which the ends of the wormhole interact causally through

the ambient spacetime. Integrating out the unshaded region in figure 5.1 clearly leads

to an interaction between opposite ends of the wormhole (shaded region). Though not

precisely of the form studied in [15], the details of the boundary coupling do not appear

to be critical to the construction.
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Indeed, during the final preparation of this manuscript, a traversable wormhole was

constructed [88] using only local and causal bulk dynamics. In addition, the wormhole of

[89] is stable and remains open forever. We refer to such wormholes as self-supporting.

This construction was inspired by [89], which showed that adding time-independent

boundary interactions to AdS2 in some cases leads to static (eternal) traversable worm-

holes that in particular are traversable at any time. In [89], the eternal wormholes arise

as ground states and, as the authors of [89] point out, more generally the time-translation

invariance of a ground state leads one to expect that a geometric description must have

either a static traversable wormhole or no wormhole at all1.

The wormholes constructed in [89] are extremely fragile, yet in some sense their

construction was easier than had long been assumed. It is therefore useful to find a

clean and simple perspective explaining why self-supporting wormholes should exist. We

provide such an explanation below using first-order perturbation theory about classical

solutions. Indeed, we will find perturbative indications that self-supporting wormholes

can indeed exist even when the number of propagating quantum fields is small. Our

examples resemble the ∆ < 1/2 case studied in [89] in that the back-reaction grows in

the IR limit. While by definition there can be no traverseable wormholes of our sort in

closed cosmologies, there can nevertheless be related effects. For example, one can use

these techniques to build a Schwarzschild-de Sitter-like solution in which causal curves

from I− to I+ can pass through the associated Einstein-Rosen-like bridge.

At least for the purpose of establishing transient traversability for some choice of

boundary conditions, the important properties of our backgrounds are that they are

smooth, globally hyperbolic Z2 quotients of spacetimes with bifurcate Killing horizons

1Recall that familiar non-traversable wormholes like Reissner-Nordström, Kerr, or BTZ degenerate
and disconnect in the limit of zero temperature. The full argument is best given in Euclidean signature
so as to exclude non-traversable static wormholes of the form discussed in [90]. This is appropriate for
a ground state defined by a Euclidean path integral.
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Figure 4.2: The asymptotically flat RP3 geon and the AdS RP2 geon are respec-
tively Z2 quotients of Kruskal’s extension (left) of the Schwarzschild solution and
BTZ (right). The quotients act on the above conformal diagrams by reflection across
the dashed lines, and simultaneously act as the antipodal map (see insets) on the sup-
pressed S2 or S1. Due to this combined action, the resulting spacetimes are smooth.
However, since this action maps the Killing field ξa to −ξa, the geon quotients lack
globally-defined time-translation Killing fields. In particular, the dashed lines are or-
thogonal to preferred spacelike surfaces of vanishing extrinsic curvature that one may
call t = 0. Our Kaluza-Klein end-of-the-world brane is a quotient of BTZ ×S1 by a
related isometry that acts trivially on the BTZ φ-circle but acts on the internal S1

via the antipodal map.

and well-defined Hartle-Hawking states under an isometry that exchanges the left- and

right-moving horizons. Such spacetimes may be said to generalize the RP3 geon described

in [91, 83] (and in [92] at the level of time-symmetric initial data); see figure 4.2 (left).

However, as discussed in section 6.4, they may also take the more familiar form shown

in figure 5.1.

Much like the Bañados-Teitelboim-Zanelli (BTZ) case studied in [15], the bifurcate

horizon in the covering space makes the wormholes nearly traversable, so that they might

be rendered traversable by the perturbatively small backreaction sources of a quantum

field. On the other hand, linear quantum fields in backgrounds with global Killing sym-

metries satisfy the averaged null energy condition (ANEC), meaning that the integral of

Tabk
akb over complete null generators is non-negative2. Thus, a bifurcate Killing horizon

2This follows for both free and super-renormalizeable field theories from e.g. combining the results
of [93] with those of [94], or from the free-field quantum null energy condition (QNEC) derived in [95].
This result should also hold for quantum field theories that approach a non-trivial UV conformal fixed
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will not become traversable under first-order back-reaction from quantum fields in any

quantum state and the above-mentioned Z2-quotient operation plays a key role in our

analysis below.

After describing the general framework for such constructions and the relation to [15]

and [89] in section 4.2, we study simple examples of transient such traversable wormholes

in section 4.3, and a more complicated example in 4.4 that admits an extremal limit in

which the wormhole appears to remain open forever. We consider only scalar quantum

fields in the work below, though similar effects should be expected from higher spin fields.

It would be particularly interesting to study effects from linearized gravitons.

For simplicity, section 4.3 considers backgrounds defined by the AdS RP2 geon [99]

and simple Kaluza-Klein end-of-the-world branes3 (KKEOW branes) that are respec-

tively quotients of AdS3 and AdS3 × S1. In particular, the former are Z2 quotients of

BTZ spacetimes, and the latter are quotients of BTZ ×S1; see figure 4.2. In each case,

as explained in section 4.2, we take the bulk quantum fields to be in the associated

Hartle-Hawking state defined by the method of images using the above Z2 quotient, or

equivalently defined via a path integral over the Euclidean section of the background ge-

ometry. Both backgrounds define wormholes with Z2 homotopy4 fully hidden by a single

black hole horizon. They are also non-orientable, though with additional Kaluza-Klein

dimensions they admit orientable cousins as in [99]. Outside the horizons, the spacetimes

are precisely BTZ or BTZ ×S1, and even inside the horizon these quotients preserve exact

point as one expects that the arguments of [96, 97] generalize (at least in the static case where analytic
continuation is straightforward) directly to Killing horizons in curved spacetimes. For such more general
theories, one could alternately use the QNEC connection of [95] and generalize the results of [98] to
appropriate Killing horizons.

3Such spacetimes (for AdSd with d ≥ 4) were studied in [100] where they were called higher-
dimensional geons. We use the term KKEOW brane here as we emphasize the AdS3 perspective, and
in particular because it provides a smooth top-down model of the end-of-the-world brane spacetime of
[101, 87].

4 It is useful to define the wormhole homotopy group to be the quotient πw1 M := π1(M)/π1(∂M) of
the bulk homotopy group π1(M) by the boundary homotopy group π1(∂M). If there is no boundary
(∂M = ∅), we define π1(∅) to be trivial. The examples described here have πw1 (M) = Z2.
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rotational symmetry.

Unfortunately, the examples of section 4.3 do not admit smooth zero-temperature

limits. We thus turn in section 4.4 to a slightly more complicated Z2 quotient of BTZ

×S1 that breaks rotational symmetry but nevertheless supports the addition of angular

momentum. The four-dimensional spacetime is smooth, though after Kaluza-Klein re-

duction on the S1, the resulting three-dimensional spacetime has two conical singularities

with π deficit angles. We therefore refer to this example as describing Kaluza-Klein zero-

brane orbifolds (KKZBOs). This construction admits a smooth extremal limit and (as it

turns out) yields an orientable spacetime. In our first-order perturbative analysis, back-

reaction renders the KKZBO wormhole traversable until a time tf that becomes later

and later as extremality is approached. This suggests that a complete non-perturbative

analysis would find a self-supporting eternal traversable wormhole. The large effect

near extremality is associated with a divergence of the relevant Green’s function in the

extremal limit. It would be interesting to better understand the relationship of this

divergence to other known instabilities of extreme black holes.

We end with some discussion in section 6.4, focusing on back-reaction in the ex-

tremal limit, showing that the general class of wormholes described in section 4.2 in-

cludes wormholes of the familiar form depicted in figure 5.1. In particular, assuming that

perturbations of Reissner-Nordström black holes display an instability similar to the one

noted above for extreme BTZ, our mechanism also appears to explain the existence of

the self-supporting wormholes constructed in [88]. An appendix also describes a slight

generalization of the framework from section 4.2.
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4.2 Z2-quotient wormholes and their Hartle-Hawking

states

As stated above, at least for the purpose of establishing transient traversability, the

important properties of our backgrounds M are that they are smooth globally hyperbolic

Z2 quotients of spacetimes M̃ with bifurcate Killing horizons and well-defined Hartle-

Hawking states |0HH,M̃〉 under a discrete Z2 isometry J (i.e., with J2 = 1) that exchanges

the left- and right-moving horizons. Here, by a Hartle-Hawking state we mean a state of

the quantum fields that is smooth on the full bifurcate horizon and invariant under the

Killing symmetry. Such spacetimes M are then generalizations of the (Schwarzschild)

RP3 geon described in [91, 83] and the RP2 AdS geon of [99]; see figure 4.2. For later

purposes, note that the homotopy group π1(M̃) is a normal subgroup of π1(M) with

π1(M)/π1(M̃) = Z2. In order to describe the additional topology introduced by the Z2

quotient, it will be useful to choose some associated γ ∈ π(M) which projects to the

non-trivial element of π1(M)/π1(M̃) = Z2 and for which γ2 = 1.

To set the stage for detailed calculations in section 4.3, we give a simple argument in

section 4.2.1 below that – for either periodic or anti-periodic boundary conditions around

γ – this setting generically leads to traversability in the presence of free quantum fields.

In order to provide a useful perspective and explore connections with both recent work

[89] by Maldacena and Qi and the original traversable wormhole [15] of Gao, Jafferis,

and Wall, section 4.2.2 then describes an alternate construction via path integrals that

generalizes this construction to interacting fields.
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4.2.1 The free field case

Our explicit work in sections 4.3 and 4.4 below involves free quantum fields. We may

therefore follow [102, 99] and define a state on the quotient M of M̃ using the method of

images. For reasons explained below, we refer to this state as the Hartle-Hawking state

|0HH,M〉 on M . In fact, since free fields φ on M admit a Z2 symmetry φ→ −φ, we may in

principle consider two such states |0HH,M〉± defined using either periodic or anti-periodic

boundary conditions around the new homotopy cycle γ in M . Since we will concentrate

on the periodic case |0HH,M〉+ below, we will also denote this state by |0HH,M〉 with no

subscript.

Since M is globally hyperbolic, it contains no closed causal curves. Thus the image

Jx̃ of any x̃ ∈ M̃ never lies in either the causal future or past of x̃. And since M is

smooth, x̃ and Jx̃ cannot coincide. Thus x̃ and Jx̃ are spacelike related and quantum

fields at x̃ commute with those at Jx̃. As a result, in linear quantum field theory, one

may define quantum fields φ± on M in terms of quantum fields φ̃ on M̃ via the relations

φ(x)± =
1√
2

[
φ̃(x̃)± φ̃(Jx̃)

]
, (4.1)

where (x̃, Jx̃) are the two points in M̃ that project to x ∈ M . Of course, in the an-

tiperiodic (−) case, the overall sign of φ is not well-defined. This case is best thought

of as making φ charged under a Z2 gauge field with non-trivial holonomy around the Z2

cycle γ of M . Note that in either case φ(x) satisfies canonical commutation relations on

a Cauchy slice of M and so does indeed define a quantum field as claimed.

Any quantum state φ̃ on M̃ then induces an associated quantum state φ± on M .

In particular, this is true of the Hartle-Hawking state |0HH,M̃〉, and we call the induced

state |0HH,M〉±. We will be interested in the expectation value in such states of the stress

tensor operator Tab±(x) (where the ± again refer to the choice of ± boundary conditions),
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and in particular the associated back-reaction on the spacetime M . This back-reaction

is most simply discussed by defining a new stress tensor Tab±(x̃) on M̃ as the pull-back

of Tab±(x) under the natural projection M̃ → M . In particular, for our Hartle-Hawking

states we have

±〈0HH,M |Tab±(x)|0HH,M〉± = 〈0HH,M̃ |Tab±(x̃)|0HH,M̃〉. (4.2)

for any x̃ that projects to x. The difference between Tab(x̃) and the stress tensor T̃ab(x̃)

of the quantum field φ̃ on M̃ will be made explicit below, but the important point is

that the construction of the former involves the isometry J which fails to commute with

the Killing symmetry of M̃ ; see figure 4.2. So while the expectation value of T̃ab(x̃) in

the Hartle-Hawking state |0HH,M̃〉 is invariant under the Killing symmetry, this property

does not hold for the pull-back Tab(x̃) of Tab(x).

The point of pulling-back the stress tensor to M̃ is to reduce the analysis of back-

reaction to calculations like that in [15]. Since the (Hartle-Hawking) expectation value of

Tab±(x̃) is invariant under the action of J , the back-reaction of Tab±(x) on M is just the Z2

quotient under J of the back-reaction of Tab±(x̃) on M̃ . Since M̃ has a bifurcate horizon,

after back-reaction traversability of the associated wormhole is related to the integral

of Tab±(x̃)kakb over the null generators of the horizon. In particular, with sufficient

symmetry (as in section 4.3) the wormhole is traversable if and only if this value is

negative along some generator. More generally, the wormhole can become traversable

only if this integral is negative along some generator [83, 84] and, as we will discuss in

section 4.4 below, in our contexts traversability will be guaranteed if the average of this

integral over all generators is negative.

To allow explicit formulae, we now specialize to the case of scalar fields. The stress
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tensor of a free scalar field of mass m takes the form

Tab± = ∂aφ±∂bφ± −
1

2
gabg

cd∂cφ±∂dφ± −
1

2
gabm

2φ2
±. (4.3)

In general, this diverges and requires careful definition via regularization (e.g., point-

splitting) and renormalization. However, using (4.1), the symmetry under J of the actual

stress energy T̃ab(x̃) of the quantum field φ̃ on M̃ , and the fact that ka is null we find

±〈0HH,M |Tab±kakb(x)|0HH,M〉± = 〈0HH,M̃ |
[
T̃abk

akb(x̃)± kakb∂aφ(x̃)∂bφ(Jx̃)
]
|0HH,M̃〉.

(4.4)

The second term on the right in (4.4) is manifestly finite since x̃, Jx̃ are spacelike sep-

arated (and would be so even without contracting with kakb). Renormalization of Tab±

is thus equivalent to renormalization of the stress tensor T̃ab of the φ̃ quantum field the-

ory on the covering space M̃ . However, when evaluated on the horizon and contracted

with kakb, any smooth symmetric tensor Qab on M̃ that is invariant under the Killing

symmetry must vanish5. As a result, the divergent terms in T̃abk
akb(x̃) (which are each

separately smooth geometric tensors with divergent coefficients) vanish on the horizon in

all states, and invariance of the Hartle-Hawking state |0HH,M̃〉 means that the finite part

of T̃abk
akb(x̃) also gives no contribution to (4.4). Thus we have

±〈0HH,M |Tab±kakb(x)|0HH,M〉± = ±〈0HH,M̃ |k
akb∂aφ(x̃)∂bφ(Jx̃)|0HH,M̃〉. (4.5)

This result shows the key point. Unless the integral of the right-hand-side vanishes,

5This is most easily seen by the standard argument that if ξa is the Killing vector field then Qabξ
aξb

is smooth scalar invariant under the symmetry. It is thus constant along the entire bifurcate horizon,
and so must vanish there since ξa vanishes on the bifurcation surface. But Qabk

akb ∝ Qabξ
aξb on the

horizon away from the bifurcation surface, so it must vanish there as well. Smoothness then also requires
Qabξ

aξb to vanish on the bifurcation surface. This comment also justifies our use of Einstein-Hilbert
gravity, as the first-order perturbative contributions from any higher derivative terms will vanish for the
same reason.
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it will be negative for some choice of boundary conditions (±). With that choice, back-

reaction will then render the wormhole traversable. It thus remains only to study this

integral in particular cases, both to show that it is non-zero and to quantify the degree

to which the wormhole becomes traversable. We perform this computation for the AdS3

RP2 geon and a simple Kaluza-Klein end-of-the-world brane in section 4.3, and for a

related example involving Kaluza-Klein zero-brane orbifolds in section 4.4.

4.2.2 A path integral perspective

Before proceeding to explicit calculations, this section takes a brief moment to provide

some useful perspective on the above construction, the relation to AdS/CFT, and in

particular the connection to recent work [89] by Maldacena and Qi and the original

traversable wormhole of Gao, Jafferis, and Wall [15]. Readers focused on the detailed

computations relevant to our examples may wish to proceed directly to sections 4.3 and

4.4 and save this discussion for a later time.

For the purposes of this section we assume that the Hartle-Hawking state |0HH,M̃〉 on

the covering space M̃ is given by a path integral over (half of) an appropriate Euclidean

(or complex) manifold M̃E defined by Wick rotation of the Killing direction in M̃ . In

rotating cases, this may also involve analytic continuation of the rotation parameter to

imaginary values, or a suitable recipe for performing the path integral on a complex

manifold6. We further assume that (as in figure 4.2) the isometry J maps the Killing

field ξa to −ξa. Note that global hyperbolicity of M requires J to preserve the time-

orientation of M̃ so that, since J exchanges the right- and left-moving horizons, it is not

possible for J to leave ξa invariant.

Following [102], one can extend the isometry J to act on the complexification M̃C

6In the presence of super-radiance or instabilities this procedure gives a non-normalizeable state that
is not appropriate for quantum field theory. In such cases one often says that the Hartle-Hawking state
does not exist [103].
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of M̃ , and thus on the particular section M̃E. The quotient ME = M̃E/J and the

desired Lorentzian spacetime M = M̃/J are then associated with the complex quotient

MC = M̃C/J . As a result, ME is an analytic continuation of M .

Furthermore, for free fields the path integral over (half of) ME defines a state that is

related to |0HH,M̃〉 via the method of images. This state is thus |0HH,M〉+, and we may

instead obtain |0HH,M〉− by coupling the bulk theory to a background Z2-valued gauge

field with non-trivial holonomy around the Z2 cycle associated with taking the quotient

by J . It is due to this direct Euclidean (or complex) path integral construction that we

call |0HH,M〉± Hartle-Hawking states. Taking this as the definition, such Hartle-Hawking

states on M can also be introduced for interacting quantum fields.

Indeed, in the AdS/CFT context one can go even farther. Let us suppose that ME

is the dominant bulk saddle point of a gravitational path integral over asymptotically

locally AdS (AlAdS) geometries with conformal boundary ∂ME. Then following [104] the

CFT state defined by cutting open the path integral on ∂ME (perhaps again coupled to a

Z2 gauge field having non-trivial holonomy) is dual to our Hartle-Hawking state |0HH,M〉±

on the bulk manifold ME at all orders in the bulk semi-classical approximation.

The zero temperature limit

Let us in particular consider the limit in which the temperature T vanishes as defined

by the Killing horizon in the bulk covering space M̃ . The Euclidean (or complex) period

of M̃E diverges in this limit, so that M̃E can be approximated by Σ̃×R for some manifold

Σ̃ and ∂M̃E → ∂Σ̃× R; see figure 4.3. Similarly, ME → Σ× R and ∂ME → ∂Σ× R for

Σ = Σ̃/J . So in the AdS/CFT context, we are studying the ground state of the CFT on

∂Σ× R.

This setting is now in direct parallel with that recently studied by Maldacena and

Qi [89], which considered two copies of the SYK theory [105, 106] coupled through
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Figure 4.3: The boundary ∂M̃E of the non-extreme case (left) grows longer and
longer to become ∂Σ̃× R in the extreme limit (right).

some multi-trace interaction and the associated two-boundary AdS2 bulk dual to the

Schwarzian sector of the SYK theory [107]. From the CFT perspective, the multi-trace

coupling is clearly critical to allow the two SYK models to interact. From the bulk per-

spective, this coupling is again critical in allowing traversability, as without it the system

would be invariant under separate time-translations along each of the two boundaries

(associated with separate time-translations in each of the two SYK models). Preserv-

ing this symmetry would then forbid any bulk solution in which the two boundaries are

connected. In our setting, there is generally just a single time-translation symmetry of

Σ× R along R.

The formulation in terms of ground states was useful in the non-perturbative SYK

analysis of [89]. It also provides a useful perspective on our perturbative bulk analysis. In

particular, since the bulk ground state will be invariant under Euclidean time-translations

(see footnote 1), any zero temperature wormholes must either be traversable at all times

or not at all. Now, noting that a trip through a traversable wormhole can be started

at arbitrarily early times, but that (unless the wormhole is eternal) there is generally a

latest time tf at which such a trip may be begun, we can use tf to quantify the extent to

which a given wormhole is traversable7. So if the finite T wormholes become traversable,

7It is in fact more natural to use tf − ti, where ti is the earliest time at which a past-directed causal
curve can traverse the wormhole. But we implicitly assume some symmetry that includes time-reversal
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and if perturbative calculations indicate that tf increases as T → 0, then we may take

this as an indication that the wormhole is both traversable and static (eternal) in the

actual bulk ground state. Consistent with [89], we will find indications in section 4.4 that

this occurs in the presence of sufficiently many bulk fields.

As a final comment, even if one is most interested in T = 0, we see that the finite

temperature setting is useful for performing perturbative computations. A corresponding

finite-T version of [89] can be obtained by studying SYK on a thermal circle defined by

periodic Euclidean time tE, so that slicing the circle at both tE = 0 and the antipodal

point tE = 1/(2T ) yields two-copies of SYK. Introducing a multi-trace interaction that

is non-local in tE, and which in particular couples tE = 0 with tE = 1/(2T ), then

reproduces the ground state path integral of [89] in the limit T → 0 so long as one

focuses on Euclidean times tE near both tE = 0 and tE = 1/(2T ) and takes the non-local

coupling to become time-independent in these regions. For example, the coupling might

take the form gT (TtE)O(tE)O( 1
2T
− tE) where gT is symmetric under TtE → 1

2
− TtE;

see figure 4.4. In field-theoretic cases (as opposed to the 0+1 SYK context), one may

also wish to require that g vanish at tE = ± 1
4T

to prevent additional UV singularities.

At finite temperature, the Euclidean time-translation invariance is then broken by this

non-local coupling, just as it is broken in our setting by the Z2 quotient of M̃E by J . We

also note that Wick rotation to Lorentz signature and appropriate choice of the resulting

real-time coupling g(t) then gives essentially the original traversable wormhole setting

of [15], though with Feynman boundary conditions instead of the retarded boundary

conditions used in [15].

(e.g., (t, φ)→ (−t,−φ)) in the main text.
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Figure 4.4: The ground states of Maldacena and Qi [89] can be obtained as limits of
path integrals dominated by finite-temperature backgrounds in the bulk semi-classical
limit. At finite T , these path integrals would yield thermo-field double states if not
for the additional multi-trace interaction that is bi-local in the Euclidean time tE ,
coupling points tE and 1

2T − tE related by reflection about the vertical dashed line.

4.3 Simple traversable AdS3 wormholes from Hartle-

Hawking states

The non-rotating AdS3 RP2 geon and KKEOW brane that form our first examples

were defined in figure 4.2 as simple Z2 quotients of BTZ and BTZ ×S1 under appropriate

isometries J . Since quantum fields on the latter can be Kaluza-Klein reduced to an

infinite tower of quantum fields on BTZ, it is clear from section 4.2 that both cases may

be studied by computing the right-hand-side of (4.5) as defined by the two-point function

of a single scalar field in the BTZ Hartle-Hawking state.

4.3.1 BTZ and back-reaction

As is well known, BTZ is itself a quotient of AdS3, and the BTZ Hartle-Hawking two-

point function is induced8 via the method of images with periodic boundary conditions

from the corresponding two-point function in the AdS3 vacuum |0〉AdS3 . Since the latter

8Due to the fact that AdS3 is an infinite cover of BTZ, this construction is slightly different than
that discussed in section 4.2.1.
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is available in closed form, this construction provides a useful starting point for detailed

calculations.

At this stage it is useful to introduce Kruskal-like coordinates (U, V, φ) on (non-

rotating) BTZ. We choose them so that the BTZ metric is

ds2 = gabdx
adxb =

1

(1 + UV )2
(−4`2dUdV + r2

+(1− UV )2dφ2) (4.6)

where φ is periodic with period 2π. Such coordinates in particular allow us to write

explicit expressions for the isometries J . For the AdS3 RP2 geon, we take Jgeon(U, V, φ) =

(V, U, φ + π); i.e., it is given by reflecting the conformal diagram 4.2 (right) about the

dashed vertical line and acting with the antipodal map on the BTZ φ-circle. For the

KKEOW brane, there is an additional periodic angle θ ∈ [0, 2π) on the internal S1 and

we take Jeow(U, V, φ, θ) = (V, U, φ, θ + π); i.e., this action is similar to Jgeon but with the

antipodal map acting on the internal S1 as opposed to the BTZ φ-circle.

As discussed in section 4.2, the integral
∫

dλ〈Tab〉kakb along horizon generators will

play a primary role in our analysis. Here λ is an affine parameter and ka the associated

tangent vector. In particular, since U is an affine parameter along the BTZ horizon

V = 0, it will be useful to take λ = U and ka∂a = ∂
∂U

.

Let us begin with the observation that (as in [15]), at linear order the geodesic equa-

tion implies a null ray starting from the right boundary in the far past to have

V (U) = −(2gUV (V = 0))−1

∫ U

−∞
dUhkk (4.7)

where hkk is the norm of ka after first-order back-reaction from the quantum stress

tensor (since gabk
akb = 0) and we have used the fact that the background metric (4.6)

has constant gUV along the horizon (V = 0).
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It thus remains to integrate hkk. Since our RP2 geon and KKEOW brane both

preserve rotational symmetry, this integral can be performed following [15]. Defining

Tkk := Tabk
akb, the linearized Einstein equations give

1

2

[
`−2(hkk + ∂U(Uhkk))− r−2

+ ∂2
Uhφφ

]
= 8πGN〈Tkk〉. (4.8)

To find the shift ∆V at U = +∞, one merely integrates this equation over all U to find

8πGN

∫
dU〈Tkk〉 =

1

2
`−2

∫
dUhkk, (4.9)

where we have used asymptotically AdS boundary conditions and the requirement that

the boundary stress tensor be unchanged at this order to drop the additional boundary

terms9. Thus,

∆V (+∞) = −8πGN`
2

gUV (0)

∫ ∞
−∞

dU〈Tkk〉 = 4πGN

∫ ∞
−∞

dU〈Tkk〉. (4.10)

Similarly, if we are interested in measuring the shift at the center of the wormhole

(U = V = 0), we can integrate equation (4.8) from U = −∞ to U = 0. The contribution

from ∂U(Uhkk) again vanishes, as Uhkk|U=0 = 0. We thus find

∆V (0) = −8πGN`
2

gUV (0)

∫ 0

−∞
dU〈Tkk〉 = 2πGN

∫ ∞
−∞

dU〈Tkk〉 =
1

2
∆V (+∞), (4.11)

where we have used the fact that in our examples 〈Tkk〉 is also symmetric about t = 0.

This quantity gives a measure of the length of time that the wormhole remains open as

9In the presence of scalars with ∆ < 1 (see below), the metric can receive large corrections near the
boundary. But in AdS3 such corrections give only a conformal rescaling of the original metric and so
cannot contribute to (4.7). The specification that the boundary stress tensor be unchanged determines
the choice of boundary gravitons – or in other words the choice of linearized diffeomorphism along with
the change in gravitational flux threading the wormhole – to be added along with the perturbation.
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measured by an observer at the bifurcation surface. Since the result is simply related to

the shift at the left boundary, it will be convenient below to define ∆V := ∆V (+∞) and

to understand that all quantities of interest are simply related to this ∆V .

For example, we might also like to compute the minimum length of time it takes to

travel through the wormhole. Note that at first order in perturbation theory, any null

ray that traverses the wormhole (from right to left) will be perturbatively close to V = 0.

As a result, at this order it will differ from (4.7) by at most a constant off-set; i.e.,

∆V (U) := V (U)− V (−∞) = −
∫ U

−∞
dU

hkk
2gUV (V = 0)

. (4.12)

Choosing a conformal frame in which the boundary metric is ds2
∂BTZ = −dt2 + `2dφ2, we

find on the boundary dt2 = `4dV 2

r2+V
2 , so we may choose t = ± `2

2r+
ln
(
±V

`

)
, with the choice

of signs (±) being both (+) on the right boundary and both (−) on the left. Since the

wormhole is traversable for ∆V < 0, the shortest transit time t∗ from the right to left

boundary is realized by the geodesic that leaves the right boundary at V = −∆V/2 and

arrives at the left boundary at V = ∆V/2. We thus find

t∗ = − `
2

r+

ln

(
|∆V |

2`

)
. (4.13)

4.3.2 Ingredients for the stress tensor

The quotient of AdS3 used to obtain BTZ is associated with the periodicity of φ. As

a result, taking φ in (4.6) to range over (−∞,∞) yields a metric on a region of empty

global AdS3.

Now, at spacelike separations (as appropriate for x̃, Jx̃), the AdS3 two-point function
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for a free scalar field of mass m is determined by its so-called conformal weight

∆ = 1±
√

1 +m2`2, (4.14)

where the choice of ± is associated with a choice of boundary conditions, though for

m2 ≥ 0 only the (+) choice is free of ghosts [108]. The AdS3 two-point function is then

(see section 4.1 of reference [109])

G(x, x′) = GAdS3(Z) =
1

4π
(Z2 − 1)−1/2(Z + (Z2 − 1)1/2)1−∆ (4.15)

where Z = 1 + σ(x, x′) and σ(x, x′) is half of the (squared) distance between x and x′ in

the four dimensional embedding space10, and with all fractional powers of positive real

numbers defined by using the positive real branch. The BTZ two-point function is

GBTZ(x̃, x̃′) =
1

4π

∑
n∈Z

(Z2
n − 1)−1/2(Zn + (Z2

n − 1)1/2)1−∆, (4.16)

where Zn = 1 +σ(x, x′n) where x is any point in AdS3 that projects to x̃ in BTZ and x′n

are the inverse images in AdS3 of x̃′ in BTZ. A standard calculation then gives

σ (x, x′n) =
`2

(UV + 1)(U ′V ′ + 1)
[(UV − 1)(U ′V ′ − 1) cosh (r+ (φ− φ′n))

−(UV + 1)(U ′V ′ + 1) + 2(UV ′ + V U ′)]

(4.17)

in terms of our Kruskal-like BTZ coordinates. Here we take x = (U, V, φ) (in either the

geon/KKEOW brane or AdS3) and x′n = (U ′, V ′, φ′n). As noted above, the x′n are related

by 2π shifts of the BTZ φ coordinate so that φ′n := φ(x′n) = φ′ + 2πn for some φ′.

In computing (4.5), we will set x̃′ = Jx̃ and thus U ′ = V, V ′ = U . For the AdS3 geon

10In reference [110], this distance was called the “chordal distance” in the embedding space. Here,
σ(x, x′) is half of this chordal distance.
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we also set φ′ = φ + π, while φ′ = φ for our KKEOW brane. So for each n both cases

involve computations of (4.5) that differ only by an overall shift of φ′ by π.

In fact, one sees immediately from (4.17) that the integral of (4.5) depends only on

C ≡ cosh (r+(φ− φ′n)). For the geon case, this is −2π(ngeon + 1
2
)rgeon

+ , while for the

KKEOW brane it is −2πneowr
eow
+ . So for rgeon

+ = 2reow
+ and neow = 2ngeon + 1 (for odd

neow) or rgeon
+ = 4reow

+ and neow = 4ngeon + 2 (for even neow), the two computations

involve precisely the same integral over generators of the BTZ horizon. Below, we briefly

comment on this integral for general C and then use it to obtain the desired geon and

KKEOW brane results. In particular, working on the horizon V = 0 we define

f(C,U ; ∆) := 〈0HH,AdS3|∂Uφ(x)∂Uφ(x′)|0HH,AdS3〉|V=0 (4.18)

for x, x′ as above in AdS3. Using (4.15) and (4.17) then gives

f(C,U ; ∆) =

(√
B2 − 1 +B

)−∆

2π (B2 − 1)5/2

{(
B2 − 1

)2
(1−∆)

(
− 2B2U2

(B2 − 1)3/2
+

2U2 +B√
B2 − 1

+ 1

)

+
[(
B2 − 1

) (
2(∆2 −∆− 1)U2 −B

)
+ 4B

√
B2 − 1(∆− 1)U2 + 6B2U2

]
×
(√

B2 − 1 +B
)}
,

(4.19)

where B(U) ≡ 2U2 + C. To give the reader a feel for this complicated-looking function,

we plot f in figure 4.5 below for various values of C, ∆.

We can also consider simple, limiting cases of f(C,U ; ∆). For instance, when ∆ =

0, 1, 2, this becomes

f(C,U ; 0) = f(C,U ; 2) =
1− C2 + 2CU2 + 8U4

2π
[
(C + 2U2)2 − 1

]5/2 , (4.20)

f(C,U ; 1) =
C − C3 + 4U2 − 2C2U2 + 4CU4 + 8U6

2π
[
(C + 2U2)2 − 1

]5/2 . (4.21)
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Figure 4.5: Some of the functions (4.19). Left: C = 1.5, for ∆ = 1 (red), ∆ = 2
(orange), ∆ = 3 (blue), and ∆ = 4 (purple). Right: C = 1, for ∆ = 1 (red), ∆ = 2
(orange), ∆ = 3 (blue), and ∆ = 4 (purple).

More generally, when ∆ = 0, 1/2, 1, 3/2, 2 . . . , the integral
∫

dUf(C,U ; ∆) can be

performed analytically. For example, we find

∫ ∞
0

f(C,U ; 0)dU =

∫ ∞
0

f(C,U ; 2)dU =
(C − 1)K

(
2

C+1

)
− CE

(
2

C+1

)
8
√

2π (C − 1)
√
C + 1

< 0,(4.22)∫ ∞
0

f(C,U ; 1)dU = −
E
(

2
C+1

)
8
√

2π (C − 1)
√
C + 1

< 0, (4.23)

for C > 1 where K(k) is the complete elliptic integral of the first kind and E(k) is the

complete elliptic integral of the second kind. Since both E and K are positive functions,

the second inequality is manifest. The first inequality can be seen from figure 4.6 (left).

For other values of ∆ and C, numerical integration suggests that the result continues

to be negative as seen in figure 4.6:

∫ ∞
0

f(C,U ; ∆)dU < 0, for ∆ ≥ 0, C > 1. (4.24)

For all ∆ ≥ 0, when C → 1+, the integral
∫∞

0
f(C,U ; ∆)dU becomes divergent and goes

to −∞. In contrast, both f and its integral vanish for all ∆ as C → ∞. For later use,
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Figure 4.6: Left:
∫∞

0 f(C,U ; ∆)dU as a function of C for ∆ = 0 (red), ∆ = 0.5
(orange), ∆ = 1 (blue), ∆ = 1.5 (purple). Right: Further numerical results for∫∞

0 f(C,U ; ∆)dU supporting (4.24). The white region is even more negative than
those shown in color.

we note that expression (4.17) simplifies in the r+ → 0 limit, which gives

f(1, U ; ∆) =

(
U +
√

1 + U2
)2−2∆

32πU3(1 + U2)5/2

[
1 + 2U

√
1 + U2 (−1 + ∆) + 8U3

√
1 + U2 (−1 + ∆)

+4U4
(
2− 2∆ + ∆2

)
+ U2

(
6− 8∆ + 4∆2

)]
.

(4.25)

Some of these functions are plotted in figure 4.5 (right).

4.3.3 Traversability of the AdS RP2 geon

We can now use the above ingredients to study the traversability of the RP2 geon

with back-reaction from a periodic (+) scalar. Since the analysis involves only a single

bulk quantum field, we have

∫
dU〈Tkk+〉 =

∑
n∈Z

∫
dUf(Cn, U ; ∆) (4.26)
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Figure 4.8: Left: The shift ∆V as measured on the left boundary. Right: ∆V
remains negative at ∆ = 0.

for Cn defined by φ−φ′n = (2n+1)π. From (4.24) we can already see that the associated

first-order back-reaction will make the wormhole traversable. As pointed out in [15] and

shown in figure 4.6 (right), ∆V → −∞ as r+ → 0. But in contrast to [15], it follows

from (4.22) that ∆V remains finite as ∆→ 0 (though it is numerically small, see figure

4.8). Typical stress tensor profiles and horizon shifts ∆V are shown in figures 4.7 and

4.8, where we used Mathematica to numerically perform both the integral over U and

the sum over n in (4.26). While the total stress energy is used in the figures, since f

decreases rapidly at large C, for r+ > 1 there is little difference between 〈Tkk+(U)〉 and

the n = 0 term f(C0, U ; ∆) (except for a factor of 2 that arises because C0 = C−1 for

the geon since these cases represent φ− φn′ = ±π). An interesting feature of the results

is that the value ∆max of ∆ that maximizes |∆V | depends strongly on r+ as shown in

figure 4.9.
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Figure 4.9: The ∆ which maximizes |∆V | for a given r+.

4.3.4 Traversability and the KKEOW brane

Although it involves only a single scalar from the 4d perspective (say with 4d mass

m), Kaluza-Klein reduction to d = 3 gives a tower of scalar fields with effective 3d masses

meff` =
√
m2`2 + (`/RS1)2 p2 is the radius of the Kaluza-Klein circle. For each p, the

corresponding effective conformal dimension ∆ is then

∆ (k) = 1±

√
1 +m2`2 +

(
`

RS1

)2

p2. (4.27)

The choice of sign (±) can be made independently for each p so long as one allows bound-

ary conditions that are non-local on the internal S1. But violating the CFT unitarity

bound ∆ > 0 leads to ghosts [108], so the (+) sign is required at large p.

Because each p is associated with a wavefunction eipθ on the internal S1, and since J

maps θ → θ+π, the contribution to (4.5) from each p is (−1)p times the result 〈Tkk(U ; ∆)〉

one would obtain from a single scalar of weight ∆ on BTZ under the (singular) Z2 quotient

by (U, V, φ)→ (V, U, φ). As a result, and using the symmetry under p→ −p we have

〈Tkk+ (U)〉 =
∑
n∈Z

f̂ (Cn, U ; `/RS1), (4.28)
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where

f̂ (Cn, U ; `/RS1) = f (Cn, U ; ∆ (0)) + 2
∞∑
p=1

(−1)pf (Cn, U ; ∆ (p)) (4.29)

with φ− φ′n = 2πn.

As discussed near (4.25), the function f (Cn, U ; ∆) has a non-integrable singularity

at U = 0 for n = 0 at each ∆ but is finite for n 6= 0. Yet since the full 4d spacetime is

smooth, the 4d-stress tensor and the back-reacted metric must be smooth as well. This

occurs because the alternating signs in (4.29) cause the U = 0 singularities to cancel

when summed over p.

For U 6= 0 the sums over n and p converge rapidly. In particular, for each n 6= 0

the sum over p converges exponentially since f(Cn, U ; ∆(p)) evaluates the BTZ two-point

function at some fixed spacelike separation on BTZ set by Cn for 3d fields that have large

mass at large p. Indeed, for fixed U 6= 0 the same is true even when n = 0. And the

sum over n is also exponentially convergent since σ(x̃, Jx̃) grows exponentially with n.

As a result, one approach to computing (4.28) is to numerically perform the sums away

from U = 0 and then to recover the value at U = 0 by taking a limit, though care will

be required as contributions from very large p will be important at small U .

We can improve the numerics at small U somewhat by employing a regularization

procedure at small U . Though we will not rigorously justify this procedure, we will

check numerically that it gives results consistent with the more awkward (but manifestly

correct) procedure described in the previous paragraph. We begin by studying the leading

terms in (4.25) near U = 0. For U > 0, Laurent expansion around U = 0 gives

f (1, U ; ∆) =
1

32πU3
+

3− 8∆ + 4∆2

64πU
+
−2∆ + 3∆2 −∆3

6π
+O (U) . (4.30)

We know that the singular terms should cancel when summed over p ∈ Z with a factor
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of (−1)p. This is especially natural for the first term on the right-hand side of (4.30)

which is independent of p. Choosing to perform this sum using Dirichlet eta function

regularization does indeed give zero as
∞∑
p=1

(−1)p = −η(0) = −1
2
.

Using (4.27), the second term on the right-hand side of (4.30) becomes

3− 8∆ + 4∆2

64πU
=

3 + 4m2`2 + 4
(

`
RS1

)2

p2

64πU
. (4.31)

Thus, it gives a term independent of p and a term proportional to p2. Again applying

Dirichlet eta-function regularization and recalling that
∞∑
p=1

(−1)pp2 = −η(−2) = 0, the

1/U term also cancels completely when summed over p.

Since we did not rigorously justify the use of eta-function regularization, there remains

the possibility that we have missed some important finite piece that could remain after

the above divergences cancel. But we now provide numerical evidence that this does

not occur by computing f̂(1, 0; `/RS1) in two different ways. The first is to use (4.30)

with Dirichlet regularization of the 1/U3 and 1/U terms and using Abel summation (i.e.,

replacing (−1)p by (−1 + ε)p and taking ε → 0) for the finite term. The second is to

compute the result for fixed but small U 6= 0 by numerically summing over p up to

|p| = N for some large N , but taking care to include an even number of terms with

opposite signs; i.e., for |U | > α we take

f̂hybrid (1, U ; `/RS1) = f (1, U ; ∆ (0))+2
N−1∑
p=1

(−1)pf (1, U ; ∆ (p))+(−1)Nf (1, U ; ∆ (N))

(4.32)

for some fixed large N .

Sample results are shown in figure 4.10, where we plot fhybrid defined by introducing

a parameter α > 0, performing the sums numerically for |U | > α, and then taking

fhybrid to be constant for |U | < α with a value given by the above Abel summation. The
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Figure 4.10: An example of f̂hybrid (1, U ; `/RS1) calculated numerically for `/RS1 = 1

and ∆ (p) = 1 +
√

1 + p2, N = 5000, ε = 10−6, and α = 0.01. The numerical
integral gives

∫∞
0 f̂ (1, U ; `/RS1) dU = −9.05×10−4, which is negative. In comparison,

the triangle defined in the rightmost plot by the horizontal line for U < α and the
vertical line representing the discontinuity gives a measure of the numerical error in
our computation of this integral and is of order 10−8.

small discontinuity at U = α in the resulting f̂hybrid supports the validity of the above

regularization. We can then approximate
∫

dUf̂(1, U ; `/RS1) by numerically integrating

f̂hybrid.

It is interesting to compare the f̂ in figure 4.10 with a graph of the first term

f(1, U,∆ = 2) in its definition (4.29) (the orange curve on the right figure of figure

4.5). The first term is manifestly positive, while the intgeral of f̂ is negative. This em-

phasizes the importance of the higher terms in the sum near U = 0. The dependence of

f̂ on ∆(p = 0) and `/RS1 is illustrated in figures 4.11 and 4.12.

In the limit of large r+/`, the contributions from n 6= 0 are suppressed and the 〈Tkk〉

exactly becomes f̂ (1, U ; `/RS1). Moreover, numerical calculation shows that this is a

good approximation even for r+/` ≥ 1; see figure 4.13. Up to the factor of 4πG in (4.10),

∆V becomes just
∫

dUf̂(1, U ; `/RS1). Numerical results for this integral are shown in

figure 4.14 with the signs (±) in (4.27) chosen to be (+) for p 6= 0. The integral is

negative for all such cases we have explored. As one would expect, the magnitude of

the integral becomes large for large `/RS1 . We again find a finite (negative) shift ∆V at
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Figure 4.11: Profiles of f̂ for fixed m = 0 and (`/RS1)2 = 0.5 (red), (`/RS1)2 = 0.75
(orange), (`/RS1)2 = 1 (green), (`/RS1)2 = 1.5 (blue), (`/RS1)2 = 2 (purple). For
this figure, we have chosen all (±) signs in (4.27) to be (+) for all p. Note that the
zero of f̂ shifts to smaller U as `/RS1 increases.
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Figure 4.12: Profiles of f̂ for fixed `/RS1 = 1 and m2`2 = −0.5 (red), m2`2 = 0
(orange), m2`2 = 0.5 (green), m2`2 = 1 (blue), m2`2 = 1.5 (purple). For this figure,
we have chosen all (±) signs in (4.27) to be (+) for all p. As m increases, the zero of
f̂ shifts to smaller U .

r+ = ∞ for ∆(p = 0) = 0, and ∆V vanishes in the limit of large mass m, though the

maximum value of |∆V | depends on `/RS1 .

However, it turns out that for some choices m and `/RS1 , we can choose the (±) signs

in (4.27) to be (−) for |p| = 1 and to be (+) for all other values of p (including p = 0). In

at least some such cases
∫∞

0
f̂ (1, U ; `/RS1) dU is positive and the back-reacted wormhole

remains non-traversable when our scalar satisfies periodic boundary conditions. One

example is shown in figure 4.15.
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Figure 4.13: The n = 1, 2 contributions for the example in figure 4.10, where we
have chosen r+/` = 1. We find

∫∞
0 f̂ (C1, U ; `/RS1) dU = −1.18 × 10−8 (left) and∫∞

0 f̂ (C2, U ; `/RS1) dU = −2.10 × 10−15 (right). Thus, for black holes with size
r+/` ≥ 1, contributions from n 6= 0 terms are negligible.

4.4 Rotating traversable wormholes with Kaluza-Klein

zero-brane orbifolds

We now turn to a slightly more complicated construction that allows rotation and

thus admits a smooth extremal limit. We begin with the rotating BTZ metric

ds2 =
1

(1 + UV )2

{
−4`2dUdV + 4`r− (UdV − V dU) dφ+

[
r2

+ (1− UV )2 + 4UV r2
−
]

dφ2
}
.

(4.33)

Note that the Z2 operations used earlier exchange U ↔ V while preserving the sign of

dφ. As a result, they change the sign of the 4r− (UdV − V dU) dφ term in (4.33) and are

not isometries for r− > 0.

This can be remedied by simultaneously acting with φ→ −φ. To remove the would-

be fixed-points at φ = 0, π for U = V = 0, as for the KKEOW brane, we consider a

Kaluza-Klein setting involving BTZ ×S1 and act on this circle with the antipodal map

θ → θ + π. Our full isometry is thus J : (U, V, φ, θ) → (V, U,−φ, θ + π). This quotient

breaks rotational symmetry by singling out the points φ = 0, π as Klauza-Klein orbifolds

(i.e., as points that become oribifold singularities with deficit angle π after Kaluza-Klein
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Figure 4.14: The quantity
∫∞

0 dUf̂(1, U ; `/RS1) as a function of ∆(p = 0) and `/RS1 .
For all p 6= 0, we have chosen all (±) signs in (4.27) to be (+).

reduction along the internal S1), but allows non-zero rotation and admits a smooth

extremal limit. The computations then proceed much as before, though we review the

main points below.

4.4.1 Geometry and back-reaction

At first order in the metric perturbation hab, the analysis of null geodesics traversing

the wormhole turns out to be identical to that in the non-rotating case; i.e., equations

(4.7) and (4.12) continue to hold without change. However, choosing a conformal frame

in which the boundary metric is ds2
∂BTZ = −dt2 + `2dφ2 now yields

t = ± `2r+

2(r2
+ − r2

−)
ln

(
±V
`

)
, (4.34)

with the signs being both (+) on the right boundary and both (−) on the left.

Nevertheless, the critical change occurs in the linearized Einstein equation that de-
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Figure 4.15: An example of f̂hybrid (1, U ; `/RS1) that is everywhere positive. Here
m2`2 = −0.12, (`/RS1)2 = 0.1, N = 5000, ε = 10−6, and α = 0.01. Moreover, we
have chosen the (±) signs in (4.27) to be (−) for |p| = 1 and to be (+) for both p = 0
and |p| > 1. We find

∫∞
0 f̂ (1, U ; `/RS1) dU = 1.44× 10−3 > 0.

termines hab. We find

8πG〈Tkk〉 =− 1

2`2r2
+

[(
r2
− − r2

+

)
hkk + 2`r−∂φhkk + `2∂2

φhkk

+
(
r2
− − r2

+

)
∂U (Uhkk)− 2`2∂U∂φhkφ + `2∂2

Uhφφ
]
,

(4.35)

where G is the 3 dimensional Newton’s constant. Integrating over U and applying asymp-

totically AdS boundary conditions gives

8πG

∫
〈Tkk〉dU = − 1

2`2r2
+

[(
r2
− − r2

+

)
+ 2`r−∂φ + `2∂2

φ

] ∫
hkkdU. (4.36)

Equation (4.36) is easily solved for
(∫

dUhkk
)

(φ) using a Green’s function H, so that

(∫
dUhkk

)
(φ) = 8πG

∫
dφ′H (φ− φ′)

∫
dU〈Tkk〉 (φ′) , (4.37)
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with

H(φ− φ′) =


e−(r+−r−)(φ′−φ)/`

2r+/` [1− e−2π(r+−r−)/`]
+

e(r−+r+)(φ′−φ)/`

2r+/` [e2π(r−+r+)/` − 1]
φ′ ≥ φ

e(r−+r+)(2π−φ+φ′)/`

2r+/` [e2π(r−+r+)/` − 1]
+

e−(r+−r−)(2π−φ+φ′)/`

2r+/` [1− e−2π(r+−r−)/`]
φ′ ≤ φ.

(4.38)

in position space where we take φ, φ′ ∈ [0, 2π). It is also useful to write H in Fourier

space:

H (φ− φ′) =
∑
q

eiq(φ−φ
′)Hq, Hq =

1

2π

2`2r2
+

r2
+ − r2

− − 2iq`r− + `2q2
. (4.39)

Note in particular that the zero-mode Green’s function Hq=0 =
`2r2+

π(r2+−r2−)
diverges in the

extremal limit r− → r+. This feature was also independently and simultaneously noted

in [85], where the somewhat different form of their expression appears to be due to

differences in the detailed definition of the Kruskal-like coordinates. While we have not

explored the connection in detail, it is natural to expect this feature to be related to

other known instabilities of extreme black holes [111, 112, 113, 114, 115, 116, 117] and in

particular to the Aretakis instability for gravitational perturbations (see e.g. [117] for the

Kerr case), though our present instability seems to occur only for the zero-mode while

at least in Kerr the Aretkis instability is strongest at large angular momentum [118].

In our first-order perturbative analysis, this divergence implies that any non-vanishing

zero-mode component
∫

dUdφ〈Tkk〉 of the averaged null stress tensor in the extremal

limit leads to diverging ∆V . The perturbative analysis can then no longer be trusted

in detail, though for
∫

dUdφ〈Tkk〉 < 0 it certainly suggests that the wormhole remains

traversable until very late times Vf . And so long as Vf > `, the extreme limit of (4.34)

then implies that the wormhole remains traversable at arbitrarily late times t; i.e., it

becomes an eternal static wormhole.

In contrast, the non-zero modes of Hq remain finite at extremality. So even though

115



A Perturbative Perspective on Self-Supporting Wormholes Chapter 4

the source
∫

dU〈Tkk〉 will break rotational symmetry, in the extreme limit the geome-

try approximately retains this invariance and it suffices to study only the zero mode.

Recalling that the BTZ temperature is given by T =
r2+−r2−
2πr+`2

, we may write

Tπ

r+

∫
hkkdUdφ = 8πG

∫
〈Tkk〉dUdφ, (4.40)

so that (4.7) gives

T∆Vaverage =
2Gr+

π`2

∫ ∞
−∞

∫ π/2

−π/2
〈Tkk〉dUdφ. (4.41)

This is a convenient form for displaying results in the extreme limit, which will be

the main focus of our calculations below. And more generally if ∆Vaverage < 0 it follows

that the wormhole must become traversable when entered from at least one direction.

However, it is also interesting to consider the high temperature limit r+ → ∞ (say, for

r− = 0) in which the Green’s function H(φ− φ′) becomes sharply peaked at φ− φ′ = 0

and the
∫

dUhkk at each φ can be thought of as locally determined by
∫

dU〈Tkk〉.

4.4.2 KKZBO results

We again compute the stress tensor using (4.5) and the BTZ Green’s function (4.16),

which remains valid so long as we use the correct expression for proper distance in the

rotating BTZ metric

σ(x, xn
′) =

1

(UV + 1)(U ′V ′ + 1)
2`2 {(UV − 1)(U ′V ′ − 1) cosh [r+(φ− φ′n)]

+ 2 cosh [r−(φ− φ′n)] (UV ′ + V U ′)− 2UV ′ sinh [r−(φ− φ′n)]

+2V U ′ sinh [r−(φ− φ′n)]− UU ′V V ′ − UV − U ′V ′ − 1}

(4.42)
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As before, the basic elements of our computations are the functions

f(C+, C−, S−, U ; ∆) := 〈0HH,AdS3|∂Uφ(x)∂Uφ(x′)|0HH,AdS3〉|V=0 (4.43)

defined by the vacuum on global AdS3 where the dependence on angles appears only

through C± = cosh(r±[φ− φ′]) and S− = sinh(r−[φ− φ′]). We find

f (C−, C+, S−, U ; ∆) =

(√
Y 2 − 1 + Y

)−∆
(S− + C−)

2π(Y 2 − 1)5/2

[ (
1− Y 2

)(
1 +

(
Y 2 − 1

+ Y
√
Y 2 − 1

)
∆

)
+ 2(S− + C−)U2

(
(2−∆)∆

√
Y 2 − 1

+ ∆(∆ + 1)Y 3 −
(
∆2 + ∆− 3

)
Y + ∆(∆ + 1)

√
Y 2 − 1Y 2

)]
,

(4.44)

where Y ≡ 2U2 (C− + S−) + C+. Much as in section 4.3.4 we write

〈Tkk (U)〉 =
∑
n∈Z

f̂ (C+n, C−n, S−n, U ; `/RS1) (4.45)

where

f̂ (C+n, C−n, S−n, U ; `/RS1) =f (C+n, C−n, S−n, U ; ∆ (0))

+ 2
∞∑
p=1

(−1)pf (C+n, C−n, S−n, U ; ∆ (p))
(4.46)

with φ′n = 2πn− φ.

At general values φ 6= 0, π we have C 6= 1 and each term above is separately finite

and smooth. The same is true at φ = 0, π for n 6= 0. But for n = 0 and φ = 0, π, the

contribution for each p diverges at U = 0. In fact, since C± = cosh[r±(φ − φ′)] = 1,

S− = sinh[r−(φ − φ′)] = 0, at n = 0, φ = 0, π we find f̂ (C+n, C−n, S−n, U ; `/RS1) =

f̂ (1, U ; `/RS1) ; i.e., in this case the computations reduce precisely to those for the n = 0
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Figure 4.16: Left: The dependence of
∫
〈Tkk+〉dU on φ and r+ at extremality

(r− = r+, in units of `). Right: Dependence of the zero-mode
∫
〈Tkk+〉dUrdφ on

∆(p = 0) (with all ± signs in (4.27) chosen to be + for p 6= 0) and r− = r+ in units
of `. For both figures, we have chosen `/RS1 = 10 and m = 0.

term studied for the non-rotating KKEOW brane in section 4.3.4.

Numerical results computed using a function f̂hybrid analogous to that in section 4.3.4

are displayed in figures 4.16 and 4.17. As for the EOW brane, the analysis simplifies in

the limit of large r+/` where contributions from n 6= 0 can be ignored. In that limit, the

stress tensor profile becomes sharply peaked near φ = 0, π on a scale set by the Kaluza-

Klein scale and the mass of the scalar field (though in a manner that is not symmetric

under φ→ −φ); see figure 4.16 (left). As shown in figure 4.16 (right), the integral of the

stress tensor becomes large (and negative) at small values of RS1 , corresponding to the

fact that Kaluza-Klein reduction on the S1 gives orbifold singularities at which the stress

tensor would diverge. But the back-reaction (4.41) involves an extra factor of r+ and, as

shown in figure 4.17, our numerics for the quantity ∆V T suggest that this quantity may

become independent of r+ = r− in the extremal limit.

In general, one finds
∫

dU〈Tkk〉 to be negative for all φ. Positivity of the Green’s

function (4.39) then shows that ∆V is negative at each φ and the wormhole is traversable

when entered from any direction. However, much as in section 4.3.4, one can engineer
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Figure 4.17: ∆VaverageT at extremality as a function of r− = r+, with ` = G = 1.
For this figure, we have chosen ∆(p = 0) = 2 and `/RS1 = 10. Though we have not
peformed a thorough analysis of numerical errors, our results appear consistent with
this quantity perhaps being independent of r+ = r−.
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Figure 4.18: A φ profile of
∫

dU〈Tkk〉, which is negative for small |φ| and positive for
larger |φ|. ∆(p = 0) = 1, the (−) sign is chosen for p = 1, and the (+) sign is chosen
for all higher p. m2 = −0.2, `/RS1 = 0.1, r+ = 1 and r− = 0.

exceptions to this general rule by making use of the dependence of the integrals on ∆. In

this way one can find examples where the sign of ∆V does in fact depend on φ and the

wormhole is traversable only when entered from certain directions, see figure 4.18. The

interesting feature of such examples is that they are then traversable with either periodic

or anti-periodic boundary conditions, though the directions from which one must enter

the wormhole to traverse it are complimentary in the two cases.

4.5 Discussion

The above work studied back-reaction from quantum scalar fields in Hartle-Hawking

states on simple explicit examples of Z2 wormholes asymptotic to AdS3 and AdS3 × S1.
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These examples generally become traversable when the scalar satisfies periodic bound-

ary conditions around the Z2 cycle, though as described in section 4.3.4 one may en-

gineer examples where this fails and anti-periodic boundary conditions are required for

traversability. The examples of section 4.4 break rotational symmetry and, while they

generally become traversable everywhere with periodic boundary conditions around the

Z2-cycle, with care they can be similarly engineered to become traversable only for ob-

servers entering the wormhole at certain values of the angular coordinate φ.

The most interesting result came from the rotating examples of section 4.4, where

we found the back-reaction to diverge when the background spacetime became extremal.

Though our analysis is perturbative, even when sourced by only a single scalar quantum

field this suggests that a fully non-perturbative treatment would find a self-supporting

eternal wormhole. Indeed, the growth of our effect at small temperatures T is directly

analogous to the ∆ > 1/2 cases studied in [89] where the perturbation grows in the IR

limit. Though the potential for diverging back-reaction at extremality was also simulta-

neously and independently found in [85], such a divergence did not in fact arise in their

context.

The diverging back-reaction near extremality follows directly from the linearized Ein-

stein equations. In our examples the extremal spacetimes are smooth and contain a

non-contractible Z2 cycle of finite length. As a result, it is natural in our examples (but

in contrast to the setting studied in [85]) that
∫

dU〈Tkk〉 remains non-zero and negative

at extremality. But from (4.36) any finite such perturbation causes a divergence in the

zero-mode of the metric perturbation hkk. Thus the wormhole becomes traversable along

each generator of the background horizon and – at least at first order in perturbation

theory – the wormhole appears to remain open for arbitrarily long times as the extreme

limit (T = 0) is approached. It would be useful to better understand the apparent lack

of dependence on r+ = r− in the resulting first-order T∆V shown in figure 4.17.
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If this conjecture is correct, the breaking of rotational symmetry appears to play a key

role in the construction. In particular, we conjecture the existence of time-independent

such wormholes with arbitrary size for the wormhole throat, and thus presumeably with

arbitrary total mass. Now, the attentive reader will notice that we have worked in what

are effectively co-rotating coordinates. So by ‘time-independent,’ we mean invariant un-

der translations along a co-rotating Killing. And the lack of rotational symmetry means

that our conjectured spacetimes should not be invariant under standard translations

of the boundary time t. This is important for consistency with the conjecture about

arbitrary mass as (in the absence of horizons) Hamilton’s equations imply that the gen-

erator of time-translation symmetry should be constant along any one-parameter family

of time-independent solutions. We thus expect that M varies but M − J is constant

along our family of wormholes, and that (as one would also expect from supersymme-

try considerations) even with quantum corrections the condition for extremality remains

M − J = 0.

While we have not performed a complete analysis of more general cases, and while

the Aretakis instability is strongest for large angular momentum [118] and our instability

appears to occur only for the zero mode while, it is nevertheless natural to expect our

effect to be related to other known instabilities of extreme black holes [111, 112, 113,

114, 115, 116, 117] and thus to be generic in the extremal limit. This may make the

construction of self-supporting wormholes more straightforward than might otherwise be

expected.

Indeed, as described in section 4.2 our basic framework applies much to much more

general cases than those studied explicitly here. Given any globally hyperbolic Z2 quo-

tient of a spacetime with bifurcate Killing horizons and a well-defined Hartle-Hawking

states under an isometry that exchanges the left-moving and right-moving horizons, at

least one choice of boundary conditions (periodic or anti-periodic) for free scalar fields on
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that spacetime must give a (transient) traversable wormhole. As described in appendix

B, there may also be generalizations in which the covering space has no Killing symmetry

and the horizon is merely stationary (i.e., both divergence-free and shear-free).

We have studied only scalar fields in detail, but the general arguments of section 6.4

apply equally well to higher spin fields. It would be especially interesting to study back-

reaction from linearized gravitons, which are always present for spacetime dimension

d ≥ 4. Indeed, they are in principle relevant even to our AdS3 constructions that involve

Kaluza-Klein directions (so that the full spacetime has d ≥ 4). Indeed, since in those

examples the amount of negative energy is governed by the Kaluza-Klein scale, one

expects contributions from gravitons to be similar to those of scalars despite the absence

of 3-dimensional gravitons. And since changing the sign of the metric perturbation is not

a symmetry of the full Einstein-Hilbert theory, only periodic boundary conditions will be

physically relevant. One would generally expect gravitons to contribute with the same

sign as other bosons, and in particular with the scalars studied above. We therefore

expect inclusion of gravitons to make our wormholes even more traversable. Should

this expectation turn out to be false, one could nevertheless ensure that the wormhole

becomes traversable by adding an order one number of additional scalar fields.

While it is natural to think of the above quotients as geon-like (i.e., as generalizations

of the RP3 geon described in [91, 83]), they can also describe more familiar wormholes of

the form shown in figure 5.1 with wormhole homotopy group Z. To see this, recall that

static axisymmetric vacuum solutions to d = 4 Einstein-Hilbert gravity take a simple

form [119] found by Weyl in 1917, and that particular examples [120] found by Bach

and Weyl in 1922 can be understood [121] as describing a pair of Schwarzschild black

holes separated along the z-axis. The black holes are prevented from coalescing by a

strut (i.e., by a negative tension cosmic string) along the axis between them and/or by

positive-tension cosmic strings stretching from each black hole to infinity along the z-axis
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Figure 4.19: A moment of time in a spacetimes containing two black holes (black disks)
held apart by a negative-tension strut (left) or by cosmic strings stretching to infinity
(center and right) along the z-axis. The right-most figure shows both asymptotic
regions and the wormholes that connect them. The Z2 quotient described in the text
acts as a π rotation about the non-physical point indicated by the dot at the center
of the right figure.

as shown in figure 5.3. Furthermore, as described in [121], a natural analytic extension of

this solution beyond the horizons gives a geometry with two asymptotically flat regions

and a bifurcate Killing horizon. The spacetime is thus similar to the standard Kruskal

extension of the Schwarzschild black hole, except that this connection involves a pair of

wormholes (threaded by cosmic strings); see figure 5.3 (right). This defines the Z2 cover

M̃ of the desired spacetime M .

To construct M itself, we simply note that M̃ has a Z2 symmetry J that acts by

simultaneously reflecting across the bifurcation surface and the surface z = 0; i.e., it

simultaneously exchanges the two sheets shown in figure 5.3 (right) and also exchanges

the two wormholes; i.e., it acts as a π rotation about the non-physical point marked at

the center of figure 5.3 (right). This J has no fixed points, so M̃ = M/J is smooth up

to cosmic strings and takes the familiar form described by figure 5.1.

In fact, at least in the positive-tension case, much as in section 4.4 it is straightfor-

ward to go one step farther and describe M̃ as the Kaluza-Klein reduction of a completely

smooth spacetime. Here one simply chooses parameters so that the cosmic strings are

associated with deficit angles 2π(1− 1/n). We then consider a 5-dimensional spacetime

M̃KK that is just M̃ × S1 away from the strings. At the location of the 4-dimensional

cosmic strings, we instead take MKK to be locally what one might call the Kaluza-Klein
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cosmic string defined by M3,1 × S1/Zn with the Zn isometry acting by simultaneous

rotations by 2π/n along the S1 and about the z-axis11. This MKK is then a smooth

Z2 quotient of a 5d spacetime M̃KK with bifurcate Killing horizon. Since the spacetime

is static and smooth, it also supports a Hartle-Hawking state defined by the Euclidean

path integral. Thus the analysis of section 4.2 applies and – barring a miraculous gen-

eral cancellation – at least for generic values of parameters the wormhole must become

traversable under first-order back-reaction from either periodic or anti-periodic scalar

fields12.

Although the form of the metric becomes more complicated, one may also add electric

charge to the above solution as described in [124]. This would then provide an exam-

ple of the standard wormhole form shown in figure 5.1 with a smooth extremal limit

satisfying all requirements from section 4.2 and in particular admitting a well-defined

Hartle-Hawking state. In contrast, even at extremality, the rotating version will spin

down due to spontaneous emission of angular momentum via the super-radiant modes

[125], though this effect will in practice be slow for large black hole.

It would be interesting to analyze such examples in more detail, especially in the

extreme limit. Here the non-contractible cycles become long in the extreme limit, so

that
∫

dU〈Tkk〉 may become vanishingly small. But the instability of extreme black holes

raises the hope that even a vanishingly small perturbation could render the wormhole

self-supporting and eternal at zero temperature. Indeed, a naive analysis ignoring the

redshift and issues associated with normalizing the affine parameter along the horizon

11This 5-dimensional spacetime is usually Kaluza-Klein reduced along a different Killing field and then
interpreted as a 4-dimensional spacetime sourced by a magnetic field [122, 123]. Since the energy of the
solution is fixed by Noether’s theorem independent of the reduction, the results of [122, 123] show that
the reduction used here gives a 4d solution with positive tension (rescaled from [122, 123] by the relative
length of their Kaluza-Klein circle relative to ours) but which in our case is 4d vacuum except at the
string singularity on the z-axis.

12Indeed, since this example breaks rotational symmetry it may be that both cases become traversable,
with traversability being achieved along different generators for each of the two boundary conditions.
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would note that the length of a Reissner-Nordström throat grows like T−1/2 so that an

integrated Casmir-like energy would decay as T 1/2. An instability that grows like T−1

as in (4.36) would then suggest an eternal self-supporting wormhole. We will perform

a more complete analysis using an effective 2-dimensional description for a model with

conformal invariance in the near future. If a large back-reaction does result, it would

provide a simple perspective explaining the existence of the self-supporting wormhole

recently constructed in [88] – here with the wormhole mouths kept from coalescing by

cosmic strings instead of the orbital angular momentum used in [88].
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Chapter 5

Traversable, Asymptotically Flat

Wormholes with Short Transit

Times

5.1 Introduction

The study of wormholes in general relativity dates back many years (see e.g. [80,

81, 82]), with varying discussions of whether an observer might be able to pass through

and perhaps find a shortcut to a distant region. In particular, it is now well understood

that the existence of traversable wormholes is limited in two important ways. First,

topological censorship theorems [83, 84] forbid wormholes from being traversable in glob-

ally hyperbolic solutions to Einstein-Hilbert gravity coupled to matter satisfying the null

energy condition (NEC)1, Tabk
akb ≥ 0. Second, even when the NEC is violated by quan-

tum effects, general arguments expected to hold in quantum gravity forbid wormholes in

1Though traversable wormholes can be constructed if one drops the requirement of global hyperbol-
icty, e.g. by introducing NUT charge [126, 127].
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globally hyperbolic spacetimes from providing the fastest causal curves between distant

points [128, 15]. This condition also prohibits the further possible pathologies discussed

in [82, 129, 130]. Recently, several examples of traversable wormholes supported by well-

controlled quantum effects and respecting the above restrictions have been constructed

[15, 131, 89, 88, 132, 85]. Instantons producing such wormholes by quantum tunneling

were also discussed in [133]. While the second limitation significantly restricts the utility

of any shortcut they might provide, such solutions remain of theoretical interest.

These various traversable wormholes solutions naturally fall into two classes. Worm-

holes in the first class (see e.g. [15, 131, 89, 85]) connect two separate asymptotic anti-de

Sitter (AdS) regions and are supported by negative energy in the bulk that is generated

by explicit couplings between the two dual boundary CFTs. While such couplings are

non-local and acausal from the perspective of the bulk, they may be thought of as sim-

ple models for couplings that would be induced between wormhole mouths lying in the

same asymptotic region and interacting causally through ambient space. Wormholes in

this second, more natural class were constructed in [88, 132]. In particular, Maldacena,

Milekhin, and Popov (MPP) [88] used a nearly-AdS2 approximation to construct a static

wormhole in asymptotically flat spacetime. This approach allowed [88] to address many

non-perturbative issues.

In contrast, [132] used a perturbative framework to give a general method of con-

structing traversable wormholes with both mouths in the same asymptotic region, and

in particular argued that a broad class of (almost traversable) classical wormhole back-

grounds would become traversable after incorporating the back-reaction from standard

local quantum fields in Hartle-Hawking states. By an almost traversable background, we

mean one in which there is a null geodesic γ traversing the wormhole that lies in both the

boundary of the past of future null infinity and the boundary of the future of past null

infinity. As in e.g. [15], under these circumstances a negative value for the integrated null
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stress tensor along γ will often lead back-reaction moving γ into both the past of future

null infinity and the future of past null infinity; i.e., the wormhole becomes traversable.

Note, however, that in contrast to the wormholes of [88], this perturbative approach

generally yields wormholes with strong time-dependence, so that the back-reaction slows

but does not stop the collapse of the wormhole interior. The result is that the wormhole

is traversable only at sufficiently early times. This is the price to be paid for studying a

more general class of constructions. Consistent with the results of [88], and as discussed

in [132] and also reviewed below, perturbative calculations indicate that the wormholes

described here and in [132] can in fact become time-independent in the limit where the

background almost-traversable wormhole becomes extremal.

Here, we return to the perturbative framework of [132] in order to explore the above

back-reaction in more detail for a simple class of classical wormholes (suggested in [132]

and closely related to the setting of [88]) which have both mouths in the same asymp-

totically flat region of spacetime. Our classical backgrounds contain a pair of charged,

Reissner-Nordström-like black holes held apart by the tension of a cosmic string that

threads the wormhole and stretches to infinity. We also include a second cosmic string

that wraps the non-contractable cycle through the wormhole; see figure 5.1. The clas-

sical wormholes are not traversable, but are almost so. Quantum fluctuations from this

compact cosmic string generate the negative Casimir energy whose back-reaction renders

the wormhole traversable. As in [132], the back-reacted wormhole will generally exhibit

strong time-dependence and can be traversed by causal curves from past null infinity

only if such curves depart at sufficiently early times.

Below, we review the general framework of [132] and apply it to the asymptotically

flat wormholes of interest here. As in [132], we define traversable wormholes to be the

set of curves that can witness non-trivial topology while escaping out to infinity – e.g.

causal curves that cannot be deformed, while remaining causal, to lie in the boundary of
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Figure 5.1: A moment of time in a spacetime with a wormhole (shaded region) formed
by adding a handle to a space with a single asymptotic region. The wormhole is
threaded by two cosmic strings, one stretching to infinity (black line) and the other
compact (blue line). The string that stretches to infinity provides a tension that
counteracts the gravitational (and, in our case, also electric) attraction of the two
mouths, as well as the tension of the compact string, and thus prevents the black
holes from coalescing. Quantum fluctuations from the compact cosmic string will
render the wormhole traversable.

the spacetime. To construct our relevant classical geometry, we start with a spacetime M̃

with a bifurcate Killing horizon and one asymptotic region on each side of the horizon; M̃

can be thought of as an almost traversable wormhole with two asymptotic regions. If this

spacetime admits a freely-acting Z2 isometry J exchanging the right and left asymptotic

regions and preserving the time orientation, then the quotient M = M̃/J describes

an almost traversable wormhole with a single asymptotic region. While in principle,

a small perturbation of either geometry could render the wormholes traversable, for

M̃ the horizon generating Killing field forces the null stress-energy of any perturbation

respecting this symmetry to be zero. In M , however, this Killing symmetry is broken by

the quotient by J , which necessarily maps the horizon-generating Killing field ξ to −ξ,

since it identifies the right and left regions while preserving the time-orientation of the

spacetime. This allows small perturbations to render the wormhole in the quotient space

traversable.

The simplest examples of such quotient wormholes are like the RP3 geon [92, 91, 83]

shown in figure 5.2. Though the quotient M then contains only a single wormhole mouth,

it nevertheless admits causal curves γ that are not deformable to the spacetime boundary.

Similar spacetimes with asymptotically AdS3 (or AdS3 × X) boundary conditions and
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Figure 5.2: (Left) The RP3 geon is a Z2 quotient of the maximally-extended
Schwarzschild black hole. The quotient acts on the above conformal diagram by
reflection across the dashed line, and simultaneously acts as the antipodal map on the
suppressed S1. This action maps the Killing field ξa to −ξa, and so the geon quotient
lacks a globally defined time translation Killing field. In particular, the dashed line
is orthogonal to preferred spacelike surfaces of vanishing extrinsic curvature that one
may call t = 0. (Right) A small perturbation of maximally-extended Schwarzschild
renders the Z2 quotient wormhole traversable. This results in a causal curve running
between past and future null infinity that is not deformable to the boundary.

their back-reaction from quantum scalar fields were explored in detail in [132], and similar

back-reaction from bulk fermions will be explored in [134]. Here, we will instead study

the more sophisticated case where the covering space M̃ contains a pair of maximally-

extended black holes, as in figure 5.3, so that the quotient M takes the form depicted

in figure 5.1. Since the particular solution M studied below involves two cosmic strings,

one stretching to infinity and the other compact, we require three cosmic strings in the

covering space M̃ . The compact cosmic string in M lifts to a single longer compact cosmic

string in M̃ , while the string stretching to infinity in M lifts to a pair of disconnected

strings in M̃ .

Once we have formed our classical backgrounds, it remains to understand the back-

reaction from quantum fields sitting on the spacetime. As explained in [132], if quantum

fields on M̃ have a well-defined Hartle-Hawking state, there will be a corresponding

Hartle-Hawking-like state on M . This state is defined by the path integral over the

appropriate quotient of the Euclidean geometry of M̃ . For linear fields this state can
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Figure 5.3: A moment of time symmetry in our covering space M̃ . Each of the two
asymptotic regions contains a pair of black holes held apart by cosmic strings that
stretch to infinity. A pair of strings thread the two wormhole throats and return to in-
finity in the second asymptotic region. The Z2 isometry used to construct M = M̃/Z2

acts as a π rotation about the non-physical point indicated by the dot at the center
of the right figure. As a result, a moment of time-symmetry for M takes the form
shown in figure 5.1 and contains two wormhole mouths in a single asymptotic region.

also be constructed by applying the method of images to the Hartle-Hawking state on

M̃ . In particular, we can use the method of images to calculate expectation values of the

stress tensor of quantum fields in their Hartle-Hawking state 〈Tkk〉M = 〈Tabkakb〉M along

affinely parameterized generators ka of the background spacetime’s horizon. Because

the stress tensor is a quadratic composite operator, the method of images implies that

〈Tkk〉M in our Z2 quotient space can be written as 4 terms in our covering space. Two

of these are just 〈Tkk〉M̃ in the Hartle-Hawking state on M̃ which are forced to vanish

by the Killing symmetry. The remaining terms involve two-point functions evaluated at

some point x on one horizon in the covering space M̃ and the image point Jx under

the isometry J , located on the other horizon. Since J acts freely and the quotient M̃/J

contains no closed causal curves, the points x and Jx are spacelike separated and this

two-point function is finite. The spacelike separation of x and Jx also guarantees that

the two cross-terms coincide.

As mentioned above, though the Killing symmetry of the covering space forces 〈Tkk〉M̃ =

0, breaking this symmetry by quotienting now allows non-zero 〈Tkk〉M . More powerfully,
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the actual expression for 〈Tkk〉M depends on whether the quantum field is periodic or

anti-periodic around the non-contractible cycle created by the quotient, and the two

choices differ only by an overall sign. Because the effect of back-reaction on traversabil-

ity is governed by the integral
∫
〈Tkk〉Mdλ (with respect to an affine parameter λ over the

generators of the horizon), barring surprising cancellations the above choice of sign allows

us to tune the boundary conditions of our fields to render the wormhole traversable. For

bosons, this sign tends to correspond to periodic boundary conditions in accord with the

famous negative Casimir energy of periodic bosons on S1 × Rd−1.

Returning to the asymptotically flat wormholes of interest here, we consider the stress-

energy provided by the cosmic strings. Since the relevant null vectors k are tangent to the

cosmic string worldsheets and the classical cosmic string stress tensor is proportional to

the induced metric, classically the cosmic strings do not contribute to 〈Tkk〉M . Quantum

fluctuations in the location of the string will contribute, however. We will model such

fluctuations as 1+1 dimensional massless free scalar fields. Since correlators of 1+1

quantum fields diverge only logarithmically at short distance, it is easy to find a regime

where these fluctuations remain small when compared with any classical scale (at least

when the fluctuations are averaged over any classical time or distance scale), and our

free field approximation is valid in such regimes. For the string stretching to infinity in

M , the points x, Jx in the covering space M̃ will lie on two distinct non-compact strings.

Since fluctuations on two different strings are uncorrelated, the cross-terms in
∫
〈Tkk〉Mdλ

will vanish. The contributions from quantum fluctuations of the compact string are non-

zero, however, and studied below using a conformal transformation associated with the

method-of-images construction described above.

At finite temperatures, we find that our wormholes become traversable for test signals

and that, when the mouths are separated by a large distance d, well-timed signals require

only the relatively short time tmin transit = d + logs (in units with the speed of light c
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set to 1) to traverse the wormhole, where logs denote terms logarithmic in d and in

the black hole parameters. In particular, the transit time is shorter than for MPP

wormholes by more than a factor of 2 and, as discussed in section 6.4, for d → ∞ the

higher-dimensional analogue of this result would approach the minimum transit time

consistent with the above-mentioned prohibition against wormholes providing the fastest

causal curves between distant points [128, 15]. However, in such cases traversability is

exponentially fragile, and can be destroyed by exponentially small perturbations.

One should note that our background spacetime is unstable, as small perturbations

will cause the black holes to either fall towards each other or fly apart. However, the time

scale for the black holes to merge is ∼ d3/2, so the solutions are long lived compared to

the transit time. Furthermore, one could engineer more complicated stable configurations

using additional cosmic strings and anchoring to some stable structure at a finite distance

(e.g., a large stable spherical shell surrounding both wormhole mouths) instead of running

the strings off to infinity. It will be clear below that the results for such more complicated

models will be essentially the same.

Additionally, as in [89, 88, 132], we take particular interest in studying the extremal

limit of our classical backgrounds. In [85, 132] it was shown that this limit gives large

back-reaction for rotating BTZ, and we see here that this limit also gives large back-

reaction for d = 4 Reissner-Nordström black holes. On general grounds2 this feature is

related to the fact that far in the throat of a nearly extremal spherically-symmetric black

hole, the size of the spheres is approximately constant, and thus one can approximately

Kaluza-Klein reduce the dynamics to two-dimensional gravity. However, the Einstein-

Hilbert action
∫ √

gR becomes a topological invariant in two dimensions, and does not

contribute to the equations of motion, modeling the higher-dimensional case in the infinite

coupling limit GN → ∞. Thus, in the extremal limit, the effective coupling diverges.

2We thank Zhenbin Yang for explaining this point.
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Though our perturbation theory breaks down when the back reaction becomes large, we

take the divergence as an indication that a full, non-perturbative calculation would reveal

traversable wormholes that remain open for all time.

In Section 5.2, we compute
∫
〈Tkk〉Mdλ from the Hartle-Hawking state quantum fluc-

tuations of the cosmic strings. We then compute the back-reaction on our geometry

and the resulting degree of traversability in section 6.3, and conclude with some brief

remarks in section 6.4. As a contrasting side-note and because it provides an exactly

solvable model for scalar fields of arbitrary mass, we also compute effects for what one

may call a cosmological wormhole dSd/Z2 in appendix C where the back-reaction has the

opposite sign so that negative energy from quantum fields in fact makes the wormhole

harder to traverse.

5.2 Stress-energy on the horizon

The introduction outlined a simple background spacetime M with a wormhole whose

mouths are held apart by cosmic strings. This wormhole is not traversable, but is almost

so and will be rendered traversable by the back-reaction of quantum fields. As noted in

[132], the 2-fold covering space M̃ of this background is a charged version of the analytic

extension behind the horizon [121] of solutions found by Bach and Weyl in 1922 [120].

For our case where the black holes have identical mass and opposite charge, an explicit

form for this solution was found in [135] based on the implicit solutions in [136]; see

also [137, 138, 139, 140] for the simpler extreme case. Additionally, we wrap a compact

cosmic string through both wormholes mouths, and our goal here is to understand any

additional contributions to 〈Tkk〉M associated with its fluctuations. As discussed above,

the contributions from any strings stretching to infinity will all vanish and we ignore

contributions from bulk fields. We will not need the full details of the covering space
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(which can be found in the above references), as we will instead focus on ranges of

parameters where the analysis simplifies.

We will take the tension µ of the strings to be large compared with the length scale

r0 set by the black holes, µr2
0 � 1, but we take Newton’s constant GN even smaller

(GNµ� 1) so that the conical deficit associated with the strings can be neglected. The

first condition allows us to linearize the fluctuations, while the second means that we

can ignore local effects of the strings on the geometry3. Note that the tension of strings

stretching to infinity must be at least somewhat larger than that of the compact string in

order to keep the black holes from coalescing. To suppress quantum fluctuations in Tkk,

and also to justify neglecting the effects of bulk Maxwell fields and linearized gravitons,

we can replace each string in figure 5.1 with N strings so long as µr2
0 � 1 for each string

and NGNµ� 1. As in [88], this will be necessary to render our semi-classical treatment

in terms of expectation values valid.

To complete our specification of parameters, we further fix any measure of the distance

d between the mouths of our wormhole and take the limit where d is much larger than the

the radius r+ =
√
A/4π of the black hole horizon. In this limit, the covering spacetime M̃

can be divided into three overlapping regions: the region near the first black hole where

the influence of the second can be treated as a small perturbation, the corresponding

region for the second black hole, and the region in between where both black holes cause

only small perturbations from flat space. In each region, it is possible to systematically

improve the approximation order by order in perturbation theory, but we work in the

leading approximation below.

As noted in the introduction, it is possible to compute 〈Tkk〉M using the method of

images starting in the covering space. However, since we are modeling fluctuations of

3Due to the logarithmic divergences of 1+1 field theories noted above, the first condition should really
be µr20 � lnn where n is a parameter set both by the background spacetime and the manner in which
fluctuations are averaged as described in detail below.
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the cosmic string as massless 1+1 free fields, they define a 1+1 dimensional conformal

field theory. It is thus natural to instead compute 〈Tkk〉M by finding a conformal map

from the 1+1 spacetime Mcs induced on the worldsheet of the compact cosmic string to

a piece of the cylinder of circumference 2π, and which simultaneously maps the cosmic

string Hartle-Hawking state to the cylinder vacuum. Inverting the transformation will

then determine our 〈Tkk〉M in terms of the known 〈Tab〉 on the cylinder and the stress

tensor Weyl anomaly associated with this conformal map. Such a map must exist since

both the cosmic string Hartle-Hawking state and the cylinder vacuum can be constructed

as path integrals over the respective spacetimes. Though we do not explicitly use the

method of images to calculate 〈Tkk〉M , we will still find the quotient construction to be

of great use in finding this conformal map. Below, we use Mcs(M̃cs) to denote the 1+1

spacetimes induced on the compact cosmic string by M(M̃), with Mcs = M̃cs/Z2.

We first construct a conformal transformation relating M̃cs to a piece of a cylin-

der, and which maps the Hartle-Hawking state on M̃cs to the cylinder vacuum. The

Killing symmetry of M̃cs means that its Hartle-Hawking state may be characterized as

the unique Hadamard state invariant under the symmetry. As a result, the pull-back of

the cylinder vacuum under our conformal map will be the Hartle-Hawking state so long

as the Killing symmetry of M̃cs maps to a symmetry of the cylinder vacuum. Choos-

ing locally-Minkowski coordinates φ, τ on the cylinder (or equivalently null coordinates

uc = τ−φ, and vc = τ+φ), we take this symmetry to be the 1-parameter subgroup of the

vacuum-preserving SO(2,1) symmetry that acts like a boost near the origin φ = τ = 0 (or

uc = vc = 0) and at appropriate other points that form a periodic array on the cylinder.

For convenience after we take the Z2 quotient, we choose the unusual convention that

here φ be periodic with period 4π on the cylinder conformal to M̃ .
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In a static patch of M̃cs (see figure 5.4) the metric can be written in the form

ds2
static = −fdt2 + f−1dx2, (5.1)

with f = f(x) and where x ranges over [0, 2x0]. For later use, we also note that in the

limit where the separation d between the black holes satisfies d � r+, there is a sphere

of approximate symmetry passing through x0 around either black hole, with radius

r(x0) = x0 +O(r+) = d/2 +O(r+), (5.2)

where since the symmetry is only approximate the O(r+) terms depend on precisely how

this sphere is defined4.

To map to the cylinder, we want t, φ such that

ds2
static = Ω2(−dτ 2 + dφ2) = −Ω2ducdvc (5.3)

for an appropriate conformal factor Ω. Two such patches will be required to wrap around

a piece of a cylinder conformal to M̃cs (see figure 5.4). Therefore, in our static patch, φ

ranges over [0, 2π]. This patch is thus precisely the part of the cylinder with uc ∈ [−2π, 0],

vc ∈ [0, 2π].

Before constructing the conformal map, we introduce Kruskal coordinates U, V on

M̃cs. We build these in the usual way by first introducing the tortoise coordinate

x∗ = x∗0 +

∫ x

x0

1

f
dx, (5.4)

where we will fix the arbitrary parameter x∗0 below. We then define u = t−x∗, v = t+x∗,

4The second O(r+) term similarly depends on the precise definition of the separation d.
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and finally

U = −κ−1
+ e−κ+u, V = κ−1

+ eκ+v, (5.5)

where κ+ is the surface gravity of the black hole’s outer horizon. In these coordinates,

metric becomes

ds2
static = f

(
−dt2 + dx2

∗
)

=
f

κ2
+UV

dUdV. (5.6)

Here the region 0 < x < 2x0 is mapped to −∞ < x∗ < +∞ and thus to U ∈ (−∞, 0),

V ∈ (0,∞). However, the form on the right-hand-side can be analytically continued to

all points where both U and V are defined. Comparing (5.3) with (5.6) yields

Ω2 = − f

κ2
+UV

dU

duc

dV

dvc
. (5.7)

Up to an arbitrary scale L, the symmetries determine the map to the cylinder to be

U = L tan(uc/4), V = L tan(vc/4). (5.8)

In particular, a map of this form also gives the standard conformal transformation relating

the cylinder to 1+1 Minkowski space. Here, we can fix L by using the fact that we want

the Z2 symmetry exchanging the black holes (and corresponding to a π rotation about the

non-physical point marked in figure 5.3) to correspond to half a rotation of the cylinder,

which here is φ→ φ+2π; see again figure 5.4. Note that if the Z2 symmetry on M̃cs maps

the null ray U1 to the null ray U2, the Killing symmetry requires that the Z2 symmetry

map λU1 to U2/λ. Using (5.8) in addition, we see that the action of this Z2 is

U → −L2/U, V → −L2/V. (5.9)

We can fix L by using time-reversal symmetry to note that the null lines through the point
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p (with coordinates t = 0, x = x0) and its image p′ under this Z2 have U = ±κ−1
+ eκ+x∗0

and have uc = −π, π, so that L = κ−1
+ eκ+x∗0 .

Having constructed the conformal map from M̃cs to the cylinder with period 4π, it is

now straightforward to take the Z2 quotient and use this same conformal map to relate

Mcs = M̃cs to the cylinder with period 2π. Here it is of course critical that we ensured

the original conformal map took the Z2 action on M̃cs to the action φ → φ + 2π on

the cylinder. Since the original map related the Hartle-Hawking state on M̃cs to the 4π

cylinder vacuum, the method of images guarantees that it also relates the Hartle-Hawking

state on Mcs = M̃cs to the vacuum on the standard cylinder of period 2π as desired.

This map can now be used to compute the integrated null stress tensor
∫
Tkkdλ in the

Hartle-Hawking state of Mcs. To simplify this, we introduce rescaled Kruskal coordinates

Ū =
U

Lκ+

= e−κ+x∗0U, V̄ =
V

Lκ+

= e−κ+x∗0V. (5.10)

Since any Kruskal coordinate is an affine parameter on the horizon, we compute

∫
TŪŪdŪ =

∫
duc
dŪ

Tucucduc, (5.11)

where the integral is performed over the horizon V = V̄ = 0. Due to the Weyl anomaly

(see e.g. [142] as translated to standard Lorentz signature conventions by [143]), for any

null vector k̂ the component Tk̂k̂ is related to the associated components of the cylinder

vacuum stress tensor T cyl

k̂k̂
= k̂ak̂bT cyl

ab by

Tk̂k̂ = T cyl

k̂k̂
+

c

12π

{
∇k̂∇k̂ (ln Ω)− [∇k̂ (ln Ω)]2

}
, (5.12)

where ∇k̂ = k̂a∇a, the covariant derivative is defined by the metric ds2
cyl = −ducdvc on

the standard cylinder, and we have used the fact that k̂a is null.
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Tucuc is then found by setting k̂a∂a = ∂uc in (5.12). In particular, in the standard

cylinder vacuum we have

T cyl
ab = ρ(dtcyl)a(dtcyl)b + ρ(dφcyl)a(dφcyl)b, (5.13)

where ρ = − c
24π

and c is the CFT central charge. Thus

T cyl
ucuc = − c

48π
. (5.14)

Since our bulk spacetime has 3 + 1 dimensions, there are two transverse polarizations for

oscillations of the string. For our N compact cosmic strings, this yields c = 2N .

To compute the remaining terms in (5.12) it is useful to observe that ∇uc = ∂uc since

uc and vc are affine on the cylinder, and that

∂2
uc (ln Ω)− [∂uc (ln Ω)]2 = −Ω∂2

uc

(
Ω−1

)
. (5.15)

Since we only need to compute 〈Tkk〉M on the horizon V = V̄ = 0, it is useful to recall

that f
UV

= 2gUV is constant over the horizon as required to make U affine there. The

factor dV
dvc

is also constant on lines of constant V . The only uc-dependent factor in (5.7)

is thus

dU

duc
=

L

4 cos2(uc/4)
, (5.16)

so Ω−1 ∝ cos2(uc/4) and

−Ω∂2
uc

(
Ω−1

)
=

1

16
. (5.17)

Combining (5.12), (5.14), (5.15), (5.7), and (5.17) yields

Tucuc = − c

64π
, (5.18)
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so that (5.11) yields

∫
TŪŪdŪ =

∫ 2π

0

4κ+ cos2(uc/4)
(
− c

64π

)
duc = −cκ+

16
, (5.19)

and thus

∫
TUUdU =

∫
dŪ

dU
TŪŪdŪ = e−κ+x∗0

∫
TŪŪdŪ = −e−κ+x∗0 cκ+

16
. (5.20)

Finally, it remains to choose the constant x∗0. Since this was an arbitrary constant

that entered only through the definition of a coordinate, physical results like the back-

reaction of quantum fields on the geometry cannot depend on its value. But the value

of
∫
TUUdU does depend on the normalization of U , and it useful to make a choice that

illustrates the relevant physics already at this stage. Recall that the null ray through the

point x0 has U = −κ−1
+ eκ+x∗0 at t = 0, and this ray passes through an approximate sphere

around either black hole of radius r(x0) = d/2 +O(r+); see (5.2). Standard dimensionful

Reissner-Nordström Kruskal coordinates U = −κ−1
+ eκ+(r∗−t) are defined using a tortoise

coordinate with r∗ = r +O(ln r
r+

), and so we choose

x∗0 = d/2 +O(ln
d

r+

), (5.21)

which yields U(t = 0, x∗ = x∗0) = −κ−1
+ e

κ+
(
d/2+O(ln d

r+
)
)
.

At finite κ+ > 0, the stress-energy is thus exponentially small in the black hole

separation d. So while the negative sign in (5.20) should make the wormhole at least

formally traversable, this result will be exponentially sensitive to further perturbations –

including that from any signal sent through the wormhole. We will return to such issues

in section 6.4 after carefully computing the back-reaction from (5.20) in section 6.3. For
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now, we simply note that this contrasts sharply with the expectation of a Casimir energy

of order 1/d for large d at fixed κ+. The difference is due in part to the fact that the

integrated null energy (5.20) differs from the conserved total energy of the quantum field

by a factor of ξU , the null component of the Killing field which would appear in the latter

but does not enter (5.20). As a result, energy that falls across the horizon at late times

is exponentially suppressed in (5.20) relative to the conserved total energy.

Before proceeding, we pause to note that the result (5.18) could in fact have been

predicted without calculation by combining the following observations. First, the fact

that U is affine along the horizon means that we could conformally map our physical

spacetime to flat 1+1 Minkowski space using a conformal factor Ω̃ that is constant on

the horizon and which thus has no anomalous contribution to the associated null-null

stress-energy. Second, the standard conformal map from 1+1 Minkowski to the cylinder

maps the Minkowski vacuum to the cylinder vacuum and thus has an anomaly that

precisely cancels the cylinder stress tensor (5.14). However, thirdly, our Z2 quotient

introduces factors of 2 that scale the anomalous contribution by 1/4, so that it will only

partially cancel the cylinder stress-energy. Thus (5.18) is precisely 3/4 of (5.14). The

rest of the computations simply apply this rescaled version of the standard conformal

map from the plane to the cylinder. As a result, the final expression (5.20) must in fact

be the identical for any other 1+1 background with the same causal structure up to the

choice of x∗0 that determines the overall scale of the effect.

5.3 Back-reaction and Stability

We are now ready to study first-order back-reaction from the quantum stress-energy

(5.20), and in turn, study the traversiblity of our wormhole. We first orient ourselves

to the appropriate geometry in section 5.3.1 before investigating the linearized Einstein

142



Traversable, Asymptotically Flat Wormholes with Short Transit Times Chapter 5

equations in section 5.3.2.

5.3.1 Geometry and Geodesics

We are primarily interested in following a null geodesic through the throat of our

wormhole. As described above, when the wormhole mouths are far apart, the spacetime

in the throat is approximately spherically symmetric and thus Reissner-Nordström up

to small corrections. At leading order in large d, it thus suffices to study perturbations

to Reissner-Nordström sourced by the stress-energy (5.20), and in particular on our null

geodesic.

We start with the Reissner-Nordström metric in its static form

ds2 = −fdt2 + f−1dr2 + r2dΩ2, (5.22)

where dΩ2 is the metric on the unit two-sphere. As above, we introduce Kruskal coordi-

nates: the standard tortoise coordinate is

r∗ =

∫
1

f
dr = r +

1

2κ+

ln
|r − r+|
r+

− 1

2κ−
ln
|r − r−|
r−

(5.23)

where we have chosen the constant of integration such that r∗ = 0 at r = 0. We then

introduce u = t− r∗, v = t+ r∗ and thus the dimensionful Kruskal coordinates

U = ∓κ−1
+ e∓κ+u, V = ±κ−1

+ e±κ+v, (5.24)

where the (U, V ) signs are (−,+) before the geodesic enters the throat and are (+,−)

after it leaves. The metric in these coordinates becomes

ds2 = 2gUV dUdV + r2
(
dθ2 + sin2θdφ2

)
, (5.25)
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where r = r(UV ) is implicitly defined by equations (5.23) and (5.24). As usual, we have

gUV = gUV (UV ) =
f

2κ2
+UV

= −1

2

r+r−
r2

(
r − r−
r−

)1+(r−/r+)2

e−2κ+r. (5.26)

The null curve V = 0 at constant angles on the S2 is a geodesic in this background.

Following the standard treatment, we wish to understand how this geodesic is displaced

under a general metric perturbation hab. Integrating the geodesic equation gives

V (U) = −(2gUV (V = 0))−1

∫ U

−∞
dUhkk, (5.27)

where hkk = habk
akb and where we have used the fact that gUV is constant along the

unperturbed horizon at V = 0. At U = +∞ one thus finds

∆V =
r+

r−

(
r+ − r−
r−

)−1−(r−/r+)2

e2κ+r+

∫ +∞

−∞
dUhkk. (5.28)

So long as this quantity is negative, the geodesic will emerge from the black hole and

reach null infinity. As in [144, 132], we will see in section 5.3.2 below that negative hkk

follows from the negative 〈Tkk〉 found above in (5.20).

In addition to the binary question of traversability, we can also study the time-

delay of this wormhole-traversing null geodesic relative to some standard. For reference

purposes, let us consider a non-physical (particularly violating the generalized second law)

ultrastatic (gtt = −1) spacetime consisting at each time of two copies of Euclidean space,

each with a ball of radius r+ removed around the origin and with the two spheres glued

together. A null ray hitting one of these spheres in the first space then instantly teleported

to an associated point in the other. Note that Eddington-Finklelstein coordinates on

such a space with the above conventions would have v = constant for a radial null ray

traveling from one asymptotic region to the other. As a result, if a null geodesic through
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our wormhole has vout = vin, it is as if the wormhole brought it instantaneously from

one mouth to the other. Conversely, with these conventions a null geodesic in Minkowski

space that takes a time d to travel the distance d separating the mouths has vout−vin = d.

As a result, the time delay relative to geodesics that propagate across the same separation

in Minkowski space is5 tdelay = vout − vin − d, so that it is natural to refer to vout − vin as

the transit time ttransit required for the signal to traverse the wormhole.

We should thus compute

ttransit = vout − vin = v(V (U = +∞))− v(V (U = −∞)) (5.29)

from (5.28). Due to the exponential relationship between v and V , (5.29) is minimized

for a geodesic starting at V = −∆V/2 and ending at V = +∆V/2 so that

tmin transit = vout

(
−∆V

2

)
− vin

(
−∆V

2

)
= − 2

κ+

ln

(
−κ+

∆V

2

)
. (5.30)

From (5.20) – and the fact that we work in linear perturbation theory – we thus expect

to find tmin transit = 2x∗0 + logs = d + logs so that the ratio tmin transit

d
to the transit time

for a geodesic that does not pass through the wormhole becomes 1 in the limit of large

d. This expectation will be confirmed below.

5.3.2 Back-reaction

We now study the metric perturbation hab associated with the quantum stress-energy

(5.20). As noted above, at leading order in d it suffices to perturb around the exact

Reissner-Nordström metric (5.22), and we consider a general perturbation. We will also

5As always for d = 4, in our actual background with black holes, propagation through the 1/r
potential gives an additional logarithmic delay. However, it is still conventional to discuss time delay
relative to comparable travel through Minkowski space.
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need the Reissner-Nordström electromagnetic field, which in Kruskal coordinates takes

the form

Fab = − Q

2κ+

[
1

V
∂U

(
1

r

)
+

1

U
∂V

(
1

r

)]
(dU)a ∧ (dV )b. (5.31)

One might expect that we also need to consider the spherically perturbed electromagnetic

field Fab + δFab. However, because the electromagnetic stress tensor is quadratic in Fab,

and since the component T
(EM)
UU vanishes by symmetry in the unperturbed background,

it turns out that to first order one finds simply

δT
(EM)
UU = − Q2

8πr4
hUU = −r+r−

8πr4
hUU (5.32)

which is independent of δFab. Therefore, on the horizon V = 0, the UU component of

the linearized Einstein equations becomes

8πGT
(scalar)
UU =

κ+

r+

(2hUU + U∂UhUU)− 1

2r2
+

∂2
U

(
hθθ +

1

sin2 θ
hφφ

)
+

1

2r2
+

[
−∂2

θhUU

− 1

sin2 θ
∂2
φhUU − cot θ∂θhUU + 2 cot θ∂UhUθ +

2

sin2 θ
∂U∂φhUφ + 2∂U∂θhUθ

]
.

(5.33)

We may then follow [132] in integrating (5.33) over U at each point on the S2 and

applying asymptotically flat boundary conditions to find

8πG

∫
〈Tkk〉dU =

(
κ+

r+

+
1

2r2
+

(−∂2
θ −

1

sin2 θ
∂2
φ − cot θ∂θ)

)∫
hUUdU. (5.34)

Because we are interested in solving for the perturbation to the metric in terms of the

stress tensor, we can invert this by finding an appropriate Green’s function, H(Ω,Ω′) on

S2: (∫
dUhkk

)
(Ω) = 8πG

∫
dΩ′H(Ω,Ω′)

∫
dU〈Tkk〉(Ω′). (5.35)
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As usual, the general, explicit expression for H(Ω,Ω′) is rather cumbersome, but here

it suffices to consider the response our compact cosmic string, which gives 〈Tkk〉(Ω′)

proportional to a delta-function at a single point on the S2, which we take to be the

north pole θ′ = 0. The remaining rotational symmetry then makes H a function only

of the polar angle θ, reducing to the known Green’s function for the Helmholtz equation

[145]:

H(θ) = −
r2

+

2 sin(πλ)
Pλ(− cos θ) (5.36)

for λ = −1
2

(1 +
√

1− 8κ+r+), and Pl(x) the Legendre polynomial, or equivalently,

H =
∑
j

Ym=0,j(Ω)Hmj, Hmj =

√
2j + 1

4π

2r2
+

2κ+r+ + j(j + 1)
(5.37)

where Ym=0,j(Ω) =
√

2j+1
4π

Pj(cos θ) are standard scalar spherical harmonics on S2 with

vanishing azimuthal quantum number. As in [132], we find that the response Hmj is

largest at small j, and that this effect becomes very strong at small κ+ in which case

Hj=0 becomes very large.

Note that (5.36) is everywhere positive, and that it is largest at the north pole (where

our compact cosmic string resides). The minimal transit time is thus experienced by the

geodesic at θ = 0. But for general θ (5.20), (5.30), (5.35), and (5.36) yield

tmin transit(θ) = 2x∗0 − 4r+ −
2

κ+

ln

(
πGc

16

r−
r3

+

(
r+ − r−
r−

)1−(r−/r+)2

H(θ)

)
. (5.38)

While H(θ) diverges for small theta, the divergence is only logartithmic. Since it also

appears inside another log in (5.38), the effect of this divergence is thus rather small and

is also independent of d. Using (5.21) thus gives tmin transit(θ) ≈ d up to terms that grow
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no faster than logarithmically at large d.

5.4 Discussion

In the above work we studied the back-reaction from quantum fields in their Hartle-

Hawking state on a simple classical wormhole solution of general relativity of the form

shown in figure 5.1. In the unperturbed solution, both of the wormhole mouths are

black holes, and the wormhole interior collapses to a singularity. In particular, since the

background respects the NEC, the background wormhole is non-traversable as predicted

by topological censorship [83, 84]. The solution of interest is a charged version of that

first constructed by Bach and Weyl in 1922 [120], and contains cosmic strings which

hold the two mouths of the wormhole apart at some separation d and prevent them from

coalescing. Adding charge to the Bach-Weyl solution allows one to adjust the surface

gravity κ+ of the black holes. The solution is asymptotically flat apart from the fact that

some of these cosmic strings stretch to infinity. An explicit form for such solutions can

be found in [135] based on the implicit solutions in [136]; see also [137, 138, 139, 140] for

the simpler extreme limit.

While the wormhole is not traversable, it is infinitesimally close to being so in the

sense that one can find two null rays separated by an arbitrarily small amount at t = 0

such that one ray begins at past null infinity and enters one mouth of the wormhole

while the other exits the other mouth and reaches future null infinity. As a result,

an arbitrarily small change in the metric generated by perturbative back-reaction from

the stress-energy of quantum fields can render the wormhole traversable, at least for

some period of time. In this work we computed the expected stress-energy associated

with fluctuations in the locations of the of cosmic strings in their Hartle-Hawking state,

as well as the first-order back-reaction of this stress-energy on the metric. When the
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number N of such strings is sufficiently large, this expectation value should dominate

over any fluctuations in this quantity, and also over contributions from bulk fields (e.g.,

from linearized gravitons) neglected in this work. However, aside from greybody factors

associated with the propagation of such fields into the wormhole throat, it is natural to

expect contributions from bulk fields to be qualitatively similar to those found here for

cosmic string fluctuations.

As expected on general grounds, here periodic boundary conditions give negative

integrated null energy on the horizon. This defocuses null geodesics and slows the collapse

of the wormhole, allowing properly chosen causal curves to traverse the wormhole and

avoid the singularities. In particular, these curves must begin their traversal of the

wormholes at sufficiently early times. Note that we have not computed the full back-

reacted metric sourced by our quantum fields, but (following [15]) we have focused on

showing that a particular class of causal curves can traverse the perturbed wormhole and

on computing the time-advance that defines the associated transit times. For contrast,

appendix C describes a ‘cosmological wormhole’ in which the back-reaction of negative

quantum stress-energy causes a time-delay instead of the above time-advance. As in

[89, 88, 85, 132], the time advance in our asymptotically-flat case becomes large in the

limit κ+d → 0 where the background black holes become extremal. Our perturbative

description then breaks down but, at least at large N , it is natural to expect non-

perturbative corrections to render the wormhole traversable for all time as in [88].

However, we can more concretely discuss the non-extremal case where perturbation

theory is valid. Although the integrated null energy on the horizon remains negative and

proportional to N , it also becomes exponentially small in κ+d (of order e−κ+d/2). The

resulting traversability is thus extremely fragile, as an exponentially small positive-energy

perturbation will negate this effect and prevent traversability6.

6 This includes possible perturbations associated with any signal one might attempt to send through
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The exponentially small integrated null energy is due in part to the fact that we inte-

grate affine stress-energy components TUU which are exponentially redshifted for energy

that falls into the black hole at late times; i.e., because the Casimir-like energy located

at r ∼ d/2 at t = 0 takes a time of order d to fall into the black hole. The effect of

positive-energy perturbations is similarly suppressed at late times, so it is only necessary

to be exponentially careful with our solution for a time of order d after t = 0. At later

times a more modest (though still significant) degree of care suffices to allow a signal to

pass through, at least modulo the comments of footnote 6.

This exponentially small expected stress-energy may also make one ask again about

quantum fluctuations. But as described in [15], the fluctuations of integrated null stress-

energy are exactly zero in the Hartle-Hawking state of our double-cover spacetime M̃ .

While fluctuations on the quotient M will be non-zero due to image terms much like

those that give non-vanishing TUU , they will again be exponentially suppressed7. So

the standard
√
N suppression of fluctuations relative to the mean will suffice to protect

traversability at only moderately large N .

Despite the small integrated stress-energy, the actual transit time through the worm-

the wormhole. Now, a right-moving signal is sensitive to the back-reaction of left-moving stress-energy,
and in a pure 1+1 massless theory, a right-moving signal will generate only right-moving stress-energy
and so will not interfere with its own attempt to traverse a wormhole. But more generally, right-moving
signals will generate some amount of left-moving stress-energy as well. For example, in our model
left- and right-moving oscillations of the cosmic strings are coupled via their interactions with the 4-
dimensional bulk gravity. However, in the covering space M̃ it is clear that any associated self-delay
effect is independent of when the signal is sent into the black hole. As a result, the integrated null
stress-energy defined by any fixed affine parameter along the horizon must be exponentially small when
a signal enters at early times. As a result, to protect a weak signal entering the left mouth of the
wormhole on M from a strongly-blueshifted version of its own back-reaction it suffices to prevent the
signal from sending perturbations into the other (right) mouth at early times. Nevertheless, it would be
interesting to study this back-reaction in detail as was done for GJW wormholes in [131, 85, 146, 147],
as this will place fundamental limits on the amount of information that can be transmitted. We thank
Eduardo Testé Lino for discussions on this point.

7This assumes that we leave the system isolated for a time of order d, and in particular that we do
not attempt to detect the signal before this time. The response to sampling the system earlier would
involve an integral of TUU supported on only part of the real line, in which case its fluctuations will not
vanish even on the covering space M̃ . So such sampling could easily provide the exponentially small
positive perturbation required to prevent traversability.
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hole is rather short. In particular, for a wormhole with mouths separated by a distance

d, we find tmin transit

d
→ 1 as d → ∞; see (5.38). As mentioned in the introduction, gen-

eral arguments (and in particular the generalized second law) prohibit wormholes from

providing the fastest causal curves between distant points [128, 15]. Naively, one might

expect this to require tmin transit ≥ d for large d. This is the case in D ≥ 5 spacetime

dimensions. There one again has x∗0 ≈ d/2, so it is clear that the higher dimensional ana-

logue of our calculation will again give tmin transit

d
→ 1. So in this sense, at least for D ≥ 5,

perturbative back-reaction on black hole spacetimes far from extremality comes close to

saturating the theoretical bound on the shortest possible transit times for traversable

wormholes8.

In contrast, the eternally-traversable MMP wormholes [88] (related to our extremal

limits) have ttransit
d

> 2. Thus, while our non-extremal wormholes are more fragile and

while they are traversable only for a limited period of time, for properly-timed signals

they can be traversed significantly more quickly than corresponding MMP wormholes.

This raises the interesting question of whether excited states of MMP wormholes might

also have comparably shortened transit times for properly timed signals. We leave such

issues for future investigation.

8In a fixed four-dimensional asymptotically flat spacetime (not necessarily satisfying any positive
energy condition) of total mass M > 0, there is an infrared logarithmic divergence in the Shapiro
time-delay for signals sent between distant points. As a result, the fastest causal curve between such
points always lies far from the center of mass, no matter what shortcuts might be available closer to
this center. This means that, even at large separation d, it is difficult to use arguments about causal
curves connecting distant points to rigorously bound wormhole transit times. It would be interesting to
understand what bounds might be derived directly from the quantum focusing conjecture [148].
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Figure 5.4: A conformal diagram of the two-fold cover M̃cs of the background space-
time Mcs induced on our compact cosmic strings shown in the cylinder conformal
frame. Wormholes in this spacetime are not traversable, but are almost so and will be
rendered traversable by the back-reaction of quantum fields. The left and right edges
of the diagram are to be identified because of the periodicity of φ. Here we have trun-
cated the spacetime at the black hole inner horizons (shown as dotted yellow lines) due
to the expected instability of such horizons [141]. Blue dots mark the outer horizons,
and the shaded regions are the static patches. The diagram is adapted to the cylinder
coordinates φ, τ as indicated by the horizontal dashed lines showing τ = −2π, 0, π
and the vertical dashed lines showing φ = 0, π, 2π, 3π. (recall that φ has period 4π
on M̃cs). The spacetimes has two bifurcation surfaces (points) b, b′ at (φ, τ) = (0, 0)
and (φ, τ) = (2π, 0). The points p, p′ at (φ, τ) = (π, 0) and (φ, τ) = (3π, 0) are also
marked, as are the right-moving null lines U = −∞, 0,+∞ and the left-moving null
lines V = −∞, 0,+∞.
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Chapter 6

Multi-mouth Wormholes

6.1 Introduction

With natural assumptions, topological censorship theorems forbid traversable worm-

holes in classical general relativity [83, 84]. In particular, in globally hyperbolic space-

times obeying the null curvature condition, such theorems require causal curves to be

deformable to curves that lie entirely in the boundary of the spacetime, and also that

one may choose the deformation so that the relevant curve remains causal throughout

the process. Recently, however, it was shown how well-controlled quantum effects can

be used to violate the null energy condition in a manner allowing the construction of

traversable wormholes [15, 89, 88, 132, 85, 134, 149] that circumvent these theorems; see

also [133, 150] for studies of the dynamical production of such traversable wormholes.

Quantum effects in gravity are typically difficult to control unless they are in some

sense small. For this reason, one may think of the above constructions of traversable

wormholes as starting with background spacetimes that contain an almost traversable

wormhole that can be rendered traversable with small corrections. In classical solutions

satisfying the null energy condition, this generally requires the background to contain a
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bifurcate horizon having no causal shadow1; see figure 6.1. Naively then, it might seem

as if traversable wormholes are constrained to connect only two regions of spacetime

having a single opening, or mouth, in each region. Backgrounds with more interesting

connectivity require some sort of finite causal shadow, necessitating a larger amount of

negative energy to make the wormhole traversable.

Figure 6.1: Left: A bifurcate horizon in a 2-sided asymptotically flat spacetime.
Right: A spacetime with a causal shadow (shaded in purple).

Nevertheless, we show below that constructions with higher connectivity can still be

controlled. Our analysis begins with the more familiar two-mouth asymptotically flat

wormholes of [88] or of [149] with the former enhanced by including a large number Nf of

4d massless fermions. This solution is then perturbed by adding a small black hole to our

solution deep inside the wormhole throat. Due to the wormhole’s inherent fragility and

the fact that semiclassical black holes have large masses in Planck units, actively passing

this small black hole through a wormhole mouth would destroy traversability. But the

extreme redshift deep in the wormhole throat allows semiclassical black holes that leave

traversability intact. We take this small black hole to contain an additional wormhole

that connects to another distant region of spacetime, and the new wormhole can then

be made traversable with further quantum effects in the usual way. The spacetime has

fundamental group F2, the free group on two generators, which differs from the funda-

mental group F3 that would be obtained by adding three separate two-mouth wormholes

1A causal shadow is defined as a bulk region which is causally disconnected from the boundary, see
[151] for more details.
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connecting 3 distant regions of spacetime A,B,C in pairs AB, BC, and AC; see figure

6.2.

Figure 6.2: Left: A 2 dimensional analogue of our spatial topology has two handles.
The actual 3 dimensional space has fundamental group F2, the free group on two
generators. Right: A space with 3 wormholes connecting regions A,B,C in pairs
AB, BC, AC has 3 handles. In 3 dimensions the fundamental group would be F3.

The above construction also has interesting implications for quantum states of worm-

holes. First, the ability to add a small black hole to a two-mouth traversable wormhole

indicates additional traversable excited states beyond those anticipated in the analyses

of [89, 88]. Second, at least when embedded in AdS/CFT, our three-mouth traversable

wormhole appears to involve a new entanglement structure different from the TFD-like

entanglement associated with two-mouth wormholes.

The paper is organized as follows. Section 6.2 reviews previous constructions of

traversable wormholes. Section 6.3 then describes the gravitational construction of our

multiboundary traversable wormholes with certain explicit calculations relegated to ap-

pendix D. We conclude with a brief discussion in Sec. 6.4, focusing on quantum states

and entanglement.
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6.2 Review of two-mouth traversable wormhole mod-

els

This section reviews two different constructions of two-mouth traversable wormholes

in asymptotically flat space. The first [88] uses a magnetic field to localize massless

fermions whose Casimir energy then makes the wormhole traversable. The second [134]

uses cosmic strings that thread through the wormhole throat and render it traversable.

Both models, however, give rise only to metastable wormholes, with [88] having a slightly

more stable setup. Nevertheless, the wormholes are long-lived enough to traverse.

Notably, it is expected that the wormhole throat must be longer than the distance

between the wormhole mouths, though the wormholes of [149] approximately saturate

this bound in certain limits. In d > 4, this is a sharp bound that follows from, for

example, the Generalized Second Law [152], or in AdS/CFT, from boundary causality

[144]. These statements prohibit wormholes from being the fastest causal curves between

distant points.2

To build a traversable wormhole, we need some source of negative energy since we

need null rays to initially converge as they go inside the wormhole throat, but then

to diverge as they head out the other mouth. Using Raychaudhuri’s equation, we see

that positive energy focuses null rays, while negative energy expands them. This is the

reason why wormholes were deemed impossible with classical matter, since all of it obeys

the null energy condition. The Casimir effect arises when we employ nontrivial boundary

conditions for the quantum fields we are studying. Sometimes, these boundary conditions

2However, in d = 4 asymptotically flat spacetimes, the Shapiro time-delay associated with the worm-
hole mouths means that the fastest causal curve between two distant points always lies far from the
center of mass. Thus, the sharp bounds mentioned above are always trivially satisfied, and a sharp,
local bound is lacking for wormhole transit times. Of course, it may be possible to derive sharper local
bounds by considering either the quantum focusing conjecture [148], or by considering short wormhole’s
tendency to form time machines [129].
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are such so as to cause depletion of modes in the vacuum, giving us negative energy in

return.

6.2.1 Eternal wormholes with magnetic fields

We will first describe the setup proposed in [88]. Let us start with a near-extremal

magnetically-charged Reissner-Nordström (RN) black hole and take the near-horizon

limit to write the metric

ds2 = r2
e

(
− (ρ2

r − 1)dτ 2
r +

dρ2
r

ρ2
r − 1

+ dΩ2
)
. (6.1)

Here re is the extremal horizon radius, and ρr and τr are readily obtained from the usual

r and t coordinates as in [88]. This near-horizon metric is global AdS2 × S2, with the

AdS2 factor presented in standard Rindler coordinates. We can of course rewrite the

AdS2 factor in global coordinates, making it appear easy to send causal signals from one

side to the other.

Note, however, the S2 factor has constant size in (6.1). This indicates that the

asymptotic regions have been completely detached. To make a traversable wormhole, we

must restore these connections by allowing the size of the S2 to vary slowly. Doing so

gives a metric of the form

ds2 = r2
e

(
− (1 + ρ2 + γ)dt2 + (1 + ρ2 + γ)−1dρ2 + (1 + φ)(dθ2 + sin2 θdφ2)

)
, (6.2)

where φ encodes the changing size of the sphere and γ describes the associated backre-

action on the AdS2 factor.

From the Raychaudhuri equation, one finds that φ(ρ) must be monotonic in space-

times of the form (6.2) satisfying the null curvature condition. But making a wormhole
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that connects to asymptotic regions at both ends requires φ to grow in both directions

at large |ρ|. Completing the construction in a solution of Einstein-Hilbert gravity thus

requires the introduction of negative energy.

One way to obtain negative energy is to exploit the Casimir effect. The construction

of [88] does so by using the magnetic field of the black hole and a 3+1 massless charged

fermion field. The magnetic field creates localized Landau levels near each field line,

which gives a large number q of effective 1+1 massless fermions. As shown in figure 6.3,

field lines that loop through the wormhole yield 1+1 theories on S1 × R whose Casmir

stress-energy is readily computed. Since constant φ yields the exact solution (6.1) with

vanishing stress-energy, a small negative stress-energy suffices to allow growth of φ at

large positive and negative ρ so long as the negative stress-energy threads the entire

wormhole and this growth is correspondingly slow.

Figure 6.3: The traversable wormhole of [88]. Magnetic field lines thread the worm-
hole. Fermions localize into their lowest Landau level near each field line. For field
lines that form closed loops, this creates effective 1+1 dimensional massless theories
on S1 × R whose Casimir energy makes the wormhole traversable.

We emphasize that the loops must close in order to generate the Casimir energy.

This requires that both wormhole mouths be placed in the same asympotic region of

spacetime. As a result, the mouths attract each other gravitationally, and some feature

must be added to keep them from coalescing into a single black hole. For example, one
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can add angular momentum to slow this coalescence and make the wormhole long-lived

as in [88].

6.2.2 Perturbative wormholes with cosmic strings

In contrast to the wormholes described above, [132, 149, 134] used a perturbative

framework to give a general method of constructing traversable wormholes with both

mouths in the same asymptotic region. As above, in this construction we start with

a classical background containing a pair of charged, RN-like black holes. These black

holes are held apart by the tension of a cosmic string that threads the wormhole and

stretches to infinity. A second cosmic string wraps the non-contractible compact cy-

cle through the wormhole. The quantum fluctuations of this compact string generate

the negative Casimir energy needed for traversability. This wormhole will generally be

strongly time-dependent, and can be traversed by curves only if they leave past null

infinity at sufficiently early times.

We can think of these wormholes as coming from a quotienting process, starting with a

classical geometry M̃ with a bifurcate Killing horizon and one asymptotic region on each

side of the horizon. We can then think of M̃ as an almost traversable wormhole with two

asymptotic regions. However, the horizon generating Killing field forces the null stress-

energy of any perturbation respecting this symmetry to be zero. Suppose this spacetime

admits a Z2 isometry J exchanging the right and left asymptotic regions and preserving

the time orientation. Then quotienting by this isometry M = M̃/J gives an almost

traversable wormhole with a single asymptotic region. In M , the horizon generating

Killing symmetry is broken by the quotient by J : it maps the horizon-generating Killing

field ξ to −ξ, by identifying the right and left regions and preserving the time-orientation

of the spacetime. Thus, on the quotient spacetime, small perturbations can render the
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quotient wormhole traversable.

Figure 6.4: Left: The background spacetime and quotient necessary to make an RP3

geon. The horizon generating killing field is shown in light blue, and the quotient
identifies a point in right asymptotic region with a point at the same time and radius on
the left, with an additional antipodal shift on the internal sphere. Right: The quotient
that creates a wormhole similar to Fig. 6.3 starts with two maximally extended black
holes, held apart by cosmic strings that run off to infinity (black). A point is identified
with the point given by swapping the black hole mouths and the asymptotic regions,
e.g. it can be thought of as identifying a point with its π rotation about the black
dot in the figure. Quantum fluctuations of the light blue compact string will generate
negative energy.

The simplest example of such quotient wormholes is the RP3 geon [92, 91, 83] shown

in Fig. 6.4. The traversability of simple examples AdS geons were explored in [132, 134].

Examples that took the more familiar form shown in Fig. 6.3 were studied in [149].

There, the covering space M̃ contains a pair of maximally-extended black holes, as in

Fig. 6.4. The quotient M is obtained by identifying a point with the point obtained

by swapping the black hole mouths and the asymptotic regions. In the covering space

M̃ , there are three cosmic strings. Under quotienting, the compact cosmic string in M̃

becomes a shorter compact cosmic string in M , while the strings stretching to infinity

in M̃ becomes a single string that goes through the wormhole mouth and stretches to

infinity on either side.

Once we have formed our classical backgrounds, we can understand the back-reaction

from quantum fields sitting on the spacetime. As explained in [132], if quantum fields

on M̃ have a well-defined Hartle-Hawking state, there will be a corresponding Hartle-

Hawking-like state on M , defined by the path integral over the appropriate quotient
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of the Euclidean geometry of M̃ . For linear fields, this state can also be constructed

by applying the method of images to the Hartle-Hawking state on M̃ . The expression

for 〈Tkk〉M (where k present the null vectors along the horizon) depends on whether

the quantum field is periodic or anti-periodic around the non-contractible cycle created

by the quotient, and the two choices differ only by an overall sign. Barring surprising

cancellations, then, we can tune the boundary conditions of our fields to render the

wormhole traversable.

Here the quantum fluctuations will be given by the cosmic strings. Since the cosmic

strings lie along the horizon, they will be tangent to k. Thus, the classical cosmic string

stress tensor, which is proportional to the induced metric, will not contribute to 〈Tkk〉M .

Quantum fluctuations of the string will contribute, however. In [149], these fluctuations

were modelled as 1+1 dimensional massless free scalar fields.

For the string stretching to infinity in M , the points (x, Jx) in the covering space M̃

will lie on two distinct non-compact strings. The fluctuations on two different strings

will be uncorrelated, and so the quantum fluctuations of the non-compact string will not

contribute to
∫
〈Tkk〉Mdλ. However, the contributions from quantum fluctuations of the

compact string are non-zero.

In the extremal limit of RN black holes of the classical backgrounds, the back-reaction

becomes large. Thus, our ability to treat the back-reaction perturbatively will break

down. However, we take the divergence as an indication that a non-perturbative calcu-

lation would give an long lived traversable wormhole like those of [88].

6.3 Gravitational Construction

Our idea for constructing multiboundary traversable wormholes is simple: start with

a two-mouth wormhole, place a small, near-extremal black hole in the throat, and extend
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it into a wormhole with another small mouth in the same asymptotic region as the larger

mouths. Technically, the insertion of the two small mouths in the initial large wormhole

solution is a straightforward (if possibly tedious) problem of matched asymptotic expan-

sions: the small mouths can be treated as perturbations of, respectively, the throat and

the asymptotic region, while the effects of the latter on the mouths are incorporated as

tidal perturbations of the near-extremal Reissner-Nordström black hole. Here we will be

content with working at the lowest order in the matched asymptotic expansion, in which

the backreaction of the mouths is neglected.

While the insertion of the small mouths is a generic and unproblematic part of the

construction, there are other aspects that must be dealt with more carefully. One of them,

still fairly simple, is the question of mechanical equilibrium (and possibly stability) of the

new configuration, which actually arises at the first orders in the matched asymptotic

expansion. A more involved problem is how to achieve the negative energies that make

the throats traversable. The answers to these questions vary depending on the details

of the model we choose—in other words, on the tools that we avail ourselves of for the

construction. We may restrict ourselves to working within the same theory as [88], with

only fields and matter available in the Standard Model (specifically, a Maxwell field and

light fermions electrically coupled to it, in addition to gravity), to prove that the latter

allows for multiboundary traversable wormholes. Or, instead, we may resort to a larger

set of tools, as [149] did (with cosmic strings as appear in, say, grand unified theories), and

aim at a ‘proof of principle’ that such wormholes are possible with reasonable matter and

field content, e.g., satisfying basic energy conditions, and possibly within the landscape

of string theory. Allowing only SM tools of course makes the task more difficult.
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6.3.1 Multiwormhole construction guide

Let us then begin by discussing mechanical equilibrium. For a two-mouth wormhole

this can be achieved by introducing an external magnetic field (in GR, this would be a

Melvin flux tube [153]) tuned to keep the mouths apart, or by attaching cosmic strings

that pull them, as explained above (exact solutions exist for both mechanisms [140, 135]).

Alternatively, instead of balancing them into exact equilibrium, one can set the mouths

into a long-lived Keplerian orbit around each other, or even, simply let them fall towards

one another: the time to the merger from an initial separation dout between the two

mouths is ∼ d
3/2
out . If the transit time along the throat is parametrically O(dout) (it

cannot be shorter) then the wormhole will remain open for long enough to cross it before

collapsing.

When introducing a third mouth in the model of [88], where all black holes are

near-extremal magnetic RN solutions, the option of equilibrium with a magnetic field

background should not be hard to achieve: just like a uniform magnetic field can be

approximated by the field in between two large, static magnetic sources (even nonlin-

early in GR [154]), by adding a third source we can expect to achieve a magnetic field

background where the three wormhole mouths are in (unstable) equilibrium. The other

possibilities—cosmic strings, three-body orbits, or free-fall collapse—are equally work-

able. Another interesting, mechanically simpler possibility is to let the small black hole

be charged under a different U(1) gauge field than the bigger mouths, and then placing it

at midpoint between the latter. Even if these configurations are unstable, the argument

above guarantees that they can be long-enough lived to traverse the throats.

Now we move on to the problem of achieving the negative Casimir energies that

thread the wormhole, beginning within the strict set up of the magnetic line model of

[88]. The effective two-dimensional massless fermions will still travel along magnetic
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field lines, which form loops along the non-contractible cycles of the wormhole and thus

provide negative Casimir energies. There might be complications if the wavefunctions of

the fermions along neighboring flux lines of different loops overlap. However, this overlap

can be made parametrically small. The fermion modes bound to a given flux line can

be arranged in a basis of Landau levels, which damp exponentially away from the flux

line on which they are centered. The damping lengths in the two orthogonal directions

multiply to give an area equal to a flux quantum. There are q flux quanta spread over

the sphere, whose area is proportional to some rw. So the linear extent of any Landau

level is of order q−1/2rw. Since the structure of the flux lines varies on a scale set by rw,

for q � 1 this structure varies adiabatically as one moves from one flux line to another.

The analysis can be made much simpler by enlarging our toolbox beyond the Standard

Model. One possibility, still using the magnetic line mechanism of [88], is to allow for

three U(1) gauge fields, and three flavors of fermions electrically coupled to each of the

gauge fields. Then, with each pair of the mouths having opposite magnetic charges under

one of the U(1)’s,3 the fermions travel along field lines in an independent manner.4

The cosmic string model, where zero modes traveling along loops of string provide

the requisite Casimir energy, is more versatile. We may use it in a hybrid fashion, by

adding the third mouth to the magnetic-line model of [88] and thread it with two cosmic

strings, each separately linked to the two big mouths; or else, if that hybrid is deemed

too ugly to regard, directly work with the cosmic string wormhole model of [149] and

add two new cosmic strings, one along each new cycle.

3I.e., the two big mouths have charges (Q1, Q2, 0), (−Q1, 0, Q3) and the small one (0,−Q2,−Q3),
with |Q1| � |Q2|, |Q3|. This also allows easily for symmetric equilibrium positions for the small mouth.

4This is not entirely without issues. First, now the magnetic charge of a mouth, which controls the
effective number of two-dimensional fermions, is not the same as the radius of the S2 of the mouth.
Second, we do not know of any explicit solutions (analytic or numerical) for black holes with charges
under two (out of three) gauge fields and no other fields. Known solutions also involve dilatonic scalars
and have singular extremal limits. Nevertheless, it seems plausible that, in a theory with several gauge
fields and no dilatons one can take a RN solution with one type of charge, and perturbatively add a small
charge under another gauge field keeping horizon regularity for a time long enough for our purposes.
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We conclude that the cosmic string method of [149], possibly augmented with addi-

tional gauge fields, serves to prove that it is possible to construct multiboundary worm-

holes sufficiently long-lived to be traversable. Their existence within the Standard Model,

following the methods of [88], also seems likely, but its detailed investigation is more com-

plicated.

6.3.2 Signaling across mouths

Suppose A and B are using the wormhole with two big mouths to exchange messages.

What are the consequences of inserting a third, small mouth operated by c? From the

gravitational perspective, there are two different kinds of effects. First, the message

sent by A (a particle or a wave) may be partly absorbed by the small mouth and thus

be received by c and not B. The wormhole has then become a leaky pipeline. The

absorption probability is proportional to the area of the small mouth, and can also have

a dependence on the small mouth’s angular position in the S2 of the large throat. In a

qubit (or qudit) model of quantum teleportation, the leakiness of the line can presumably

be easily reproduced. The absorption probability, proportional to the number of degrees

of freedom that c holds, may also be plausible, while the effect of the angular dependence

seems to require a more detailed understanding of the localization of the qubits of c

in the teleportation channel. On the other hand, having information about this angular

position is essential for A and B if they intend to communicate efficiently with c. It means

that they must have a detailed enough understanding of the entanglement structure of

their many qubit system such that they can operate on the sectors of it that hold the

entanglement with c in order to teleport a message to it.

A second effect is due to the Shapiro time delay that the signal will experience as it

travels in the vicinity of the small mouth within the throat. That is, if the small mouth
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is placed at a distance ρs in the throat geometry (6.2), then the signal that A sends to

be B will take an additional time

δt ≈ 2m log(
4l2

b2
) (6.3)

to arrive. Here b is the distance of closest approach of the null geodesic (for the signal) to

the small mouth, which translates into an angular difference between the positions in S2

of the mouth and the initial signal. Although, again, this angular information may not

be easily reproduced in a toy quantum-mechanical model, the existence of a signaling

delay may admit a simpler interpretation. Loosely, the increased travel-time may be

correlated with an increased complexity in decoding the teleported message. This time

delay must be corrected in the case of the AdS2 throat (the magnetic model) to account

for the redshift between the two large mouths and the position of the small mouth in the

throat.

Now, instead, say that A and c want to communicate among themselves and not with

B. What are the effects of having a good portion of the channel constituted by a big

throat?

6.3.3 Size limits on the third mouth

The constructions above work well in the limit where the third mouth is much smaller

than the other two, but we can ask ourselves how large this mouth can be. Even though

the approximations we have employed do not rigorously apply, we can still use them in

order to obtain parametric estimates.

There are several effects that can limit the size of the third mouth. In the cosmic

string model, the original wormhole remains open for only a limited amount of (retarded)
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time. We note that from [149],

∆V =
r+

r−

(
r+ − r−
r−

)−1−(r−/r+)2

e2κ+r+

∫ +∞

−∞
dUhkk, (6.4)

where (∫
dUhkk

)
(Ω) = 8πG

∫
dΩ′H(Ω,Ω′)

∫
dU〈Tkk〉(Ω′), (6.5)

∫
〈TUU〉dU = −e−κ+d/2 cκ+

16r2
+

, (6.6)

and

H =
∑
j

Ym=0,j(Ω)Hmj, Hmj =

√
2j + 1

4π

2r2
+

2κ+r+ + j(j + 1)
(6.7)

for Ym=0,j(Ω) =
√

2j+1
4π

Pj(cos θ) are standard scalar spherical harmonics on S2 with

vanishing azimuthal quantum number.

Putting this all together, we find

∆V = −GNcπκ+

2

1

r+r−

(
r+ − r−
r−

)−1−(r−/r+)2

eκ+(2r+−d/2)

∫
dΩ′H(Ω,Ω′). (6.8)

For concreteness, we can choose a geodesic at θ = π/2, and keep just the lowest term in

6.7, which dominates at small κ+:

∆V = −GNcπ

2

1

r−

(
r+ − r−
r−

)−1−(r−/r+)2

eκ+(2r+−d/2), (6.9)

where c is the central charge associated with quantum fluctuations of the compact

cosmic string, where we’ve chosen a geodesic through θ = π/2, and where U and V are
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defined such that the metric on the bifurcation surface is

ds2 =
r−
r+

(
r+ − r−
r−

)1+(r−/r+)2

e−2κ+r+dUdV. (6.10)

Then, if the time (6.3) became longer than this available crossing time, a signal would be

delayed by the presence of the third mouth for too long to make it across the wormhole.

Considering the case that b ∼ re/2, this leads to a bound

∆v = δt

(
r−
r+

(
r+ − r−
r−

)1+(r−/r+)2

e−2κ+r+

) 3
2

. ∆V, (6.11)

which then gives

m .
cπ

4 log
(

4d2

r2+

) r1/2
+

r
3/2
−

(
r+ − r−
r−

)−3/2−3/2(r−/r+)2

eκ+(3r+−d/2). (6.12)

The magnetic wormhole model does not suffer from this problem since in principle it

can remain open for an arbitrarily long time. Nevertheless, there is another effect that

can limit the size of a third mouth inserted in it. The positive mass of this mouth will

create a focusing effect within the wormhole that will counter against the defocusing effect

of the negative Casimir energy that is responsible for keeping it open. The backreaction

of the third mouth on the wormhole width can be incorporated in the construction of

[88] if we model it as a delta-function mass source. The size of the S2 along the throat

is controlled by a scalar field φ, and the overall effect of the source on it is obtained by

smearing it over the S2 to get a codimension one defect. We find

φτ (ρ) = α(1 + ρ arctan ρ) + c1

√
1 + ρ2 − βρΘ(ρ), (6.13)
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which gives

φ′′τ (ρ) =
2α

(1 + ρ2)2
+

c1

(1 + ρ2)3/2
− βδ(ρ). (6.14)

Then, in order for the S2 not to collapse, we need β
α
∼ 1, which in turn gives

M0 <
qNf

8πre
=

Nfgre
8π3/2`pd

. (6.15)

To compute the energy of this mass (as seen from outside the wormhole), we include

a redshift factor of re
d

, giving

Ebh <
qNf

8πre
=

Nfg

8π3/2`p
. (6.16)

or,

Ebh <
2

π
Emin (6.17)

where Emin is the energy gap between traversable and non-traversable wormholes. We

see that this is comparable to the Casimir energy.

6.4 Discussion

In the above work we constructed a multiboundary traversable wormhole. This was

done by starting with a two mouthed traversable wormhole of the form of either [88,

149]. We then perturbed this solution by adding a small black hole in the throat of the

larger wormhole. As long as this black hole is much smaller than the wormhole mouths,

the original wormhole will remain traversable. This small black hole can be placed

in mechanical equilibrium through the proper placement of cosmic strings. Additional

compact cosmic strings can be used to make all mouths traversable.

This construction shows that the number of bound states of traversable wormhole
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solutions is much larger than previously thought.

While two-mouth traversable wormholes are associated with TFD-like entanglement

[89], our three-mouth wormholes will require a new entanglement structure – a concept

that can be made precise by embedding our construction in an AdS/CFT context. A

full exploration of this topic is beyond the scope of this work. However, it is useful to

briefly consider the locations of extremal surfaces homologous to the individual mouths

of our wormholes. If the mouths of our wormholes were embedded in AdS, these extremal

surfaces would be candidate entangling surfaces for associated regions of the boundary.

In [155, 17], it was found that narrowing of the ‘entanglement shadow’ region between

these three surfaces, so that the separation between some two of these surfaces becomes

small relative to their distance to the third, was indicative of a region of mostly bipar-

tite entanglement between the corresponding boundaries. In contrast, regions where the

distance between the various entangling surfaces is roughly the same between each pair

of surfaces might naturally be taken as a signal of tripartite entanglement. In particu-

lar, [17] associated large amounts of multipartite entanglement AdS black holes whose

temperature was small compared to the AdS scale while [155] showed that states dual to

hot black holes are well-approximated by sewing together various copies of |TFD〉 states.

See figure 6.5 below.

We again consider a wormhole with three mouths, A, B, and C. Recall that our

analysis of back-reaction suggested that one mouth C must remain small relative to the

other two. We thus assume that this is so. Before we add in C, the extremal surfaces

associated with A and B coincide and lie at the bottom of the AB throat. In the limit

where C is much smaller than A and B, it will have little effect on the geometry far

from C. Thus the extremal surfaces associated with A and B will remain close over most

of their area, and in particular at the top of the wormhole in 6.6 below. Furthermore,

the extremal surface associated with C will remain close to the bottom of of the small
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Figure 6.5: Left: A hot AdS3 3-mouth wormhole. The entanglement shadow becomes
very narrow in regions where pairs of extremal surfaces approach each other, indicating
regions of strong bipartiate entanglement. Right: A cold AdS3 3-mouth wormhole. At
any point on one entangling surface, the distance to the other two entangling surfaces
is roughly the same. This suggests strongly tripartite entanglement.

wormhole throat, and thus far away from the other two surfaces. We may thus expect

large bipartite entanglement to remain between A and B, with C being entangled with the

AB system in a very non-local way, and presumably in a manner that involves significant

3-party entanglement.

The large bipartite entanglement between A and B is consistent with the idea that

C has little effect on signals being sent between A and B. But it would be interesting to

consider quantum mechanical duals in more detail, as well as the quantum teleportation

protocols associated with traversing the wormhole in the bulk in analogy with the dis-

cussions of e.g. [15, 131, 147, 156]. In particular, if the entanglement of C with A and

B is indeed mostly of the multi-party sort, then the dual description of sending a signal

from C to either one of A or B must necessarily involve all three systems. While this

idea may at first seem unfamiliar, it is consistent with the fact that the asymptotically

flat region of our gravitational solution does in fact provide interactions between each

pair of mouths AB, AC, and BC.
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Figure 6.6: Extremal surfaces in our three boundary wormholes. Here, the small size of
C guarantees that the extremal surfaces associated with A and B stay close together,
suggesting that A and B retain a large amount of bipartite entanglement. C, however,
stays comparably far from both A and B, and presumably its is entanglement with A
and B in some non-local way containing tripartite entanglement.
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Appendix A

Mmγ(A) is mostly contained in the
interior of D(γ) and in γ itself

This appendix contains some addition results concerning the possible intersections of
restricted maximin surfaces with ∂D(γ) that can be easily proven using the techniques
of section 3.4, but which are not required for our main results. In particular, we saw
in the first example from section 3.3.1 that Mmγ(A) can intersect γ. The proofs of the
claims below establish that, up to possible sets of measure zero, Mmγ(A) is contained in
the union of the interior of D(γ) and γ itself. We focus below on excluding open sets of
Mmγ(A) from L+, but analogous arguments clearly also hold for L−.

Claim 4. Suppose that p ∈ L+ has θ+ ≥ 0 (where θ+ is the expansion of the null
generators of L+). For any boundary region A, there does not exist a subset V ⊂
Mmγ(A), open in Mmγ(A), such that p ∈ V and V ⊂ L+.

Proof: Suppose that such regions A and V exist. There must exist a surface Σ ∈ Cγ
such that Mmγ(A) = min(A,Σ). Because Σ is an achronal surface containing V ⊂ L+

and γ, Σ must contain the part of the null generator of L+ containing p that lies to the
past of p. Because θ+ ≥ 0 at p, the null generic condition requires θ+ > 0 for any point in
L+ to the past of p. But since Claim 1 forbids Mmγ(A) from lying along this generator of
L+, we see that deforming Mmγ(A) in the −k direction at the point p keeps the surface
in Σ and that this deformation reduces its area (since θ+ > 0). This contradicts the fact
that Mmγ(A) = min(A,Σ), so A, V cannot exist.

Claim 5. Suppose that p ∈ L+ has θ+ < 0. Then p cannot be in Mmγ(A) for any A.

Proof:
Let Σ be a Cauchy surface on which Mmγ(A) is minimal, and consider the future-

ingoing directed null congruence N orthogonal to Mmγ(A). Since it is nowhere to the
future of L+ and θ+ < 0, we must have θk,N < 0 by Corollary zero. But any p ∈ Mmγ(A)
must have θk,N = 0 by Claim 2. So p cannot lie in L+.

In fact, the argument for Claim 5 also applies at caustics or nonlocal intersections (i.e.,
at all points where θ+ is ill defined). In such cases, deforming Σ to the past again causes
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the area of any surface min(A,Σε) to exceed Mmγ(A), contradicting the maximization
step of the maximin procedure. We formalize this result in the following statement

Claim 6. Suppose θ+ is ill defined or diverges at p ∈ L+. Thus p ∈ L+ lies on a caustic
or nonlocal self intersection of L+ by Theorem 1 of [73]. Then for any boundary region
A, there does not exist a subset V ⊂ Mmγ(A) open in Mmγ(A) such that p ∈ V and
V ⊂ L+.

Proof: Same as above.
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Appendix B

First-order traversability requires a
stationary horizon

We show here that any background spacetime obeying the null convergence condition
Rabk

akb ≥ 0 which can yield a traversable wormhole after first-order backreaction of a
quantum field must be a quotient of a spacetime with a stationary (divergence-free and
shear-free) horizon.

We phrase the argument for a spacetime m̃ with a single boundary1, but the argument
for multiple boundaries is identical. Consider any curve that starts and ends at the
boundary but is not smoothly deformable (with fixed endpoints) to lie entirely in the
boundary. Let us now deform this curve by moving one endpoint to the far future on
the boundary and the other to the far past on the boundary. If the limiting curve could
be causal with any timelike segment, there would be a faster causal curve through the
wormhole (i.e., not deformable to lie in the boundary) which starts and ends on the
boundary at finite times. This is impossible since the wormhole is not traversable in the
background [83, 84]).

Consider then the class of limiting curves that consist only of null and spacelike
segments. If the proper length of all such curves is bounded below, then no such curve
can be rendered causal by an arbitrarily small perturbation. Allowing timelike segments
does not help, as that will necessarily make the spacelike segments longer. So if the
wormhole can be rendered traversable by an arbitrarily small perturbation, there must
be a sequence of such limiting curves whose proper length approaches zero. The limiting
of this sequence is then a curve that is everywhere null. (We assume the spacetime to
be sufficiently regular so that this sequence is guaranteed to converge.) It must also be
a geodesic, else there would be a timelike curve that traverses the wormhole. And since
it runs from the boundary to the boundary, it is a complete null curve (having infinite
affine parameter).

Now, since the spacetime contains a wormhole, it has some non-trivial wormhole

1We use this term to refer to the regular part of the boundary; i.e., the part that is asymptotically
flat or AdS and not the part of the conformal boundary describing spacetime singularities.
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homotopy group (see footnote 4) that we can use to define a multiple cover M of the
original spacetime M̃ . The order of this cover does not matter. In the cover, our complete
null curve lifts to at least one complete null curve that starts one connected component of
the boundary and ends on another. That curve must be achronal, else the two boundaries
would be causally connected (violating topological censorship [83, 84]). But since the
original background (and thus the covering space) satisfies the null convergence condition,
Galloway’s splitting theorem (theorem 4.1 of [157]) requires the geodesic to lie on a
stationary null surface. The projection of this surface to the original spacetime (a quotient
of the cover) is thus stationary and null as well.
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Appendix C

Counterpoint: Negative Energy
causes collapse of cosmological
wormholes

In order to contrast with our analysis above, and also because it provides a convenient
exactly solvable model, we now briefly discuss analogous computations for what one
may call a cosmological wormhole. Here we again consider a Z2 quotient of a covering
spacetime M̃ having a globally-defined Killing symmetry, which in this case we take to be
exact de Sitter space dSd. In particular, in global coordinates we take the Z2 identification
to be the antipodal map on the spheres at each global time. This is clearly a cosmological
analogue of the RP3 geon. It is thus natural to think of it as a cosmological wormhole,
though we will not attempt to introduce a general definition of this term.

As is well known, in de Sitter space perturbations satisfying the NEC tend to make
the conformal diagram taller so that – at least in the natural sense defined by global
coordinates – wormholes become more traversable; see figure C.1. This is evident from
the classic Einstein static universe solution, in which the addition of positive energy dust
to an otherwise-empty de Sitter space removes the cosmological expansion and leaves a
static cylinder that can be circled by causal curves arbitrarily many times. That a similar
effect occurs from general perturbations satisfying the NEC also follows from [144]. One
thus expects the analogue of (5.28) to have the opposite sign. And since periodic scalars
in the Hartle-Hawking state should again violate the null energy condition, they should
not make our cosmological wormhole traversable. Indeed, they should make it more
non-traversable than before. All of these expectations will be explicitly realized below.

In particular, it is straightforward to compute the analogue of (5.28), showing the
effect of back-reaction. For simplicity, we treat only the rotationally symmetric case.
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Figure C.1: (Left) A conformal diagram of dSd showing time and the polar angle on
the Sd−1 (the other d − 2 angles are suppressed). The left edge is the south pole of
the Sd−1 and the right edge is the north pole. The diagonal lines denote light rays.
(Right) Perturbations satisfying the NEC generically make the diagram taller so that
light rays can travel from the north pole to the south pole in finite time. Here for
simplicity we consider perturbations that preserve spherical symmetry.

The dSd metric with a general spherical perturbation is

ds2 = `2−4dUdV + (1 + UV )2dΩ2
d−2

(1− UV )2 + hUUdU
2 + 2hUV dUdV + hV V dV

2 + hΩΩdΩ2
d−2,

(C.1)
where dΩ2

d−2 is the standard metric on the unit Sd−2 and where hUU , hUV , hV V , hΩΩ

are functions of U , V . On the horizon V = 0, the linearized Einstein equation (with
cosmological constant) yields

8πGTUU = −d− 2

2`2

(
2hUU + U∂UhUU + ∂2

UhΩΩ

)
. (C.2)

The negative sign in the above expression shows that positive null-energy gives a time-
advance, while negative null-energy gives a time-delay. In particular, we find

∆V =
1

8`2

∫ ∞
−∞

hUUdU = − πG

d− 2

∫ ∞
−∞

TUUdU. (C.3)

Since scalar two-point functions on dSd are known in closed form for any mass m ≥ 0
and dimension d, we may dispense with any cosmic strings and simply study scalars
on M = dSd/Z2 coupled to pure Einstein-Hilbert gravity with a cosmological constant.
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For simplicity, we ignore quantum effects from linearized gravitons. Neglecting such
contributions is justified in the presence of a large number N of bulk scalar fields.

The scalar two-point function in the dSd Hartle-Hawking state (also known as the
Bunch-Davies vacuum or the Euclidean vacuum) takes the closed form expression [158,
159]

G (x, x′) =
1

(4π)d/2`d−2

Γ
(
d−1

2
− iµ

)
Γ
(
d−1

2
+ iµ

)
Γ
(
d
2

)
× 2F1

(
d− 1

2
− iµ, d− 1

2
+ iµ;

d

2
; 1− D (x, x′)

4`2

)
,

(C.4)

where µ ≡
√
m2`2 − 1

4
, and D (x, x′) is the (squared) distance between x and x′ in the

(d+1)-dimensional Minkowski spacetime into which dSd is naturally embedded. In some
references, D (x, x′) is called the ‘chordal distance’ between x and x′.

In global coordinates, the de Sitter line element is

ds2
d =

`2

cos2 η

(
−dη2 + dθ2 + sin2 θdΩ2

d−2

)
, (C.5)

with θ ∈ [0, π]. The Z2 quotient identifies each point (η, θ,Ω) with point (η, π − θ, a(Ω))
where Ω ∈ Sd−2 and a(Ω) denotes the Sd−2 antipodal map. We want to compute the
two point function G (U,U ′) when the first point lies on horizon η = θ and has affine
parameter U and the second point lies on the image horizon η = π − θ with affine
parameter U ′. The affinely-parametrized horizon is

η (U) = arctanU, θ (U) = arctanU, (C.6)

which becomes
T (U) = `U,X (U) = `, ~Y (U) = `U~z, (C.7)

in terms of the d+1 standard embedding coordinates T,X, ~Y such that T 2−X2−|~Y |2 =
−`2. Here, ~z is a unit vector describing a Sd−2. The affine-parametrized image horizon
is

T ′ (U ′) = `U ′, X ′ (U ′) = −`, ~Y ′ (U ′) = −`U ′~z. (C.8)

Thus, the chordal distance is

D (U,U ′) = −(T − T ′)2 + (X −X ′)2 + |~Y − ~Y ′|2 = 4`2 (1 + UU ′) , (C.9)

and the two point function is

G (U,U ′) =
1

(4π)d/2`d−2

Γ
(
d−1

2
− iµ

)
Γ
(
d−1

2
+ iµ

)
Γ
(
d
2

)
× 2F1

(
d− 1

2
− iµ, d− 1

2
+ iµ;

d

2
;−UU ′

)
.

(C.10)

179



Counterpoint: Negative Energy causes collapse of cosmological wormholes Chapter C

The stress tensor is then

TUU (U) = lim
U ′→U

∂U∂U ′G (U,U ′)

=
1

2d+2`d−2πd/2
(d− 1− 2iµ) (d− 1 + 2iµ)

d (d+ 2)

Γ
(
d−1−2iµ

2

)
Γ
(
d−1+2iµ

2

)
Γ
(
d
2

)
×
[
−2 (d+ 2) 2F1

(
d+ 1− 2iµ

2
,
d+ 1 + 2iµ

2
;
d+ 2

2
;−U2

)
+U2

(
d2 + 2d+ 1 + 4µ2

)
2F1

(
d+ 3− 2iµ

2
,
d+ 3 + 2iµ

2
;
d+ 4

2
;−U2

)]
.

(C.11)
Its integral is ∫ ∞

−∞
TUU (U) dU = −

Γ
(
d
2

+ 1
)

Γ
(
d
2
− iµ

)
Γ
(
d
2

+ iµ
)

2`d−2πd/2Γ (d+ 1)
< 0. (C.12)

Using the identity Γ(1− z)Γ(z) = π
sin(πz)

one can rewrite the right-hand-side of (C.12) as

a d-dependent polynomial in µ divided by sinh(µ+ iπ d
2
) (i.e., divided by either sinh(µ) or

cosh(µ) depending on whether d is even or odd). The polynomial has a definite sign such
that the overall expression is negative for all allowed µ, and the factor of sinh(µ + iπ d

2
)

in the denominator means that it decreases exponentially at large µ.
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Constructing the wormhole

In this section, we will explicitly construct the wormhole solution in the case of [88], by
perturbing the original solution with a point mass delta function source for the small
black hole. As we have seen, we are considering two RN black holes, whose throats we
have replaced with a single global AdS2 × S2 metric. However, this approximation is
valid around ρ = 0 point, which corresponds to “the middle of the throat”, but as we are
climbing up the throat, the spheres are becoming larger and so we have to account for
that effect. Hence, instead of putting the sizes of the spheres to be constant, r2

edΩ2, we
will perturb them a little bit and solve for the small parameter as a function of ρ - now
we will have r2

e(1 + φ)dΩ2. Similarly, we modify gττ and gρρ components - we will add a
small parameter γ = γ(ρ), which will describe the departure from the AdS2×S2 metric.
So, our ansatz will have the following form:

ds2 = r2
e [−(1 + ρ2 + γ)dτ 2 +

dρ2

1 + ρ2 + γ
+ (1 + φ)dΩ2]. (D.1)

Since the parameters γ and φ are small, we can expand the denominator (gρρ) in terms
of γ:

1

1 + ρ2 + γ
' 1

1 + ρ2

(
1− γ

1 + ρ2

)
. (D.2)

When computing the Einstein tensor, we will neglect all second order quantities in φ and
γ. After some algebra, we get the Einstein tensor by components:

Gττ = γ − (1 + ρ2)(−1 + ρφ′ + (1 + ρ2)φ′′)− (1 + ρ2)φ+ ... (D.3)

Gρρ = (1 + ρ2)−2(γ + (1 + ρ2)(−1 + φ+ ρφ′)) + ... (D.4)

Gθθ =
1

2
(2 + 2φ+ 2ρφ′ + (1 + ρ2)φ′′ + γ′′) + ... (D.5)
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GΦΦ =
1

2
sin2 θ(2 + 2φ+ 2ρφ′ + (1 + ρ2)φ′′ + γ′′) + ... (D.6)

For our purposes, it is enough to consider only the second equation (D.4). The ρ-
component of the stress energy tensor will have three contributions - one coming from
the Maxwell field, another from the Dirac fermions and the third one is the small black
hole contribution.

The Maxwell stress energy tensor has the following form:

Tµν =
1

g2
(FµσF

σ
ν −

1

4
gµνF

2). (D.7)

Since Maxwell field strength is given as F = − q
2

sin θdθdφ, we only have two components
of the field strength, Fθφ = Fφθ. Hence, only the second part of (D.7) stays:

F 2 = FµνF
µν = FθφF

θφ + FφθF
φθ

= 2gθθgφφF 2
θφ =

1

r4
e(1 + φ)2 sin2 θ

2q2

4
sin2 θ

=
q2

2r4
e

(1− 2φ),

(D.8)

where we have used the fact that the parameter φ is small. Now, the whole tensor can
be written as:

TMρρ = − 1

4g2
gρρF

2 = − 1

4g2

r2
e

1 + ρ2 + γ

q2

2r4
e

(1− 2φ)

= − q2

8g2r2
e

1

1 + ρ2

(
1− 2φ− γ

1 + ρ2

)
.

(D.9)

If we recall now that r2
e = πq2GNg

−2, we get:

8πGN
q2

8g2

g2

πq2GN

= 1, (D.10)

and so, from
Gρρ = 8πGN(TMρρ + T Fρρ + T δρρ), (D.11)

we get:
ρφ′ − φ = 8πGN(1 + ρ2)(T Fρρ + T δρρ). (D.12)

We take the fermion contribution to be the same as in [88], and so

8πGNT
F
ρρ = − α

(1 + ρ2)2
, α ≡ qGN

4πr2
e

. (D.13)

Putting the delta function source in the energy equation, that is Gττ and solving for

182



Constructing the wormhole Chapter D

φ, we find,

φτ (ρ) = α(1 + ρ arctan ρ) + c1

√
1 + ρ2 + ic2ρ− βρΘ(ρ), (D.14)

where we can put c2 = 0. Computing the second derivative, we obtain

φ′′τ (ρ) =
2α

(1 + ρ2)2
+

c1

(1 + ρ2)3/2
− βδ(ρ). (D.15)

Therefore, in the case where β dominates over α and c1, we have a change in the sign
of the derivative of the expansion scalar, and hence, we no longer have the defocusing
effect, only focusing. This will also tell us what is the maximum size of the small black
hole that we can put in the wormhole. In order to determine the size, let us first set c1

to zero1 and let us look at the equation (D.15) near ρ = 0. We see that the change in the
sign is determined by the ratio α/β, since if α is bigger than β, then the small black hole
does not change the inner dynamics of the wormhole. If it is smaller, the small black hole
becomes too large and our construction breaks down. From this ratio, we can therefore
determine the maximal mass of the small black hole, M0. However, before we get to the
trivial algebra, we must set the units correctly. We are working in units where energy is
proportional to the inverse of the length and where we have extracted the length scale
out of the metric like r2

e . Hence, Gττ is dimensionless. We see that α is set in correct
units already then since α = qG

4πr2e
, where G = `2

p. The coefficient β is of order r−1
e which

with δ(reρ) = δ(ρ)
re

makes it of order of inverse squared length. So, in order to make it

dimensionless, we have to multiply by r2
e . Now we can see the ratios:

β

α
=

2GNM0

r2
e

× 1

re
× r2

e ×
4πr2

e

qGN

(D.16)

The critical case is when this ratio is of order 1, and so we get a bound on the mass
as

M0 =
q

8πre
=

qg

8π3/2q`p
∝ g

`p
(D.17)

Adding Nf flavors gives

M0 <
qNf

8πre
=

Nfg

8π3/2`p
. (D.18)

To compute the effect on the energy as seen from the outside, however, we include an

1In [88], solution for φ was obtained from the Gρρ equation which satisfies the symmetry ρ → −ρ.
From here, all the constants go to zero (except for α) and such a solution automatically obeys the
Gττ equation. Here we were solving first in the energy equation, where we cannot apply the symmetry
argument. Nevertheless, c1 = 0 is compatible with the wormhole construction and it makes the analysis
for the size of the small black hole easier to understand.
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additional redshift factor, re/d, bringing the energy to

Ebh <
regNf

8π3/2`pd
(D.19)

We can compare this to

Emin =
regNf

16π1/2`pd
(D.20)

so that Ebh <
2
π
Emin.
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