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Abstract 

We investigated human category learning from partial 
information provided as equivalence constraints. Participants 
learned to classify stimuli on the basis of either positive or 
negative equivalence constraints, that is, when informed that two 
exemplars belong to the same category or to different categories, 
respectively. Knowing that in natural contexts positive 
constraints are usually informative while negative constraints are 
rarely so, we suspected that participants would not use the two 
types of constraints in similar ways, even in a setting in which the 
amount of information in the two types of constraints is identical 
and sufficient for perfect performance. We found that in general, 
people can use the two types of constraints for category learning. 
Further analysis revealed that when participants were provided 
with highly informative positive constraints, categorization 
performance of most participants was moderate and normally 
distributed. In contrast, there was a dichotomy of participants 
who were provided with highly informative negative constraints, 
with some achieving even higher performances, while that of 
others was significantly poorer. These results, together with those 
of a battery of controls, support the following conclusions: (i) 
People use positive constraints more intuitively, although they 
fail to use them perfectly. (ii) The use of negative constraints 
enables a less natural, but potentially more accurate 
categorization strategy, which many participants failed to 
implement even in the current simplified setting. These results 
are consistent with the view that people are naturally biased 
towards similarity-based categorization strategies (e.g. prototypes 
or exemplars) rather than rule-based strategies. 

 

Introduction 
It is usually assumed that people categorize objects based on 
their perceived similarities (Rosch & Mervis, 1975; Tversky, 
1977; Medin & Schaffer, 1978; Nosofsky, 1988; Goldstone 
& Barsalou, 1998). Yet, since most objects have many 
visually-perceived features (values on physical dimensions: 
e.g. red color, round shape, smooth texture), similarity 
between objects is often difficult to define. Category learning 
therefore often becomes learning which object features 
(Tversky, 1977) or dimensions (Nosofsky, 1987) are most 
important for similarity judgments (Medin, Goldstone, & 
Gentner, 1993). In particular, different dimensions may be 
relevant in different domains. 
 
Common to all category learning tasks is that they ultimately 
provide the classifier with clues as to the relations between 
particular exemplars – that two exemplars are from the same 
or from different categories. These relations constrain the 
perception and/or use of similarities (or dissimilarities) 
between exemplars within (or between) categories. We call a 
restriction that two exemplars belong to the same category, a 
Positive Equivalence Constraint (PEC), and a restriction that 

two exemplars belong to different categories, a Negative 
Equivalence Constraint (NEC). These two types of 
constraints are the building blocks of any categorization 
learning scenario. In particular, labeling a set of exemplars, 
including more than one of each of a number of categories, 
provides both positive and negative constraints. As an 
example, when a parent labels three unfamiliar animals to a 
young child as “a dog”, “a dog”, and “a cat”, he actually 
provides the child with one PEC (indicating the two dogs as 
belong to the same category) and two NECs (indicating that 
each one of the two dogs is not from the same category as the 
cat). Yet, the way people use these two types of constraints 
has not been studied directly or differentially.  
 
Recent observations demonstrated that ecologically there are 
inherent differences in the properties of PECs and NECs in a 
multifarious world (Hertz et al, 2003). In most natural 
scenarios NECs are abundant since it is highly likely that 
randomly chosen pairs of objects belong to different 
categories. And yet, in most cases such pairs comprise 
objects that are highly different from one another in both 
informative and irrelevant dimensions. Thus, informative 
NECs, (constraints that present two highly similar objects as 
belonging to two different categories) are rare. On the other 
hand, all PECs are informative in the sense that they imply 
that features dimensions that differentiate between the 
positively paired objects are irrelevant, while the common 
features are candidates for being relevant for the 
categorization task at hand. In a study of the use of 
equivalence constraints in clustering and similarity-learning 
algorithms, it was found that generally PECs provide 
performance gains that are significantly better than NECs 
(Hertz et al, 2003). It was also found that incorporating PECs 
into various clustering algorithms can be straightforward and 
computationally feasible, while incorporating NECs is rather 
complicated and computationally intensive. 
 
For these reasons, we expected that people may be more 
likely to adopt proper tools for the efficient integration of 
PECs but not NECs. Moreover, we hypothesized that this 
bias will remain evident even when the two types of 
constraints are highly and equally informative. For that it 
essential to examine the existence of such a bias since it 
might explain categorization errors as resulting from the 
inadequate use of all available information. To test these 
hypotheses, we designed an experiment in which only one or 
the other type of constraint was presented in each 
experimental condition. The amount of information provided 
by each type of equivalence constraint was also manipulated. 
First we investigated performance when the contributions of 
PECs and NECs to category learning simulated those 
expected in natural settings, by using constraints defined for 
randomly selected object pairs. We then tested performance 
when PECs and NECs were deliberately selected to be highly 
and equally informative. As a control, we tested performance 
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when participants were provided with no equivalence 
constraints at all, or, at the other extreme, when provided 
with “meta-knowledge” – i.e. “tips” on the best strategy for 
the integration of constraints.  
 

Methods 

Materials 
3D computer-generated pictures of “alien creature faces” 
were used as stimuli, as demonstrated in Figure 1. Each face 
was characterized by a unique combination of 5 potentially 
task-relevant features: chin, nose and ear shape, and skin and 
eye color. All (32) combinations of these 5 binary 
dimensions were presented in each of the 10 experimental 
trials. Two or three randomly selected dimensions (of the 5 
possible) were relevant for category definition on each trial. 
Stimuli were presented on a 22-inch, high-resolution 
computer screen, using specially designed software. 

Participants  
89 university students participated in the experiment. They 
were randomly assigned to the different experimental or 
control conditions in a mixed experimental design. 
 

Procedure 
Participants were told that during the experiment they would 
have to learn which of the 32 “alien creatures” (test stimuli) 
belonged to the same tribe as the one identified as “chief” 
(standard). They were instructed that each trial in the 
experiment was independent and would necessitate learning 
a new way of discriminating between tribes. Participants 
were not informed that for each trial 2 or 3 dimensions were 
chosen as trial-relevant. In general, specific instructions were 
not given about the categorization strategy to be used for 
maximizing performance; rather, participants were simply 
asked to perform the task intuitively, using the clues 
provided.  
 
Clues (constraints) were provided as colored frames around 
pairs of aliens, indicating that the members of the pair belong 
to different tribes (NEC condition) or the same tribe (PEC). 
Figure 1 shows examples of constraints. On each trial, 3 
constraints appeared for 20 seconds together with the 
ensemble of alien faces. The constraints were then removed 
and the alien faces shuffled. Participants were then given 50 
seconds to select (by drag-and-drop) those aliens that he or 
she thought belonged to the chief’s tribe. The trial was then 
terminated and the next experimental trial began. 
 

N2

N3 

N1 

P1 

P2

P3

 
Figure 1: Example of the stimulus configuration on one specific trial. Participants decided which of the 32 test stimuli belong to the 
chief’s tribe. Clues (constraints) were presented as frames surrounding pairs of exemplars. Positive and Negative Equivalence Constraints 
(PECs and NECs) are illustrated respectively as solid lines, marked P1-P3, and dashed lines, marked N1-N3. Note that in the experiment, 
the two types of constraints never appeared together. Highly informative constraints, as demonstrated here, present pairs of images that 
differ in only one feature. In the current example, participants had to learn that skin color and ear shape are relevant for categorization. 
Specifically, NEC N2 informs participants that skin color is a relevant dimension because it is the only dimension discriminating between 
the two exemplars. Similarly, N1 and N3 both imply that ear shape is relevant for categorization. P1, P2 and P3 inform participants that 
eye color, nose shape and chin shape are not relevant for categorization since these features are different in pairs that belong to the same 
tribe. In the highly informative constraint task, as in the current example, all the information needed for proper categorization (for either 
NECs or PECs, separately) was provided (see text). 
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Even without using the information presented in the 
Equivalence Constraints, subjects could perform better than 
chance by simply using an associative categorization strategy 
that is based on some idiosyncratic similarity measure. We 
therefore added a control condition to establish a 
performance baseline, with a “no Equivalence Constraints” 
(noEC) task. Twelve participants performed the same 
categorization task in a totally unsupervised manner, i.e. 
without being provided with either NECs or PECs. 
 
After performing the noEC condition, the same 12 
participants performed the randomly-selected NEC and PEC 
tasks (rNEC and rPEC, in counter-balanced order). The 
constraints were consistent with the assigned alien creature 
categories, but no attempt was made to select the constraints 
in a way that maximized the information provided for 
optimal performance. Note that for the reasons mentioned in 
the Introduction, in the rPEC condition the information 
provided by 3 randomly selected constraints almost always 
sufficed for identifying the task-relevant dimensions. This 
was not the case for rNECs, where the information provided 
was almost as poor as in the noEC task.  
 
60 other participants were assigned to the two main 
experimental conditions: highly-informative Negative or 
Positive Equivalence Constraints (hiNEC or hiPEC). 10 
additional participants performed the two conditions as a 
within-subject design (with counter-balanced order of 
performing the two conditions). The performance patterns of 
these ten participants were similar to those of the 60 
participants in the between-experiment design; therefore, we 
do not address their data separately. Thus, there were 40 
participants, altogether, for each of these conditions.  
 
Highly informative constraints were pairs of test stimuli 
chosen so that the two images differed in only one 
dimension. Thus, each constraint provided information on 
the relevance of one dimension for tribe classification on that 
trial: For a hiNEC, this dimension is necessarily relevant; for 
a hiPEC, this dimension is irrelevant. Still, the hiPEC group 
could first derive the irrelevant dimensions and then infer 
that the rest of the dimensions were relevant. Since, on 
average, half of the dimensions were relevant and half were 
not, the amount of information provided by NECs was 
identical to that provided by PECs. For both groups, in each 
trial, the constraints were sufficient to derive explicitly all 
relevant dimensions needed for perfect categorization. 
Nevertheless, no participant performed perfectly (see 
results). In order that the number of constraints not be 
indicative of the number of relevant dimensions, we always 
provided 3 constraints, sometimes providing redundant 
information.  
 
Performance Measures 
We first report overall performance in the categorization task 
using the Z-score, which is a combined purity and accuracy 
measure defined by: 
 

FAMissesHits
Hits

AccuracyPurity
AccuracyPurityZ
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where Hits is the number of correctly selected tribe 
members, Misses is the number of tribe members which were 
not selected, and FA (False-Alarms) is the number of 
incorrectly selected, non-tribe, members. Z-scores range 
from 0 (poor) to 1 (perfect performance). We also compared 
performance using the Signal Detection Theory measures, d’ 
and criterion (Green & Swets, 1966, 1974).  

Results 
We present the results of three experimental conditions: In 
the first condition, subjects were provided with randomly 
selected equivalence constraints (rPECs and rNECs). As 
expected from the theoretical difference between these 
constraints discussed above, the results clearly demonstrate 
that randomly selected PECs are much more useful for the 
categorization task than randomly selected NECs. In the 
second – main – experimental condition, both types of 
constraints were designed to be highly informative (hiPEC 
and hiNEC). The results for this condition also demonstrate 
that people use PECs and NECs differently. We then present 
results from a third – control – experiment, which exposes 
additional differences between the hiPEC and hiNEC 
conditions. 
  
1. Category learning from random ECs 
In these experiments, subjects were provided with randomly 
selected equivalence constraints (rPEC or rNEC). As seen in 
Figure 2, participants perform considerably better when 
provided with rPECs than with rNECs. A set of within-
subject t-tests shows that in the rPEC condition the average 
Z-score (0.52±0.12; mean±S.D.) was higher than in the 
rNEC condition (0.38±0.10), t(11)=3.46, p<0.01. 
Additionally, the mean Z-score in the noEC condition 
(0.36±0.06) was significantly lower than in the rPEC 
condition, t(11)=4.28, p<0.005, but not the rNEC condition, 
t(11) =1.08, p=n.s. 

Mean Z-scores (and Std-Errors)
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0.5
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0.9
1

noEC rNEC rPEC hiNEC hiPEC

Condition
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sc
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e

Figure 2: mean Z-score and standard error in three experimental 
conditions – with participants given no equivalence constraints, 
random constraints, or highly informative constraints. 

 
These results are consistent with the observation stated 
above, that there are inherent differences in the amount of 
information carried in a PEC vs. a NEC. In our paradigm 
three randomly selected PECs almost always provided 
sufficient information to identify the relevant dimensions for 
the task, while three randomly selected NECs were almost 
never informative enough for fully achieving this goal. This 
may explain why mean performance using rNECs is very 
similar to that in the noEC condition. 
 
2. Category learning from highly informative ECs 
How does performance change when participants are 
provided with highly informative NECs (hiNEC) and PECs 
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(hiPEC)? Recall that in these conditions, we selected the 
constraining pairs of stimuli so that each pair provided 
information about exactly one relevant dimension (hiNEC), 
or one non-relevant dimension (hiPEC). We shall compare 
performance in these conditions to that with rPEC, rNEC and 
noEC, and then compare the results of the hiPEC and hiNEC 
conditions with one another, in greater detail.  
 
As can be seen in Figure 2, mean Z-scores in both the hiNEC 
(0.57±0.24) and hiPEC (0.55±0.16) conditions are 
significantly higher than with noEC, t(50)=4.95, p<0.001 and 
t(50)=6.45, p<0.001, respectively. As expected, the average 
Z-scores in these conditions are also significantly higher than 
with rNEC (hiNEC: t(50)=3.92, p<0.001; hiPEC: t(50)=3.66, 
p<0.005), but not significantly higher than with rPEC.  

 
At first glance, it may appear that when NECs are designed 
to provide the same amount of information as PECs, they 
both lead to similar performance. However, as shown in 
Figure 3, although there was no significant difference 
between the average performance in the hiNEC and hiPEC 

conditions, there was a highly significant difference between 
their standard deviations (Levene’s test of homogeneity of 
variances: F(78)=17.31, p<0.001). Furthermore, the Shapiro-
Wilk test of normality revealed that the Z-score distribution 
was normal in the hiPEC condition, W(40)=0.955 p=0.20, 
but not in the hiNEC condition W(40)=0.932 p<0.05. 
 
These findings suggest that even under highly informative 
constraint conditions, in which the information provided by 
NECs is identical to that provided by PECs, participants use 
these constraints differently. In the hiPEC condition, most of 
the participants did not use all of the information provided by 
the constraints, which was always sufficient to perform the 
task perfectly. For this reason, hiPEC performance was 
usually moderate, and it was normally distributed. In 
contrast, in the hiNEC condition, performance was either 
poor or excellent. It seems that many participants did not use 
hiNECs correctly, but those who did obtained almost perfect 
performance. This suggests that NECs are less intuitive as a 
source of information for category learning tasks.  
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To analyze further the differences between use of hiNEC and 
hiPEC, we compared participant d’ and criterion in these 
conditions. We found no significant difference between the 
average d’ in hiNEC (1.87±1.10) and hiPEC (1.64±0.64) 
t(78)=1.157, p=n.s. However, the standard deviations of the 
d’ in the two conditions did differ significantly F(78)=19.41, 
p<0.001. Additionally, the mean criterion used in the hiNEC 
condition (1.65±0.49) was significantly higher than in the 
hiPEC condition (1.27±0.35), t(78)=4.03, p<0.001, and their 
standard deviations also differed significantly, F(78)=10.91, 
p<0.005.  

Normalized False-Alarms = FA/(FA+CR)
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Figure 4: Participant performance in the hiPEC (empty/light 
circles) and hiNEC (filled/dark squares) conditions plotted on a 
ROC (Receiver Operating Characteristic) diagram. The dashed 
ellipses separate the good hiNEC performers from the poor hiNEC 
performers.  

Figure 3: Observed Z-score histograms in the hiNEC (top) and 
hiPEC (bottom) conditions. Dashed lines represent the Gaussians 
defined by the Means and Standard Deviations.  

As seen in Figure 4, this difference in criterion leads to a 
higher number of False-Alarms (FAs) with hiPEC than with 
hiNEC. We found a highly significant negative correlation 
between Hits and FAs in the hiNEC condition, r(40)=-0.59, 
p<0.001, but not in the hiPEC condition r(40)=0.16, p=n.s. 
The above-noted highly variable performances in the hiNEC 
condition, together with the Hit/FA correlation, suggest that 
this group of participants may in fact represent two distinct 
subgroups: one with high Hit and low FA rates (“good” in 

896



Figure 4) and the other (“poor”) with low Hit and high FA 
rates. This division was confirmed using the K-means 
algorithm to cluster the hiNEC group into two subgroups 
(based on their Z-scores), marked by dashed ellipses in 
Figure 4. There is no significant Hit-FA correlation for either 
subgroup, individually, further justifying the division into 
separate subgroups. We denote the subgroups hiNEC-good 
and hiNEC-poor, respectively. 
 
Comparing these subgroups, we found that the mean Z-score 
in the hiNEC-good subgroup (0.78±0.10) was significantly 
higher than in all other experimental conditions (e.g. 
compared to hiPEC: t(58)=5.98, p<0.001). On the other 
hand, the mean Z-score for the hiNEC-poor subgroup 
(0.35±0.13) was not significantly different from that with 
noEC, t(30)=0.60, p=n.s., or rNEC t(30)=0.07, p=n.s. (see 
Figure 5). In practice, participants in the hiNEC-poor 
subgroup behave as if they were not provided with any 
equivalence constraints.  

Mean Z-scores (and Std-Errors)
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Figure 6: mean Z-score and standard error of the directed 
hiPEC and hiNEC conditions compared to the non-directed 
hiPEC and hiNEC conditions. As can be seen, directions helped 
participants only in the hiNEC condition. 

Directed:

 
Taken together, these findings unravel some of the basic 
differences between the way that PECs and NECs are used. 
While hiPECs intuitively provide most people with helpful 
information for category learning, hiNECs provide little 
information to some, and enough information for almost 
perfect categorization performance to others. 

3. Category learning from highly informative ECs 
together with “Meta-Knowledge” 
If indeed most people can effectively use PECs in an 
intuitive manner, while using NECs requires specific 
expertise obtained by only some people, we may expect that 
teaching participants how to use hiNECs will substantially 
increase their performance, while teaching them how to use 
hiPECs will not provide as much benefit. To check this 
hypothesis, we tested 7 additional participants (using a 
within-participant design) with exactly the same hiPEC and 
hiNEC conditions, augmented with additional “Meta-
Knowledge” – guidelines regarding the best strategy for 
integration of constraints. Specifically, before performing the 
hiPEC condition, participants were informed that they should 
exclude the dimension discriminating between each two 
constrained exemplars (and reserve judgment about the rest), 
since this dimension is irrelevant for the categorization task. 

Before performing the hiNEC condition, the same 
participants were informed that they should take into account 
the dimension discriminating between each two constrained 
exemplars because it is relevant for the categorization task. 
 
As seen in Figure 6, “meta-knowledge” was extremely 
helpful in improving participant performance in the hiNEC 
condition but not the hiPEC condition. Performance in the 
directed hiNEC condition (0.90±0.06) was significantly 
higher than in the original non-directed hiNEC condition 
(0.57±0.24) t(45)=7.45, p<0.001. Performance in the directed 
hiNEC condition was also higher than in the hiNEC-good 
subgroup alone (0.78±0.10). In contrast, performance in the 
directed hiPEC condition (0.63±0.21) was not significantly 
higher than in the non-directed hiPEC condition (0.55±0.16) 
t(45)=1.20, p=n.s. These findings indicate that participants 
provided with PECs naturally operate a categorization 
strategy that leads to satisfactory performance equal to that 
achievable when provided with best-strategy “tips”.  
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Figure 5: mean Z-score and standard error in the hiNEC-good 
and hiNEC-poor conditions compared to the other experimental 
conditions. 

 
The moderate performance even in the directed hiPEC 
condition may be explained by a possibly inherent 
disadvantage of PECs, amplified in our experimental 
paradigm: PECs, unlike NECs, directly specify an irrelevant 
dimension. Thus, participants can only learn indirectly which 
dimensions are task-relevant. Since participants are not 
aware of all the potentially task-relevant dimensions, it is 
very likely that they will miss relevant dimensions even 
when correctly filtering out the irrelevant dimensions by 
using an optimal strategy. Missing or disregarding the 
relevance of a dimension would lead to more False-Alarms, 
and indeed, participants in the PEC condition have higher 
False-Alarm rates, as shown in Figure 4. 
 

Discussion 
The goal of the current study was to investigate mechanisms 
underlying categorization, by comparing performance when 
using Positive Equivalence Constraints (PECs) vs. Negative 
Equivalence Constraints (NECs). Due to the inherent 
differences between PECs and NECs, we expected that 
people naturally develop more effective tools for the efficient 
integration of informative PECs than NECs. In fact, we 
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hypothesized that this bias may be also evident when the two 
types of constraints are highly and equally informative. Our 
findings confirm these hypotheses, indicating that most 
people have an inherent or early-acquired mechanism for 
deriving useful information from PECs, but not from NECs.  
 
What strategies are used with PECs?   
We report the somewhat surprising result, that performance 
with PECs derives little benefit from the availability of meta-
knowledge about the optimal strategy to perform the task. 
This may be explained by one of the following:       
(i) participants are already using the optimal strategy, and so 
the “tips” give them no additional information, (ii) 
participants’ default strategy, although different, leads to 
similar performance levels as the optimal strategy, or (iii) the 
default strategy is so natural and intuitive, that participants 
are reluctant to shift to a potentially better strategy. 

            

Our findings point out one way in which the human psyche 
reflects statistical properties of objects and categories in the 
world – most people have early-adopted tools that are useful 
for integrating PECs since PECs are less common but always 
informative. This innate strategy is good enough so that even 
when being explicitly provided with a better categorization 
strategy for using PECs, performance is not significantly 
improved. In the case of NECs, only some people have a 
useful strategy for proper use of this source of information. 
When provided with guidelines for the best categorization 
strategy using hiNECs, performance significantly improved, 
further indicating that there is no inherent strategy for 
optimally integrating NECs for categorization.  

 
What is the default strategy that people use with PECs? It 
seems that PECs are naturally suited to an exemplar-like 
strategy, based on the storage of a large number of examples, 
or to a prototype-like strategy, based on the abstraction of 
typical elements in the class. In our setup, however, there are 
no explicit classes, and there is little meaning to the notion of 
class exemplars or prototypes. This does not rule out the 
possibility that people still use these kinds of strategies, 
trying to infer (or guess) class examples or class prototypes 
from the constraints provided. 
 
Recall that the only information that participants can reliably 
derive from PECs is the identity of the dimensions that are 
relevant or irrelevant. Thus, another strategy may be to 
commence with a guess of the set of all potentially relevant 
dimensions (beginning perhaps with the most salient 
dimensions, corresponding to features that are common to 
the first pair of exemplars seen). Afterwards, one rules out 
dimensions sequentially, as evidence is accumulated that 
some dimensions are irrelevant. Participants who use this 
strategy in the hiPEC condition may miss relevant (less 
salient) dimensions, resulting in many False Alarms.  
 
A third alternative strategy is the one offered to participants 
in the directed hiPEC experimental condition as additional 
"meta-knowledge". This strategy, if used correctly, should 
lead to perfect performance. Specifically, for each pair in a 
PEC, find the single dimension which differentiates between 
the two examples, and identify this dimension as irrelevant. 
After all the irrelevant dimensions are identified, find the set 
of relevant dimensions (by performing a set complement 
operation). As in the preceding strategy, the use of this 
strategy may result in elevated False-Alarms, since 
participants may have difficulty inferring the set of all 
possible relevant dimensions. Similarly, in real-world cases, 
the full group of possible dimensions may not be known or 
even inferable – in which case using the optimal strategy for 
PECs will not guarantee perfect performance.  
 
PECs vs. NECs 
When not provided with additional instructions, highly 
informative NECs were effectively used by only some 
participants, suggesting that this source of information 
requires a less intuitive skill. Moreover, performance with 
NECs, in contrast to PECs, benefited significantly from 
meta-knowledge about the optimal categorization strategy. 
Two interpretations can explain this difference:       
(i) Participants were more open to advice on how to use 
NECs because they did not have a strong intuitive idea of 

what to do a priori; (ii) it was easier for the participants to 
learn the optimal strategy with NECs, perhaps because it 
does not involve a set complement operation. Note that the 
performance of the subgroup of good-hiNEC participants 
was about as good as that of those provided with meta-
knowledge, suggesting that this subgroup was able to use a 
similar strategy even without instruction. 

            Tversky, A. (1977). Features of similarity. Psychological Review, 
84(4), 327-352. 

 

 
The implications of the current findings may be crucial for 
understanding known phenomena in category learning, and 
they may provide an effective tool for predicting 
performance in different category learning tasks. As an 
example, the tendency of children to over-generalize when 
classifying objects (Neisser, 1987) may be seen as a 
consequence of using mostly PECs, which, as pointed out 
above, can lead to disregarding relevant dimensions and a 
subsequent higher rate of False-Alarms. Only later in life, is 
over-generalization reduced when more refined strategies are 
acquired, such as the use of rare, but informative, NECs. 
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