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Abstract

Parsimonious estimates of functional connectivity and biomarkers of cognitive
development in early childhood

by

Sylvia Madhow

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Kristofer Bouchard, Co-chair

Professor Frederic Theunissen, Co-chair

Mapping the functional connectome underlying recorded time-series of brain activ-
ity can reveal meaningful pathways of large-scale neural computation. However, it
remains commonplace to estimate functional connectomes using pairwise correla-
tive methods which are prone to spurious correlations and vulnerable to structured
noise. Multivariate statistical estimates of functional connectivity offer new possi-
bilities for generating parsimonious networks. We generated functional connectomes
from resting state EEG (electroencephalography) and fMRI (functional magnetic
resonance imaging) collected from infants and children under the age of 3. We gen-
erated directed multivariate functional connectomes using the ensemble statistical
framework Union of Intersections (UoI) to perform regularized multivariate linear
regression. We also generated pairwise connections using the Pearson correlation
coefficient between each pair of time series in the recording. We found that multi-
variate estimates of functional connectivity from EEG are sparse and small-world,
while pairwise connectomes are lattice-like and spatially correlated. We found a sig-
nificant difference in small-worldness ω (p << 0.0001) and proximity dependence
of coupling strength (p << 0.0001) between pairwise and multivariate EEG func-
tional connectomes. Functional connectomes generated from fMRI were spatially
distributed for both pairwise and multivariate estimates, but we observed a signifi-
cant difference in ω (p << 0.001), with multivariate connectomes clustered tightly
around 0, indicating small-worldness. We observed lateralized structure in the mul-
tivariate fMRI connectomes that remained stable across age groups. In particular,
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coupling between the language network posterior superior temporal gyrus (pSTG)
and salience network supramarginal gyrus (SMG) showed strong positive ipsilateral
connections and strong negative contralateral connections, reinforcing the known lat-
eralization of the language network. The same grid-like structure was observed in
sensorimotor lateral fields coupling with the dorsal attention network intraparietal
sulcus (IPS). This lateralized structure was not found in pairwise estimates.

We used fMRI functional connectomes to predict cognitive development scores as-
sessed with the Mullen Scales of Early Learning (MSEL). We partitioned subjects
into three groups using unsupervised clustering based on their raw MSEL scores.
Multiple feature sets were extracted from the functional connectomes, by principal
components analysis (PCA) and sparse PCA, and by selecting task-relevant func-
tional network pairs. Random forest classifiers were used to predict the Mullen
groups from neural feature vectors. We found that sparse PCs predicted raw scores
significantly better than chance for multivariate connectomes, while both PCs and
sparse PCs scored significantly better than chance for pairwise connectomes. For mul-
tivariate connectomes, functional connectivity between language and salience (SN)
scored better than chance. For pairwise connectomes, coupling between the default
mode network (DMN) and the frontoparietal network (FPN), and between SN and
DMN scored better than chance.

Our understanding of distributed representations of complex sounds in auditory cor-
tex remains incomplete. This is in part due a lack of experimental data for neural
responses to complex naturalistic stimuli. Here, we describe the development of a
large, diverse dataset of natural sounds. The sources and semantic content of the
sounds are described, and acoustic features are calculated for a hand-selected set of
99 high-quality sounds and used to predict semantic labels using a support vector
machine. We briefly discuss the intended use case of the sound database as a stimu-
lus set for the characterization of neural representations of natural sound statistics,
and selection for features that discriminate semantic categories.
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Chapter 1

Introduction

The study of neuroscience seeks to find the neural substrates underlying cognition.
Neural computation operates on many spatial and temporal scales[1], while measure-
ment and interpretation of neural activity is often constrained to a single spatiotem-
poral scale[2]. With the rapid technological and scientific advance of neuroimag-
ing, there are many modalities by which human brain activity can be measured,
including functional near-infrared spectroscopy (fNIRS)[3, 4], magnetoencephalog-
raphy (MEG)[5, 6], electroencephalography (EEG)[7, 8], and diffusion and func-
tional MRI[9, 10, 11]. Each neuroimaging modality is characterized by strengths and
weaknesses of spatial and temporal coverage, resolution, and signal-to-noise consid-
erations[4, 5, 8, 10, 11]. Furthermore, the signal captured by each modality is not
necessarily originating from the same underlying brain activity and functions[11, 12].
Furthermore, brain activity is highly responsive to environmental perturbation, and
small differences in acquisition conditions may introduce confounds that complicate
the analysis of already complex datasets[12, 13]. The work of finding the neural
mechanism underlying a particular behavioral function is thus often the work of
many decades, scientists, and overlapping measurement modalities and experimental
paradigms[13].

One question of particular interest in human neuroscience is the discovery of
neuro-biomarkers of behavioral or neurological phenotypes[14, 15, 16, 17]. Identifying
characteristics of neural activity that correlate with various psychopathologies (e.g.,
executive disorders[18, 19], autism spectrum disorder[20], and insomnia[21] to name
a few) and other neurological conditions (e.g., epilepsy[22, 23], cerebral palsy[24]) is
desirable, both for the potential clinical utility and for the scientific insight such dis-
coveries might offer into the underlying workings of the brain. When first identified,
a novel neuro-biomarker might be modality-specific–for example, fMRI regions of the
default mode network shown to predict insomnia[21]–only for subsequent studies to
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uncover the neural mechanisms at play. Consider the theory of hippocampal index-
ing that was first advanced in 1986[25], nearly 40 years ago, based upon the apparent
importance of the hippocampus in episodic memory retrieval[26]. Much early inter-
est in the mechanisms underlying human memory stemmed from one patient, widely
known as H.M., who underwent an extensive surgical resection of hippocampus and
related areas, and subsequently lost the ability to form new episodic memories[27].
Since the original proposal of hippocampal indexing theory in 1986, behavioral and
neural data ranging from human fMRI to rat single-neuron studies, have provided
supporting evidence[28, 26]. This example is offered here to illustrate that the path
from experimental neural data to cohesive theory is a long and recursive one that
requires the integration of many experimental paradigms, neuroimaging modalities,
and analysis methods[29].

Neural correlates of human pathologies have been studied across many differ-
ent recording and imaging modalities, such as EEG and fMRI. Frequency bands
of local field potentials have been characterized according to correlated behaviors
such as sleep (alpha and delta bands) and working memory (theta band)[30]. Spe-
cific event-related potentials (ERPs) such as the “Negative central”, Nc, wave in
the frontal brain regions[31] differs between neurotypical and ASD (autism spec-
trum disorder) children during facial recognition tasks[32]. EEG is often used in
clinical settings due to the relative ease of acquisition, and its utility in diagnos-
ing conditions that impact brain waves, such as narcolepsy[33]. fMRI biomarkers of
behavior and cognition have been extensively characterized by both correlative and
predictive studies. Many of the major canonical networks of fMRI were developed
based on tasks, behaviors, and functions that correlate with activation of regions
of interest (ROIs). For example, the default mode network, known as the “rest-
ing state” network[34], has been shown to increase activity during periods of quiet
wakefulness, and decrease activity during cognitively intensive tasks. Because the
default mode network is thought to be responsible for self-referential thoughts and
inward-oriented cognition, it is thought that reduced resting-state functional default
mode network (DMN) in autistic subjects[35] may suggest a deficit in self-referential
thought[36]. The frontoparietal network, also known as the executive control net-
work, is located in brain regions such as the prefrontal cortex, which is known to
mediate attention and decision-making. Disruption of frontoparietal activation is
widespread in many psychopathological disorders including depression, schizophre-
nia, and autism[37]. The frontoparietal functional network shows strong activation
during cognitively intensive tasks, and is thought to “switch off” with the default
mode network. Connectivity of the frontoparietal network has been correlated with
general or “fluid” intelligence[38]. fMRI functional networks have also been linked
to measures of cognitive development in infancy and early childhood[39], suggest-
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ing that information about individual differences in cognition could be gleaned from
fMRI-derived biomarkers. These neural correlates of high-level cognitive function
provide biomarkers that can be used in concert with other measures to predict or
understand the neural substrates of complex behaviors or pathologies.

Beyond correlations to observed behavior, fMRI data has also been used to pre-
dict or “decode” the stimuli that evoked the recorded activity. For example, using
machine learning algorithms to predict the contents of natural movie stimuli pre-
sented during recording sessions[40][41]. Connectivity derived from resting state
fMRI recordings have also been used to predict brain maturation[42] using simple
multivariate machine learning techniques. This prediction analysis was then used
to identify features (i.e., biomarkers) of the brain data that were most predictive of
maturity. These predictive neuro-biomarkers can then be interpreted in the larger
context of existing knowledge. Thus, prediction of cognitive function from brain
biomarkers is both a useful tool for diagnostics, and a powerful method for gaining
a deeper understanding of the brain.

In addition to the analysis of signals recorded directly from brain activity, it is
a crucial undertaking of neuroscience to understand the stimuli that evoke brain ac-
tivity. The analysis of sensory stimuli has been of particular interest to theoretical
neuroscientists, who have developed neural-inspired algorithms to decompose natu-
ral stimuli (i.e., visual, acoustic) into sparse features. For example, sparse coding
algorithms have been applied to both images[43] and sounds[44], producing learned
receptive fields that resemble the receptive fields of sensory neurons early in the sen-
sory processing pathways of the brain. Further analysis has sought to identify the
salient acoustic features of human speech[45][46][47] and other vocalizations with
complex semantic and spectrotemporal structure such as birdsong[48][49]. These
insights have been instrumental in mapping neural representations of acoustic fea-
tures[50][51][52]. Thus, the analysis of complex or naturalistic sensory stimuli is
instrumental, both for the development of normative models of sensory processing
in the brain and for the interpretation of recordings from sensory areas.

1.1 Description of Chapters

This dissertation details my work to contribute to the mapping of neural compu-
tation across different modalities. I approach the open problem of characterizing
human brain connectivity using neural data by applying statistical machine learn-
ing methods to EEG and fMRI data collected from infant and young child subjects.
Specifically, I estimated functional connectivity using a regularized regression en-
semble algorithm, UoILASSO, to learn sparse functional coupling between the neural
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populations measured in the data. I showed that functional connectomes estimated
using this method are sparse, stable, and small-world for both fMRI and multiple fre-
quency bands in EEG. I assessed the interpretability of the functional connectomes
and their utility in the search for neuro-biomarkers of cognitive development in early
childhood.

In another project, I collected a large and diverse database of complex natural
sounds. I segmented the sounds into short, standardized samples and characterized
their spectrotemporal structure. In addition, I worked to find acoustic features that
enhance discriminability of semantic categories by classifying sounds using acoustic
features as observation vectors.

Chapter 2 covers background topics relevant to this work, ranging from data
science methods for the analysis and interpretation of high-dimensional datasets,
to components of EEG and fMRI data. I briefly describe Union of Intersections
(UoI), an ensemble machine learning framework that will see extensive use in this
dissertation. I summarize the neural underpinnings of EEG and the functions of its
frequency bands. I describe the major functional networks of fMRI and regions of
interest (ROIs) that will be used in chapters 3 and 4.

In Chapter 3 I generated functional connectomes from EEG and fMRI data col-
lected from infants and young children. I compared the properties of multivariate
functional connectomes estimated using a regularized regression ensemble method,
UoILASSO, with functional connectomes generated using pairwise correlation, the
standard method. I showed that multivariate estimates of functional connectomes
in EEG data produce sparse, small-world networks that cannot be replicated by
thresholding pairwise networks. I also discuss structural differences in the features
of multivariate and pairwise functional connectomes in fMRI, and showed that pair-
wise connectomes show greater correlation to standardized evaluation scores.

in Chapter 4 I used the fMRI multivariate functional connectomes from Chapter
3 as predictors of cognitive development in early childhood. I used unsupervised clus-
tering to group children based on their scores on the Mullen Scales of Early Learning
(MSEL), a measure of early childhood development. I calculated several feature sets
from the functional connectome data and use these as the input observation variables
to a Random Forest Classifier in order to predict Mullen group labels.

In Chapter 5 I describe the collection and characterization of a large database of
natural acoustic objects, developed with the intention of characterizing distributed
representations of complex sounds in rat auditory cortex. I calculated acoustic fea-
ture vectors for standardized sound files in order to identify acoustic features that
predicted semantic categories. I briefly discuss initial attempts to classify sounds
based on acoustic feature vectors. Finally, I examined the predictive power of these
acoustic features by using them to predict the assigned semantic labels.
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Chapter 6 concludes this dissertation and offers closing remarks and reflections
on the potential future directions of the work presented in this thesis.
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Chapter 2

Background

Parametric models in neuroscience

In scientific analyses of brain data, parametric models are used in diverse ways to
explain neural activity. Encoding models map stimuli to brain signals For example,
an encoding model could be used to model auditory cortex activation when pre-
sented with natural sound stimuli, producing spectro-temporal receptive fields. In
the other direction, decoding models are used to “translate” brain activity to identify
the presented stimulus. Decoding models are often used in fMRI, reconstructing the
perceived images using regression or deep learning models[53]. Functional coupling
maps the statistical dependency of the activation of one brain region onto activa-
tion of other brain regions activated simultaneously. Normative models are trained
without brain data, but are used to test a theorized neural mechanism. Examples of
these models abound in cognitive neuroscience and psychology[29][54].

In scientific contexts, predictive power is not the singular purpose of a paramet-
ric model. Models must also be evaluated on the basis of their explanatory power,
and thus their interpretability. While the definition of “interpretability” is both
broad and situational, generally in order to be interpretable in the context of neu-
roscience, a model must be predictive, parsimonious, and stable[55]. Parsimonious
feature selection–that is, selecting the minimal number of features needed to predict
the target variable–while balancing adequate predictive power is necessary for in-
terpretable scientific modeling. Furthermore, both feature selection and estimation
must be stable under perturbation and robust to noise. These rigorous requirements
place a heavy burden on statistical modeling in neuroscience.
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Big Data and L1 Regularization

Advances in neural imaging technology have led to a proliferation of high-dimensional
recording modalities. These rich, high-dimensional datasets permit the investigation
of elusive questions, such as neural representation of complex sensory stimuli, or the
prediction of cognition and behavior from brain data. However, as the dimensionality
of neural data increases, statistical analysis becomes more difficult, as expressed by
the “curse of dimensionality[56].” Fortunately, it has been repeatedly demonstrated
that high-dimensional brain data is often highly constrained to a small subset of
activation patterns, such that observed activity can be expressed by a far smaller
number of features[57]. It is thus often desirable to find a sparse representation, such
that the L0 norm of the data in that basis≪ the dimensionality of the data. Consider
a target signal y ∈ R that is to be modeled by predictive variables x ∈ Rp, mapped
by parameters β ∈ Rp such that:

y = βTx+ ϵ

ϵ ∼ N(0, σ2)

In cases where a sparse β is assumed, feature compression, the selection of a
subset of salient features to explain a target signal, may be induced through regular-
ization. For example, Lasso is a linear regression algorithm that utilizes an L1 norm
regularization penalty to minimize the total magnitude of the model parameters. An
estimate of β constrained by an L1 penalty would then take the form of optimization
problem:

β̂ ∈ argminβ||y − βx||+ λ||β||1
Where λ represents the regularization weight. For sufficiently high values of λ this
L1 constraint induces feature compression by driving components of β to zero. Thus,
a Lasso fit with strong regularization will return a sparse model.

However, regularization alone does not ensure a stable or accurate model. Par-
ticularly in cases where features greatly outnumber data samples, or when features
exhibit high levels of collinearity, an incorrect subset of features may be selected.
While the resulting model may predict the outcome variable with a high level of
accuracy, the model will not be reliably interpretable[58]

The Union of Intersections framework

Regularized regression models such as LASSO are used to fit sparse, predictive para-
metric models. As discussed previously, the utility of a scientific model lies not only
in predictive accuracy, but in its interpretability as a stable, parsimonious predictive
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model. The statistical-learning framework Union of Intersections (UoI) is a modu-
lar, flexible method to balance and enhance model selection and estimation. UoI has
been tested on numerous neural data modalities, parametric models, and statistical
algorithms. The UoI framework divides model selection and model estimation into
separate steps, operating over bootstraps of the neural data. A brief summary of
the procedure of UoILASSO is laid out as described in Bouchard et al., 2017[58] and
Sachdeva et al., 2021[55]:

1. Selection: An intersection operation is used to select model supports (Sj).
Regularization parameter λ is varied over a given range, and for each λj the
Lasso optimization is solved for N resamples of the data to generate parameter
estimates. Only variables that are consistently selected in a specified fraction
of resamples for λj are included in Sj–this is the “intersection” of supports,
which imposes a more rigorous, stable selection criterion for supports.

2. Estimation: Over N resamples of the data, fit each resample for each support
set Sj without regularization (i.e., λ = 0). For each resample, the fit that
performs best according to a chosen criterion (e.g., R2, BIC) is selected. These
fits are then unionized (i.e., averaged), resulting in the final model.

The resulting model is an aggregate fit that preserves predictive power while improv-
ing stability and reducing estimation bias [58][55].

EEG and canonical frequency Bands

EEG, or electroencephalography, is a neural recording modality that captures macro-
scale electrical potentials[30]. These potentials are often decomposed into frequency
bands that have been characterized based on their behavioral correlates and neural
functions. Table 2.1 summarizes the canonical frequency bands used in the the
analysis of EEG signals.

fMRI Networks

This section briefly describes the functional brain networks included in the fMRI data
analysed in Chapter 3. In particular, I will discuss commonly proposed behavioral
and cognitive correlates for each network, and specify regions of particular interest.

The Default Mode Network

The default-mode network (DMN) has been implicated in internally-focused tasks,
such as social cognition, self-reflection, and episodic memory[34]. DMN activity has
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Wave Frequency band (Hz) Function
δ 2-3.99 deep sleep
θ 4-5.99 working memory, spatial navigation

low α 6-8.99 early-life α, begins at lower frequency
α 9-12.99 sleep, rest
β 13-29.99 active concentration, motor feedback

low γ 30-50 attention, perception
high γ 65-90 task-activated

Table 2.1: Traditional frequency bands [59] of brain waves.

been shown to be enhanced during restful or passive periods of wakefulness and
suppressed while a subject is occupied with intensive, externally-focused tasks. The
DMN has also been shown to be associated with areas related to language and speech
comprehension, such as the anterior temporal cortex and middle temporal gyrus. Fi-
nally, the DMN is implicated in “daydreaming,” or spontaneous, off-task thoughts.
Thus, the DMN can be simplistically described as the network of introspection, inte-
grating multiple cognitive functions to a coherent inner narrative[60]. Some studies
have shown reduced resting-state functional DMN in autistic subjects[35] and may
suggest a difference in self-referential thoughts[36].

The DMN has been modeled as part of a trio with the salience (SN) and fron-
toparietal (FPN) networks. Specifically, SN has been interpreted as involved in
“switching” from DMN to FPN when behaviorally relevant stimuli are detected[61].

The Frontoparietal Network

The frontoparietal network (FPN), also commonly referred to as the central executive
network, has been shown to play a central role in mediating cognitive control–the
process by which goals influence behavior[37]. The FPN is strongly linked with goal-
oriented behavior and problem solving, and FPN coupling patterns shift significantly
during rapid task-switching[38] and object-, feature-, and category-based attentional
control[62]. Disruption of FPN activation is widespread in many disorders including
depression, schizophrenia, and autism[37]. Furthermore, distributed coupling of the
FPN, and in particular resting-state coupling to the DMN, is associated with fluid
intelligence[38].
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The Salience Network

The salience network, as the name may suggest, has been characterized as a network
of brain regions that direct attention to behaviorally relevant or novel stimuli. The
salience network shows activation in response to all manner of sensory modalities,
including visual “oddball” stimuli[63], task error[64], and pain[65]. It has also been
shown in an fMRI study that salience network functional connectivity was suppressed
in dyslexic subjects during a narrative comprehension task[66]. In particular, the
right dorsal anterior insula (dAI) has been described as a “causal outflow hub” that
mediates the activation of other major networks[67]. This includes generating control
signals that play a causal role in switching between the central-executive network
(also known as the frontoparietal network) and the default-mode network[68].

The Dorsal Attention Network

The dorsal attention network (DAN) plays a role in the orientation of visual attention.
In particular, it has been demonstrated that DAN is involved in top-down attention,
and the selection of visual stimuli during task-driven behavior[69]. This stimulus
selection mechanism has been observed to be anticipatory–that is, the DAN activates
when a visual stimulus is expected, and moves visual attention in the expected
direction][70]. The primary regions of focus in the DAN are the intraparietal sulcus
(IPS) and the FEF (frontal eye field). It has been shown that in children the DAN
shows greater intra-network connectivity than in adults, whereas functional coupling
of DAN to regions outside the network is stronger in adults than in children[71].

The Cerebellar Network

The cerebellum has long been known to be involved in motor control and learning[72].
The contributions of the cerebellum to sensorimotor tasks is diverse[73][74], including
oculomotor control, speech articulation, and hand and limb movement. Real-time
prediction, timing of synchronous action, and inhibition of M1 excitability have all
been shown to depend upon the cerebellar network[75]. However, more recent work
has suggested that the cerebellum plays a greatly expanded role in higher-level tasks
such as language and working memory, emotional processing, and executive tasks[76].
In addition, the neocerebellum has been shown to contribute to networks associated
with high-level cognitive function such as the default mode, central executive, and
salience networks[77]. It has been shown that in subjects with schizophrenia, cere-
bellar functional connectivity to DMN and FPN is disrupted[78].
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The Language Network

The language functional network encapsulates different regions of the brain that
are implicated in language processing. In particular, Wernicke’s area, located in
the superior temporal cortex, is associated with receptive language skills, i.e., speech
comprehension. By contrast, Broca’s area, in the inferior frontal cortex, is associated
with language production, i.e., speech[79]. Functional connectivity in the language
functional network has been studied extensively, and it has been demonstrated that
language processing shows high levels of lateralization in the brain[80]. In particular,
high levels of left-side lateralization have been observed in language learning. In
analysis of resting-state functional connectivity, this left-side preference was observed
in both Wernicke’s and Broca’s areas as the language network develops in children
3-5 years of age[81].

The Visual and Sensorimotor Networks

Functional connectivity studies of infant brains have shown that the visual and sen-
sorimotor networks are established and functionally synchronized from birth[82], in
contrast to networks such as the DMN[34], which are not temporally synchronized at
birth and develop over time. The visual network comprises regions that contribute
to processing of visual information. The primary and associative visual cortices are
contained in the occipital lobe, which is responsible for visuospatial processing[83].
The sensorimotor network is widely connected in order to coordinate complex motor
movement. In addition to connectivity to the visual network, the sensorimotor net-
work is highly synchronized with the frontoparietal and cerebellar networks during
moving tasks. Furthermore, for the coordination of accurate movement, connectivity
with the intraparietal sulcus (DAN) was observed as a correlate[84].
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Chapter 3

Multivariate functional
connectivity estimation in fMRI
and EEG

3.1 Introduction

Connectivity within the brain has long been studied as a means to predict behav-
ior, cognition, and development[85]. Long- and short-range connections between
neural populations integrate local circuit-level computations to generate large-scale,
complex brain function. The mapping of these high-level connections generates a
connectome based on a given neuroimaging modality or collection of modalities that
can measure activity from across the whole brain. The mapping of the human con-
nectome in particular presents extraordinary challenges, both due to the complexity
of human brains, and the necessity of non-invasive, ethical techniques for data col-
lection. With advances in neuroimaging has come a wealth of modalities that enable
non-invasive human connectomics. These include (but are certainly not limited to):
EEG, MEG, fNIRS, diffusion MRI, and functional MRI. Each modality is subject
to different constraints of spatial and temporal resolution and coverage. As a result,
connectomes from the same subject, taken on the same day with the same envi-
ronmental conditions, but recorded using different modalities will capture different
types of brain structure. Furthermore, the methods by which measurements of neu-
ral activity are “mapped” to a connectome vary widely, both between neuroimaging
modalities and within them. As the fields of neuroimaging and data science ad-
vance in tandem, new avenues for data-driven connectomics become available. The
analyses in this chapter and the next were carried out in collaboration with a large
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consortium of domain experts specializing in different neuroimaging modalities. The
overarching goal of the consortium is to map human brain data to early childhood
cognitive developmental trajectories. Our part in the collaboration was to develop a
stable multivariate method of estimating a human connectome that can be applied
across multiple modalities, leveraging ensemble learning methods and regularized
linear regression.

Structural and functional connectivity present complementary methods of defin-
ing a brain connectome. Functional connectivity is defined through the temporal
association of activation between neural populations[86]. Structural connectivity
endeavors to reconstruct the physical, anatomical structure of white matter in the
brain. Thus, a structural connectome is likely to remain stable over the course of
a single recording session (i.e., minutes). In contrast to a structural connectome, a
functional connectome may vary dynamically over time–depending on such factors as
the task or alertness of the subject. This variability in functional connectivity can be
utilized to identify dynamic relationships between neural populations[87], highlight-
ing stable connections that are used frequently. However, instability in the estimated
functional connectome–resulting from factors such as sampling variability [88]–may
result in fictitious dynamic variability that impedes interpretation of functional net-
works. In this chapter, I will discuss a method of estimating functional connectivity
that enhances the stability and interpretability of the functional connectome.

Estimation of the functional connectome relies solely upon correlations between
time series of recorded neural activation, and generally does not require a model
based on assumptions of the underlying neurobiology. Because it is purely correlative
in nature, functional coupling cannot be interpreted as a direct, causal connection
between two regions. Rather, strong co-activation between two regions, A and B, may
be explained by a multitude of underlying structural connectomes. For example, A
and B may appear strongly correlated as a result of a third signal, C, driving both A
and B in parallel. Alternatively, the correlation may be due to “daisy chaining,” such
that A strongly drives C, which in turn strongly drives B, resulting in an estimated
connection between A and B (Figure 3.1). A purely correlative approach is also
vulnerable to spurious correlations caused by structured noise or other confounds
(e.g., signal leakage caused by conductivity in EEG recordings, head movements
in fMRI). It is thus desirable to account for noise and spurious variability when
estimating the functional connectome. While rigorously pre-processing data can
remove known confounds, spurious correlations are more difficult to address. For this
reason, I will argue that a multivariate approach to functional connectivity mitigates
common failings of functional connectomes based on purely pairwise estimation.

Functional connectome analysis is used for a wide array of neuroimaging modal-
ities, including functional near-infrared spectroscopy (fNIRS), magnetoencephalog-
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Figure 3.1: Functional connectivity is vulnerable to spurious correlations
that may misattribute connectivity. Ground truth connectivity is shown in blue
on the left, estimated connectivity is shown in orange on the right. The top panel
shows that due to a lack of explaining away, spurious correlation may be found for
an unconnected pairs of nodes that each share variability with a third intermediate
node. The middle panel shows that if multiple nodes are interconnected, shared
variability may be attributed to the wrong pair of nodes. Finally, the bottom panel
shows that methods such as purely pairwise approaches do not capture directionality,
potentially missing crucial asymmetric structure in the connectome.
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raphy (MEG), electroencephalography (EEG), and has been particularly prominent
in the field of functional MRI [89]. Each of these modalities comes with benefits
and drawbacks: EEG is relatively easy to collect and boasts decent temporal reso-
lution (originally sampled up to 512 Hz and subsequently down-sampled to capture
canonical frequency bands described in Chapter 2, up to 90kHz), but is limited
to scalp-level signals and vulnerable to structured noise from conductivity leakage
and muscular movement artifacts; fMRI measures the full brain volume with de-
cent spatial resolution (3× 3× 3mm3 voxels), but has very low temporal resolution
(c.1Hz)[90][91]. In this chapter, I will use a novel statistical machine-learning frame-
work, Union of Intersections (UoI, see Section 2), to generate multivariate estimates
of functional connectivity for resting state EEG and fMRI data, and characterize
the graph-theoretic properties of the resulting networks. In this chapter I will argue
that UoILASSO, a regularized ensemble learning algorithm developed[58] and rigor-
ously tested [55] in the Bouchard lab, provides a promising avenue for functional
connectivity estimation that can be applied to diverse neuroimaging modalities.

3.2 Methods

Neural data

Neural data was provided by collaborators through the Gates Developmental Imaging
Consortium. This section will outline the parameters of recording and pre-processing
of data as reported by our collaborators.

EEG

EEG data was provided by Professor Laurel Gabard-Durnam and Dr. Carol Wilkin-
son. The work for the EEG section used data from the Infant Sibling Project (ISP),
a longitudinal study of infants for the purposes of studying autism spectrum disorder
(ASD). All participants were born full-term (i.e., at least 36 gestational weeks) to
families with no known history of genetic disorders, and had at least one elder sibling
at home. Participants were sorted into two groups: the low-risk control group (LRC)
and those at high risk of autism (HRA). The basis of this designation was family
history–LRC participants had no siblings or first- or second-degree family relations
diagnosed with autism. Our analysis in this chapter exclusively utilized data from
the LRC group.

The data was collected at the Boston Children’s Hospital in a light-attenuated
and sound-isolated experiment room. Participants were instructed to sit on their
caregivers’ laps and looked straight to the experimental screen in front of them,
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Figure 3.2: The layout of the 128 channel sensor cap used for collecting the EEG
dataset. The channelse highlighted in blue are part of the 10-20 channel montage
(most frequently used subset of channels that covers headspace with limited overlap
in signal recording). Electrodes highlighted in yellow ones were also processed by
HAPPE.

approximately 65 cm in between. Recording sessions lasted for between 2-5 minutes.
Data was collected using NetStation 4.5 software (Electrical Geodesics, Inc., Eugene
OR) with NetAmps 300 Amplifier and 128-channel Hydrocel Geodesic Sensor Nets
(Electrical Geodesics, Inc., Eugene OR). For a better fit to infant patients, electrodes
125-128 were removed physically from the cap. The layout of the recording cap is
shown in Figure 3.2.

The data was recorded at 500Hz and run through the Batch EEG Automated
Processing Platform (BEAPP)[92] and the Harvard Automated Processing Pipeline
for Electroencephalography (HAPPE)[93] to clean up artifacts and generate power
spectral densities (PSD). The full HAPPE pipeline is discussed in full elsewhere, but
the broad steps and specific parameters are listed here. A band-pass filter of 1Hz-
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249Hz is applied to baseline EEG data. Channels to be processed by HAPPE are
then sub-selected based on the layout of the electrode cap. The selected channels for
ISP are highlighted in yellow (the International 10-20 electrodes, which achieve near-
total coverage of the scalp) and blue (additional electrodes). Electrical noise (i.e.,
60Hz noise) and high-impedance channels are removed from the dataset. Several
stages of components analysis are then used to remove artifacts (e.g., scalp or muscle
movements). Data is then evaluated for remaining artifacts in 2-second segments,
and all segments containing artifacts are rejected. Recording sessions were excluded
from the dataset if more than 20% of the selected channels were rejected, or if there
were fewer than 40 seconds of usable (i.e., artifact-free) data.

Data was divided into canonical frequency bands theta (4-5.99Hz), low alpha
(6-8.99Hz), high alpha (9-12.99Hz), beta (13-29.99Hz), low gamma (30-50Hz), and
high gamma (65-90Hz). Our analysis focused primarily on the high-gamma band,
but was also applied to theta, beta, low gamma, and low alpha.

fMRI

All fMRI data used in this chapter was drawn from the BAMBAM (Brown university
Assessment of Myelination and Behavioral development Across Maturation) study,
pre-processed and provided by Dr. Muriel Bruchhage. A lengthier description of
the dataset is included in her paper[39]. BAMBAM is an ongoing longitudinal study
of neurodevelopment in neurotypical, healthy children. Participating children were
assessed approximated every 6-12 months. Each visit included multi-modal MRI
(including the fMRI recordings that are the basis of our analysis), performance as-
sessments, and parental reports. Children with risk factors such as in-utero alcohol
exposure, preterm or otherwise medically complex births, or familial history of psy-
chiatric or learning disorders were excluded from the study. MRI data was acquired
from sleeping patients, without sedatives.

All neuroimaging data were acquired on a 3 T Siemens Trio scanner with a 12-
channel head RF array. rsfMRI data were acquired during natural sleep with the
following parameters: TE=34 ms, TR=2.5 s, flip angle=80°, field of view = 24 ×
24cm2, imaging matrix = 80 × 80, and 32 interleaved 3.6 mm slices (for a voxel
resolution: 3×3×3.6mm3), BW=751 Hz/pixel, and GRAPPA acceleration factor of
2. 132 volumes were acquired for a total acquisition time of approximately 7:00 min.
A total of 32 ROIs were defined using the CONN software toolbox for functional
connectivity analysis[94]. For a visualization of the placement of the 32 ROIs used,
see Figure 3.3[39].
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Figure 3.3: Resting state fMRI networks, figure courtesy of Dr. Bruchhage[39]. a.
cerebellar: anterior, posterior. b. default mode: MPFC, medial prefrontal cortex;
left and right LP, lateral parietal cortex; PCC, posterior cingulate cortex. c. dorsal
attention: left and right FEF, frontal eye field; left and right IPS, inferior frontal
gyrus. d. fronto-parietal: left and right LPFC, lateral prefrontal cortex; left and
right PPC, posterior parietal cortex. e. salience: left and right anterior insula, left
and right RPFC, rostral prefrontal cortex; left and right SMG, supramarginal gyrus.
f. sensorimotor: superior, left and right lateral. g. visual: medial, occipital, left and
right lateral. h. language: left and right IFG, inferior frontal gyrus; left and right
pSTG, posterior superior temporal gyrus.

Functional connectivity estimation

Multivariate coupling models

To fit a multivariate coupling model, I used the statistical framework, UoILASSO

due to its stability, selectivity, and accuracy (see Background, Chapter 2, for a
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discussion of Lasso and the UoI framework). Multivariate functional connectomes
were estimated using the same algorithm for both EEG and fMRI.

I will define the time series of each neural signal, as measured by an EEG electrode
or an fMRI ROI, as ni(t). Multivariate coupling was calculated independently for
each time series in the recording session.

ni(t) = βi0 +
N∑
j ̸=i

βijnj(t)

Pairwise functional connectivity was calculated as the Pearson correlation be-
tween the activity of each pair of signals in the recording session. Figure 3.4 shows
the correspondence between the matrix of coupling coefficients and the resulting
connectome graph.

Functional connectome creation and analysis

For the multivariate connectomes, I created both symmetrized and directed graphs.
To create symmetrized graphs, edge weight wij between node i and node j was set

as the mean βij =
βij+βji

2
. I analyzed the resulting graphs in order to quantify

key comparisons between multivariate and pairwise FC. I quantified graph spatial
distribution as Pearson correlation ρ of correlation coefficient wij to distance dij.

Small worldness ω and sparsity

I calculated small worldness, ω = Lr

L
− C

Cl
, where L is the characteristic path length of

the network, Lr is the characteristic path length for an equivalent random network,
C is the clustering coefficient, and Cl is the clustering coefficient of an equivalent
lattice network. ω ∈ [−1, 1], where ω close to -1 is a lattice graph, 1 is a random
graph, and ω close to 0 is a small world graph. I also calculated sparsity, the fraction
of zero edges in the graph for FC graphs. For pairwise graphs, I applied a series of
thresholds T ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] such that |βij| < T were set to
zero. Sparsity and ω were calculated for each thresholded graph.

One core strength of UoILASSO is its stable selectivity. In particular, the stability
of support selection in UoILASSO is ensured by the intersection step of UoI. The
algorithm is not constrained to a predetermined level of sparsity, instead discarding
supports that are not consistently predictive across multiple folds of the data. Thus,
the sparsity of a multivariate UoILASSO network is a parameter that is inferred from
the data itself, and can be examined as a potentially salient feature of the network. In
order to compare ω values between multivariate and pairwise graphs, I considered the
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Figure 3.4: Connectomes were generated by setting Aij = βij, where Aij is the
adjacency matrix of the graph and βij is the coupling coefficient between electrodes
i and j.

ωpairwise for the thresholded network closest in sparsity to the multivariate network
for the same subject, and conducted a paired-sample t-test for each filter-band and
age group.

Correlation of coupling strength to node distance

In order to quantify the dependence of coupling strength between two regions on
spatial proximity, for each pair of nodes ni and nj I calculated the Pearson correlation
coefficient ρij between distance dij between the sensors and coupling weight βij.
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Connectome templates

In order to identify trends in functional coupling, I created aggregate connectome
templates by taking a median of the functional connectomes for participants within a
given 90-day age range. Because the ages of participants were unevenly distributed,
templates were calculated only for ranges with 12 recordings or more. The n = 12
was chosen to balance the goal of producing templates spanning the full age range
of available subjects while encompassing data from as many subjects as possible.
If more than 12 subjects fell within a given age range, the appropriate number
of subjects were selected at random. Templates were calculated as the median of
the weight matrices, so that βtemplate = M({β}subjects). The median was selected
rather than the mean in order to preserve the selectivity of the networks. Using the
median β means that if more than half of the values in {βij}subjects are zero, then

the aggregate template βtemplate
ij will also be set to zero. Conversely, if more than

half of the values in {βij}subjects are high, then the aggregate template βtemplate
ij will

also be high. In this way, I preserve sparsity in the aggregate connectome, while also
preserving high-power functional connections.

To examine the stability of this method of generating aggregate templates, I
analyzed age ranges which contained n > 12 subjects. For each such age range,
I aggregated templates for all n choose 12 sets of 12 subjects, and calculated the
standard deviation for each weight βij.

I further examined variance of edge weights within 90 day age window by calcu-
lating the standard deviation, mean, and median of all edge weights within all age
windows with n≥12 subjects. Within each age group, I calculated the Spearman
correlation coefficient between the standard deviation of each edge weight and the
absolute value of the mean and median of the edge weight. The results are reported
in Table 3.1.

fMRI network interpretation and Mullen score comparison

I consulted fMRI functional connectivity literature[63] and collaborated with fMRI
domain expert Dr. Muriel Bruchhage to identify pairs of ROI pairs of particular in-
terest in the prediction of early childhood development. The Mullen Scales of Early
Learning (MSEL) provide scores in the areas of expressive language, receptive lan-
guage, fine motor, gross motor, and visual reception, as well as the verbal composite,
nonverbal composite, and early learning composite (ELC). I visually examined cor-
relations between Mullen scores and ROI pairs identified from visual inspection of
the aggregate template networks.
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I examined βij for ROI pairs that have been shown in the literature[39][61][34] to
be relevant to a given area of cognition. The functional couplings examined for each
of the areas measured by the MSEL are listed below.

For receptive language, I examined functional connectivity of posterior superior
temporal gyrus (pSTG) in the language network (Wernicke’s area), both incoming
and outgoing. I examined contributions of the salience network (SN), particularly
the anterior insula, which is considered a hub of outgoing top-down signals for salient
signal selection, and the supramarginal gyrus (SMG), which is implicated in phono-
logical processing[95]. I also visualized contributions of the frontoparietal network
(FPN) to the pSTG and IFG[96], especially lateralized contributions. For expressive
language, I examined functional connectivity of inferior temporal gyrus (IFG) in the
language network (Broca’s area). For visual reception, I examined functional con-
nectivity of the visual network, particularly contributions from the dorsal attention
network (DAN) and the SN. For fine and gross motor scores, I examined the func-
tional connectivity of the cerebellar network and the sensorimotor network. I also
examined contributions of the visual network, to consider the possibility of sensory
feedback, and the frontoparietal network, for top-down influence of task-oriented be-
havior. I also considered functional connectivity between sensorimotor and dorsal
attention networks due to evidence in the literature implicating the dorsal attention
network in sensorimotor inhibition[97].

In order to find specific ROI pairs that showed functional coupling consistently
over time, I visualized our pre-selected pairs of networks for 3-month aggregate tem-
plates. Note: for clarity of interpretation, it is worthwhile to reiterate that in all
included matrix visualizations in this chapter, row i represents the contributions to
the ith ROI by all other ROIs j ̸= i. That is, for multivariate networks, the ROIs on
the x-axis of coupling matrices are the regressors, while the ROIs on the y-axis are
the targets. For this reason, I will discuss the ROIs on the x-axis as “contributing
to” those on the y-axis. Since the pairwise coupling networks are symmetric, this
distinction does not apply to them.

Functional connectivity correlates of MSEL scores

I visualized the correlations of functionally relevant ROI pairs for the areas of the
Mullen assessment. The primary purpose of this analysis was exploratory in order
to identify features of the functional connectome that might subsequently be used
for Mullen score prediction. Some ROI pairs of interest are shown in Figure 3.14 for
fine motor scores, Figure 3.15 for receptive language scores, and Figure 3.16 for early
learning composite scores, along with the linear regression fit. Table 3.2 reports
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accompanying Spearman correlations with all zero-valued weights removed before
the correlation is calculated.

I calculated the Spearman correlation for each MSEL score to all edge weights in
the connectome, dropping self-connections (the diagonal) and zero-valued datapoints.
P-values were corrected for false discovery rate using the Benjamini-Hochberg pro-
cedure. Figure 3.17 shows the correlation matrices for Expressive Language scores,
while equivalent figures for the other scores can be found in Appendix A.

3.3 Results

Multivariate estimates of functional connectivity for EEG
produce sparse, small-world, spatially distributed networks

Functional connectivity in pairwise graphs displayed coupling coefficients that corre-
lated strongly with proximity between electrodes (Fig 3.5e-f). Furthermore, pairwise
graphs consistently displayed “daisy chaining” connections, such that if proximate
electrodes A and B display powerful correlations, and B shares a powerful correlation
to electrode C, electrode A will also appear to couple strongly to electrode C. This
effect is an inevitability of pairwise FC estimation, because shared variability is not
“explained away” once accounted for by another coupling connection. Thresholding,
a common practice in FC estimation, does not address this shortcoming. In fact,
thresholding serves only to preserve the strong connections of proximate electrodes,
while eliminating smaller, but potentially meaningful coupling. Fig 3.5d demon-
strates how pairwise FC graphs grow closer and closer to a lattice structure (ω < 0)
as they are thresholded to higher levels of sparsity.

EEG data suffers from significant signal spread, resulting in high multi-collinearity
between signals from nearby electrodes. Pairwise estimates of functional connectiv-
ity fail to explain away shared variability, resulting in highly redundant spurious
connections. Utilizing a multivariate approach, such as UoILASSO, explains away
covariance as a part of the fitting process, reducing the dominance of short-range,
redundant connections. As a result, multivariate graphs can reveal weaker but still
significant connections that would be lost in thresholding for pairwise networks. Fur-
thermore, UoILASSO is regularized and selective, and thus resulted in sparse networks
without sacrificing accuracy. As shown in Fig 3.5d and Fig 3.6e, these sparse multi-
variate networks were consistently small-world (ω close to 0). A paired t-test showed
a highly statistically significant difference between ω distributions for multivariate
versus pairwise connectomes (p<<0.0001, n = 42) for all frequency bands and age
groups. The small-worldness of multivariate aligns with previous work characterizing
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Figure 3.5: Multivariate coupling models produce sparse, small-world, spa-
tially distributed functional connectivity networks in resting state EEG
data. a. Comparison of a weight matrix for a representative example of the high-
gamma frequency band component of resting-state EEG data collected from a 6
month old subject. Pairwise FC (top) is dense, and coupling strength is heavily de-
pendent on the physical proximity between each pair of electrodes. b. high-gamma
resting state, 12 month old subject. c.high-gamma resting state, 36 month old sub-
ject. d. Small worldness, ω vs. sparsity for multivariate and thresholded pairwise
graphs. e. Coupling weight as a function of electrode distance for high-gamma net-
works for all subjects aged 6-36 months. f. Median Pearson correlation coefficient ρ
of coupling strength to electrode-distance for all high gamma subjects. g. Median ω
for all high gamma subjects.
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brain networks as innately small-world[98][99], and encouraging indicator that UoI
multivariate EEG connectomes reflect underlying properties of the brain.

Multivariate connectomes were highly spatially distributed compared to pairwise
estimates. While multivariate FC does select strong supports from proximate elec-
trodes, it also shows more strong, long-distance connections (Fig 3.5e-f). I calculated
the correlation coefficient of coupling weights βij to node distance dij for each sub-
ject. Paired t-tests for each frequency band and age group shows a highly significant
difference between pairwise and multivariate groups (p<<0.0001,n = 42).

Multivariate fMRI functional connectomes show sparse,
asymmetric network activations

Pairwise functional connectivity estimation for fMRI did not display the same proximity-
dependence or lattice structure as EEG. Pairwise fMRI connectomes show spatial
dependence of coupling similar to multivariate networks. Correlation ρ between ROI
distance and coupling strength did not vary significantly between multivariate and
pairwise networks (t-statistic = 0.252, p = 0.8).

Furthermore, thresholding pairwise networks did not consistently produce lat-
tice (ω close to -1) networks as seen in the EEG data (Fig 3.5d). As seen in Fig
3.7f, at levels of sparsity close to their multivariate counterparts, pairwise graphs
are relatively small-world (ω close to 0). However, while the difference in small-
worldness between multivariate and pairwise connectomes was not as striking as for
EEG connectomes, a paired t-test shows that the difference is statistically significant
(t-statistic=6.03, p=2.11e-08).

Multivariate fMRI templates show stable selectivity for many nodes,
with some highly variable couplings

Figure 3.8 demonstrates a core difference between multivariate and pairwise esti-
mates of connectomes. The standard deviation σ of bootstrapped aggregate age
templates for multivariate networks showed a high percentage of connections with
highly stable coupling values (σ close to 0), with a long tail showing some highly
variable connections (Fig 3.8). In particular, the coupling to visual functional net-
work appeared to vary strongly across target networks, with particularly variable
couplings to the lateral visual fields. A Kolmogorov-Smirnov test (KS test) between
the standard deviation distributions shown in Figure 3.8d-f show a statistically sig-
nificant difference between pairwise and multivariate templates for all eligible age
groups (p¡¡0.0001, n = 992).
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Figure 3.6: Multivariate EEG functional connectomes are sparse, small-
world, spatially distributed across frequency bands. a-c. Functional connec-
tivity network (pairwise top, multivariate bottom) for 36-month old example subject
shown for different frequency bands: a. theta b. beta c. high gamma. d. Functional
coupling vs. node distance for each frequency band. e. ω vs network sparsity for
each frequency band. f. bar graphs of median ω and ρ for each frequency band.
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Figure 3.7: fMRI functional connectomes are small-world and spatially dis-
tributed for both pairwise and multivariate estimates. a. Median functional
connectivity template for subjects aged 3-6 months. n = 12. b. Template for 12-15
months. c. Template for 19-22 months. d. Coupling strength vs. ROI distance
for subjects in corresponding age group. e. Median Pearson correlation coefficient ρ
between coupling strength and ROI distance. f. Small worldness, ω vs. sparsity for
multivariate and thresholded pairwise graphs. g. Distribution of ω, where pairwise
ω is calculated on a network thresholded to the level of sparsity of the corresponding
UoILASSO network.
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Figure 3.8: Multivariate fMRI connectome templates show a large fraction
of stable couplings, but also some highly unstable couplings. a-c Standard
deviation of bootstrapped aggregate templates for pairwise (top) and multivariate
(bottom) functional networks, with n = 12 subselected from N available subjects.
a. 120-210 days, N = 23, b. 300-390 days, N = 20,c. 360-450 days, N = 25. d-f
kde-smoothed distribution of standard deviations for listed age ranges.
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Furthermore, Figure 3.9 and Table 3.1 show that the standard deviation of mul-
tivariate connectome weights was significantly correlated with the magnitude of the
mean and median value of that edge weight. This suggests that highly weighted
ROI-ROI connections are also prone to greater variability.

Multivariate fMRI functional connectomes show stably sparse
connections and reveal lateralization through negative couplings

While graph theoretic measures indicate that thresholded pairwise connectomes have
similar small worldness and spatial distribution to multivariate connectomes (Fig
3.7), the structure of coupling between functional networks differed greatly between
pairwise and multivariate estimates. In multivariate aggregate age-group templates,
positive intrahemisphere connectivity was a common theme. In particular, strong
positive connections on ipsilateral pathways and conversely strong negative connec-
tions on contralateral pathways.

Consider Fig 3.10, which showed sensorimotor coupling to dorsal attention. The
multivariate connectomes showed a locus of contributions from intraparietal sulcus
(IPS) to lateral sensorimotor fields, with negative contralateral coupling and positive
ipsilateral connections. The relative consistency of this locus between age groups may
reflect the relatively early functional synchronization of the sensorimotor compared
to other networks[82]. By contrast, pairwise connectomes lose the negative con-
tralateral connections altogether, while also placing less total power in the ipsilateral
connections.

Figure 3.11 shows another example between pSTG, which contains Wernicke’s
area, and supramarginal gyrus, which has been shown to support word process-
ing[100]. Between 3-6 months and 19-22 months, the lateral connections develop
further, potentially suggesting maturation of the salience network. Anterior insula
also showed positive ipsilateral coupling to IFG, a region that contains Broca’s area,
which is important in speech production[79]. As discussed in Chapter 2 background,
the dorsal anterior insula in the salience network acts as a hub that selectively exerts
top-down control on other major networks[67]. These strong, consistent connections
are promising for potential prediction of language skills.

Figure 3.12 is challenging to interpret due to highly inconsistent connections over
time. For example, the positive ipsilateral coupling of left-side pSTG to posterior
parietal cortex (PPC) appeared in the first two age brackets (so 3 months to 9
months), but not in older children 19-22 months. PPC has been shown to mediate
manipulation of working memory in cognitively demanding tasks[101]. The nature
of this connection is difficult to assess in sleeping infants, but may merit further
examination. The only consistent connection in the language-frontoparietal network
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Figure 3.9: Standard deviation of edge weights scales with mean edge
weight. a-d: standard deviation plotted against mean edge weight for age groups
a. 90-180 days. b. 180-270 days. c. 270-360 days. d. 360-450 days. e-h: standard
deviation plotted against median edge weight for age groups e. 90-180 days. f. 180-
270 days. g. 270-360 days. h. 360-450 days.
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Multivariate

Ages n
median
ρ

med
p-val

mean
ρ

mean
p-val

90-180 19 0.064 0.0449 0.267 1.2E-17
120-210 23 0.092 0.0039 0.264 3.1E-17
150-240 16 0.097 0.0022 0.277 7.2E-19
180-270 13 0.098 0.0020 0.261 5.7E-17
210-300 12 0.123 0.0001 0.273 2.1E-18
240-330 14 0.129 0.0000 0.293 3.8E-21
270-360 14 0.091 0.0041 0.256 2.6E-16
300-390 20 0.087 0.0064 0.289 1.6E-20
330-420 25 0.063 0.0482 0.287 3.2E-20
360-450 25 0.051 0.1109 0.303 1.9E-22
390-480 15 0.071 0.0249 0.259 1.2E-16
570-660 12 0.182 0.0000 0.345 4.4E-29

Pairwise

Ages n
median
ρ

med
p-val

mean
ρ

mean
p-val

90-180 19 0.005 0.8840 -0.018 0.5658
120-210 23 -0.056 0.0806 -0.082 0.0101
150-240 16 0.050 0.1177 0.014 0.6704
180-270 13 0.055 0.0862 -0.040 0.2083
210-300 12 0.006 0.8562 -0.059 0.0628
240-330 14 0.004 0.9070 -0.008 0.7912
270-360 14 0.019 0.5502 0.025 0.4398
300-390 20 -0.114 0.0003 -0.132 0.0000
330-420 25 -0.075 0.0177 -0.064 0.0440
360-450 25 -0.110 0.0005 -0.079 0.0125
390-480 15 -0.024 0.4533 -0.114 0.0003
570-660 12 -0.037 0.2486 -0.045 0.1525

Table 3.1: Standard deviation of connectomes edge weights shows signifi-
cant correlation to magnitudes of corresponding mean and median weight
values for multivariate connectomes. Spearman correlation coefficients of stan-
dard deviation with absolute value of mean and median edge weights for multivariate
and pairwise connectomes within 90 day age windows.
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Figure 3.10: Contributions of dorsal attention network to sensorimotor net-
work show lateralized connectivity: Multivariate functional connectivity net-
works showcase strong negative contralateral weights from dorsal attention intrapari-
etal sulcus (IPS) to lateral sensorimotor during periods of intensive motor learning.

pair was a negative ipsilateral right-side coupling between the pSTG and the lateral
prefrontal cortex (LPFC). LPFC is widely considered to be a key region in cognitive
control tasks, and in some cases right-side LPFC activation has been observed to
correlate negatively with task performance[102]. I identified this consistent negative
weight as a candidate for Mullen score prediction.

Finally, Figure 3.13 once again showed strong connectivity of the pSTG, specif-
ically contributions from lateral parietal default mode network. Positive ipsilateral
and negative contralateral structure show a consistent right-lateralized connections
that persist across age groups. This finding appears to be at odds with the known
left-side lateralization of the language network[81].

In all the examples discussed above, pairwise connectomes shared the same one or
two strongest positive ipsilateral connections, but not the nearby contralateral nega-
tive correlations that appeared in multivariate connectomes. The contralateral con-
nections that are distinctly negative in multivariate estimates tend to be inconsistent
in pairwise estimates, often near zero or faintly positive. The hemispheric structure
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Figure 3.11: Contributions of salience network to language network show
lateralized structure for IFG and pSTG: Multivariate functional connectiv-
ity shows positive ipsilateral connectivity and negative contralateral connectivity
between salience network supramarginal gyrus and language network pSTG (Wer-
nicke’s area). Anterior insula contributes strongly to IFG (Broca’s area).

of the multivariate connectomes seems in line with published literature[103].

Selectivity of multivariate functional connectivity estimates improves
visual interpretability of connectome, but may not improve correlation
with behavioral measures

In examining the estimated functional connectomes, I found that the multivariate
and pairwise networks showed very different core structures, as discussed above. The
sparse feature selection of the multivariate connectomes made it significantly easier
to identify dominant edges in the network, resulting in easier interpretation during
visual inspection of functional networks.

However, as shown by Figure 3.17, pairwise connectomes show much stronger cor-
relation with raw Mullen scores, while multivariate connectomes show no statistically
significant correlations. In particular, significantly correlated edges appear in clusters
for pairs of functional networks, such as language-default mode and sensorimotor-
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Figure 3.12: Contributions of frontoparietal network to language network
show evolving contributions to pSTG. Both ipsilateral and contralateral cou-
plings can be seen, but pSTG-PPC appears more likely to show positive ipsilateral
coupling and negative contralateral coupling.

visual. This structure is replicated across the other Mullen areas (fine motor, gross
motor, receptive language, and visual). By contrast, MSEL t-scores are not signifi-
cantly correlated with either multivariate or pairwise connectomes.

I plotted Mullen scores against connectome edges that stood out during visual
inspection of aggregate connectome templates (as in Figures 3.10-3.12). Figure 3.14
shows examples of connectome edges that correlate with the Fine Motor raw score,
particularly between the sensorimotor network and the right-side dorsal attention
network, and the cerebellar network to the salience network. Figure 3.15 shows
consistently higher correlations for pairwise connectomes than for multivariate con-
nectomes, particularly for language-default mode connections. Figure 3.16 shows
that left-side lateralized correlations of connections between frontoparietal and de-
fault mode networks with Early Learning Composite for multivariate connectomes.
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Multivar.

Network Region
Connect.
network

Connect.
region

corr p-val n

(a) Cereb. Ant. SN A Ins. (L) 0.32 0.0103 63
Fine SMN Sup. DAN IPS (R) -0.37 0.0018 70
motor SMN Sup. DAN IPS (L) -0.11 0.3599 72
raw SMN Lat. (L) DAN FEF (L) -0.21 0.0676 77
(b) Lang. IFG (L) SN A Ins.(R) -0.13 0.2791 71
Receptive Lang. pSTG (R) FPN LPFC (R) -0.29 0.0110 75
language Lang. pSTG (L) DMN MPFC 0.26 0.0283 71
raw DMN LP (L) Lang. pSTG (R) 0.04 0.7059 80
(c) FPN PPC (L) DMN LP (L) -0.14 0.1559 98
Early FPN PPC (R) DMN LP (R) 0.07 0.4916 89
learning FPN LPFC (L) DMN LP (L) -0.27 0.0244 68
comp. FPN LPFC (R) DMN LP (R) 0.19 0.1233 65

Pairwise

Network Region
Connect.
network

Connect.
region

corr p-val n

(a) Cereb. Ant. SN A Ins. (L) 0.15 0.1168 109
Fine SMN Sup. DAN IPS (R) -0.22 0.0245 109
motor SMN Sup. DAN IPS (L) -0.15 0.1209 109
raw SMN Lat. (L) DAN FEF (L) -0.14 0.1529 109
(b) Lang. IFG (L) SN A Ins.(R) -0.18 0.0618 109
Receptive Lang. pSTG (R) FPN LPFC (R) -0.18 0.0546 109
language Lang. pSTG (L) DMN MPFC 0.37 0.0001 109
raw DMN LP (L) Lang. pSTG (R) 0.27 0.0048 109
(c) FPN PPC (L) DMN LP (L) -0.07 0.4668 109
Early FPN PPC (R) DMN LP (R) -0.08 0.4121 109
learning FPN LPFC (L) DMN LP (L) 0.00 0.9632 109
comp. FPN LPFC (R) DMN LP (R) -0.12 0.2066 109

Table 3.2: Spearman correlation coefficients and p-values for selected Mullen scores
and ROI-ROI cooupling weights for all plots show in Figures 3.14, 3.15, 3.16.
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Figure 3.13: Contributions of default mode network to language network
show lateralized contributions from lateral parietal default mode regions
to right pSTG. Default mode network seems to contribute more consistently to
Wernicke’s area (STG) than to Broca’s area (IFG).

Table 3.2 summarizes the correlation values and (un-adjusted) p-values for the scat-
ter plots displayed. Based on these plots, strongly activated edges in the multivariate
connectomes do not signify a higher correlation with MSEL scores.

The weak correlations shown in these plots is further verified by Figure 3.17, and
Figures .1, .2, .3, and .4 in Appendix A, which show virtually no statistically signifi-
cant correlations between multivariate connectomes and MSEL raw scores. Pairwise
connectomes, by contrast, are significantly correlated with Mullen raw scores. In
particular, these significant edges are tightly clustered within specific network pairs,
such as language-DMN, language-DAN, and DAN-visual. There are also numerous
intra-network correlations such as DMN and DAN. The clustering of significant edges
may be due to the lack of explaining away of variance in the pairwise networks, thus
repeating shared significant variability. Further analysis is necessary to better ex-
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Figure 3.14: Fine motor raw scores are correlated with select sensorimotor,
dorsal attention, cerebellar, and salience network connections. Scatter plots
of Fine Motor raw score plotted against example connectome edges, with linear fits.
Multivariate connections are shown in red, pairwise connections are in black.
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Figure 3.15: Receptive language scores are correlated with frontoparietal
contributions to the language network. Scatter plots of Receptive Language
raw score plotted against example connectome edges, with linear fits. Multivariate
connections are shown in red, pairwise connections are in black.
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Figure 3.16: Early learning composite score is correlated with
frontoparietal-default mode couplings. Scatter plots of Early Learning Com-
posite score plotted against example connectome edges, with linear fits. Multivariate
connections are shown in red, pairwise connections are in black.
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plain the discrepancy between pairwise and multivariate connectomes–whether, for
example, it is due to a flaw in the procedure for generating multivariate networks.

3.4 Conclusion

Functional connectomes were generated from resting state EEG and fMRI data col-
lected from young children, using two competing methods: pairwise Pearson corre-
lations and UoILASSO multivariate regression. Pairwise and multivariate connec-
tomes were compared for both EEG and fMRI.

EEG connectomes were generated for subjects between the ages of 6 months and
36 months, grouped by three month intervals. Connectomes were further generated
within canonical frequency bands beta, theta, and high gamma. Across age groups
and frequency bands, multivariate EEG connectomes showed marked structural dif-
ferences from their pairwise counterparts. Multivariate networks showed varying lev-
els of natural sparsity ranging between 20% and 60% of connections being set to zero.
All multivariate connectomes showed consistent small-worldness across subjects, age
groups, and frequency bands. By contrast, pairwise networks tended towards more
lattice-like graphs, suggesting that pairwise connectomes are heavily impacted by
volume conduction causing signal leakage. This observation was reinforced by the
fact that multivariate connectomes were significantly more spatially distributed than
pairwise, showing a more even balance between long- and short-range connections. A
regularized multivariate approach to estimating functional connectivity thus seems
to be a marked improvement over pairwise correlation for EEG data.

fMRI connectomes were generated for 109 subjects aged between 90 and 903 days
(3 to 30 months). Graph analysis of fMRI multivariate connectomes also showed con-
sistent small-worldness, spatial distribution, and 20-60% sparsity. However, thresh-
olded pairwise correlation connectome also showed small-worldness and spatial dis-
tribution. Since fMRI data came with the advantage that all time series correspond
to well-characterized regions of interest that can be easily compared across subjects,
for 3-month-interval age groups I created aggregate connectomes by taking the me-
dian of the connectomes of 12 subjects within the specified age range. I then used
these age templates to look for interesting connective structures that characterize
multivariate and pairwise networks. I found that multivariate connectome templates
showed frequently occurring patterns of positive coupling between ipsilateral regions
and negative coupling between contralateral regions. I also found that while pair-
wise connectomes often selected the same ROI pairs for strong positive connections,
they often “wash out” the negative couplings to be faint and near zero. I believe
that this indicates that multivariate functional connectomes may uncover more spa-
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Figure 3.17: Pairwise connectomes show widespread significant correlations
with raw scores, while multivariate networks have no significant correla-
tions. a. Spearman correlation coefficients and b. p-values between MSEL Expres-
sive Language raw scores and pairwise (top) and multivariate (bottom) connectomes
plotted as weight matrices. c. Spearman correlation coefficients and d. p-values
between MSEL Expressive Language t-scores and pairwise (top) and multivariate
(bottom) connectomes plotted as weight matrices.
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tially resolved neural structure than pairwise, due to the “explaining away” of shared
variance. On the other hand, pairwise fMRI connectomes appear to correlate much
more strongly with Mullen Scales of Early Learning, specifically the raw (i.e., not
age-corrected) scores. This difference between pairwise and multivariate connectomes
will be further investigated in the next chapter.
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Chapter 4

Prediction of cognitive
development from multivariate
functional connectomes

4.1 Introduction

The study of early childhood developmental trajectories is critical to the improve-
ment of educational outcomes for children with developmental impediments, innate
or external. Socioeconomic status is a significant predictor of early childhood suc-
cess in education[104, 105, 106]. By the time children enter the school environment,
gaps have already formed in school readiness, largely along the socioeconomic lines.
This is likely due to the disparities in access to resources–for example, nutrition,
developmentally appropriate toys, and educational childcare programs. All of these
measures are most effective when applied early and consistently[104]. Thus, pre-
diction of developmental trajectories in infancy and early childhood is crucial for
effective and timely intervention when a child is at risk of falling behind.

When considered on an international scale, the problem of assessing develop-
mental trajectories becomes thornier. In general, developmental psychologists de-
pend primarily upon behavioral metrics to assess early childhood development[107,
108].However, the translation of these assessments, linguistically and culturally, is a
nontrivial problem and highly vulnerable to cultural bias[108]. In order to equitably
and accurately assess child development, a reliable, objective baseline is needed.

One potential approach to objectively assessing early developmental trajectories
is to go “straight to the source,” that is, to collect and assess metrics directly from the
brain. With modern advances in neuroimaging, the availability of noninvasive, high-
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dimensional recording modalities has opened new frontiers in human neuroscience.
In order to be viable for widespread deployment, the method of data acquisition must
be economical, tolerable for child subjects, and ideally not dependent on a difficult-
to-translate task. Resting-state neural recordings, which do not require high levels
of patient compliance (of particular interest in young patients), are an ideal target
for this kind of analysis.

While correlations have been found between Mullen scores and individual edges in
the functional connectome for this dataset[39], the question of whether fMRI-based
functional connectomes can predict cognitive developmental measures such as Mullen
scores remains open. In this chapter I investigated the predictive power of multivari-
ate functional connectomes created for the BAMBAM fMRI dataset using UoILASSO.
I created multiple neural feature sets by employing dimensionality reduction algo-
rithms such as PCA, as well as hand-selected noteworthy features based on previous
fMRI studies. I compared the predictive accuracy of features from multivariate and
pairwise connectomes.

With the rising use of predictive algorithms for applications ranging from tar-
geted pages on entertainments sites, to life-changing decisions such as mortgage
lending[109] to predicting criminal recidivism[110], it is of the utmost importance
to examine use of big data methods with a critical eye. Particularly in applications
such as those discussed here, it is desirable that any algorithmically defined diag-
nostic criteria be human-readable–that is, interpretable and grounded in a broader
understanding of the data used to generate predictions. The dataset used in this
chapter is as curated as possible for experimental data collected from human chil-
dren; the subjects are relatively culturally uniform (proficient English-speakers living
in the same city), without known genetic conditions, neurodivergence, or gestational
complications. The BAMBAM cohort was used as a trial case to study the viability
of resting-state fMRI-derived functional connectomes for the prediction of cognitive
development.

4.2 Methods

Behavioral and neural data

I used the same BAMBAM cohort discussed in Chapter 3 for prediction of Mullen
scores from connectome features. I excluded all subjects for whom either neural or
behavioral data was unavailable. The final dataset of usable functional connectomes
had n = 109 subjects aged between 90 and 903 days (median = 377 days, mean =
397.9 days, standard deviation = 204.4 days). For each of these subjects, I generated
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a functional connectome from resting state fMRI data using the UoILASSO algorithm.
For a description of the connectome generation and characterization of the proper-
ties of the resulting connectomes, see Chapter 3. The cognitive development of each
subject was assessed using the Mullen Scales of Early Learning (MSEL), a standard-
ized method that provides scores for five developmental categories: fine motor, gross
motor, visual reception, receptive language, and expressive language. These scores
are available in raw form, as well as in age-standardized t-scores (mean 50, standard
deviation 7.5). Verbal, nonverbal, and total early learning composite scores are also
computed.

The BAMBAM dataset also included subjects for whom neural data was not
available at the time of analysis, but with available MSEL assessments. In total
(including the 109 subjects described above), the dataset included Mullen scores for
522 subjects between the ages of 64 days and 2041 days (median = 394 days, mean
= 560.6 days, standard deviation = 484.7 days). While only the 109 subjects in the
neural data set could be included in the prediction dataset, the additional subjects
were used to characterize the distribution of Mullen scores within this cohort.

Hierarchical clustering of behavioral groups

I grouped subjects based on their scores on the Mullen scales. I used the raw scores for
receptive language, expressive language, gross motor, fine motor, and visual reception
assessments. In order to create groupings of maximally similar subjects, I used
hierarchical agglomerative clustering (HAC), an unsupervised method of creating . In
brief, HAC begins with each data point in a separate cluster, and recursively groups
data points by combining one pair of clusters at each step, subject to minimizing
a given objective function. I used the Ward objective function, which minimizes
in-group variance[111] due to its success in producing groups with cohesive score
distributions.

HAC yields a linkage function, which must then be cut at a selected cophe-
netic distance (i.e., the inter-group dissimilarity at which two clusters are first com-
bined[112]) threshold tc. I selected the threshold tc = 75 due to the high cophenetic
distance between the three resulting groups, as seen in Fig 4.1a. A higher threshold
would have resulted in two groups, with groups 2 and 3 combined together. However,
as shown in Fig 4.1b, MSEL scores in group 2 are a distinct distribution from group
3, particularly for expressive and receptive language. Conversely, a lower choice of
tc, resulting in four or more groups, would be likely to subdivide group 1, which
comprises children who scored low across all five raw scores. For the purposes of pre-
dicting developmental trajectories, it is desirable for the purposes of this project to
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cast a wide net when flagging for potential developmental difficulties–a false positive
is preferable to a false negative.

I investigated the viability of splitting group 1 into two by setting tc = 42,
resulting in groups 1a and 1b. I ran a 2-sample t-test comparing the distributions
of 1a and 1b for all raw MSEL scores. I found a significant difference in 1a and
1b across all raw scores. However, for the purposes of classification from functional
connectivity features. I chose to keep group 1 as a single group.

I quantified the within-group mean and standard deviation of all MSEL scores,
including raw scores, t-scores, and age equivalents, as well as verbal, nonverbal, and
total early learning composite scores for HAC groups 1, 2, and 3. All statistics are
reported in Table 4.1.

I repeated the HAC analysis using all available subjects, including subjects for
whom neural data was not available. These additional subjects included older chil-
dren aged up to 2041 days (or 3.6 years). See Table 4.2 and Figure 4.3 for details of
each grouping for the full dataset.

I created an alternate set of groups by clustering all n=109 subjects based on
the five MSEL t-scores (fine motor, gross motor, receptive language, expressive lan-
guage, and visual reception) instead of the corresponding raw scores. Based on the
cophenetic distance between branches of the dendrogram (Figure 4.4a), I created two
groups. These groups were used as alternative target labels for classification.

Connectome feature selection and dimensionality reduction

The brain data consists of 109 multivariate functional connectomes derived from
fMRI data with 32 ROIs across 7 different functional networks. Thus, each connec-
tome has 32 × 32 edges, minus self-connections, resulting in a total of 992 usable
dimensions. Considering the low-n dataset, it is necessary to reduce the dimension-
ality of the data. I generated several sets of features and tested their predictivity
for MSEL groups. Each feature set described in this section was generated for both
multivariate and pairwise connectomes.

First I used Principal Components Analysis (PCA), a standard method of dimen-
sionality reduction technique in which components, PCs, are the dimensions along
whcih the variance of the data is maximized. PCs are the eigenvectors of the covari-
ance matrix of the data. Thus, PCA supplies a computationally accessible method
for reducing the dimensionality of the data.

While PCA is optimal for capturing variance in the data, the resulting compo-
nents are dense (most elements are nonzero) in the original feature space. This lack
of selectivity renders the PCs relatively opaque for purposes of interpretation. In or-
der to extract more parsimonious features, I used sparse PCA (sPCA). Sparse PCA
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Figure 4.1: Raw Mullen scores for patients with available fMRI data can be
subdivided into three groups. a. Dendrogram of hierarchical clustering based on
the five raw MSEL scores. Final cophenetic distance threshold for cluster assignment
was set at t = 75. b. Distributions of raw MSEL scores and early learning composite
score for each HAC-assigned group.
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1 2 3

Fine
Motor

T-Score 48.6 (9.2) 48.2 (11.4) 44.9 (9.2)
Age Equiv. 5.3 (3.1) 15.6 (2.6) 22.5 (3.2)
Raw 7.3 (3.1) 17.5 (2.4) 23.3 (2.6)

Gross
Motor

T-Score 49.3 (9.3) 49.7 (9.6) 47.9 (10.6)
Age Equiv. 5.2 (2.0) 15.7 (3.7) 22.6 (4.1)
Raw 8.1 (2.1) 19.3 (3.7) 25.3 (2.8)

Expressive
Language

T-Score 46.0 (9.2) 45.0 (9.8) 51.5 (9.8)
Age Equiv. 4.4 (1.6) 13.8 (2.3) 24.3 (4.0)
Raw 5.4 (1.6) 13.9 (2.0) 22.8 (3.3)

Receptive
Language

T-Score 47.1 (10.8) 37.7 (9.1) 55.9 (8.6)
Age Equiv. 4.4 (2.3) 12.2 (3.0) 26.8 (3.7)
Raw 6.4 (2.3) 13.7 (2.5) 25.9 (2.7)

Visual
Reception

T-Score 54.1 (12.1) 46.6 (11.7) 50.8 (10.6)
Age Equiv. 6.0 (2.8) 14.6 (3.2) 24.7 (6.3)
Raw 8.3 (3.4) 17.6 (3.2) 26.6 (4.9)

NonVerbal Composite 116.5 (27.1) 102.9 (18.5) 100.9 (13.7)
Verbal Composite 94.6 (24.3) 89.2 (17.3) 110.1 (17.3)
Early Learning Composite 98.2 (13.6) 89.7 (15.5) 101.8 (14.6)

Age In Days 421.0 (164.5) 356.5 (191.5) 394.8 (264.6)
Group Size n Subjects 51 26 32

Table 4.1: Mullen scores, group size, and ages for clustering-derived groups for the
subset of subjects for whom neural data was provided. Means and standard devia-
tions (in parentheses) are reported.
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1 2 3 4

Fine
Motor

T 46.9 (8.1) 51.3 (10.7) 44.9 (10.4) 52.5 (12.0)
Age eq. 4.3 (1.6) 15.1 (2.8) 26.0 (5.3) 51.8 (9.9)
Raw 6.3 (1.6) 17.1 (2.6) 26.0 (4.0) 42.0 (4.9)

Gross
Motor

T 48.7 (8.3) 47.9 (11.6) 44.7 (15.1) 20.0 (N/A)
Age eq. 4.5 (1.7) 14.3 (3.5) 26.6 (5.3) 33.0 (N/A)
Raw 7.3 (1.9) 17.8 (3.8) 28.7 (4.6) 36.0 (0.2)

Expressive
Language

T 48.3 (8.8) 43.5 (11.3) 49.5 (11.1) 52.4 (9.2)
Age eq. 4.3 (1.2) 12.5 (4.0) 27.4 (7.3) 52.6 (8.4)
Raw 5.3 (1.2) 12.7 (3.5) 25.2 (5.8) 42.0 (4.0)

Receptive
Language

T 47.5 (10.0) 41.9 (11.3) 53.9 (10.6) 57.0 (10.6)
Age eq. 3.8 (1.7) 12.4 (4.0) 30.1 (6.2) 56.4 (9.7)
Raw 5.8 (1.7) 13.9 (3.6) 28.1 (4.2) 42.9 (4.4)

Visual
Reception

T 51.4 (11.2) 47.7 (11.5) 54.7 (13.2) 59.0 (12.3)
Age eq. 4.9 (1.9) 13.9 (3.2) 30.8 (9.3) 57.8 (8.4)
Raw 7.1 (2.4) 16.9 (3.2) 31.1 (6.7) 46.6 (3.0)

Nonverb. Comp. 109.8 (25.8) 106.7 (18.0) 102.8 (16.6) 109.2 (14.1)
Verb. Comp. 98.1 (25.2) 90.2 (20.7) 104.8 (19.0) 108.6 (15.4)
Early
learning

Comp. 97.3 (12.8) 92.8 (16.0) 101.8 (18.0) 110.5 (17.0)

Age Days 392 (231) 362 (256) 511 (399) 1561 (278)
Group n 152 164 141 65

Table 4.2: Mullen scores, group sizes, and ages for clustering-derived groups for larger
dataset with expanded age range. Means and standard deviations (in parentheses)
are reported.
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Figure 4.2: Grouping of all available MSEL scores, including those for which
neural data was not available, replicates the three groups from Figure 4.1,
but adds a fourth group with older subjects a. Dendrogram of hierarchical
clustering based on the five raw MSEL scores. Final cophenetic distance threshold
for cluster assignment was set at t = 200. b. Distributions of raw MSEL scores and
early learning composite score for each HAC-assigned group.
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Figure 4.3: Subjects between the ages of 90 and 1000 days fall into 3 consis-
tent bands that are preserved across expressive language, receptive lan-
guage, fine motor, gross motor, and visual receptive scores. Between the
ages of 90 and 1000 days, raw scores do not vary significantly with age. When older
subjects between 1000 and 2000 days are added into the dataset, a fourth group,
mostly comprising older children, shows strong correlation with age in raw scores.
For group 4, the early learning composite score provides a metric that is decorrelated
from age. Groups 1-4 are not significantly separated for the early learning composite
score.

produces component vectors that are linear combinations of a small number of input
features. Sparse PCA imposes is based on L1 regularization placing a penalty on
the absolute values of the coefficients of the component, as in LASSO, resulting in
more selective component vectors. One drawback of sPCA is that the components
it produces are not strictly orthogonal. The full set of sparse PCs therefore do not
perfectly capture the full variance of the dataset.

Upon examination of the coefficients of the sparse PCs, I observed that many
PCs captured contributions from the visual network. Examination of the standard
deviation of networks within 90 day age windows further shows that variance in
contributions from the visual lateral ROIs tends to be high. For dimensionality re-
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Figure 4.4: T-score groups separate Early Learning Composite into two
distinct distributions. a. Dendrogram of hierarchical clustering based on the five
raw MSEL scores. Final cophenetic distance threshold for cluster assignment was set
at t = 75. b. Distributions of raw MSEL scores and early learning composite score
for each HAC-assigned group.
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Figure 4.5: PCs are dense and difficult to interpret, but some lateralized
structure is discernible. a. Coefficients of first 10 principal components plotted
in the original feature space. b. Distribution of PC values within Mullen groups.
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Figure 4.6: Sparse PCs show selection for lateralized connections and are
highly concentrated in the visual functional network. a. Sparse coefficients
of first 10 sparse principal components plotted in the original feature space. b.
Distribution of PC values within Mullen groups.
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duction techniques based on PCA, which selects components that capture maximum
variance for the dataset, it is natural for the visual network to be heavily represented.

As described in the previous chapter, the fMRI data for the BAMBAM cohort
is collected from sleeping subjects. Functional connectivity to the visual network
in young, sleeping subjects is not well understood. It has been shown in one study
[113] that functional connectivity of the default mode network to the visual network
can increase for sleeping adults, but the same pathway was not observed in children.
Examination of the first 10 sparse PCs and their value distributions for the Mullen
clusters (Figure 4.6b) showed little separation. I hypothesized that it was possible
that the highly variable functional connectivity of the visual network may introduce
non-meanigful noise, and that excluding the visual system from sPCA may eliminate
this noise source. I thus removed all visual network ROIs (Medial, Occipital, Lateral
(left), and Lateral (right)) from the functional connectomes and regenerated sparse
PCAs using the reduced networks. Figure 4.7a shows the coefficients of first 10
visual-excluded sPCs plotted in functional connectivity feature space. Figure 4.7b
shows the sparse PC value distributions for the Mullen clusters. I saw little to
no improvement for separability of Mullen groups between sparse PCs including or
excluding the visual network. However, sPCs with visual ROIs excluded did seem to
select for network pairs of particular interest in measures of general intelligence and
language development, such as frontopparietal-default mode (sPC 1), frontopariatal-
salience (sPC 2), language-salience (sPC 5), and frontoparietal-language (sPC 6).

I created three sets of PCs, taking the top 10 components for each: regular PCA,
sparse PCA with all functional networks, and sparse PCA with the visual network
excluded.

In order to more directly assess the predictivity of particular feature pairs, I also
hand-selected feature sets directly from the functional connectomes. In this regime,
each “edge” (e.g., the coupling between left anterior insula and left superior temporal
gyrus) is a potential feature. For this analysis, I subselected pairs of developmentally
relevant functional networks and created feature sets comprising all edges between
ROIs in those networks. For example, one feature set might contain all edges coupling
the frontoparietal network to the default mode network, resulting in the 16 edges
between frontoparietal ROIs (LPFC left, LPFC right, PPC left, and PPC right) and
default mode ROIs (MPFC, LP left, LP right, and PCC). I created feature sets for
network pairs that showed statistically significant correlations to Mullen raw scores
(see Chapter 3), as well as pairings between the “big three” functional networks:
frontoparietal (FPN), default mode (DMN), and salience (SN).
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Figure 4.7: Excluding visual network from sparse PCA does not improve
separability of Mullen groups. a. Sparse coefficients of first 10 sparse principal
components plotted in the original feature space. b. Distribution of PC values within
Mullen groups.



CHAPTER 4. PREDICTION OF COGNITIVE DEVELOPMENT FROM
MULTIVARIATE FUNCTIONAL CONNECTOMES 57

Random forest classification

Since the use case of my research is to identify childen in need of timely intervention
to reach school readiness, it is sufficient for these purposes to classify subjects into
broad achievement bands. I thus began my prediction efforts using a Random Forest
Classifier (RFC) to predict Mullen labels. Random Forests are an ensemble machine
learning method that can be used for both regression and classification. RFCs op-
erate by creating a settable number of decision tree estimators and aggregating over
these estimators to provide a final result. The random forest creates decision trees
over many bootstrap aggregates, “bags”, of the data. Individual trees also select a
subset of features to use in their predictions. The final prediction is provided by
aggregating (or “voting” in the case of classification tasks) on the target variables of
the datapoints left out of that bag[114].

The input observation vectors x⃗ are brain features, as described in the previous
section. The target variable y is the Mullen clustering-derived group label, so that
each subject is assigned a label between 1 and 3, with group 1 comprising relatively
low scoring subjects while group 3 comprises high relatively high-scoring students.
Group 2 comprises students with intermediate scores, but the distribution of motor
scores in group 2 seems to fall closer to those of group 3, while the distribution
of receptive language scores falls closer to group 1. I are thus most interested in
correctly identifying members of group 1, which comprises the subjects most likely
to need help in achieving school readiness.

For each observation vector x⃗, I first optimized the RFC hyperparameters by
performing a grid search. These hyperparameters are: maximum depth, maximum
features, minimum samples for a leaf, minimum samples for a split, and number
of estimators. The grid search selected the best hyperparameters to optimize the
prediction score for the given observation and target variables. In order to ensure
equal group sizes, I randomly subselected data from each group, so that each group
included only as many data points as the smallest group (n = 26). Thus, the usable
dataset had size n = 78.

For each RFC, I generated predicted labels yp and a range of scores using tenfold
cross-validation. Confusion matrices for each x⃗ are shown in Figures 4.8, 4.9, and
4.10. Mean and standard deviation of cross-validated scores are reported in Table
4.3.
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Features connectome mean standard error
PCA multivariate 0.37 0.062
PCA* pairwise 0.51 0.045
Sparse PCA* multivariate 0.46 0.029
Sparse PCA* pairwise 0.50 0.039
Sparse PCA without vision multivariate 0.38 0.051
Sparse PCA without vision* pairwise 0.56 0.053
Language-Salience* multivariate 0.44 0.039
Language-Salience pairwise 0.34 0.057
DMN-Frontoparietal multivariate 0.48 0.072
DMN-Frontoparietal pairwise 0.28 0.047
Salience-Frontoparietal multivariate 0.40 0.067
Salience-Frontoparietal* pairwise 0.45 0.026
DMN-Salience multivariate 0.43 0.053
DMN-Salience pairwise 0.35 0.042
Sensorimotor-DorsalAttention multivariate 0.41 0.042
Sensorimotor-DorsalAttention* pairwise 0.46 0.036
Language-Frontoparietal multivariate 0.33 0.043
Language-Frontoparietal* pairwise 0.41 0.023
DorsalAttention-Visual multivariate 0.30 0.059
DorsalAttention-Visual pairwise 0.45 0.063

Table 4.3: Raw Mullen score groupings are predicted by pairwise con-
nectome features better than by multivariate connectomes. Tenfold cross-
validated classification scores of grid-search optimized random forest classifiers for
feature set used for prediction of Mullen raw score groupings. Feature sets that per-
formed significantly better than chance (33.3%) are marked with an asterisk.
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Figure 4.8: Functional connectome principal components do not consis-
tently predict MSEL scores. 10-fold cross-validated confusion matrices for opti-
mized random forest classifiers for 10-component PCA, sparse PCA, and sparse PCA
with vision excluded.

Features connectome labels mean
standard
error

PCA multivariate T scores 0.50 0.051
PCA pairwise T scores 0.53 0.055
Sparse PCA* multivariate T scores 0.62 0.047
Sparse PCA pairwise T scores 0.45 0.053
Sparse PCA without vision multivariate T scores 0.58 0.046
Sparse PCA without vision pairwise T scores 0.47 0.052

Table 4.4: T-score Mullen groupings are predicted by multivariate connec-
tomes better than by pairwise networks. Tenfold cross-validated classification
scores of grid-search optimized random forest classifiers for feature set used for pre-
diction of Mullen raw score groupings. Feature sets that performed significantly
better than chance (50%) are marked with an asterisk.



CHAPTER 4. PREDICTION OF COGNITIVE DEVELOPMENT FROM
MULTIVARIATE FUNCTIONAL CONNECTOMES 60

Figure 4.9: Functional connectivity between default-mode, salience, and
frontoparietal networks slightly improves classifier performance. a.
Schematic of the interconnected “big three” functional networks: default mode
(DMN), frontoparietal (FPN) and salience (SN). b. 10-fold cross-validated con-
fusion matrices for optimized random forest classifiers for each pair of networks.
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Figure 4.10: Functional connectivity between other selected network pairs
are little better than chance at predicting MSEL groupings. 10-fold cross-
validated confusion matrices for optimized random forest classifiers for other selected
network pairs. Language-salience, default mode-visual and visual-default mode, and
sensorimotor-dorsal attention perform slightly better than chance (33%).

4.3 Results and Discussion

Raw Mullen scores show distinct performance groups

Unsupervised clustering of the MSEL scores of the BAMBAM cohort showed marked
sub-populations distinguished by their raw scores in all five assessment areas. For
children between the ages of 3 months and 2.5 years, Mullen raw scores were not
significantly correlated with age. Furthermore, for this age range, subjects tended
to achieve similar scores across cognitive areas. Figure 4.1b shows the distributions
of Mullen scores color coded by HAC-assigned group. It is notable that the early
learning composite, which combines all five assessments and normalizes by age group,
is not separated by raw-score HAC groups. By contrast, t-score HAC groups partition
the early learning composite into two distinct distributions (Figure 4.4b).

I applied the same unsupervised clustering procedure to a larger dataset with an
expanded age range (up to 5 years of age). Per Figure 4.2, groups 1-3 remained in
similar scoring bands for the raw scores. However, an additional cluster, group 4,



CHAPTER 4. PREDICTION OF COGNITIVE DEVELOPMENT FROM
MULTIVARIATE FUNCTIONAL CONNECTOMES 62

Figure 4.11: Mullen raw scores are better predicted by pairwise connec-
tome principal components than by multivariate connectome principal
components. Confusion matrices for 10-fold cross-validated RFCs, with feature
sets comprising 20 components each.
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Figure 4.12: T-scores are better predicted by sparse PCs of multivariate
connectomes than pairwise connectomes. Confusion matrices for 10-fold cross-
validated RFCs predicting t-score Mullen groupings from 20-dimensional sparse PCs.
a. Multivariate connectomes b. Pairwise connectomes

with higher scores, was added. Figure 4.3 clearly demonstrates that the addition
of children over the age of 2.5 years is the cause of this new grouping. Above 2.5
years, raw scores begin to correlate clearly with age (with the exception of gross
motor, which appears to be maximized for almost all children above the cutoff of 2.5
years). Figure 4.3 also demonstrates that the early learning composite successfully
decorrelates scores from age for children above the 2.5 year cutoff. This indicates
that if I were to apply this prediction analysis to an older cohort, the T-scores and
composite scores may be a better target.

Lack of age correlation of raw scores under the age of 2.5 may cast doubt on
their validity–does the variability in raw scores really signify meaningful cognitive
ability differences of 3 month olds have the same score distribution as 2 year olds?
In addition to the correlations in Chapter 3 Figure 3.17, previous work on this
dataset has shown that there exist significant correlations between pairwise functional
connectivity and Mullen scores[39], suggesting at least some relevant signal. Further
analysis, predicting Mullen scores individually within tighter age ranges, would help



CHAPTER 4. PREDICTION OF COGNITIVE DEVELOPMENT FROM
MULTIVARIATE FUNCTIONAL CONNECTOMES 64

interpret the MSEL and its relationship to functional connectivity.

Sparse principal components replicate lateralized structure
seen in aggregate age group template connectomes

In all three PC-based datasets (Figures 4.5, 4.6, 4.7), individual PCs selected for
grouped ROI-ROI couplings that displayed lateralized structure–most commonly,
negative contralateral weights and positive ipsilateral weights. This indicates that
the variability of multivariate functional connectomes tends to be tightly clustered
in related ROI-ROI edges.

As mentioned in the Methods section, it is notable that coupling from the visual
network is heavily selected for in several of the PCs. This visual network dominance
may be explained by two different reasons. First, the visual system is established
and functionally synchronized from birth, while other networks such as default mode
and frontoparietal are established over months. Thus, the visual network may be
unusually dominant in infant and early childhood connectomes. If this is the root
cause of the dominant visual network, then exclusion of the visual network would
remove meaningful signal from my analysis. Second, the rsfMRI data used in this
analysis is collected from sleeping subjects, rather than passively alert subjects. The
neurodevelopmental significance of visual network activation in sleeping children is
not well understood, and thus the contributions of the visual network in this dataset
may amount to little more than noise. The next section evaluates the contributions
of the visual network by their predictive power.

Mullen-grouped distributions show little separation in
functional connectivity PC space

In order to parse out the importance of the visual network, I first removed all vi-
sual ROIs from the connectome dataset and repeated the sparse PCA, generating
a second sPC feature set from the remaining 28 ROIs. Comparison of Figure 4.6
to Figure 4.7 shows that while the removal of the visual ROIs led to greater diver-
sity in the networks featured in the sparse PCs–for example, language and salience
were almost absent from the first 10 sPCs for the original feature set, but were the
primary features making up sPC 8 in the visual-free neural feature set–it does not
meaningfully improve separability of Mullen groups in sPC space. The distributions
of sPCs of the Mullen groups remained largely overlapping.

This lack of separability is carried over into the performance of RFCs trained on
these principal components. All three PC sets generated networks that performed
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no better than chance (see Fig 4.8 for confusion matrices and Table 4.3 for cross-
validated scores). This null result suggests that the largest sources of variability in
the connectome dataset are not significant to cognitive measures (at least insofar as
I accept Mullen raw scores as an adequate metric of cognition).

The next step in algorithmic dimensionality reduction of the connectome features
would be to use a sparse linear classifier, trained to predict Mullen scores from the full
functional connectomes. Of course, considering the low sample size of this dataset
compared to the dimensionality of the connectomes, this classifier would likely be
over-fit, and cannot be used as a prediction method in its own right. Rather, this
method would be used as a kind of feature discovery–the features learned by the
classifier could then be used as components of a connectome feature vector. This
method would allow me to reduce the dimensionality of the connectome data as
desired, with features that are preselected for their salience in predicting Mullen
scores.

Some multivariate network pairs show tentatively
better-than-chance classification accuracy

Of all feature sets used as inputs to a RFC, only 2 pairings of functional networks
scored significantly better than chance: Frontoparietal-Default Mode and Language-
Salience. However, even for comparatively high-performing networks, with mean
cross-validation scores between 40% and 47.5%, perusal of the confusion matrices
suggested that these feature sets are often better at identifying one Mullen, while
failing to discriminate the other two. For example, the Salience-DMN network pair
shown in Figure 4.9 appears to correctly identify the majority of group 1 (that
is, relatively low-scoring) subjects. However, further examination shows that the
Salience-DMN classifier seems to overzealously classify subjects into group 1 in gen-
eral, placing many group 2 and group 3 subjects in the same category. Conversely,
the DMN-Visual classifier shown in Figure 4.10 seemed generally biased towards
group 3 (relatively high-scoring students), pressing half of intermediate group 2 sub-
jects and almost a third of group 1 subjects into the group 3 label. This effect is not
due to uneven group sizes, since groups were equalized to each have a sample size of
26 before use in the RFC.

I noticed certain cases in which classification accuracy was not symmetric between
network pairs–that is, the couplings β⃗AB of network A to network B was more predic-
tive of Mullen scores than the coupling β⃗BA of network B to network A. In particular,
Language-Salience is significantly more predictive than Salience-Language (p¡0.02, n
= 10). This observation aligns with the putative function of the salience network,
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which is to exert top-down attentional control over other networks for the selection
of salient stimuli[61]. It is thus intuitively plausible that contributions from salience
to language are more significant than vice versa. Similarly, Salience-Frontoparietal
connections are significantly more predictive (p¡0.03, n = 10) than Frontoparietal-
Salience. This asymmetry may reflect the role of the frontoparietal network as a
central nexus of executive control[62].

Pairwise connectome features are generally better predictors
of Mullen raw scores than their multivariate counterparts

Figure 4.11 shows the marked difference in performance between RFCs trained on
multivariate connectome PCs and pairwise connectome PCs. In particular, the sparse
PCA excluding vision feature set is significantly more predictive for pairwise than
multivariate connectomes (p¡0.02, n = 10). There are also several feature sets for
which only the pairwise feature set is signficantly more predictive than chance: PCA,
Salience-Frontoparietal, Sensorimotor-DorsalAttention, and Language-Frontoparietal.
This result was consistent with the findings in Chapter 3, specifically Figure 3.17,
which showed that pairwise connectomes were more significantly correlated with
raw Mullen scores. The only feature set for which this pattern was reversed was
Language-Salience, for which the multivariate feature set was significantly more pre-
dictive than chance (p¡0.03, n = 10), while the equivalent pairwise set was not. This
may be a case in which the asymmetry of the multivariate networks provided an ad-
vantage; as discussed in the previous subsection, Language Salience was significantly
more predictive than Salience-Language. The pairwise networks were symmetric,
and thus did not capture the differences in connectivity.

These results also suggested that I simply generated faulty multivariate connec-
tomes, potentially by choosing sub-optimal hyper-parameters. For example, I set
model estimation scoring criterion to R2, which is known to be prone to inconsistent
feature selection[55]. These connectomes may have been more reliable and stable
if instead I had used the Bayesian Information Criterion (BIC), as was done in the
cited paper by Sachdeva et. al[55] to improve consistency. I will likely generate new
multivariate connectomes with alternate hyper-parameters to assess the effect this
hyper-parameter choice.
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Multivariate connectome features are generally better
predictors of Mullen t-scores than their pairwise
counterparts

Table 4.4 reports the classification accuracy trained to predict MSEL t-score group-
ings from PCA feature sets. The only feature set that predicted t-scores with sig-
nificantly better than chance accuracy (p¡0.03, n = 10) was sparse PCA (20 compo-
nents) for multivariate connectomes. Figure 4.12 shows the confusion matrices for
sparse PCs for multivariate (4.12a) and pairwise (4.12b). Further work is required
to to determine whether this difference in predictive targets between multivariate
and pairwise connectomes is consistently replicated in different prediction tasks. In
particular, consulting domain experts in early learning assessments may aid in the
interpretation of the Mullen scores available for this set of subjects. Closer exam-
ination of the relationship between connectomes and Mullen scores, such as Figure
3.17 and Appendix Figures A.3.17-.5 is warranted.

4.4 Conclusion

Mullen scores, an instrument for evaluating cognitive development in children under 5
for language, motor, and visual skills, were used to group subjects into 3 achievement
groups using unsupervised hierarchical clustering. These groupings were based on
the raw (i.e., not age-corrected), then verified against a superset of the data used
in this chapter, which included children between 3 months and 5.5 years. It was
verified that children younger than 2.5 can be reliably grouped into three groups
that appeared uncorrelated with age within this bracket, while the raw scores of
older children are positively correlated with age and would thus require use of age-
corrected meaures. Since the subjects for who I have neural data all fell between 3
months and 2.5 years, I used the raw Mullen scores for prediction.

I reduced the dimensionality of the 32 × 32 connectomes using PCA and sparse
PCA. I used the first 10 and 20 components of each fit to visualize the elements
of the connectomes that account for the most variance. I showed that sparse PCA
selects for groupings within network pairs, and replicates the lateralized structure
that I observed in Chapter 3 multivariate functional connectomes. Furthermore, I
created neural feature sets consisting of the contribution of the ROIs of one functional
network to the ROIs of another functional network, for example Language-Salience,
Sensorimotor-Dorsal, etc. These were selected based on established functional links
in the literature or observed correlations with Mullen scores in Chapter 3.

All connectome feature sets were then used as observation vectors in random



CHAPTER 4. PREDICTION OF COGNITIVE DEVELOPMENT FROM
MULTIVARIATE FUNCTIONAL CONNECTOMES 68

forest classifiers (RFC) to predict the target variables of the labels of the Mullen
score groupings. I found that for PCA-based dimensionality reduction of multi-
variate connectomes, only 20-component sPCA performed significantly better than
chance. Of the network-network feature sets, only language-salience performed better
than chance. Pairwise networks fared marginally better, with 20-component PCA,
sparse PCA, and sparse PCA with vision excluded, as well as salience-frontoparietal,
sensorimotor-dorsal attention, and language-frontoparietal network pairs predicting
Mullen raw scores with better than chance accuracy. However, none of these feature
sets predicted Mullen scores with sufficient accuracy to be viable for school readiness
prediction for any practical application. Consequently I consider this a null result,
but with many avenues for future analysis. In particular, selecting feature sets more
finely tailored for their relevance to cognitive development either by more advanced
dimensionality reduction techniques, or by specifying ROI-ROI pairs individually
rather than on a functional network scale. Further analysis may also investigate
the age-corrected Mullen t-scores within narrower age ranges (e.g., 6 months rather
than over 2 years). These additional permutations of the prediction analysis in this
chapter may elucidate further interesting structure in the functional connectomes.
Taken altogether, these observations form a basis for more extensive future work to
identify predictive network edges in the functional connectome.
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Chapter 5

Acoustic features of complex
sounds

5.1 Introduction and Motivation

The auditory system evolved to enable organismal survival by extracting actionable
cues from complex natural sounds. It is thus necessary for neural populations in
the auditory system to respond to acoustic features that enhance representations of
key semantic information. The rodent auditory cortex has been extensively studied
using simple parametric stimuli such as pure tones, as well as complex stimuli such
as human speech. However, how neural populations in auditory cortex represent the
acoustic space spanned by natural sounds remains poorly understood.

To represent ethologically relevant sounds, the auditory system must implement
some form of feature selection that extracts a subset of meaningful acoustic prop-
erties. In order to survive, an organism must be able to discriminate sounds into
behaviorally salient categories. Previous work has demonstrated the presence of
categorical representations–that is, neural responses are invariant between different
stimuli–of sound in the auditory cortex both in humans [115] and in animal mod-
els [116, 46, 52]. In particular, research in the rat auditory cortex has shown that
distance between neural responses to human speech phonemes in rat A1 predicts
behavioral ability to discriminate phonemes of human speech [117]. This suggests
that high-level auditory representations enhance the discriminability of categories of
complex sounds.

Research in the auditory cortex has largely emphasized single-neuron responses
to simple, non-naturalistic stimuli. However, the rat primary auditory cortex has
been shown to have a strongly tonotopic organization (see Figure 1 in [118] and Fig-
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Figure 5.1: Figure courtesy of Baratham et al.[119]. Tonotopic map generated from
µECoG recording from rat A1.

ure 5.1[119]), and encodes temporal and spectral acoustic features using a spatially
distributed code [120, 121], as in other species [122, 123] including humans [124].
Furthermore, in other species, such as the ferret, the primary auditory cortex has
been shown to have a wide range of spectro-temporal tuning, which permits A1 sub-
populations to robustly encode acoustic features that predict, for example, phoneme
categories [46]. It is thus likely that the rat primary auditory cortex encodes a vari-
ety of spectro-temporal features that enable and enhance categorical discrimination
of sounds. Complex naturalistic sounds comprise combinations of spectral and tem-
poral features, and can contain diverse ethologically relevant information. Thus, for
natural auditory objects, it is critical to measure population responses for a full neu-
ral representation of the sound’s acoustic properties in rat primary auditory cortex
(A1).

It has been shown that linear models do not fully explain neural responses to
complex auditory objects in both humans [47] and animal models [125]. Moreover,
neural receptive fields in ferret auditory cortex are stimulus dependent, and STRFs
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derived from synthetic sounds are less predictive of A1 response to natural sounds
than those derived from natural sound statistics such as human speech [51]. In
order to characterize neural representations of sound in the auditory cortex, it is
thus necessary to extend current research to include neural responses to acoustically
naturalistic, complex stimuli. Recent work in the human auditory system has shown
that task-optimized deep neural network classifiers can produce receptive fields that
effectively predict fMRI responses to natural auditory objects [126]. This finding
indicates an opportunity to construct nonlinear models of neural representations
that can be used to learn acoustic receptive fields that more accurately predict neural
representations of auditory stimuli.

Despite decades of active research, the central auditory system remains poorly
understood. Whereas contemporary efforts to model the primary visual cortex (V1)
have pushed forward knowledge in vision science and developed strong theoretical
frameworks of visual encoding principles [43], efforts to model the primary auditory
cortex have met with less success [125, 127]. Characterization of the response prop-
erties of auditory cortex that leverages modern advances in computational modeling
and insights from the visual system will serve to advance several frontiers of scientific
and technological inquiry.

The prevalence of electrocorticography in human medicine and neuroscience sug-
gests that using ECoG in animal models may facilitate translation from basic neu-
roscience to application. Mechanisms of auditory categorical representation [115]
and semantic encoding [46, 50, 128], topics of interest in current auditory speech
processing research, can be investigated in animal models using a semantically and
acoustically rich database. The response properties and coding mechanisms studied
using µECoG in the rat primary auditory cortex will be used to interpret ECoG data
found in human subjects, and to develop a cohesive theory of auditory encoding.

The project presented in this chapter aimed to develop data-driven models of
feature selectivity and structured variability by introducing key innovations in both
experimental and computational methodologies. In particular, the database and
acoustic analysis described in the chapter are intended to form the basis of an in-
vestigation of how rat primary auditory cortex represents complex natural sounds.
To this end, I collected natural sounds with an emphasis on categories that are of
ethological importance to a rat, with the intention of spanning the acoustic diversity
of these categories. I supplemented these ethologically relevant categories with a
wide variety of other sounds, including human speech, music, birdsong, and mechan-
ical sounds. I then worked to identify acoustic features that discriminate semantic
categories.
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5.2 Methods

Building a complex sound dataset

My goal in assembling the sound database was to span the full range of semantic
categories that present ethologically relevant information for rats. Furthermore, the
sounds within each category must be acoustically naturalistic, and thoroughly span
the range of acoustic features that typify that category. In this section, I will describe
the assembly and analysis of the sounds I collected.

Auditory object collection

While collecting sound files, I considered four broad categories: predatory animal vo-
calizations (danger), non-predatory animal vocalizations, environmental sounds, and
manmade sounds. Each of these categories comprises many subcategories that are
semantically and acoustically diverse. Figure 5.2 shows the component subcategories.

I collected sound files from a wide array of sources. For categories such as cats,
dogs, and vehicle noises, which are commonplace and used widely in various projects
(e.g., films and video games), I was able to find a wealth of files on free sound
databases. In particular, Zapsplat (with documented permission from the owner of
the website) and Project Freesound (creative commons license) were the source of the
majority of sound files for: all animal vocalizations with the exception of fox, bat, rat,
and songbird vocalizations; all manmade sounds such as music, vehicle and machine
sounds, and speech with the exception of included TIMIT files[129]; environmental
sounds such as ocean sounds, wind, and snapping twigs. These sources have the
benefit of immense volume and diversity, with many potential examples for each
desired category.

Quality control was an ongoing concern in selection and exclusion of potential
sounds. When scouring the internet for high-quality sound files, it became clear
that there is a preponderance of engineered, artificial sound effects. This problem
was more prevalent for particularly popular categories, such as cat and dog sounds.
Naturalistic acoustic features were a particular priority for animal vocalizations,
where auditory perception is likely to be sharpest and most discriminatory. For the
animal vocalization category, I excluded any file that I suspected to be artificial based
on the metadata labeling or as determined by ear. While this filtering process may
have introduced researcher bias to the selection, it was necessary if only to spare us
from a staggering number of humans meowing in pale imitation of cats.

I did not include any rodent vocalizations from the online sound databases. Due
to their particular ethological relevance, a higher level of quality control was de-
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Figure 5.2: Histogram of full sound database by number of discrete number of files
(top) and total number of available seconds (bottom) in a given category.
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Figure 5.3: Spectrograms of dofferent types of natural vocalizations drawn from the
sound database. Note complex harmonic structure and temporal modulation.

sirable. In addition, the acoustic structure of rat ultrasonic vocalizations (USVs)
have been shown to have ethological relevance that may contain salient semantic
information for other rats[130]. For this reason, I reached out to authors Nobuaki
Takahashi and Naoyuki Hironaka for access to their rat vocalization dataset. I re-
ceived USVs collected from paired male Sprague-Dawley rats, recorded at 192 kHz
by a microphone suspended from the cage lid. The files were subdivided based on
recorded behavioral cues into three categories: feeding (n = 12), fighting (n = 30),
and movement (n = 19).

In order to more thoroughly explore the acoustic features of predator vocaliza-
tions, I reached out to Dr. Svetlana Gogleva at Lomonosov Moscow State University
for access to her extensive dataset of aggressive and domestic Vulpes vulpes [131][132],
specifically Dmitry Belyaev’s silver foxes[133]. These sounds were recorded in re-
sponse to a researcher approaching the foxes in their cages in five stages. Vocal-
izations were recorded at 22.5 kHz and classified by a researched into eight types:
whine (n = 9), moo (n = 7), growl (n = 3), pant (n = 2), cackle (n = 6), snort (n =
5), cough (n = 4), and bark (n = 2). While these vocalizations were collected from
domesticated foxes, they present a wide behavioral and acoustic features.

I expanded the database further with songbird vocalizations from Dr. David
Mets in Professor Michael Brainard’s lab at UCSF. Dr. Mets provided vocalizations
from 4 different songbird species, selecting samples that capture the variation of
the species. I received over 300 samples each of: Timor zebra finches, spice finches,
Indian silverbills, and African silverbills. Finally, in order to include a greater variety
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Figure 5.4: Distribution of semantic labels for primary analysis dataset of hand-
selected sounds, Set A.

of high-pitched animal vocalizations, I received (n = 16) vocalizations by Egyptian
fruit bats from Dr. Julie Elie at the Yartsev lab at UC Berkeley.

I then selected a set of 99 sound files for Set A, a set of auditory objects intended
to span the space of semantic categories, with increased representation and acoustic
diversity for ethologically relevant categories such as predator vocalizations. Figure
5.4 shows the total number of seconds included for each semantic category. As seen in
Figure 5.4, some categories–most notably, songbirds–are strongly over-represented in
the set. This is because recording duration varied significantly depending on semantic
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category. Songbird call recordings in particular were relatively long (¿20 s), while
ocean recordings were often well over a minute.

Sound file standardization

All sounds in Set A were standardized for subsequent analysis. In order to match the
high sampling rate for the rat USV files, a sampling rate of 192kHz was chosen, and
all other files were up-sampled using a Fourier transform. Bit depth was normalized
to 32KB. The waveform amplitude was normalized to |w(t)|max = 1 with clipping of
outliers above the 99.99th percentile. All standardized sound waves were saved to
a library of .h5 files, named based on the semantic category and subcategory (e.g.,
fox3 cackle) in order to facilitate programmatic parsing of semantic labels. Finally, in
order to be compatible with the experimental speaker used to present sound stimuli
to rats, all stereo sounds were converted to a mono-channel by averaging across left
and right audio channels.

Auditory feature analysis

Sounds in Set A were used as a basis for the prediction of semantic labels from
acoustic features. I partitioned each soundwave into 200 ms frames and treated each
frame as an individual sound, inheriting the semantic labels of its parent sound. Since
natural sounds have natural variability in power over time, this frame partitioning
ran the risk of producing silent frames with very little spectral power. Inclusion of
these silent frames runs the risk of biasing the characterization of semantic categories
by their signature acoustic features. To mitigate this concern, I excluded all frames
in the bottom 5th percentile of total power, as calculated by the L1 norm of sound
wave w(t). Consult Figure 5.6 for an example of a BioSound-visualized object. This
visualisation provides a standard, intuitive visualization of acoustic features, allowing
for quick comparison and contrast of sounds.

I used the Theunissen lab python library, BioSound, to calculate the acous-
tic features of all sounds in Set A[134]. The features calculated are listed and
briefly explained below, but a for an extensive description of these features, see
Elie&Theunissen,2015[48]:

• Spectrogram: The spectrogram of a waveform w(t) is calculated by perform-
ing a short-time Fourier transform (STFT) with a sliding window of length
ω.

• Temporal envelope and moments of temporal distribution: The tempo-
ral envelope is a low-pass filtered version absolute value of the sound waveform.
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Figure 5.5: Log distribution of the total power contained in each 200ms sound frame,
as calculated by the L1-norm of the waveform. 25th, 50th, and 75th percentiles are
designated.

This envelope is treated as a distribution of the power of the sound over time,
and the mean, standard deviation, skew, and kurtosis of the distribution is
calculated.

• Spectral density and moments of power spectrum distribution: Power
spectral density as calculated by a Fourier transform of the sound waveform.
The mean, standard deviation, skew, and kurtosis of the spectral distribution
is calculated.

• Fundamental frequency: The lowest frequency present in the sound, varying
over time. The fundamental frequency was calculated by fitting the harmonic

stacks of the sound using the cepstrum[135] Cp =
∣∣F−1

{
log

(
|F{f(t)}|2

)}∣∣2
• Pitch Salience: Pitch salience is a calculation intended to approximate the
percept of the strength of the fundamental frequency of a sound. For exam-
ple, a flute has high pitch saliency, while the roar of a motorcycle has low
pitch saliency. In this case, pitch saliency is calculated as the maximum peak
of the sliding autocorrelation of the waveform, which creates peaks at time-
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Figure 5.6: Example biosound of a 200ms frame of a fox cackling. a. Sound pressure
waveform (black) with temporal envelope (red) b. Power spectral density (PSD).
Quadrants 1, 2, 3 are superimposed in black, mean formants 1 (red) and 2 (cyan).
c. STFT spectrogram. e. Frequency of fundamental frequencies and formants over
time.
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offsets where periodicity in the waveform creates high coherence. This peak is
then normalized by the peak at 0 time offset (essentially normalizing by signal
variance).

• Formants: Formants are calculated as peaks in the spectral envelope. Some
sounds may have only one formant, while others have more.

• Modulation power spectrum: The modulation power spectrum is a 2 di-
mensional Fourier transform of the spectrogram of the sound, which yields a
representation of the joint spectral and temporal modulation of the sound. For
more information, see Singh&Theunissen, 2003[49].

I used the resulting biosounds to produce an acoustic feature vector for each
sample. 29 features were calculated from BioSound features (Table 5.1).

Semantic prediction from auditory features

I investigated separability of semantic labels from acoustic features for all sound
frames from Set A. To better understand the acoustic properties of different se-
mantic groups, I visualized acoustic features for different subcategories. I began by
visualizing fox, speech, and music frames, because those categories in Set A were of
roughly similar sizes, and all three categories include acoustically complex sounds
with diverse harmonic activity. See Figure 5.7.

Dimensionality reduction

Visualization of acoustic feature distributions, as in Figure 5.7 showed nonlinear
underlying relationships between acoustic features. While no individual acoustic
feature alone is strongly semantically discriminatory, dimensionality reduction can
be used to reveal underlying structure that may improve separability. I utilized
two methods of dimensionality reduction. First, I did principal components analysis
to find dimensions of maximum variance in the acoustic space. Second, I used a
nonlinear dimensionality reduction, UMAP (uniform manifold approximation and
projection).

Principal components analysis: As described briefly in Chapter 4, principal
components analysis (or PCA) decomposes the data into orthogonal dimensions that
maximize the variance explained for each successive PC. I used PCA to generate
an alternative feature set and visualize acoustic features that capture maximum
variance.

UMAP: In order to capture structure in the acoustic data that may not be
captured by linear methods such as PCA, I also computed feature vectors using
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index Feature Calculation

0 Temporal mean µT = E [ENV],ENV = lowpass(w(t))

1 Temporal stdev σT =
√

E[(w(t)− µT )2]

2 Temporal skew γT = E

[(
w(t)−µT

σT

)3
]

3 Temporal kurtosis kurtosis =E

[(
w(t)−µ

σ

)4
]

4 Temporal entropy Ht = −
∑T

i w(ti) log2 w(t)

log T

5 Pitch saliency mean pitch saliency over time
6 Fundamental frequency mean fundamental frequency
7 Formant 1 mean formant 1
8 Formant 2 mean formant 2
9 Formant 3 mean formant 3
10 Spectral mean µS = E[P (ω)], P (ω) = F {w(t)}
11 Spectral stdev σS =

√
E[(P (ω)− µS)2]

12 Spectral skew γS = E

[(
P (ω)−µS

σS

)3
]

13 spectral kurtosis kurtosis =E

[(
P (ω−µS

σS

)4
]

14 Spectral entropy Hs = −
∑M

i P (ωi) log2 P (ωi)

logM

15 Q1 PSD 1st quartile of PSD, 25th perc
16 Q2 PSD 2nd quartile of PSD, 50th perc
17 Q3 PSD 3rd quartile of PSD, 75th perc

18 Spectral mod. mean spectral mod. =Ms =
∑T

t 10 log10MPS
19 Spectral mod. stdev σ(Ms)
20 Spectral mod. skew γ(Ms)
21 Spectral mod. kurtosis kurtosis of Ms

22 Spectral mod. entropy H(Ms)

23 Temporal mod. mean temporal mod. =Mt =
∑M

ω 10 log10MPS
24 Temporal mod. stdev σ(Mt)
25 Temporal mod. skew γ(Mt)
26 Temporal mod. kurtosis kurtosis of Mt

27 Temporal mod. entropy H(Mt)
28 MPS separability α SVD M = UΣV∗, αsep =

σ1∑
σ

Table 5.1: Components of acoustic feature vectors calculated for all 200 ms sound
frames.
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Figure 5.7: Visualization of selected acoustic features shows some separa-
bility between example semantic categories. In particular, foxes show high
variability in their first formant, but tight distribution for their second. Vocaliza-
tions (fox and human) have high variability in modulation separability compared to
music, which shows consistently high separability.
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Uniform Manifold Approximation and Projection (UMAP). UMAP is a non-linear
method of dimensionality reduction that assumes a Riemannian manifold on which
the data is uniformly distributed[136]. The nonlinear nature of the algorithm makes
mapping UMAP features back to acoustic space difficult. I used UMAP to create a
low-dimensional feature set and tested their power to predict semantic labels.

Classification of natural sounds from acoustic feature vectors

I used a support vector machine (SVM) to classify all semantic categories based on
different sets of acoustic features. Described very much in brief, SVM classifies data
by mapping feature vectors to a high-dimensional space using a given kernel function
K(x⃗1, x⃗2), such that the distance between data points x⃗1, and x⃗2 is calculated with
that function instead of a linear dot product. This function can be a polynomial
of degree d or an exponential function such as the sigmoid (hyperbolic tangent) or

Gaussian radial basis function (RBF), where K(x⃗1, x⃗2) = exp
(
−∥x⃗1−x⃗2∥2

2σ2

)
. The

SVM then learns a hyperplane in the high-dimensional feature space that separates
the target labels of the data with the maximized margin[137].

I used a SVM with an RBF kernel to classify all semantic groups in set A based on
z-scored acoustic features, PCs, and UMAP features. Since semantic group sizes were
not even between labels, I calculated chance-level scores by shuffling labels between
data points and and using the score of an SVM classifying the shuffled dataset. I
repeated this process with np = 50 partitions of the data and set chance classification
levels to the mean score of all partitions. I also excluded songbird vocalizations from
initial classification efforts, since the category was so large as to drown out all other
labels.

In Figure 5.8 I visualize confusion matrices, which compare the true label to the
predicted label, to identify categories with high overlap in acoustic feature spaces.

5.3 Results and Discussion

Classification of semantics of natural sounds performs better
than chance, but is subject to confusion in categories with
high acoustic variability

Chance-level accuracy was ascertained from a 50-fold partition of shuffled classifica-
tion to be 10.3%. Accuracy for z-scored features for 200 ms frames of Set A frames
was 73.9%. This classification performance is replicated using PCA–test accuracy
for an SVM using the first 15 principal components (PCs) was 72.9%. I noted from
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Figure 5.8: Prediction of semantic labels from acoustics performs well above
chance, but semantic categories with high levels of acoustic variability
are incorrectly assigned to other sound categories. Confusion matrices with
predicted semantic labels on the x-axis and true labels on the y axis. Left: first 15
PCA components. Right: Five UMAP dimensions.

visual inspection of the confusion matrix that certain semantic categories, specifi-
cally animal vocalizations and human speech, showed higher levels of confusion than
others. For example, animal vocalizations with low sample size representation in
the dataset, such as sheep and geese, were never predicted, but instead binned un-
der labels with high acoustic variability such as foxes, dogs, and speech (see Figure
5.8). Given that PCs are simply linear combinations of the original features, it ap-
pears that these preferred bins such as foxes and speech span a large acoustic space,
therefore lying close to other categories.

By contrast, classification accuracy for 10-component UMAP was relatively low:
63.1%, and varying significantly each time UMAP components are re-generated.
Examination of the confusion matrix in Figure 5.8 shows similar dominance by a
few categories: foxes, cats, corvids, and speech. Interestingly, while acoustic feature
PCs bin many sounds under “dog,” UMAP seems to prefer cats and corvids. This
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difference in preferred error categories may suggest that the features selected by this
instance of UMAP change the distances of semantic categories in acoustic space, for
example by moving the geese, horses, and pigs closer to cats.

It is necessary to note that these initial classification attempts are highly flawed.
While the size of the dataset used provides a large number of samples, the examples
within categories are far from statistically independent, since datapoints are frames
drawn from a smaller number of files. For example, all fox datapoints are drawn
from 8 files, all cat samples are drawn from 9 files, and all duck sounds are drawn
from 2 files. This places a strong caveat on the nature of the classification task–are I
measuring prediction of the semantic category, or simply similarity to the rest of the
vocalization the sample is from? This analysis should be repeated using a greater
range of sound files for each category, more balanced category sizes, and more careful
quality control of 200 ms data frames included in the classification set.

5.4 Conclusion

Natural sounds contain a wealth of semantic information encoded by complex spec-
trotemporal structure. In this chapter, I described the collection and standardization
of a large, rich dataset of high-quality natural sounds developed for use in experimen-
tal neuroscience. I aimed to collect both a wide array of sounds spanning as much
of semantic space as possible, while also going “deep” on semantic categories with
ethological salience for common animal models such as rats. For example, predator
vocalizations such as fox and cat vocalizations, as well as ultrasonic vocalizations for
rats and bats. I analysed the acoustic features of a selected subset of the natural
sounds and tested their predictive power of semantic categories using simple machine
learning techniques such as support vector machines.

The purpose of this work was to form the initial dataset for an extensive project
aiming to characterize how neural representations of sound in the auditory cortex en-
code acoustic features that enhance categorical boundaries. This project ran aground
due to my failure to collect usable neural data in acute experiments in rats, and sub-
sequent move into the project detailed in chapters 3 and 4. Fortunately, this research
is now to be continued by undergraduate researcher Vitto Resnick, who has sequences
of natural sounds for use in an experimental context. He has graciously provided
examples of this stimulus set, displayed in Figure 5.9, showing the concatenation of
different natural sound clips. These stimulus sets will be presented to anesthetized
rats, and µECoG (electrocorticography) arrays such as the one used to generate Fig-
ure 5.1 will be used to record the neural response of auditory cortex. This data will
be used by members of the Bouchard lab to characterize distributed representations
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of complex natural sounds in rat auditory cortex.
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Figure 5.9: Figure courtesy of Vitto Resnick in the Bouchard lab. Example of
stimulus set for presentation to anesthetized rats.
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Chapter 6

Conclusion

Modern neuroimaging and data science provide a dizzying array of methods by which
the mechanisms of neural computation can be investigated. Advances in statistical
machine learning allow us to extract meaning from high-dimensional datasets, thus
opening new frontiers in the analysis of neuroimaging techniques that This disserta-
tion has discussed two of many open questions in neuroscience: first, how to estimate
the connectivity underlying non-invasive whole-brain data recordings; second, how
to identify salient structure of complex stimuli in order to elucidate neural represen-
tations of sensory information.

This thesis proposes a novel method of estimating functional connectivity that
uses the stable, selective ensemble statistical machine learning framework UoI LASSO
to generate parsimonious multivariate connectomes from EEG and fMRI data. I
showed that the resulting connectomes were sparse and small-world, and spatially
distributed in both recording modalities. In the EEG dataset, the contrast between
multivariate functional networks and the more correlation-based pairwise connec-
tomes was stark. Graph analysis of the functional connectivity networks showed
that pairwise connectomes showed a tendency to lattice structure, suggesting heavy
connection between proximate nodes, with daisy chaining connections substituting
for long-distance connections. This lattice structure is highly inefficient from a graph
theoretic perspective–for signal to propagate long distances across a lattice network,
it must navigate many short pathways. In a system such as the brain, this type of
network would be particularly suboptimal, since the propagation of signals through
neural pathways involves complex cascades of highly synchronized activity at the
molecular and cellular level, as well as the heavy metabolic cost of maintaining
synaptic connections. It has been shown repeatedly in a variety of contexts that
the brain ruthlessly prioritizes efficiency when performing its myriad complex and
overlapping operations, from sensory encoding[43][44] to cortical connectivity[98]. A
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lattice network functional connectivity estimate in EEG is thus likely the result of
failing to explain away shared signal caused by volume conduction[138]. Further in-
vestigation confirmed that pairwise coupling is highly correlated with inter-electrode
distance, further supporting the interpretation that pairwise estimates of functional
connectivity for EEG are likely irreparably vulnerable to strong spurious correla-
tions caused by signal leakage. The multivariate connectomes estimated from this
data showed a mixture of short and long-range connections, and while connectomes
for different subjects showed a range of sparsity levels (20-60%), all connectomes
were decisively small-world. These properties persisted across age groups and fre-
quency bands. Future studies should continue the analysis of the EEG connectomes
by further quantifying their graph theoretic properties such as community detec-
tion, modularity, and the eigenspectrum of the Laplacian. These measures should
be compared across frequency bands and age groups to quantify potential predictors
of developmental maturity.

In fMRI, the difference between multivariate and pairwise connectomes was less
immediately apparent. Thresholded pairwise networks were not as spatially con-
centrated or lattice-like. However, closer inspection showed core differences in the
structure of multivariate connectomes. Many coupling weights were set consistently
to zero, while coactivation of functional networks tended to be concentrated in a
small subset of ROI pairs. Furthermore, mutlivariate connectomes selected for later-
alized structure with strong positive connections for ipsilateral pathways and strong
negative connections for contralateral pathways. Lateral structure and relationships
between positive and negative connections were “washed out” in pairwise networks
due to the inherent constraints of the method–without explaining away variance
while generating coupling coefficients, many correlations are faintly positive due to
shared connections. Further studies should dig deeper into the variance of multivari-
ate connectomes, particularly network edges (ROI pairs) that have high variability
between subjects. The visual network was one such locus. The lateral regions of the
visual network were often selected as a regressor while fitting the activity of other
ROIs, but the coupling coefficients vary widely between connectomes. It would be
enlightening to examine the stability of these couplings across multiple folds fitting
the same subject.

I trained random forest classifiers to predict cognitive developmental measures
(the Mullen scales) from multivariate fMRI functional connectomes . I found that
standard principal components performed no better than chance as predictors. This
is likely because high-variance couplings in the networks are not necessarily encoding
high-level cognitive tasks. Select network pairs performed better, albeit not by much
(scores about 1 standard deviation better than chance at best). While this work
yielded largely negative results, there are many options yet to explore. The selection
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of neural features in particular offers many possibilities, such as the use of sparse
prediction algorithms to learn combinations of ROI pairs that are statistically tailored
to predict the Mullen scores.

Chapter 5 describes the collection and preliminary analysis of a large database of
complex natural sounds. This database was created to be used as a source of natural-
istic auditory stimuli, in particular for rats. There is ongoing work in the Bouchard
lab to create stimulus sets from this database and collect neural data using µECoG
arrays to record from cortical micro-columns in rat primary auditory cortex and
adjoining areas. Beyond the collection of neural data, further studies may use ma-
chine learning techniques to predict semantic information from acoustic structure,
thus uncovering spectrotemporal receptive fields that optimally discriminate seman-
tic categorical boundaries. These normative models of acoustic discrimination can
then be compared to neural responses to the stimuli in order to better understand
cortical representations of acoustic features.
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Chapter

Appendix

A Correlations of Mullen Scores to Connectomes

Included here are the Spearman correlation coefficients and p-values for pairwise
and multivariate connectomes and Mullen Fine Motor, Gross Motor, Expressive
Language, and Visual Reception raw and t-scores, as well as the Early Learning
Composite. These figures are referenced in Chapter 3. The equivalent figure for
Expressive Language is included as Figure 3.17.

B Principal components for multivariate and

pairwise connectomes

Included here are the first 20 principal components (PCs) and sparse PCs for multi-
variate and pairwise functional connectomes used for prediction in Chapter 4.
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Figure .1: Pairwise connectomes show widespread significant correlations
with raw scores, while multivariate networks have no significant correla-
tions. a. Spearman correlation coefficients and b. p-values between MSEL Fine
Motor raw scores and pairwise (top) and multivariate (bottom) connectomes plotted
as weight matrices. c. Spearman correlation coefficients and d. p-values between
MSEL Fine Motor t-scores and pairwise (top) and multivariate (bottom) connec-
tomes plotted as weight matrices.
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Figure .2: Pairwise connectomes show widespread significant correlations
with raw scores, while multivariate networks have no significant correla-
tions. a. Spearman correlation coefficients and b. p-values between MSEL Gross
Motor raw scores and pairwise (top) and multivariate (bottom) connectomes plotted
as weight matrices. c. Spearman correlation coefficients and d. p-values between
MSEL Gross Motor t-scores and pairwise (top) and multivariate (bottom) connec-
tomes plotted as weight matrices.
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Figure .3: Pairwise connectomes show widespread significant correlations
with raw scores, while multivariate networks have no significant corre-
lations. a. Spearman correlation coefficients and b. p-values between MSEL
Receptive Language raw scores and pairwise (top) and multivariate (bottom) con-
nectomes plotted as weight matrices. c. Spearman correlation coefficients and d.
p-values between MSEL Receptive Language t-scores and pairwise (top) and multi-
variate (bottom) connectomes plotted as weight matrices.



CHAPTER . APPENDIX 94

Figure .4: Pairwise connectomes show widespread significant correlations
with raw scores, while multivariate networks have no significant correla-
tions. a. Spearman correlation coefficients and b. p-valuesbetween MSEL Visual
Reception raw scores and pairwise (top) and multivariate (bottom) connectomes
plotted as weight matrices. c. Spearman correlation coefficients and d. p-values
between MSEL Visual Reception t-scores and pairwise (top) and multivariate (bot-
tom) connectomes plotted as weight matrices.
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Figure .5: Neither multivariate or pairwise connectomes show statistically
significant correlates to Early Learning Composite score. a. Spearman
correlation coefficients and b. p-valuesbetween MSEL Early Learning Composite
scores and pairwise (top) and multivariate (bottom) connectomes plotted as weight
matrices.
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Figure .6: Cumulative variance captured for multivariate connectome PCA. Blue
lines show total variance captured by 20 PCs, while red lines show 80% variance
captured.
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Figure .7: Cumulative variance captured for pairwise connectome PCA. Blue lines
show total variance captured by 20 PCs, while red lines show 80% variance captured.
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Figure .8: Principal components 1 (top) and 11 (bottom) of multivariate connec-
tomes.
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Figure .9: Principal components 2 (top) and 12 (bottom) of multivariate connec-
tomes.
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Figure .10: Principal components 3 (top) and 13 (bottom) of multivariate connec-
tomes.
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Figure .11: Principal components 4 (top) and 14 (bottom) of multivariate connec-
tomes.
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Figure .12: Principal components 5 (top) and 15 (bottom) of multivariate connec-
tomes.
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Figure .13: Principal components 6 (top) and 16 (bottom) of multivariate connec-
tomes.
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Figure .14: Principal components 7 (top) and 17 (bottom) of multivariate connec-
tomes.
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Figure .15: Principal components 8 (top) and 18 (bottom) of multivariate connec-
tomes.
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Figure .16: Principal components 9 (top) and 19 (bottom) of multivariate connec-
tomes.
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Figure .17: Principal components 10 (top) and 20 (bottom) of multivariate connec-
tomes.
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Figure .18: Sparse principal components 1 (top) and 11 (bottom) of multivariate
connectomes.
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Figure .19: Sparse principal components 2 (top) and 12 (bottom) of multivariate
connectomes.
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Figure .20: Sparse principal components 3 (top) and 13 (bottom) of multivariate
connectomes.
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Figure .21: Sparse principal components 4 (top) and 14 (bottom) of multivariate
connectomes.
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Figure .22: Sparse principal components 5 (top) and 15 (bottom) of multivariate
connectomes.
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Figure .23: Sparse principal components 6 (top) and 16 (bottom) of multivariate
connectomes.
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Figure .24: Sparse principal components 7 (top) and 17 (bottom) of multivariate
connectomes.
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Figure .25: Sparse principal components 8 (top) and 18 (bottom) of multivariate
connectomes.
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Figure .26: Sparse principal components 9 (top) and 19 (bottom) of multivariate
connectomes.
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Figure .27: Sparse principal components 10 (top) and 20 (bottom) of multivariate
connectomes.
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Figure .28: Principal components 1 (top) and 11 (bottom) of pairwise connectomes.
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Figure .29: Principal components 2 (top) and 12 (bottom) of pairwise connectomes.
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Figure .30: Principal components 3 (top) and 13 (bottom) of pairwise connectomes.
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Figure .31: Principal components 4 (top) and 14 (bottom) of pairwise connectomes.
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Figure .32: Principal components 5 (top) and 15 (bottom) of pairwise connectomes.
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Figure .33: Principal components 6 (top) and 16 (bottom) of pairwise connectomes.
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Figure .34: Principal components 7 (top) and 17 (bottom) of pairwise connectomes.
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Figure .35: Principal components 8 (top) and 18 (bottom) of pairwise connectomes.
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Figure .36: Principal components 9 (top) and 19 (bottom) of pairwise connectomes.
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Figure .37: Principal components 10 (top) and 20 (bottom) of pairwise connectomes.
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Figure .38: Sparse principal components 1 (top) and 11 (bottom) of pairwise con-
nectomes.
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Figure .39: Sparse principal components 2 (top) and 12 (bottom) of pairwise con-
nectomes.
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Figure .40: Sparse principal components 3 (top) and 13 (bottom) of pairwise con-
nectomes.



CHAPTER . APPENDIX 131

Figure .41: Sparse principal components 4 (top) and 14 (bottom) of pairwise con-
nectomes.
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Figure .42: Sparse principal components 5 (top) and 15 (bottom) of pairwise con-
nectomes.
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Figure .43: Sparse principal components 6 (top) and 16 (bottom) of pairwise con-
nectomes.
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Figure .44: Sparse principal components 7 (top) and 17 (bottom) of pairwise con-
nectomes.
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Figure .45: Sparse principal components 8 (top) and 18 (bottom) of pairwise con-
nectomes.
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Figure .46: Sparse principal components 9 (top) and 19 (bottom) of pairwise con-
nectomes.
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Figure .47: Sparse principal components 10 (top) and 20 (bottom) of pairwise con-
nectomes.
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[30] György Buzsáki, Costas A Anastassiou, and Christof Koch. “The origin of
extracellular fields and currents—EEG, ECoG, LFP and spikes”. In: Nature
reviews neuroscience 13.6 (2012), pp. 407–420.

[31] Eric Courchesne. “15 Cognitive Components of the Event-Related Brain Po-
tential: Changes Associated with Development”. In: Tutorials in Event Re-
lated Potential Research: Endogenous Components. Ed. by Anthony W.K.
Gaillard and Walter Ritter. Vol. 10. Advances in Psychology. North-Holland,
1983, pp. 329–344. doi: https://doi.org/10.1016/S0166- 4115(08)
62046-4. url: https://www.sciencedirect.com/science/article/pii/
S0166411508620464.

[32] Eric Courchesne, Leo Ganz, and Anthony M. Norcia. “Event-Related Brain
Potentials to Human Faces in Infants”. In: Child Development 52.3 (1981),
pp. 804–811. issn: 00093920, 14678624. url: http : / / www . jstor . org /
stable/1129080 (visited on 03/14/2024).



BIBLIOGRAPHY 141

[33] Taeko Sasai-Sakuma and Yuichi Inoue. “Differences in electroencephalographic
findings among categories of narcolepsy-spectrum disorders”. en. In: Sleep
Med. 16.8 (Aug. 2015), pp. 999–1005.

[34] M E Raichle et al. “A default mode of brain function”. en. In: Proc. Natl.
Acad. Sci. U. S. A. 98.2 (Jan. 2001), pp. 676–682.

[35] Daniel P Kennedy, Elizabeth Redcay, and Eric Courchesne. “Failing to de-
activate: resting functional abnormalities in autism”. In: Proceedings of the
National Academy of Sciences 103.21 (2006), pp. 8275–8280.

[36] Vladimir L Cherkassky et al. “Functional connectivity in a baseline resting-
state network in autism”. In: Neuroreport 17.16 (2006), pp. 1687–1690.

[37] Vinod Menon. “Large-scale brain networks and psychopathology: a unifying
triple network model”. In: Trends in Cognitive Sciences 15.10 (2011), pp. 483–
506. issn: 1364-6613. doi: https://doi.org/10.1016/j.tics.2011.08.
003. url: https : / / www . sciencedirect . com / science / article / pii /
S1364661311001719.

[38] Scott Marek and Nico U F Dosenbach. “The frontoparietal network: function,
electrophysiology, and importance of individual precision mapping”. en. In:
Dialogues Clin. Neurosci. 20.2 (June 2018), pp. 133–140.

[39] Muriel M K Bruchhage et al. “Functional connectivity correlates of infant and
early childhood cognitive development”. en. In: Brain Struct. Funct. 225.2
(Mar. 2020), pp. 669–681. url: https://creativecommons.org/licenses/
by/4.0.

[40] Alexander G Huth et al. “Decoding the semantic content of natural movies
from human brain activity”. en. In: Front. Syst. Neurosci. 10 (Oct. 2016),
p. 81.

[41] Shinji Nishimoto et al. “Reconstructing visual experiences from brain activity
evoked by natural movies”. en. In: Curr. Biol. 21.19 (Oct. 2011), pp. 1641–
1646.

[42] Nico U. F. Dosenbach et al. “Prediction of Individual Brain Maturity Using
fMRI”. In: Science 329.5997 (2010), pp. 1358–1361. doi: 10.1126/science.
1194144. eprint: https://www.science.org/doi/pdf/10.1126/science.
1194144. url: https://www.science.org/doi/abs/10.1126/science.
1194144.

[43] Bruno A Olshausen and David J Field. “Wavelet-like receptive fields emerge
from a network that learns sparse codes for natural images”. In: Nature 381
(1996), pp. 607–609.



BIBLIOGRAPHY 142

[44] Evan C Smith and Michael S Lewicki. “Efficient auditory coding”. en. In:
Nature 439.7079 (Feb. 2006), pp. 978–982.

[45] Shihab Shamma. “The acoustic features of speech sounds in a model of au-
ditory processing: vowels and voiceless fricatives”. In: Journal of Phonetics
16.1 (1988). Representation of Speech in the Auditory Periphery, pp. 77–
91. issn: 0095-4470. doi: https://doi.org/10.1016/S0095- 4470(19)
30467-X. url: https://www.sciencedirect.com/science/article/pii/
S009544701930467X.

[46] Nima Mesgarani et al. “Phoneme representation and classification in primary
auditory cortex”. In: The Journal of the Acoustical Society of America 123.2
(2008), pp. 899–909.

[47] Brian N Pasley et al. “Reconstructing speech from human auditory cortex”.
In: PLoS biology 10.1 (2012), e1001251.

[48] Julie E Elie and Frédéric E Theunissen. “The vocal repertoire of the domesti-
cated zebra finch: a data-driven approach to decipher the information-bearing
acoustic features of communication signals”. en. In: Anim. Cogn. 19.2 (Mar.
2016), pp. 285–315.

[49] Nandini C. Singh and Frédéric E. Theunissen. “Modulation spectra of natural
sounds and ethological theories of auditory processing”. In: The Journal of
the Acoustical Society of America 114.6 (Dec. 2003), pp. 3394–3411. issn:
0001-4966. doi: 10.1121/1.1624067. eprint: https://pubs.aip.org/asa/
jasa/article-pdf/114/6/3394/8093145/3394\_1\_online.pdf. url:
https://doi.org/10.1121/1.1624067.

[50] Nima Mesgarani et al. “Mechanisms of noise robust representation of speech in
primary auditory cortex”. In: Proceedings of the National Academy of Sciences
111.18 (2014), pp. 6792–6797.

[51] Stephen V David et al. “Rapid synaptic depression explains nonlinear modu-
lation of spectro-temporal tuning in primary auditory cortex by natural stim-
uli”. In: Journal of Neuroscience 29.11 (2009), pp. 3374–3386.

[52] Joji Tsunada, Jung Hoon Lee, and Yale E Cohen. “Representation of speech
categories in the primate auditory cortex”. In: Journal of neurophysiology
105.6 (2011), pp. 2634–2646.

[53] Bing Du et al. “FMRI brain decoding and its applications in brain-computer
interface: A survey”. en. In: Brain Sci. 12.2 (Feb. 2022), p. 228.



BIBLIOGRAPHY 143

[54] Quentin Huys, Joshua Vogelstein, and Peter Dayan. “Psychiatry: Insights
into depression through normative decision-making models”. In: Advances in
Neural Information Processing Systems. Ed. by D. Koller et al. Vol. 21. Curran
Associates, Inc., 2008. url: https://proceedings.neurips.cc/paper_
files/paper/2008/file/d04d42cdf14579cd294e5079e0745411- Paper.

pdf.

[55] Pratik S. Sachdeva et al. “Improved inference in coupling, encoding, and
decoding models and its consequence for neuroscientific interpretation”. In:
Journal of Neuroscience Methods 358 (2021), p. 109195. issn: 0165-0270. doi:
https://doi.org/10.1016/j.jneumeth.2021.109195. url: https:
//www.sciencedirect.com/science/article/pii/S0165027021001308.

[56] Naomi Altman and Martin Krzywinski. “The curse(s) of dimensionality”. en.
In: Nat. Methods 15.6 (June 2018), pp. 399–400.

[57] Surya Ganguli and Haim Sompolinsky. “Compressed Sensing, Sparsity, and
Dimensionality in Neuronal Information Processing and Data Analysis”. In:
Annual Review of Neuroscience 35.1 (2012). PMID: 22483042, pp. 485–508.
doi: 10.1146/annurev-neuro-062111-150410. eprint: https://doi.org/
10.1146/annurev-neuro-062111-150410. url: https://doi.org/10.
1146/annurev-neuro-062111-150410.

[58] Kristofer Bouchard et al. “Union of Intersections (UoI) for Interpretable Data
Driven Discovery and Prediction”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.
url: https://proceedings.neurips.cc/paper_files/paper/2017/file/
788d986905533aba051261497ecffcbb-Paper.pdf.

[59] Mark Bear, Barry Connors, and Michael A Paradiso. Neuroscience: exploring
the brain, enhanced edition: exploring the brain. Jones & Bartlett Learning,
2020.

[60] Vinod Menon. “20 years of the default mode network: A review and synthesis”.
In: Neuron 111.16 (2023), pp. 2469–2487. issn: 0896-6273. doi: https://doi.
org/10.1016/j.neuron.2023.04.023. url: https://www.sciencedirect.
com/science/article/pii/S0896627323003082.

[61] Vinod Menon and Lucina Q Uddin. “Saliency, switching, attention and con-
trol: a network model of insula function”. In: Brain structure and function
214 (2010), pp. 655–667.



BIBLIOGRAPHY 144

[62] Miranda Scolari, Katharina N Seidl-Rathkopf, and Sabine Kastner. “Func-
tions of the human frontoparietal attention network: Evidence from neu-
roimaging”. In: Current Opinion in Behavioral Sciences 1 (2015). Cognitive
control, pp. 32–39. issn: 2352-1546. doi: https://doi.org/10.1016/j.
cobeha.2014.08.003. url: https://www.sciencedirect.com/science/
article/pii/S2352154614000138.

[63] Paola Odriozola et al. “Insula response and connectivity during social and
non-social attention in children with autism”. In: Social cognitive and affective
neuroscience 11.3 (2016), pp. 433–444.

[64] Julien Bastin et al. “Direct Recordings from Human Anterior Insula Reveal its
Leading Role within the Error-Monitoring Network”. In: Cerebral Cortex 27.2
(Jan. 2016), pp. 1545–1557. issn: 1047-3211. doi: 10.1093/cercor/bhv352.
eprint: https://academic.oup.com/cercor/article-pdf/27/2/1545/
10907583/bhv352.pdf. url: https://doi.org/10.1093/cercor/bhv352.

[65] Tor D. Wager et al. “An fMRI-Based Neurologic Signature of Physical Pain”.
In: New England Journal of Medicine 368.15 (2013). PMID: 23574118, pp. 1388–
1397. doi: 10.1056/NEJMoa1204471. eprint: https://doi.org/10.1056/
NEJMoa1204471. url: https://doi.org/10.1056/NEJMoa1204471.

[66] Emma Twait, Rola Farah, and Tzipi Horowitz-Kraus. “Decreased functional
connectivity of the salience network during narrative comprehension in chil-
dren with reading difficulties: An fMRI study”. In: NeuroImage: Clinical 20
(2018), pp. 987–992. issn: 2213-1582. doi: https://doi.org/10.1016/j.
nicl.2018.10.006. url: https://www.sciencedirect.com/science/
article/pii/S2213158218303164.

[67] Lucina Q. Uddin. “Chapter 3 - Functions of the Salience Network”. In: Salience
Network of the Human Brain. Ed. by Lucina Q. Uddin. San Diego: Academic
Press, 2017, pp. 11–16. isbn: 978-0-12-804593-0. doi: https://doi.org/10.
1016/B978-0-12-804593-0.00003-5. url: https://www.sciencedirect.
com/science/article/pii/B9780128045930000035.

[68] Devarajan Sridharan, Daniel J Levitin, and Vinod Menon. “A critical role
for the right fronto-insular cortex in switching between central-executive and
default-mode networks”. In: Proceedings of the National Academy of Sciences
105.34 (2008), pp. 12569–12574.

[69] Steven L Bressler et al. “Top-down control of human visual cortex by frontal
and parietal cortex in anticipatory visual spatial attention”. en. In: J. Neu-
rosci. 28.40 (Oct. 2008), pp. 10056–10061.



BIBLIOGRAPHY 145

[70] Maurizio Corbetta, Gaurav Patel, and Gordon L Shulman. “The reorienting
system of the human brain: from environment to theory of mind”. en. In:
Neuron 58.3 (May 2008), pp. 306–324.

[71] Kristafor Farrant and Lucina Q Uddin. “Asymmetric development of dor-
sal and ventral attention networks in the human brain”. en. In: Dev. Cogn.
Neurosci. 12 (Apr. 2015), pp. 165–174.

[72] Luigi Rolando. Saggio sopra la vera struttura del cervello dell’uomo e degl’animali
e sopra le funzioni del sistema nervoso di Luigi Rolando.. 2. nella stamperia
da SSRM privilegiata, 1809.

[73] Jia-Hong Gao et al. “Cerebellum implicated in sensory acquisition and dis-
crimination rather than motor control”. In: Science 272.5261 (1996), pp. 545–
547.

[74] Richard B Ivry and Juliana V Baldo. “Is the cerebellum involved in learning
and cognition?” In: Current opinion in neurobiology 2.2 (1992), pp. 212–216.

[75] Mario Manto et al. “Consensus paper: roles of the cerebellum in motor control–
the diversity of ideas on cerebellar involvement in movement”. en. In: Cere-
bellum 11.2 (June 2012), pp. 457–487.

[76] Catherine J Stoodley and Jeremy D Schmahmann. “Functional topography
in the human cerebellum: a meta-analysis of neuroimaging studies”. In: Neu-
roimage 44.2 (2009), pp. 489–501.

[77] Christophe Habas et al. “Distinct Cerebellar Contributions to Intrinsic Con-
nectivity Networks”. In: Journal of Neuroscience 29.26 (2009), pp. 8586–8594.
issn: 0270-6474. doi: 10.1523/JNEUROSCI.1868-09.2009. eprint: https:
//www.jneurosci.org/content/29/26/8586.full.pdf. url: https:
//www.jneurosci.org/content/29/26/8586.

[78] Yen-Ling Chen et al. “Resting-state fMRI mapping of cerebellar functional
dysconnections involving multiple large-scale networks in patients with schizophre-
nia”. In: Schizophrenia Research 149.1 (2013), pp. 26–34. issn: 0920-9964.
doi: https://doi.org/10.1016/j.schres.2013.05.029. url: https:
//www.sciencedirect.com/science/article/pii/S0920996413002843.

[79] D. Tomasi and N. D. Volkow. “Resting functional connectivity of language
networks: characterization and reproducibility”. In:Molecular Psychiatry 17.8
(Aug. 2012), pp. 841–854. issn: 1476-5578. doi: 10.1038/mp.2011.177. url:
https://doi.org/10.1038/mp.2011.177.



BIBLIOGRAPHY 146

[80] Lucy R. Chai et al. “Functional Network Dynamics of the Language System”.
In: Cerebral Cortex 26.11 (Oct. 2016), pp. 4148–4159. issn: 1047-3211. doi:
10.1093/cercor/bhw238. eprint: https://academic.oup.com/cercor/
article-pdf/26/11/4148/17308774/bhw238.pdf. url: https://doi.org/
10.1093/cercor/bhw238.

[81] Yaqiong Xiao et al. “Development of the intrinsic language network in preschool
children from ages 3 to 5 years”. en. In: PLoS One 11.11 (Nov. 2016), e0165802.

[82] Wei Gao et al. “Functional connectivity of the infant human brain: Plastic
and modifiable”. en. In: Neuroscientist 23.2 (Apr. 2017), pp. 169–184.

[83] Amna Rehman and Yasir Al Khalili. Neuroanatomy, Occipital Lobe. Stat-
Pearls Publishing, July 2023.

[84] Takashi Hanakawa et al. “Functional properties of brain areas associated with
motor execution and imagery”. en. In: J. Neurophysiol. 89.2 (Feb. 2003),
pp. 989–1002.

[85] Angela R Laird et al. “Behavioral interpretations of intrinsic connectivity
networks”. en. In: J. Cogn. Neurosci. 23.12 (Dec. 2011), pp. 4022–4037.

[86] K J Friston et al. “Functional connectivity: the principal-component analysis
of large (PET) data sets”. en. In: J. Cereb. Blood Flow Metab. 13.1 (Jan.
1993), pp. 5–14.

[87] R Matthew Hutchison et al. “Dynamic functional connectivity: promise, is-
sues, and interpretations”. en. In: Neuroimage 80 (Oct. 2013), pp. 360–378.

[88] Timothy O. Laumann et al. “On the Stability of BOLD fMRI Correlations”.
In: Cerebral Cortex 27.10 (Sept. 2016), pp. 4719–4732. issn: 1047-3211. doi:
10.1093/cercor/bhw265. eprint: https://academic.oup.com/cercor/
article-pdf/27/10/4719/19832217/bhw265.pdf. url: https://doi.org/
10.1093/cercor/bhw265.

[89] Yasaman Shahhosseini and Michelle F Miranda. “Functional connectivity
methods and their applications in fMRI data”. en. In: Entropy (Basel) 24.3
(Mar. 2022), p. 390.

[90] Seong-Gi Kim, Wolfgang Richter, and Kǎmil Uǧurbil. “Limitations of tempo-
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