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Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and
spectroscopy of materials on length scales ranging from microns to atoms. By using a high-
speed, direct electron detector, it is now possible to record a full 2D image of the diffracted
electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM
datasets are rich in information, including signatures of the local structure, orientation, deformation,
electromagnetic fields and other sample-dependent properties. However, extracting this information
requires complex analysis pipelines, from data wrangling to calibration to analysis to visualization,
all while maintaining robustness against imaging distortions and artifacts. In this paper, we present
py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written
in the Python language and released with an open source license. We describe the algorithmic
steps for dataset calibration and various 4D-STEM property measurements in detail, and present
results from several experimental datasets. We have also implemented a simple and universal file
format appropriate for electron microscopy data in py4DSTEM, which uses the open source HDF5
standard. We hope this tool will benefit the research community, helps to move the developing
standards for data and computational methods in electron microscopy, and invite the community
to contribute to this ongoing, fully open-source project.

I. Introduction

In a scanning transmission electron microscopy
(STEM) experiment, a beam of high energy electrons
is focused to a very fine probe – on the order of
or, often, smaller than the atomic lattice spacing –
and rastered across the surface of the sample [1]. In
traditional STEM, a (two-dimensional) image is formed
by populating the value of each pixel with the number of
electrons (times a scaling factor) scattered into a detector
at each beam position. The geometry of the detector – its
size, shape, and position in the microscope’s diffraction
plane – determines which electrons are collected at
each probe position. As a result, different detector
geometries can give rise to rather different images, by
varying which electron scattering processes dominate
image contrast [2]. A point detector placed on the optic
axis yields a bright-field STEM image which is formally
equivalent by reciprocity to a TEM image. In contrast,
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annular detectors with large inner-radii are dominated
by high momentum-transfer elastic scattering events,
making high-angle annular dark-field STEM a popular
geometry because image contrast then generally scales
monotonically with the projected potential of the sample
(“Z-contrast” imaging) [3]. Low-angle annular detectors
have greater sensitivity to lighter elements, but lose the
advantage of simple Z-contrast interpretability due to
the increased importance of phase contrast, i.e. self-
interference of the electron beam wavefunction. Many
more detector geometries are possible, each best suited to
reveal different aspects of sample structure, each suffering
from different limitations [4].

In four dimensional STEM (4D-STEM), we replace
the standard STEM detectors, which integrate all
electrons scattered over a large region, with a pixelated
detector that captures the electron flux scattered to
each angle in the diffraction plane [5–10]. While a
typical STEM image therefore produces a single number
for each position of the electron beam, a 4D-STEM
dataset produces a two dimensional image of diffraction
space intensities for each real space beam position.
The resulting four-dimensional data hypercube can be
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FIG. 1. 4D-STEM experimental geometry, and multimodal data analysis with py4DSTEM. An irradiated Gd2Ti2O7 sample
contains complex, nanoscale structure, apparent in the distinct electron diffraction patterns across the field-of-view. From
a single 4D-STEM experiment, py4DSTEM enables a range of measurements to be performed in post-processing, including
virtual imaging, differential phase contrast, structural classification, strain mapping, and much more.

collapsed in real space to yield information comparable
to more traditional electron diffraction experiments.
Alternatively, it can be collapsed in diffraction space to
yield a variety of “virtual images,” corresponding to both
traditional STEM imaging modes as well as more exotic
virtual imaging modalities [11–15]. More information
still can be extracted by judicious combination of real
and reciprocal space. The structure, symmetries, and
spacings of Bragg disks can be used to extract spatially
resolved maps of crystallinity, grain orientations, and
lattice strain [16–23]. Redundant information in

overlapping Bragg disks can be leveraged to deconvolve
the electron beam shape from the sample structure,
yielding the sample potential itself [24–26]. Rings of
diffracted intensity characteristic of amorphous samples
can be used to extract correlation functions describing
the short and medium range order and disorder. Indeed,
the space of possible quantities of physical interest which
can be extracted from a single 4D-STEM experiment
is formidable, leading others to use the term “universal
detectors” for 4D-STEM capable pixelated cameras [15].
Fig. 1 shows the experimental geometry of a 4D-STEM
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experiment, and various measurements performed from
the same experimental dataset. For a mathematical
discussion of STEM and 4D-STEM image formation, see
Appendix A.

The price paid for the versatility of 4D-STEM is
new complexity in both the raw experimental data
and in the computational processing required to extract
meaningful measurements. Maximizing the impact this
new generation of STEM experiments will have on
structural characterization research now requires that the
computer processing methods which enable the various
4D-STEM characterization modalities are accessible to as
broad and diverse a segment of the scientific community
as possible. Fortunately, a new generation of open source
tools for electron scattering experiments is presently on
the rise, such as hyperspy, pyXem, liberTEM, ncempy,
and others[27–30].

Here, we present free and open source software
for analysis of 4D-STEM data. The aim of the
Python-based project py4DSTEM is threefold: (1)
to make 4D-STEM data analysis easy and accessible
for everyone; (2) to facilitate reproducibility, even in
cases of complicated or multi-step processing workflows;
and (3) to provide a comprehensive, robust suite of
4D-STEM analysis tools, enabling high throughput,
multimodal analysis in which a single dataset can
simultaneously provide many distinct measurements of
sample structure. For ease and accessibility, py4DSTEM
includes a complete API with associated documentation
pages, many fully worked examples in the form of fully
commented and interactive Jupyter notebooks, and a
graphical user interface for fast data visualization and
interaction. For reproducibility, py4DSTEM defines
a set of structured data object types for 4D-STEM
data processing, establishes a set of HDF5-based file
format conventions for 4D-STEM data, and makes it
easy to release, with any publication, the complete
and fully transparent code which generates results and
figures from raw data. For multimodal, high-throughput
analysis, py4DSTEM includes a comprehensive suite of
tools for structural analysis in crystalline and amorphous
materials, including virtual imaging, phase and
orientation mapping, strain mapping, radial distribution
analysis, phase contrast imaging, classification, and
more. A self-consistent framework allows many or
even all of these measurements to be readily performed
on a single dataset. The API and sample code for
various analysis pipelines are freely available from the
py4DSTEM repository [31].

The organization of this document is as follows:
following this introduction, Sec. II discusses the nature
of 4D-STEM data, and how data is structured in
py4DSTEM. Section III discusses basic processing
algorithms which will typically be performed as
precursors to the final measurements of interest,
including locating Bragg disks, calibration, polar
transformations, and classification. Section IV covers
various 4D-STEM measurements that can be performed

in py4DSTEM, including virtual imaging, phase
mapping, strain mapping in amorphous or crystalline
materials, short and medium range order analysis in
amorphous materials, and phase retrieval in very thin
samples. Conclusions are in Sec. V. Throughout, we
have aimed to keep discussion qualitative in the main
text, and have also included mathematical details for the
interested reader in a number of appendices, referenced
in the relevant sections.

II. 4D-STEM Data

Fundamentally, most 4D-STEM is just many electron
diffraction experiments being run sequentially. The
nature of the diffraction pattern obtained at each scan
position depends on the sample structure and the
illumination conditions of the microscope, as illustrated
schematically in Fig. 1. In crystalline materials and
with small-angle illumination, the periodic structure of
the sample gives rise to a periodic pattern of disks
in the diffraction plane [32]. A bright disk appears
wherever the Bragg condition is met, with the disk
positions reflecting a slice through the reciprocal lattice
of the crystal. In amorphous materials, concentric
rings of diffuse intensity appear centered about the
optic axis [33]. The radii of these rings reflect the
characteristic spacings of the atoms in the sample, and
can therefore be used to extract statistical measures of
structure, such as the radial distribution function. In
analyzing crystalline materials, the crux of the analysis
will generally be measuring the Bragg angles in each
diffraction pattern, by determining the positions of all
the Bragg disks. In analyzing amorphous materials,
analysis will generally revolve around radial integration
of the diffraction patterns. In samples containing both
crystalline and amorphous regions, both types of analysis
can be performed in concert.

A. Experimental Conditions

A complete discussion of the many experimental
conditions to attend to in devising a given 4D-STEM
experiment is beyond our scope, however, there is
one parameter which stands apart in its centrality
to both acquiring and understanding 4D-STEM data:
the convergence semiangle, α. When examining a
diffraction pattern, α corresponds to the radius of the
bright-field disk in the diffraction plane, and therefore
also the radius of each refracted Bragg disk in a
crystalline sample. In real space, the probe size
is inversely related to α; larger convergence angles
correspond to finer probes, and overlapping disks
are required to generate sub-lattice sized probes and
therefore allow atomic resolution imaging [34]. In
extracting a strain map, for example, non-overlapping
disks are important, both to facilitate the detection

https://github.com/py4dstem/py4DSTEM
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of the disk positions, and also because strain is a
physical quantity only defined on length scales equal to
or larger than single unit cells. For a ptychographic
reconstruction of the atomic potentials of very thin
materials, overlapped disks are essential, as they provide
the redundant information required to extract the phase
of the electron wavefunction and the sample electrostatic
potential [35]. For analysis of amorphous materials,
measuring radial distribution functions requires nearly-
parallel illumination (a small semiconvergence angle),
while measurements of medium range order in fluctuation
electron microscopy experiments will often vary the
probe semiangle to probe different sizes of atomic clusters
[36, 37]. In general, the convergence angle should be
selected carefully in light of the particular requirements
of the experiment.

B. Multimodal analysis - one dataset, many
measurements

A major advantage of 4D-STEM is the ability to
perform a single experiment from which many distinctly
meaningful structural measurements can be made. We
take as our guiding example the Gd2Ti2O7 (GTO)
crystal shown in Fig. 1. A pyrochlore structured GTO
single crystal was first bombarded with ions, creating
an amorphized layer. Then the sample was annealed,
creating both a layer of recrystallization on the parent
lattice as well as a band of smaller crystallites embedded
in an amorphous matrix. Each of these regions is clearly
visible in the diffraction patterns associated with various
beam positions of the 4D-STEM scan.

A selection of the types of measurements that can be
performed from this dataset are shown in the figure.
These include: virtual imaging spanning bright field
images, annular dark field images, and dark field images
of individual or multiple Bragg reflections (see Sec. IV A);
differential phase contrast imaging, whereby shifts in
the center of mass of the beam are used to back out
the sample structure1 (see Sec. IV G 1); strain mapping,
showing the local deformations of the atomic lattice (see
Sec. IV C); and structural classification, where regions

1 Note that while DPC provides useful image contrast in a fairly
wide array of contexts, physical interpretation, and in particular
interpretation in terms of the local sample potential, should
be undertaken with care. In this dataset, for instance, the
presence of non-overlapping Bragg disks indicates that there
exists sample structure (the atomic lattice) which is too fine for
our probe to resolve, and which will not be reflected in a DPC
reconstruction. Moreover, the spatial sampling here is larger
than probe width, so any variation in the potential between
sampling points will be effaced in the reconstruction. Thus this
DPC image, though still informative to a point, has no simple
physical interpretation. Images in this category might be referred
to as “pseudo-DPC”. For more discussion, and an example where
the DPC image is well thought of as a reconstructed sample
potential, see Sec. IV G 1 and Appendix I.

of distinct structure are identified and segmented (see
Secs. III E and IV B). With py4DSTEM, these analyses
and more can all be applied to a dataset within a single,
unified framework.

C. Data Structures

4-D data

DataCube

2-D slices

DiffractionSlice

RealSlice

N-D points

PointListArray

PointList

FIG. 2. py4DSTEM data structures. Data is saved as one
of 5 classes of dataobjects – DataCube, DiffractionSlice,
RealSlice, PointList, and PointListArray objects.

Data in py4DSTEM is structured in five different
types, broadly distinguished by their dimensionality,
shown in Fig. 2. In-program, these are implemented
as the following Python classes: DataCube,
DiffractionSlice, RealSlice, PointList, and
PointListArray. DataCube instances contain a 4D data
array corresponding to the complete 4D-STEM dataset.
DiffractionSlice and RealSlice instances contain
one or more 2D arrays with shapes corresponding to
that of diffraction space (i.e. the detector shape) or of
real space (i.e. the raster scan shape), respectively. A
DiffractionSlice might contain a single diffraction
pattern, an image of the probe over vacuum, or the
average background noise on the detector. A RealSlice
might contain a virtual image, a Boolean mask
indicating scan positions to be included or excluded
in an analysis routine, or the x and y components of
a lattice vector calculated at each scan position. This
last example describes a RealSlice of depth 2, i.e. the
data contained in the RealSlice class instance is two
distinct 2D arrays (x and y of the lattice vector); in
general DiffractionSlice and RealSlice objects can
have arbitrary depth. The PointList class is flexible,
containing a set of points of arbitrary length in an
arbitrary number of dimensions. On instantiation of a
PointList, a set of coordinates must be specified – e.g.
to specify the positions and intensities of the Bragg disk
positions detected in a single diffraction pattern, (‘qx’,
‘qy’, ‘intensity’) might be used. Points may then
be added or removed from the PointList, e.g. as
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Bragg disks are detected and then thresholded. Data in
PointLists can be easily extracted or sorted by chosen
coordinates. PointListArray instances are 2D arrays
of PointLists, organized in memory to facilitate quick
access of the PointList corresponding to a single array
element, and are useful when storing a PointList for
each scan position. All these datastructure classes inherit
from a parent class called DataObject which facilitates
basic searching, storing, and saving functionality for all
data generated by py4DSTEM, as well as linking to any
relevant metadata.

D. File Structure

py4DSTEM saves data in the HDF5 format, described
on the HDF5 website [38]. A description of the flavor of
HDF5 used in py4DSTEM, which we refer to as “electron
microscopy datasets” or EMD files, is available on the
EMD website. Each HDF5 / EMD file generated by
py4DSTEM has a top level group containing all data,
allowing for the possibility of nesting many py4DSTEM
files in a single, larger file, and version tags to allow
for backwards compatibility. Within the top level group
a py4DSTEM file contains 3 high level groups: data,
metadata, and log. The data group typically contains
5 subgroups corresponding to the 5 datastructures
discussed in the previous section, and each of these
contains any number of subgroups, each storing the
contents of a single corresponding dataobject, including
its raw data and any relevant metadata (e.g. the length
of a PointList, the dimensions of a DiffractionSlice,
etc). This structure makes it possible to bundle
all elements of one or more data processing pipelines
pertaining to a single raw dataset in a single location,
and simplifies reuse between measurements of any shared
datastructures.

Loading data necessarily varies based on the input file
type. For its native HDF5 files, py4DSTEM supports
scanning the contents of a file before pulling anything
into memory, so the entirety of large files need not be
loaded if only some subset of smaller dataobjects are
required. For very large datasets, memory mapping of
datacubes is supported, whereby the contents of a loaded
datacube object are left in non-volatile storage, and
individual diffraction pattern are pulled into RAM only
as they are accessed, enabling analysis of datasets that
are larger than available system RAM. Binning during
loading is also supported. For non-native files, many of
the file types used in electron microscopy are proprietary
and the contents are not publicly described, which
hinders scientific progress within electron microscopy.
py4DSTEM therefore relies on the i/o components of two
other open source projects, hyperspy and openNCEM.
Most electron microscopy file formats are currently
supported, and to-date the py4DSTEM reader has been
tested and works successfully for 4D-STEM data in .dm3,
.dm4, etc., formats.

The metadata group contains 5 subgroups:
microscope, sample, user, calibration, comments,
and original. The microscope group contains
information related to the microscope setup and
acquisition parameters, such as the accelerating voltage
of the beam, the camera length, the convergence angle,
and so forth. The sample group stores information
such as the material imaged, synthesis information,
and any sample preparation. The user group is for
information related to the scientist or scientists who
obtained the data, including names, institutions, and
contact information. The calibration group contains
the pixel sizes (in real and diffraction space), as well as
any additional calibration information such as rotational
offsets, diffraction shifts, and elliptical distortions,
which will be discussed in more detail in Sec. III C The
comments group is for any miscellaneous comments. The
original group contains any raw metadata scraped
from the original data file.

More details about the program structure, interface,
implementation, and usage, including its data handling,
modules, the 4D-STEM HDF5 file structure, logging,
and metadata handling is available in the py4DSTEM
documentation, or in the py4DSTEM repository.

III. Basic Processing

In this section, we discuss the basic processing
required for most datasets, namely: preprocessing
in Sec. III A, Bragg disk detection (for crystalline
samples) in Sec. III B, calibration in Sec. III C, polar
transformations (for amorphous samples) in Sec. III D,
and classification in Sec. III E. These processing steps
are basic in the sense of underpinning all subsequent
analyses, rather than in the sense of simplicity; these
methods are not aimed at producing a final measurement
or plot, but rather are the necessary preparatory work to
ensure such ultimate measurements are possible, and are
optimally accurate. Measurements and applications are
addressed in Sec. IV.

A. Preprocessing

This section discusses several preprocessing steps that
may be performed on a 4D-STEM dataset. None
of these steps are universally required, however, care
in preprocessing can significantly speed up subsequent
processing, and lead to higher accuracy and precision in
final analyses.

Figure 3(a) shows the average of all the diffraction
patterns from the GTO dataset. Vertical streaks are
apparent in the image, as well as a handful of individual,
erroneously saturated pixels. Zeroing the hot pixels,
calculating a background image and subtracting it from
each diffraction pattern, and then calculating a new
average diffraction image yields Fig. 3(b). Here, hot

http://www.hdfgroup.org/HDF5/
https://emdatasets.com/format/
https://hyperspy.org/
https://openncem.readthedocs.io/en/latest/
https://github.com/py4dstem/py4DSTEM/
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FIG. 3. Preprocessing. (a) A position averaged diffraction
pattern of raw 4D-STEM data. (b) The same position
averaged diffraction pattern after subtracting a background
determined from the yellow regions in (a). (c,d) The
initial step of an electron counting procedure, in which
minimum and maximum thresholds (black and red dashed
lines, respectively) of the pixel intensities are used to rule
out background pixels and x-ray strikes. (e,f) Binning and
cropping.

pixels were found by detecting outliers in the histogram of
pixel intensities across the dataset. The background was
determined by identifying edges of the detector which
were beyond the HAADF detector and should ideally
have no counts, then using this region (shown in yellow)
over many diffraction patterns to calculate the average
background streaking. Alternatively, one or many dark
reference images can be recorded directly. While the
nature of noise in a raw 4D-STEM dataset will vary
from camera to camera and experiment to experiment,
background subtraction is generally recommended.

In 4D-STEM data with a sufficiently low electron dose,
it is possible to detect individual electron strike events.
Electron counting, i.e. determining and recording the
diffraction space positions of each electron incident on
the detector, is beneficial for both noise reduction and
data compression. In py4DSTEM, this is implemented
by first calculating a dark reference for the detector. A
histogram of pixel intensity values is then generated from
a random sampling of detector frames, and is used to
calculate an upper intensity threshold (for excluding x-
ray strikes) and a lower intensity threshold (for excluding
the background). In Fig. 3, the histograms in panels
(c,d) correspond to the low-dose dataset shown in (e,f).
These diffraction patterns were recorded by placing an
“amplitude plate” aperture in a condenser aperture, as
described in [39]. Looping through each scan position,
the dark reference is subtracted and the thresholds are
applied to each detector frame, and the local maxima of
the resulting image are identified. These local maxima
are considered electron strike events. Optionally, their
positions can be refined to subpixel precision. The
electron counting shown in the figure compresses this
data by a factor of ∼6000.

The most basic preprocessing functions include

reshaping, binning, and cropping data. Binning and
cropping can be performed in either real or diffraction
space, and allow large datasets to be reduced to more
manageable sizes. For selected file formats, py4DSTEM
also supports data binning on import. Figure 3e,f
shows an electron beam which has been shaped using
a structured condenser aperture; from panel (e) to (f)
this data has been cropped and binned by a factor of
three. Reshaping the data may be necessary in some
cases, for instance, some file formats do not contain
complete information about the real space scan shape,
and thus can be initially loaded as 3D arrays (with
the two real space dimensions collapsed into one) before
being correctly reshaped into 4D arrays.

B. Bragg disk detection

For crystalline or semi-crystalline data, analysis
generally begins by identifying the locations of all the
Bragg disk reflections in each diffraction pattern, which
correspond to the reciprocal lattice points of the crystal.
In py4DSTEM, we find the Bragg disk positions in two
steps: first, we extract the structure of the probe over
vacuum in diffraction space to use as a template. We then
find the Bragg disks by determining all the positions in
each diffraction pattern that match the structure of this
template [22].

py4DSTEM includes 3 methods for generating vacuum
probes. Ideally, we use an image or averaged image
stack of the probe over vacuum. Alternatively, if an
experimental 4D-STEM scan contains a vacuum region,
or a region with only very thin material (e.g. amorphous
carbon support), this can be used to generate a vacuum
probe. In this case, the probes from each vacuum scan
position should be aligned, to correct the translation of
the diffraction patterns as the beam is scanned, and then
averaged. Finally, if neither of these options is possible,
a synthetic probe can be generated.

Once a vacuum probe has been obtained, two
additional processing steps are applied, with the purpose
of generating a kernel for cross correlative template
matching with the individual diffraction patterns. First,
the center of the unscattered electron probe is found and
shifted to the origin. Without this step, all measurements
will have an offset, leading to incorrect results. Second,
a Gaussian wider than the probe is subtracted, leading
to a region of negative intensity surrounding the probe
itself, such that the total integrated intensity of the kernel
is zero. This has two advantages: first, it ensures that
the cross correlation of noisy data is, on average, zero
where there are no Bragg disks. Second, the negative
kernel intensity penalizes cross correlation values where
a Bragg disk and a template are slightly misaligned,
enhancing the detectability of correlation maxima where
disk/template alignment is perfect. While subtraction
of a Gaussian is a useful heuristic, other approaches
are possible, for instance those described in [22, 40–
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FIG. 4. Bragg disk detection in GTO. (a) The vacuum probe. (b) A virtual bright field image. (c) Disk detection is accomplished
by cross correlation of the probe template with each diffraction pattern. (d-g) Diffraction patterns corresponding to the four
scan positions indicated in (b). (h-k) The detected Bragg peaks for these four diffraction patterns. The size of each circle
indicates the cross correlation intensity, a rough approximation for disk intensity.

44]. Adding structure to the electron probes using an
amplitude mask in the objective aperture has also been
shown to significantly enhance the precision of Bragg disk
detection [39].

The Bragg disks are located by calculating the cross
correlation of the probe kernel with each diffraction
pattern, and then locating the correlation maxima. The
disk positions can be located with subpixel precision
via local Fourier upsampling in the region about each
maximum [45, 46]. py4DSTEM allows for standard cross
correlations, as well as phase or hybrid correlations, to
be performed at this stage; see Appendix B for detailed
discussion.

The detected Bragg disks in each diffraction pattern
are a stored in a PointList instance with three
coordinates specifying the disk position in the diffraction
plane and its cross correlation intensity, (qx, qy, I). The
Bragg disks from the complete datacube are stored in a
PointListArray instance, with one such PointList for
each scan position. For many analyses, such as strain or
orientation mapping, all subsequent computation can be
performed on this PointListArray alone, as it contains
the most crucial scattering information. The data

compression here is significant, as only 3 numbers are
now required to store each Bragg disk. For a datacube
consisting of 512×512 pixel diffraction patterns with a bit
depth of 16, 20 detected disks in an average diffraction
pattern, and using 64-bit floating point numbers for the
disk coordinates, this scheme compresses the data by a
factor of approximately 1000.

Once the Bragg disks have been detected, all peaks
from all scan positions may be collapsed into a single
image in the shape of the diffraction plane. The resulting
object is roughly interpretable as a position averaged
probability distribution of reciprocal lattice points, and
is defined carefully in Appendix C. Figure 5 shows an
example using the GTO dataset. We refer to this
object as a Bragg vector map (BVM). Figure 5a shows
the BVM of the complete GTO 4D-STEM scan, while
Figs. 5(c-f) show the BVMs generated from subsets of
the scan region indicated in the virtual image shown in
Fig. 5b. The BVM of the single crystal region, Fig. 5c,
shows sharp reciprocal lattice peaks of the orthorhombic
crystal in the 〈011̄〉 projection. The BVM of Fig. 5d
also contains sharp peaks, now oriented isotropically
about the origin, indicating many small, randomly
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(a)

(c) (d)

(e) (f)

(b)

2 nm-1

2 nm-1

50 nm

FIG. 5. Bragg vector maps of GTO. (a) The Bragg vector map
from the complete dataset. (b) Virtual bright-field image with
boxes indicating four regions of interest. (d-f) Bragg vector
maps generated from the four corresponding regions shown in
(b).

oriented crystal grains. Figure 5d also shows a faint
ring resulting from amorphous scattering in this mixed
cystalline/amorphous region. Note that ideally the BVM
would be insensitive to amorphous scattering because
it should only contain counts where Bragg scattering
occurs, however, false-positive Bragg disk detection can
occur in the amorphous halo, resulting the ring here as
well as in Fig. 5f. Figure 5e shows little amorphous signal,
sharp peaks indicating crystal scattering, and fewer peaks
than in Fig. 5d, suggesting this layer of the sample may
contain fewer, larger crystallites. Figure 5f shows little
or no crystalline signal, suggesting a purely amorphous
layer. Phase mapping, found in Sec. IV B, confirms these
hypotheses about the sample structure.

BVMs are a useful tool in 4D-STEM data processing.
In py4DSTEM they are used in processing pipelines
including calibration (see Fig. 6), classification (see
Fig. 8), strain mapping (see Fig. 11), and others.

C. Calibration

Calibration is the single most important step of any
quantitatively meaningful 4D-STEM data analysis, as
all subsequent measurements hinge on the accuracy
of the calibration. In 4D-STEM a number of
calibrations are desirable. These include correcting
shifts of the diffraction pattern from the raster of the
beam, correcting elliptical distortions of the diffraction
patterns, calibrating the rotational offset between real
and diffraction space, and calibrating the pixel sizes.
Which calibrations are required will generally depend on
the sample being imaged, the measurements being made,
and the required precision.

The data required to perform calibrations is similarly
contingent, and depends on the structure of the sample,
and which calibrations need to be performed. An
image or a stack of images of the STEM probe over
vacuum should always be acquired, and is important
for analyses including Bragg disk detection, calibration
of the convergence semiangle, and deconvolution of the
probe. Scanning a standard calibration sample of known
structure at the beginning or end of a microscope
session is highly recommended, and will typically ensure
the most accurate calibration of pixel sizes. Using a
standard calibration sample which is polycrystalline is
also highly recommended, to facilitate calibration of
inevitable elliptical stretching of the diffraction patterns
due to imperfect optics and alignments [43]. Obtaining
an image of the probe, positioned over the sample and
then highly defocused to create a shadow image in the
diffraction plane, is the recommended data for calibrating
the real/diffraction space rotational offset. In some cases
it is possible to obtain the necessary calibrations directly
from the experimental 4D-STEM scan, however, this is
not guaranteed to be possible, and is especially dubious
for samples of unknown structure.

Figure 6 shows the complete calibration of a simulated
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dataset [47]. The top row of subpanels shows the data:
a 4D-STEM scan of the sample of interest, in this case
a single-crystalline, strained gold nanoparticle (Fig. 6a);
a 4D-STEM scan of a standard calibration sample, in
this case polycrystalline gold (Fig. 6b); an image of the
STEM probe in the diffraction plane (Fig. 6c); and an
image of the STEM probe after defocusing to make a
shadow image (Fig. 6d).

Diffraction shifts – overall translation of the diffraction
patterns resulting from the scanning of the electron
beam – yield apparent shifts of the position optic axis
from one diffraction pattern to the next [48]. The
size of the diffraction shifts depend on the real space
field-of-view of the scan, on the camera length, and on
the particular instrument used; generally speaking, we
recommend measuring diffraction shifts in scans larger
than a few tens of nanometers, and then applying
corrections if deemed necessary. In py4DSTEM, this
calibration is performed by identifying the unscattered
beam at each scan position, and measuring the shifts
in its position. These shifts are then fit to a plane or
low order polynomial, which can be used to correct the
diffraction shifts. For correcting the shifts, it is possible
to shift each diffraction pattern by the measured amount
to generate a new, corrected datacube, however, this is
slow, resource intensive, and often unnecessary. Instead,
it is often possible to simply use the measured shift
values to set the origin of coordinates in any subsequent
measurements made on individual diffraction patterns.
Figure 6e-p shows BVMs before (e,f) and after (k,l)
diffraction shift corrections have been applied to the
measured bragg peak positions. The zoomed in images
centered on the central peak (f,l) illustrate that the
blurred peak of (f) collapses to a sharp peak in (l) after
shift correction. In (g-p) we show the initial measurement
of shifts of the central disk, a masking step to ignore some
subset of data points, a smooth fit to the data, and the
residuals, which are all much less than a single pixel.

Elliptical distortions, in which circular features about
the optic axis are stretched into ellipses, are generally
experimentally unavoidable [43]. These result from
imperfect alignments, including off-axis illumination
on the probe-forming condenser aperture, stigmation
in the post-specimen optics, and finite tilt of the
detector plane relative to the plane normal to the optic
axis. Even in a well aligned system these distortions
may be significant, and are therefore important to
correct in many quantitatively sensitive experiments.
In py4DSTEM, elliptical distortions can be measured
by fitting an elliptical function to data within some
specified annular region, as shown in Fig. 6(q,r). The
functional forms of the fits are discussed in more
detail in Appendix D. With elliptical fits in hand, the
elliptical distortions can be corrected. For crystalline
data in which the Bragg peaks have been measured and
subsequent analysis will be performed on the measured
peak positions only, correction may be accomplished
by shifting the peak positions while leaving the raw

data untouched. Figure 6r shows a BVM after such
correction has been performed. An alternate approach to
elliptical correction is to take a polar-elliptical transform,
effectively re-sampling the data into a coordinate system
which shares the data’s ellipticity. This latter approach
is frequently useful in analysis of amorphous datasets,
and is discussed further in Sec. III D.

There is in general some angle of rotation between the
electron beam in the sample plane and in the detector
plane. Thus in order to correctly map orientations
measured in the diffraction plane into real space, it is
necessary to measure and account for this rotational
offset. The simplest and most robust way to measure
the offset is to compare a STEM image to a defocused
probe shadow image. Any STEM image will suffice,
provided that the same features are visible in the STEM
and shadow images, and in Fig. 6 the bright field virtual
image is used. Two identical points in each of the two
images are identified in Fig. 6s,t and are then used
to calculate the rotational offset. If a shadow image
has not been obtained, other methods to determine the
rotational offset are possible, however, will necessarily
be less robust. Two additional techniques for rotational
calibration are provided in py4DSTEM, both based on
the principles of differential phase contrast imaging. As
a result, these methods tend to work well when the
assumptions of differential phase contrast hold. They
are discussed further, along with the relevant caveats, in
Sec. IV G 1.

Calibration of the diffraction space pixel size minimally
requires measuring a single diffraction vector with a
known spacing. More accurate measurement is possible
by fitting to several known spacings. Figure 6u shows a
radial integral (see Sec. III D) of the elliptically corrected
Bragg vector map shown in Fig. 6r. By indexing the
peaks observed and using the known lattice spacing of
gold, we use the measured peak positions to calculate
the detector pixels size. The horizontal axis of these plots
can then be written in physical units of Å−1.

Ideally, the real space pixel size is determined by
the distance the electron probe is rastered by the
scan coils between detector frames, and is therefore
equivalent to the size calibration of the instrument’s
STEM scan. For this reason, processing tools for re-
calibration of the real space pixel size are not provided.
However, should such calibration be desired, it is
straightforward to edit the py4DSTEM metadata based
on independent measurement of the real space pixel sizes.
When specimen drift leads to large deviations of the
pixel size and scan direction angles, further pixel size
measurements and drift correction may be required [49–
52].

D. Polar Transformation

Transformation from Cartesian to polar coordinates
is an important operation in many 4D-STEM analyses,
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FIG. 6. Calibration. (a-d) The recommended data to collect in order to fully calibrate a 4D-STEM dataset. Data shown here
has been simulated. (a) A 4D-STEM dataset of a sample of interest, here a strained, single-crystal gold nanoparticle. (b) A
4D-STEM dataset of a standard calibration sample, here a distribution of gold nanoparticles. In both (a) and (b), a virtual
bright-field image and three selected diffraction patterns of the 4D-STEM datasets are shown. (c) An image or image stack
of the probe over vacuum. (d) An image of the probe over the sample and defocused until a shadow image is visible. (e-u)
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the beam raster. (q-r) Measurement and correction of elliptical distortions. (s,t) Measurement of the rotational offset of the
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especially of amorphous data. Sections IV E and IV F
discuss two examples, fluctuation electron microscopy
and radial distribution function analysis. Polar-elliptical
transformations are useful for correcting elliptical
distortions, as discussed in Sec. III C. This also enables
calculation of elliptically corrected radial integrals.

Figure 7 shows the transformation of the BVM of

the simulated calibration sample of gold nanoparticles
described in Sec. III C. Both a polar (a,c) and polar-
elliptical (b,d) transformation have been performed, in
the latter case using elliptical parameters fit from the
image. In the polar case we see that, just as the circular
coordinate axes poorly align with the data in (a), so
too do the rings turn into vertical sinusoids in (c). In
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that the elliptical calibration is correct. (e) Radial integrals
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contrast, in (b) the axes and data are well aligned, and
in (d) the rings turn into vertical lines rather than sine
curves.

Radial integration of a single or averaged diffraction
pattern is an important operation, providing higher SNR
information about electron scattering at each spatial

frequency, at the expense of losing any orientation
information. The polar-elliptical transform makes
elliptically corrected radial integration easy – just sum
along the theta axis of the transformed data. Figure 7e
shows an example, with the radial integral calculated
from the calibrated polar-elliptical transform in black
and the radial integral from the simple polar transform in
red. Note that the simple radial integral broadens peaks
and, in the case of the first peak, splits a single peak into
two apparent, but spurious, peaks.

E. Classification

In the context of 4D-STEM, classification refers to
assigning one or more integer values to each scan
position, which identify this position with associated
classes. Ideally, each class corresponds to a type of
diffraction pattern, or to structurally meaningful features
or motifs, such that a scan position will be included
in a given class if and only if its diffraction pattern
contains these features. Virtual imaging, and thoughtful
combination of virtual images and colormaps, is often
the easiest way to visually differentiate distinct structural
regions, and can be a powerful tool for microanalysis [12–
14, 53]. By identifying each pixel with discrete class types
classification goes a step further, facilitating subsequent
analyses as well as enabling generation and identification
of class diffraction patterns [54, 55].

Figure 8 shows a simple classification example. A
4D-STEM scan was taken of a medium entropy alloy
containing a twin boundary, which is about three
quarters of the way up the virtual image in Fig. 8a.
Diffraction patterns averaged from 100 scan positions
each about the positions shown with red, green, and blue
sqaures are shown in Fig. 8b-d. Inspection reveals that
the reciprocal lattice in Fig. 8b is twinned with respect to
that of Figs 8c,d. This dataset is therefore an excellent
testbed for a classification algorithm because the correct
answer is immediately apparent: each diffraction pattern
in this dataset should be assigned to one of two classes,
according to the side of the twin boundary where it falls.

The algorithm proceeds as follows. First, all Bragg
disks are located, as described in Sec. III B. Next, the
BVM is calculated, after any relevant calibrations such
as diffraction shift correction have been performed – see
Fig. 8e. The N maxima of the BVM are then located. A
Voronoi tesselation of the diffraction plane is constructed
using these maxima as the initial points, which carves the
diffraction plane into a set of N regions, each of which
is defined as the set of all points closest to one BVM
maximum [56] - see Fig. 8f. Each of these N regions
is assigned an integer value. Next, the set of Bragg
peaks which has been detected at each scan position is
retrieved, and each peak is assigned a label according
to which Voronoi region it falls in - see Fig. 8g-i. At
this stage the complexity of the data has been reduced
significantly - for each scan position, we have a small
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FIG. 8. A 4D-STEM classification algorithm. (a) Virtual image of a 4D-STEM dataset of a twin boundary. (b-d) Averages of
100 diffraction patterns each from the regions shown in (a). (e) The Bragg vector map. (f) BVM maxima have been located,
labelled, and used to segment the diffraction plane. (g-h) The segmentation in (f) is used to label the Bragg peaks in each
diffraction pattern. (j) Co-occurance of Bragg peaks is used as a criterion to assign scan positions to classes, resulting in a
classification which clearly identifies the twin boundary.

set of integers encoding where Bragg scattering occurred,
rather than an entire 2D diffraction pattern. Initial
classes are identified by determining which Bragg peaks
co-occur with the highest frequency, and these classes
may then be refined, for instance via non-negative matrix
factorization. Here, the final result is shown in Fig. 8j,
with the data cleanly separated along the twin boundary.
More detailed discussion of the algorithm can be found
in Appendix E, and more complex classification example
can be found in Sec. IV B.

IV. Measurements and applications

In this section, we build on the techniques described
in Sec. III to make various measurements of physical
interest from 4D-STEM datasets. In Sec. IV A we
generate virtual images. In Sec. IV B we apply
the classification algorithm discussed in Sec. III E
to the GTO dataset to retrieve maps of various
crystalline and amorphous phases present in the complex,
nanostructured sample. In Secs. IV C and IV D
we calculate strain maps from crystalline data, and
from amorphous data respectively. In Secs. IV E
and IV F we further analyze amorphous samples,

calculating radial distribution functions in the former
section and performing fluctuation electron microscopy
analysis in the latter section. We conclude with two
phase retrieval methods for reconstructing the sample
potential, demonstrating differential phase contrast
imaging in Sec. IV G 1 and ptychography in Sec. IV G 2.

A. Virtual Imaging

In a traditional STEM experiment, many imaging
modalities are possible, by placing detectors of different
geometries in different positions in the diffraction plane
[1]. 4D-STEM enables virtual recreation of a wide
swath of such imaging modalities in post processing
[6, 8, 57, 58]. See Appendix A.

Figure 9a,b shows an averaged diffraction pattern
from the single crystalline region of the GTO sample,
overlaid with various virtual detectors which were used to
generate the images in Fig. 9c-g. Figure 9a shows annular
dark field detectors of various inner and outer collection
angles, and their corresponding virtual images are shown
in Fig. 9c. The Miller indices of each Bragg reflection in
the 〈110〉 projection are shown in Figure 9b, and virtual
images corresponding to a detector placed about each
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FIG. 9. Virtual imaging. (a) Virtual annular dark-field detectors. (b) Virtual bright field (green) and dark-field (yellow, red)
detectors. (c) Virtual annular dark-field images. (d) Virtual dark-field images corresponding to circular detectors about each
of the indexed Bragg peaks. (e) Virtual bright-field image. (f,g) Virtual images corresponding to the yellow and red detectors
shown in (b), respectively. The inner, yellow peaks are only present in one of the two expected crystal structures in this system.

of these peaks are shown in Fig. 9d. Here, a single 4D-
STEM scan is used to virtually recreate images analogous
to 45 distinct traditional dark-field TEM images, similar
to [13].

Figure 9b shows three detectors colored green, yellow,
and red, corresponding to the three virtual images shown
in Fig. 9e-g. The first is a virtual bright field image,
while the latter two use virtual detectors which would
be challenging to realize physically, but which are of
particular interest because of the structural significance
of the yellow and red peaks to two crystalline phases
in this system: the red peaks are present in both of
the two expected single crystal phases (pyrochlore and
fluorite), while the yellow peaks vanish in the higher
symmetry fluorite phase. Thus with 4D-STEM, it is
possible to virtually recreate images corresponding to
every possible integrating STEM detector geometry, and
also to generate complex, bespoke detectors matched to
the sample structure and properties of interest.

B. Phase Mapping

An important problem in many applications is
mapping distinct structural phases, and potentially many
phases, present within a single sample [21, 54, 55, 59].
In this section we demonstrate mapping regions of a
4D-STEM scan in which the diffraction patterns are
sufficiently similar to be considered a single type, using
the classification algorithm discussed in Sec. III E. This
therefore constitutes ‘phase’ mapping in the sense of
distinguishing regions of structural similarity, defined in
terms of differences in the measured diffraction patterns.
These differences may result from the presence of distinct
crystal structures, crystal grains of various orientations,
amorphous regions, and so on. The meaning of any one

of these phases must be interpreted in the context of the
particular sample, and the details of each phases’ average
diffraction pattern [16].

We return to the GTO dataset as an example. The
results are shown in Fig. 10. The classification algorithm
identifies 82 distinct crystalline phases, including 5 single
crystal phases (Fig. 10b,e) and 77 smaller crystallites
(Fig. 10d,g). We then additionally identified two
amorphous phases (Fig. 10c,f). This was accomplished
by masking away all detected Bragg peaks, calculating
radial integrals of the masked diffraction patterns, then
using these curves as inputs to a non-negative matrix
factorization algorithm. Masking Bragg peaks is not
required for purely amorphous data, but is essential
for mixed amorphous/crystalline specimens, as Bragg
scattering even from small crystallites in a primarily
amorphous matrix would otherwise dominate the radially
integrated signal.

In this dataset, we find a single crystal region
which appears to transition smoothly from a pyrochlore
structure (Fig. IV Bb, dark purple, and Fig. 10e, upper
left) to a flourite structure in which the superlattice
reflections vanish (Fig. IV Bb, yellow, and Fig. 10e,
lower right). Below the single crystal region is a mixed
crystalline/amorphous region (Fig. IV Bc, lighter green,
and Fig. 10f, right). Below this is a layer of larger
crystallites (Fig. IV Bd,g), followed by a pure amorphous
region (Fig. IV Bc, darker green, and Fig. 10f, left).
With a phase map in hand, any number of additional
analyses, such as the orientation or size distribution of
the crystallites, or the strain in the single crystal (see
Fig. 11), become readily calculable.
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FIG. 10. Phase mapping. (a) All of the structurally distinct phases identified in this system, using the classification algorithm
described in III E. (b,e) The single crystal phases and their class diffraction patterns. (c,f) The amorphous phases and their
class diffraction patterns. (d,g) The polycrystalline phases and their class diffraction patterns.

C. Crystalline Strain Mapping

The diffraction pattern of a crystalline sample from a
low index zone axis contains a grid of Bragg disks given
by the reciprocal lattice of the sample. Therefore the
spacing of the Bragg disks is inversely proportional to
the real space atomic spacing. Precise measurements of
the reciprocal lattice vectors can therefore be used to map
the local strain present in a crystalline sample, given by
the deviations of the lattice from the ideal spacing and
angles [18, 60–64].

In Fig. 11 we map the strain of the single crystal
regions of the GTO data. Obtaining a strain map begins
with Bragg peak detection as discussed in Sec. III B and
data calibration as discussed in Sec. III C. Beginning
from the calibrated BVM of the region of interest
(Fig. 11a), the average reciprocal lattice vectors are
extracted by taking its Radon transform, and then
finding the projection angles at which the peaks of the
BVM align (Fig. 11b). With the lattice vectors in
hand, the BVM peaks are indexed (Fig. 11c). We then
refine the reciprocal lattice vectors for each diffraction
pattern by performing a fit to its set of detected Bragg
peaks, using the average lattice vectors as an initial guess
and weighting the fit according to the cross correlation
intensities of the detected peaks. A reference lattice is
chosen, and the infinitesimal strain tensor is computed
at each beam position by examining the deviation of its
local lattice vectors from the reference lattice. For further
discussion see Appendix F.

The results of this analysis are shown in Fig. 11e-
h. Here, the x- and y-directions are shown in both
real and diffraction space with red and orange arrows,
respectively. εxx and εyy refer to the compressive/tensile
(negative/positive) strain of the lattice along the x and
y directions shown, while εxy and θ are the shear strain
and the rotation of the lattice, respectively. Among
other revealing features, the εxx map in this data shows
significant tensile strain along the interface of the parent
and recrystallized single crystal, indicating stretching of
the crystal perpendicular to the interface.

The choice of reference lattice is crucial to obtaining
meaningful strain maps. In the simplest case, the
experimental 4D-STEM scan contains a region of known
undeformed lattice, which can be used directly to define
the reference lattice. Alternatively, it is possible to obtain
a separate scan of unstrained material to use as reference,
however in this case, good calibrations are essential – see
Sec. III C. With good calibrations and a known crystal
structure, it is also possible to define a reference lattice
by hand. In the case of the GTO dataset, in which there
is a parent crystal at the top of the image and a region
of recrystallization below, the parent crystal can be used
as reference.

Strain tensor values depend, in general, on the choice
of coordinate system. It is therefore necessary to specify
coordinates; without this specification, e.g. by including
the coordinate axes on the plots, strain maps are not
physically interpretable. Because there is some arbitrary
rotation between real and diffraction space in 4D-STEM
data, it is also important to show the orientation of the
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FIG. 11. Crystalline strain mapping. (a) Bragg vector map
of the crystalline region of the GTO sample. (b) Automated
detection of the lattice vectors, using the Radon transform.
(c) The indexed Bragg vector map. (e-h) Strain maps of the
single crystal region. The upper color bar applies to (e-g),
and the lower colorbar to (h). (i) The relevant coordinate
systems in real and diffraction space.

axes in both real and diffraction space. In Fig. 11h,
two sets of yellow axes show the chosen coordinate with
respect to which the strain maps are are measured, in
real space and diffraction space respectively. In this
data, the rotation between the two was small (∼ 2◦),
however note that in general it need not be, and will vary
between microscopes. The best coordinate system to use
for a give strain map depends on the sample and the
relevant material questions. Typically, orienting one of
the principle axes along some important crystallographic
direction is best, and in Fig. 11 the strain x-direction
has been oriented along the 〈11̄0〉 direction, which is also
direction of ion bombardment and of recrystallization.
In a strain mapping workflow in py4DSTEM, calculating
the strain from the reference lattice produces a strain
map with respect to a coordinate system oriented along
the detector frame (Fig. 11i, top row); typically, some
coordinate orientation which is sensible for the system
and questions under study should then be chosen, and the
strain map rotated into this coordinate system (Fig. 11i,
bottom row).

D. Amorphous Strain Mapping

Electron diffraction experiments of amorphous
materials, or materials containing a substantial fraction
of an amorphous phase, will typically include ring-like
features with a radius given by a characteristic scattering
length. Similarly to crystalline materials, a local increase
or decrease in the average atomic spacing (i.e. strain)
in amorphous materials will cause a decrease or increase
respectively in the amorphous ring radius. By fitting
an elliptical function to each diffraction image, we
can directly measure these deviations due to local
strain. This has been demonstrated both in individual
TEM diffraction images [65] and in in situ 4D-STEM
experiments [66].

In py4DSTEM, we have implemented strain
measurements of amorphous materials using the
same elliptic fitting routines described in Sec. III C and
Appendix D. Figure 12a-c show the elliptical fits. In
each of the three plots shown, the data being displayed
alternates in a pinwheel pattern between the data and
the fit, for easy visual assessment of the fit quality. In
the average diffraction pattern of the pure amorphous
region, Fig. 12a, the data (shaded blue) is in excellent
agreement with the fit. Using this fit as an initial guess,
noisier individual diffraction patterns like Fig. 12b,c can
then be fit as well. In data containing mixed amorphous
and crystalline material, to obtain good elliptical fits to
the amorphous signal it is important to mask off any
Bragg scattering. In Fig. 12b,c the smaller black circles
represent such masked regions.

Figure 12d-g shows the strains computed beginning
from these fits, then finding the deviation of the elliptical
distortions from a reference. Here the median of the
fully amorphous region is used. As with crystalline strain
mapping, the choice of reference is important, and should
be selected carefully based on the individual experiment.
Figure 12d-f, showing the compressive/tensile strains
along the shown x and y directions as well as the
shear strain, are comparable to the crystalline εxx, εyy,
and εxy plots from Fig. 11. Figure 12g additionally
shows 1

2 (εxx + εyy), representing the local dilation of
the structure. Across the four shown amorphous strain
plots we observe local structural changes, especially at
the crystalline-amorphous interfaces.

E. Radial Distribution Functions

The radial distribution function (RDF), or g(r),
describes the relative density of atoms some distance
r from a given atomic position. Thus the RDF
characterizes the distribution of distances between
atoms in a given material. It can serve as an
important fingerprint for amorphous materials, as it
gives information about the distance and density of
neighboring shells of atoms, which depend on the
material’s structure, chemistry and defect density [67].
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FIG. 12. Amorphous strain. (a-c) Elliptical fits to the
average amorphous diffraction pattern, and two two selected
diffraction patterns. In (a), blue wedges show the data, while
clear wedges show the fit function. In (b) and (c), the data
and the fit are similarly interleaved, and Bragg scattering
has been masked away to ensure good fitting. (d-e) The
compressive/tensile strains εxx and εyy, the shear strain εxy,
and the dilation 1

2
(εxx + εyy).

In this section, we qualitatively discuss the calculation of
the RDF, and the structure of the resulting plot. Formal
discussion of our methods, which follow [37, 68], are
found in Appendix G.

The RDF can be directly determined from the average
diffraction pattern of an amorphous material, as long
as enough counts / images are collected to average out
any local density fluctuations, and the probe convergence
semiangle is sufficiently small to not blur out the
diffraction pattern [33]. An example of the mean
diffraction pattern from amorphous silicon is shown in
Fig. 13a. A radial integral is then calculated, here
using a polar-elliptical methods of Sec. III D, yielding
the diffracted intensity as a function of distance from
the optic axis. The resulting curve, I(k), is shown in
Fig. 13c. The important elements of this signal are
(1) thermal diffuse background, resulting from thermal
motion of the atoms and which dominates the behavior
shown here at low k values, (2) the single atom scattering
factors, describing the scattered intensity profiles which
result from individual atoms and which dominate the
behavior at high k values, and (3) the structure factor
Φ(k), which describes the arrangement of atoms relative
to one another in the material. By fitting the thermal
background and atomic scattering factors it is possible
to calculate the structure factor, and from the structure
factor it is possible to calculate the RDF. Figure 13d and
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FIG. 13. Radial distribution function of amorphous silicon.
(a) An average diffraction pattern. (b) The polar-elliptical
transform of (a). (c) The radial intensity profile, calculated
from (b). (d) The structure factor, calculated by determining
and subtracting off the single atom scattering factor, and
applying a bandpass mask to cut off high and low frequency
noise. (e) The radial distribution function, calculated using
the structure factor, showing the first few shells of Si atoms.

e show the structure factor and RDF, respectively.

We ultimately invert the structure factor, a diffraction
space quantity, to retrieve the RDF, a real space
quantity. The sampling of the RDF is thus determined
by the maximum k values in the experimental data.
In py4DSTEM we therefore upsample by padding the
structure factor with zeros before inversion, which allows
extraction of an RDF which is in principle arbitrarily
smooth. However, that smoothness should not be
over-interpreted: the highest frequencies at which true
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FIG. 14. Fluctuation electron microscopy of predominantly
amorphous silicon. (a) An average diffraction pattern of the
4D-STEM scan, using median statistics. (b) A diffraction
image generated by selecting the maximum value at each
pixel across all scan positions, and revealing the presence of
some amount of Bragg scattering, and therefore crystallinity,
in this sample. (c) The radial intensity profiles of the dataset
using median (red) and mean (blue) statistics respectively.
(d) The variance over all angles versus radial position. (e)
V (q)

〈I(q)〉2 , a measure of short and medium range order which

becomes larger with increasing order. Note the two peaks in
blue (mean statistics) which become a single broad peak in
red (median statistics). These come from Bragg scattering,
suggesting the median statistics are superior for evaluating
the amorphous structure.

information has been transferred is set by the maximum
k from the experimental data.

In gathering data for RDF analysis it is important to
capture high scattering angles to use in fitting the atomic
scattering factors, therefore fairly short camera lengths
are recommended.

F. Fluctuation Electron Microscopy

Fluctuation electron microscopy (FEM) is a method
which, like RDF analysis, is used to characterize the
structure of amorphous materials. In RDF analysis
structure is typically considered out to distances of
perhaps the first few shells of neighboring atoms,
considered the “short range order” regime. However,
many amorphous materials have a substantial degree
of structural ordering beyond the first few shells [69].

This property is referred to as “medium range order”
in materials science [70, 71]. When using 4D-STEM
to study amorphous materials, the STEM probe size
(set by the convergence semiangle and/or probe defocus)
can be tuned to match the size of atomic clusters.
When these clusters deviate from a fully random
distribution, they lead to “speckles” in the amorphous
halo. The technique of quantifying the degree of
variability as a function of scattering angle and probe
size is called fluctuation electron microscopy (FEM) [72].
In this section we qualitatively discuss FEM, and a
mathematical treatment is in Appendix H.

Our approach follows the methods of [73]. The idea is
to calculate the variance V (k) of the diffraction patterns
as a function of scattering angle. With an appropriate
normalization (see the appendix), the variance can
be thought of as a metric of order. Consider the
limiting cases: in a minimally ordered sample the atomic
distribution is completely homogeneous, leading to
perfectly smooth diffracted rings and thus zero variance
at a given scattering angle. In a maximally ordered
sample, a perfect crystal, the rings resolve into Bragg
disks, so that the variance at some fixed k containing
peaks will be maximized. The RDF is primarily sensitive
to the 2-body atomic pair correlations, whereas the FEM
variance is more sensitive to 4-body pair-pair correlations
[36, 70], hence its utility in examining medium range
order.

Figure 14 shows an FEM measurement of an
amorphous silicon sample, performed in py4DSTEM.
Figure 14a shows the mean diffraction pattern of
the dataset, with two strong amorphous rings visible.
However, plotting the maximum intensity across all
probe positions as in Fig. 14b shows some Bragg disk
features, due to small regions of crystallinity in some
probe positions. We could simply exclude these patterns
from the FEM measurement, but there is a simpler
way to suppress or eliminate unwanted contributions of
crystalline regions to the variance V (q): replace the mean
intensity as a function of orientation angle φ with the
median intensity. Median statistics are much more robust
against outliers, such as the high variance due to Bragg
peaks.

Figure 14c-e show FEM measurements using both
mean and median statistics. The presence of crystalline
regions barely effects the mean intensity 〈I(q)〉φ,R, but
strongly modulates the variance V (q). Figure 14e shows
a strong signal at q = 0.318 Å−1 that corresponds to
the distribution of nearest neighbor atoms in amorphous
Si, with a mean scattering vector approximately equal
to the crystalline Si [111] lattice spacing. This
signal is approximately the same using both mean and
median statistics, unlike the second peak. When the
normalized variance is calculated using mean statistics,
two additional Bragg peak signals become visible on
top of the second broad amorphous peak, corresponding
to the [220] and [311] crystalline Si diffraction peaks.
This example highlights the importance of either careful
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inspection of the diffraction images or using robust
statistical methods such as medians when performing
FEM studies.

G. Phase retrieval

py4DSTEM includes two methods for reconstruction of
the sample potential: differential phase contrast (DPC)
and ptychography. Broadly, the idea in both methods
is to extract the amount of extra phase that has been
added to the electron beam at each scan position. That
phase is then taken to be the total (i.e. projected) sample
potential at this scan position times a constant which
encodes electron-charge interaction strength. Figure 15
show the results of the py4DSTEM phase retrieval
algorithms applied to a carbon nanotube [74].

These methods make the transmission function
approximation and the projection approximation, and
thus can be expected to be most reliable for thin, low-
Z samples. In cases where these conditions don’t hold,
phase retrieval should be interpreted cautiously.

1. Differential phase contrast

Differential phase contrast (DPC) uses the fact that,
for a sufficiently thin object, the mean deflection of
the electron probe at each scan position in the STEM
raster is related to the specimen electric and magnetic
field components transverse to the beam propagation
direction. Examples of material science applications of
this technique include the study of built-in electric fields
in semiconductor devices [75], magnetic skyrmions [76]
and domain structures [77] and as a technique for
efficient visualisation of light atoms in materials [78].
The technique was first suggested by Dekkers and De
Lang [79], was extensively applied to the study of
magnetic materials from the 1970s onward by Chapman
and colleagues and has seen more ubiquitous use
with increased uptake of more sophisticated segmented
detectors [80] and the advent of fast-readout electron
cameras in STEM [81].

Figure 15a shows the sample potential after DPC
reconstruction. The mean probe deflections are shown in
Fig. 15c,d at each scan position in the x- and y-directions,
respectively. Once these are calculated, optionally after
defining some mask to cut off high angle scattering, DPC
considers this vector field of deflections to be the gradient
of some scalar function. The primary task of DPC is
thus to reconstruct the scalar field (a.k.a. the DPC
image) which has as its gradient the measured probe
deflections. In py4DSTEM this inversion is accomplished
by Fourier integration of the probe deflections [82,
83]. In the phase object regime (also known as the
multiplicative approximation), the resulting scalar field is
proportional to the sample potential. Appendix I derives
the relation between the beam deflections and the sample

potential, and discusses the Fourier integration approach
used. A consequence of Fourier integration is that it
implicitly assumes periodic boundary conditions, which
can be problematic for non-periodic electron microscopy
specimens. Boundary condition handling is important to
a high quality DPC reconstruction, and in py4DSTEM
we have used an iterative boundary condition correction
algorithm which is discussed in detail in Appendix I.

The rotational offset between real and diffraction
space needs to be correctly calibrated to perform the
Fourier integration step. One possibility is to use
the method discussed in Sec. III C. In the context of
DPC, alternative approaches to this calibration are also
possible. In one, the beam deflections are assumed to
be a conservative vector field, which must be true if
they are the gradient of a scalar field. However, if the
coordinate systems of real and reciprocal space contain
a relative rotation, the measured beam deflections will
all be similarly rotated, resulting in general in a non-
conservative field. The correct rotational offset can thus
be identified by finding the relative rotation which results
in beam deflections which are conservative, which can
be identified by minimizing the curl as a function of
the rotation. In another approach, we note that the
contrast of a DPC reconstruction, that is the contrast
of the scalar field which results from Fourier integration
of the beam deflections, is typically maximized when the
rotational offset is correct. Thus the calibration may
also be performed by maximizing the DPC contrast as a
function of real/diffraction space rotation. Note that this
method permits a 180 degree ambiguity in the rotational
offset, corresponding to a contrast reversal in the DPC
image.

Finally, we note that Fourier integration effectively
applies a low pass filter (see Appendix I). Some amount
of low pass filtering is therefore inherent in DPC imaging
as implemented in py4DSTEM.

2. Ptychography

Phase retrieval is difficult because phase is never
directly recorded; instead, the detector only captures
the square modulus of the electron wavefunction. In
electron ptychography of crystals, the idea is that with
a large enough convergence angle, the central disk will
begin to overlap with other Bragg disks. In the overlap
regions the phases of the two beams add coherently,
and consequently phase reconstruction is possible by
analyzing these regions. The method is analogous to
holography, which combines a scattered beam and a
reference beam to create an interference pattern, except
that the ‘scattered’ and ‘reference’ beams are now the
central beam and the Bragg reflected beams. Variations
in these regions of interference as the beam is scanned
enable phase retrieval. Ptychography was first suggested
as a method to solve the crystallographic phase problem
by Hoppe [84–86], and later extended to solve the phase
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FIG. 15. Phase retrieval of a carbon nanotube, using (a) differential phase contrast, or (b) single side band ptychography. (c,d)
The centers of mass of the diffraction patterns, used in DPC. (e) Convergence of the boundary condition correction component
of the DPC algorithm.

problem for arbitrary specimens by Rodenburg [87].

py4DSTEM includes a ptychographic reconstruction
algorithm which calculates the phase in a single step,
based on the single-side-band approach and discussed
in detail in Appendix J. Figure 15b shows the results
for the carbon nanotube discussed above, and clearly
reveals both the walls of the tube as well as the tortuous
structure of carbon inside the tube. In general, direct
solvers tend to be fast, however, better reconstruction
quality is usually achieved with iterative algorithms.
Unfortunately, a patent on iteration creates substantial
challenges to making iterative ptychography codes of any
sort freely available to the scientific community.

V. Conclusion

In this paper, we have presented the py4DSTEM
software package written in Python, for analysis of 4D-
STEM experiments. We have described the program’s
purpose and structure, including an HDF5 based file
standardization for 4D-STEM. We’ve described how
py4DSTEM can be used for preprocessing and calibrating
data, finding Bragg disk positions, transformation into
polar-elliptical coordinates, and for classifying diffraction
patterns based on commonalities in their diffraction
patterns. We demonstrated measurements including
virtual imagining, phase mapping, mapping strain in
crystalline and amorphous materials, RDF and FEM
analyses, and phase reconstruction with DPC and with
ptychography. The analysis here spans 8 datasets,
including seven experimental and one synthetic dataset.

The py4DSTEM codes and many examples are freely
available in the py4DSTEM repository on Github. As an
open source project, both new users and new contributors
are enthusiastically encouraged to try the code, use it in

your own work, or make a pull request.
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FIG. 16. Schematic of STEM experimental geometry, showing
initial probe focused onto sample surface, propagating
through sample, exiting the sample, and finally being imaged
in the far field detector plane.

Appendices

A. Basic formalism for 4D-STEM

Figure 16 shows the geometry of a STEM experiment.
We define the following probe wavefunctions:

Ψ0(k) = initial probe formed in diffraction space.

ψ0(r) = probe focused onto sample surface.

ψ(r) = probe at exit plane of sample.

Ψ(k) = far field probe in detector plane.

where r and k denote coordinates in the real space
image and diffraction space planes, respectively, and the
diffraction plane coordinate |k| = α

λ for scattering angle
α and relativistically corrected electron wavelength λ. In
a STEM experiment, scan coils are used to move the
probe to a given position R, denoted by ψ0(r −R). In
this appendix, we first describe a simple model for 4D-
STEM datasets, which primarily refers to the diffraction
plane wavefunction Ψ(R,k). We then briefly discuss the
more general question of how the wavefunction evolves
from the initial probe Ψ0 to the final probe Ψ on the
detector.

A 4D-STEM dataset typically takes the form of a four-
dimensional array of intensity values,

I = Ii,j,n,m

= I(Rx, Ry, kx, ky)

= I(R,k).

Here, each Ii,j,n,m is a scalar and (i, j, n,m) ∈ N,
i.e. the dataset is a discrete 4D grid of numbers.
The correspondences between (i, j) and scan position
R = (Rx, Ry) and between (n,m) and diffraction

coordinate k = (kx, ky) are determined by the real and
diffraction space pixel size calibrations. The value of each
Ii,j,n,m is given by the electron flux passing through the
appropriate detector pixel, or by the square modulus of
the beam wavefunction integrated over the detector pixel
at k when the beam raster position is R. Thus the 4D-
STEM dataset may be modelled by

I(R,k) =

∫ kx+∆k

kx

∫ ky+∆k

ky

|Ψ(R,k)|2dkxdky

≈ |Ψ(R,k)|2

where the approximation is exact in the limit of
infinitesimally small detector pixels. Note that this
simple model does not account for finite information
transfer in the microscope, which could be included with
a multiplicative transfer function M(k).

In a STEM experiment with an integrating detector
(ADF, BF, etc.), the image I(R) can be modeled as

I(R) =

∫
|Ψ(R,k)|2D(k)dk (A1)

where D(k) reflects the detector geometry. For some 4D-
STEM signal I(R,k) we can write down an equivalent
virtual image Iv(R) as:

Iv(R) =

∫
I(k,R)D(k)dk. (A2)

If Eqs. A1 and A2 look similar, it’s because they are. The
key difference is in the meaning of the integration over
D(k): in the former equation, it describes the action
of the detector, and the integration occurs in hardware
during data acquisition; in the latter equation, it is a
prescription for which pixels of the 4D datacube need to
be summed in post-processing.

The evolution of the probe is comparatively simple
from the probe forming aperture to the sample plane,
and from the sample plane to the detector - both are
given by Fourier transforms:

ψ0(r) = Fk→rΨ0(k)

Ψ(k) = Fr→kψ(r) (A3)

where Fr→k is the forward transform from the real to
diffraction domain, and Fk→r is the inverse transform
from the diffraction to real domain. The most common
initial condition for the electron probe in 4D-STEM is
given by a circular aperture in a condenser plane

Ψ0(k) = A(kmax)

=

{
1 if |k| ≤ kmax

0 otherwise
(A4)

where A(kmax) is the 2D “top hat” function, and kmax is
the maximum scattering vector of the probe. The probe
incident on the sampe is then an Airy disk function

ψ0(r) =
J1(2πkmax|r|)√

π|r|
(A5)
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where J1 is a Bessel function of the first kind, and the
peak amplitude is equal to

√
πkmax. This function is

shown graphically in the upper right corner of Figure 16.
More complex STEM probes can be formed by using
amplitude-patterned apertures [39, 88], phase plates [89–
92], or other methods [93, 94]. In a vacuum, ψ0(r) =
ψ(r), so that Ψ(k) and Ψ0(k) are identical up to scaling
and phase factors, so that without a sample the image on
the detector directly reflects the electron beam passing
through the probe-forming aperture.

The change in the wavefunction from ψ0(r) to
ψ(r), as the beam passes through a sample is, in
general, analytically intractable, so numerical methods
are typically used. Using some approximations described
in [34], and omitting the scan coordinate R for clarity,
the interaction of the STEM probe with the sample is
governed by the time-independent Schrödinger equation

∂ψ(r)

∂z
=
iλ

4π

[
∂2ψ(r)

∂x2
+
∂2ψ(r)

∂y2

]
+ iσV (r)ψ(r) (A6)

where i is the imaginary constant, σ is the relativistically-
corrected electron-matter interaction constant, and V (r)
is the electrostatic potential inside the sample. Because
the two operators on the right-hand side of equation A6
do not commute, it is typical to use a split-step method
to numerically solve this equation called the multislice
method, first derived in [95]. To use the multislice
method to solve the interaction of the electron beam with
the sample, we first divide up the sample into a series of
N slices, Vn(r), which are 2D arrays that integrate all
of the electrostatic potential contained in a given slice of
thickness ∆z, given by

Vn(r) =

∫ z+∆z/2

z−∆z/2

V (r)dz (A7)

By assuming each slice has infinitesimal thickness, the
solution to the transmission operator is given by

ψ(r) = T (r)ψ0(r) = eiσVn(r)ψ0(r). (A8)

Between each slice, we assume zero electrostatic potential
and can therefore advance the electron wave by using the
free-space propagation operator, which can be efficiently
applied in Fourier space [34]

ψ(r) = Fk→r

{
eiλ∆z|k|2

[
Fr→kψ0(r)

]}
. (A9)

Note that the propagation operator eiλ∆z|k|2 uses the 2D
inverse spatial coordinate k = kx

2 + ky
2. We alternate

the application of the transmission and propagation
operators to calculate the final wavefunction after
interacting with the sample,

ψ(r) =

[
N∏
n=1

{
Fk→r

[
eiλ∆z|k|2

{
Fr→k

[
eiσVn(r)

]}]}]
ψ0(r),

which is typically referred to as the exit wave. This
method requires N transmission operations and N −

1 propagation operations. The multislice method is
often used for modeling 4D-STEM experiments, but
can require a prohibitively high amount of computation
time for very large simulations. Recently, a more
efficient method has been developed to simulate 4D-
STEM experiments called PRISM [96], which has been
made available as a simulation code [97], and extended
to simulate electron energy loss spectroscopy (STEM-
EELS) inelastic scattering as well [98].

B. Cross, phase, and hybrid correlations

Cross-correlative template matching is a standard tool
in image processing, and is widely used in computational
analysis for electron microscopy [99, 100]. The purpose
of this appendix is to outline the formalism for these
methods, and to briefly discuss the effects of and
appropriate uses cases for so-called ‘hybrid’ correlations.

For functions f and g, written in one dimension for
simplicity, the cross correlation is defined as

(f ? g)(x) =

∫ ∞
∞

f(y)∗g(x+ y)dy (B1)

where ∗ indicates complex conjugation. The key idea
here is that if f(x−a) = g(x), then (f ?g)(x = a) will be
a maximum, because the integrand then becomes |f(y)|2
and two functions are perfectly overlapped. Therefore,
the cross correlation of the vacuum probe template with
a diffraction pattern can be used to extract the Bragg
disk positions simply by identifying the cross correlation
maxima.

Computationally, this is implemented via the cross
correlation theorem, which states that

(f ? g)(x) = F−1 ((Ff)∗(Fg)) (B2)

where F is the Fourier transform. This follows directly
from the Fourier transform of Eq. B1 and the change of
variables x′ = x + y. Equation B2 therefore allows the
integral of Eq. B1 to be computed efficiently via a few
FFT operations, which is important because performing
the cross correlation on each diffraction pattern (often
10,000 or more) is the most computationally intensive
step of many analysis workflows.

In contrast to Eq. B2, the so-called phase correlation
normalizes by the amplitude in Fourier space before
applying the inverse transform:

(f ? g)phase(x) = F−1

(
(Ff)∗(Fg)

|(Ff)∗(Fg)|

)
(B3)

This leads to an analytically pleasing result: now, if
f(x − a) = g(x), then (f ? g)phase(x) = δ(x − a). The
result follows directly from substituting f(x− a) = g(x)
in to Eq. B3 and making use of the Fourier shift theorem.
Thus where the cross correlation simply has a maximum
where f and g best overlap, the phase correlation yields
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a delta function which selects the point of interest. As
a practical matter, however, phase correlations are also
highly sensitive to noise, and this application tend to lead
to many false positives when used with real data.

An intermediate approach is possible using a hybrid
correlation, in which a normalization somewhere in
between a phase and cross correlation is used, as follows:

(f ? g)n(x) = F−1

(
(Ff)∗(Fg)

|(Ff)∗(Fg)|1−n

)
(B4)

Here, n ∈ [0, 1]. For n = 1, the result is a cross
correlation, and for n = 0, the result is a phase
correlation. Intermediate values may be thought of is
applying intermediate weighting to the amplitude versus
phase components of the signals in Fourier space. While
the hybrid correlation is a heuristic approach, it is often
effective. Giving more weight to the phase components
(lower values of n) increases sensitivity to edges and
can do a better job of identifying faint Bragg disks,
however, the trade off is typically an increase in false-
positives. Experience with many datasets indicates that
an n value in the neighborhood 0.85 or 0.9 – similar to a
cross correlation, but with a slightly increased sensitivity
to edges – frequently yields good results. The noisier
the data, the more caution is in order in using lower n
values, and for very noisy data pure cross-correlations are
recommended. Figure 17 shows cross, hybrid (for several
n values) and phase correlations in one dimension for
simulated data with and without noise.

C. Bragg vector map formalism

Let us refer to the i’th Bragg disk detected in the
diffraction pattern at scan position (Rx, Ry) as BRx,Ry,i.
In computer memory, this might be thought of as a length
3 tuple: BRx,Ry,i = (kx,i, ky,i, Ii), where the subscript
i indicates the i’th peak, and the three values are the
coordinates of the disk center in diffraction space and
the disk’s intensity. Analytically, we can think of the
BRx,Ry,i as Kronecker deltas of strength Ii:

BRx,Ry,i(k) = Iiδ(kx − kx,i)δ(ky − ky,i) (C1)

The delta function specifies where the Bragg condition is
met for parallel illumination; Bragg disks are formed by
translating each point in the central disk by this vector,
and may be thought of as the convolution of the aperture
function with Eq. C1

Let’s denote the set of all Bragg disks detected at a
scan position (Rx, Ry) as BRx,Ry

. For N disks in BRx,Ry

we can write

BRx,Ry
(k) =

N∑
i=1

Iiδ(kx − kx,i)δ(ky − ky,i) (C2)

Taking a summation over all scan positions gives

B(k) =
∑
rx∈Rx

∑
ry∈Ry

Brx,ry (k) (C3)

=
∑
rx,ry,i

Irx,ry,iδ(k− krx,ry,i) (C4)

B is the Bragg vector map. Physically, is interpretable as
a (unnormalized) distribution of measured Bragg vector
directions found within the sample over the area of the
4D-STEM scan.

D. Elliptical fitting and transforms

In this appendix we describe various elements of
py4DSTEM that make use of or relate to elliptical
coordinates. First we discuss elliptical fitting, which
is important for correction of elliptical distortions.
We then briefly describe and relate the two elliptical
parametrizations used in the code. Finally, we describe
polar-elliptical transformations and radial integration.

Two primary elliptical fitting routines are available
in py4DSTEM. The first is appropriate for data that is
well-described by a 1D elliptical curve - for instance, a
Bragg vector map from a sample with many randomly
oriented grains will typically contain elliptical rings
associated with each characteristic spacing of the
material. The second is a sum of two Gaussian functions,
a simple Gaussian and a ‘double-sided’ Gaussian, and
is appropriate for fitting amorphous diffraction patterns,
and is a two-dimensional fit designed to capture the first
amorphous halo.

For 1D elliptical curve fitting, we first define some
annular region of our 2D dataset containing pixels
(kxi

, kyi), each with intensity Ii. We then determine the
ellipse that most closely fits this data by computing

arg min
kx0

,ky0 ,A,B,C

∑
i

[A(kxi − kx0)2 +B(kxi − kx0)(kyi − ky0)+

C(kyi − ky0)2 − 1]Ii

The double-sided Gaussian function for amorphous
halo fitting is defined as

f(kx, ky;I0, I1, σ0, σ1, σ2, c, R, kx0
, ky0 , B,C) =

N (r; 0, σ0, I0, )+

N (r;R, σ1, I1)Θ(r −R)+

N (r;R, σ2, I1)Θ(R− r)

where (kx, ky) are the coordinates and
(I0, I1, σ0, σ1, σ2, c, R, kx0

, ky0 , B,C) are parameters,
where N (r;R, σ, I) is a Gaussian centered at R with
standard deviation σ and with maximum amplitude I,
where Θ is the Heaviside step function, and where r is
the radial coordinate of an elliptical system given by
r2 = (kx − kx0

)2 +B(kx − kx0
)(ky − ky0) + C(ky − ky0).

When performing a fit, as before we first define an
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FIG. 17. Cross correlation, phase correlation, and hybrid correlation. A 1D vacuum probe has been correlated with a 1D comb
of Bragg disks without (left) and with (right) noise. Various values of n are used, where n = 1 is a cross correlation, n = 0 is
a phase correlation, and intermediate values are ‘hybrid’ correlations – see Eq. B4. Hybrid correlations increase sensitivity to
edges and narrow the central maxima relative to a cross correlation, but also increase sensitivity to noise.

annular region in the dataset to fit, typically about the
first amorphous halo. The first term is meant to fit
the decaying background, while the second and third
terms fit the amorphous halo, while allowing for an
asymmetrical shape on the inner/outer sides of the ring.

When fitting ellipses we use the parametrization

1 = A(kx− kx0
)2 +B(kx− kx0

)(ky − ky0) +C(ky − ky0)2

(D1)
for numerical stability. However the parameters of this
form are not the most easily geometrically interpretable,
so for this reason we also make use of the alternate
parametrization

kx = kx0
+A′r cos(θ) cos(φ)−B′r sin(θ) sin(φ) (D2)

ky = ky0 +B′r cos(θ) sin(φ) +A′r sin(θ) cos(φ)

where (kx, ky) are cartesian coordinates, (r, θ) are polar-
elliptical coordinates, and (A′, B′, φ) are parameters
corresponding to the two semi-axis, and the tilt of the
A′-axis with respect to the kx-axis. Equations D1 and

D2 are related by

A′ =

√
2

A+ C + ξ

B′ =

√
2

A+ C − ξ

ξ = (A− C)

√
1 +

(
B

A− C

)2

φ =
1

2
tan−1

(
B

A− C

)
Once the appropriate elliptical parameters are known,

polar-elliptical transformations may be performed. After
specifying a range and sampling the new polar
coordinates, each point (r, θ) is mapped to some (kx, ky)
position in Cartesian space, from which a bilinear
interpolation is then used to compute the value at
(r, θ). In py4DSTEM, arrays returned after polar-
elliptical transformation are numpy masked arrays, to
ensure that coordinates beyond the frame of the raw
data are correctly handled, and also facilitating masking
data where necessary, e.g. from a beamstop. Radial
integrals are calculated by first computing the polar-
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elliptical (or polar) transformation then summing along
the θ-direction.

E. Classification

The underlying principle of the classification scheme
described in Sec. III E is the definition of a particular
feature vector, which is useful because it efficiently
encodes the key physical features of crystalline electron
scattering – the Bragg vectors. It therefore massively
reduces the size of the data before classification, while
honing in on the most physically relevant element of
the diffraction data. For a calibrated Bragg vector map
containing N delta-like peaks, we associate with each
such peak an integer i ∈ {0, ..., N − 1}. For each
diffraction pattern we generate a length-N vector v.
The i’th element of v is defined in one of two ways:
(1) a Boolean value indicating whether this diffraction
patterns contains this Bragg peak, or (2) a floating point
value of the intensity of this Bragg peak in this diffraction
pattern.

With these feature vectors in hand, we use matrix
factorization methods to complete the classification.
First we construct the matrix X which has the feature
vectors v as its columns. For data with RN = RNx×RNy
diffraction patterns, X has dimensionsN×RN . X is then
written as

X = WH (E1)

where W has shape N × C, H has shape C × RN ,
and C is the number of classes. W may be thought of
as a collection of C column vectors, each describing a
class in terms of weights for the various possible Bragg
vectors observed over the entire dataset. H may be
thought of as a set of column vectors which describe
how to obtain, through linear combination of the classes,
good approximations for each of the observed diffraction
patterns. Alternatively, the row vectors of H may be
thought of as an image (albeit reshaped): there are
C of them, and each describes how much to weight
the corresponding class in each of the RN positions
of the electron beam. In Secs III E and IV B we use
an algorithm based on the frequency of co-occurance
of Bragg peaks across diffraction patterns to set initial
values for W and H. We then optimize using non-
negative matrix factorization [101].

F. Strain

In this appendix we discuss how the crystalline and
amorphous strains are calculated in Secs. IV C and IV D.

We’re interested in the infinitesimal strain matrix,
where the deformed lattice differs very little from the
undeformed lattice. For a material with a deformed
state characterized by some displacement field u, and
considering the system in a coordinate system with

abscissa and ordinate (x1, x2), the infinitessimal strain
matrix is

ε =

(
ε11 ε12

ε21 ε22

)
=

 ∂u1

∂x1
− 1

2

(
∂u1

∂x2
+ ∂u2

∂x1

)
− 1

2

(
∂u1

∂x2
+ ∂u2

∂x1

)
∂u2

∂x2


(F1)

and is typically accompanied by θR = 1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
.

The εii terms represent the compressive/tensile
strain along the x̂i directions, with positive values
corresponding to tension. ε12 represents the shear strain,
and our sign convention is chosen such that positive
values correspond to the angle spanned from x̂1 to
x̂2 becoming more obtuse in the deformed body. θR
represents the rotation of the material, with positive
values corresponding to counterclockwise rotation of a
right-handed coordinate system.

For both crystalline and amorphous strain, the
strain matrix is calculated at each beam position by
comparing two comparable measurements: one of the
local structure, and one of an undeformed reference
structure. For crystalline strain, the measurement we use
is a pair of reciprocal lattice basis vectors. For amorphous
strain, the measurement is a transformation of the ellipse
fit to the (first) amorphous halo.

For crystalline strain, consider a real space lattice with
reference basis vectors a0 = (a0

1,a
0
2) and local, deformed

lattice vectors a = (a1,a2). The transformation matrix
Ta0→a describes the linear deformation of the space, and
given the lattice vectors is calculable via

a = T aa0

The strain matrix in Eq. F1 is defined with respect to
some arbitrary area element of the material under study,
so we consider a square unit area element with sides
(ê0

1, ê
0
2) = (x̂1, x̂2). The transformation T a maps these

to a new set of vectors (e1, e2). In the limit of small area
elements, the relevant derivatives are then expressible as

∂u1

∂x1
= (e1 − e0

1) · ê0
1 = T a11 − 1

∂u1

∂x2
= (e1 − e0

1) · ê0
2 = T a21

∂u2

∂x1
= (e2 − e0

2) · ê0
1 = T a12

∂u2

∂x2
= (e2 − e0

2) · ê0
2 = T a22 − 1

ε can then be retrieved from T a.
In practice, we calculate basis lattice vectors of

the reciprocal lattice g = (g1,g2), by performing an
intensity-weighted fit to measured Bragg peak positions
at each scan position. The corresponding reference
vectors g0 = (g0

1,g
0
2) can be determined several ways,

including defining a reference region, dataset, or using
a known crystal structure. At this point it is possible
to use g to determine a, then compute ε with the
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methods above. Alternatively, assuming sufficiently
small deformations that we may discard terms of second
order and higher in a Taylor expansion in both rotation
and scaling, it is possible to compute ε directly from the
transformation Tg0→g, describing the linear deformation
of reciprocal space, with remarkably little alteration to
the above equations. In this case, the final expressions
for the strain are

ε11 = 1− T g11

ε22 = 1− T g22

ε12 = −1

2
(T g12 + T g21)

θR =
1

2
(T g12 − T

g
21) (F2)

To measure strain from the diffraction pattern of
an amorphous material, we fit ellipses at each probe
position using the methods described in Appendix D.
After shifting the origin of each ellipse to k = (0, 0),
we have

qref
2 = Akx

2 +Bkxky + Cky
2 (F3)

where qref is a reference radius, which defines an
undeformed (circular) amorphous halo given by

qref
2 = kx

2 + ky
2. (F4)

Because the measurement takes place in reciprocal
space, it is more convenient to define the transformation
matrix from the measured ellipse given by Eq. F4 to the
reference circle given by Eq. F3, which is given by[

kx
′

ky
′

]
= T

[
kx
ky

]
, (F5)

where

T =
1√

A+ C +W

[
A+ 1

2W B
B C + 1

2W

]
,

where

W =
√

4AC −B2.

This expression is valid as long as the roots are real,
i.e. 4AC − B2 > 0. To calculate the strain deformation
tensor, we proceed in a similar manner to F2, althrough
we note the direction of the transformation has already
been changed to the real space transformation directions,

ε11 = T11 − 1

ε22 = T22 − 1

ε12 =
1

2
(T12 + T21) . (F6)

The full expressions for the strain tensor components are

ε11 =
A+ 1

2W√
A+ C +W

− 1

ε22 =
C + 1

2W√
A+ C +W

− 1

ε12 =
B√

A+ C +W
(F7)

Taking a first order Taylor expansion about A = 1, C =
1, and B = 0 yields the linear strain approximation

ε11 =
1

2
(A− 1)

ε22 =
1

2
(C − 1)

ε12 =
1

2
B. (F8)

Note that when using the linear approximation above, it
is important to use a value for qref that is very close
to the reference lattice average scattering radius, as
the accuracy of the above expressions will suffer as the
approximations A ≈ 1 and C ≈ 1 become worse.

An alternative method of determining the real-space
strains corresponding to an ellipse can be done using
matrix notation. In matrix form, the ellipse equation F3
can be represented as

M =

[
A B/2
B/2 C

]
, (F9)

where the major and minor axis directions are the
eigenvectors of M , and their lengths are the square
root of the eigenvalues. In the eigenbasis reference
frame then, the transformation matrix, T, is simply the
square root of the diagonalized eigenvalues, aligned with
the corresponding eigenvectors. However, this must be
rotated back to the traditional xy reference frame, or
another chosen reference frame, via tensor rotation

T′ = RTRT (F10)

where R is a standard rotation matrix and the
superscript T represents transpose. The angle with
respect to the xy axis can be found by taking the two-
argument arctangent (atan2) of an eigenvector. Finally,
once T′ is in the correct orientation, the strains are
simply

ε11 = T11 − 1

ε22 = T22 − 1

ε12 = (T12 + T21) . (F11)

We also note that most experiments will contain some
degree of ellipticity even when no strain is present. In
these cases, we will subtract the reference strain state
from all measurements.

G. Radial Distribution Functions

We computation the radial distribution function
following the methods of [37, 68]. Beginning from an
amorphous diffraction pattern, often averaged over many
probe positions to increase the signal to noise ratio,
we measure the radial intensity 〈I(k)〉φ averaged over
the angular direction φ. Figure 13a-c shows such data
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for amorphous silicon. Next, we estimate the structure
factor using the expression

Φ(q) =
〈I(q)〉φ − IBG(q)−N〈f(q)

2〉
N〈f(q)

2〉
qM(q), (G1)

where IBG(q) is a background intensity estimate,

〈f(q)
2〉 is the mean-square of the parameterized single-

atom scattering factors for all atomic species present,
multiplied by N total atoms in the probe volume, and
M(q) is a masking function. The single atom scattering
term is typically fit to the high scattering angle region,
past the region where oscillating structure factor peaks
are visible. The background IBG(q) can be an additional
constant offset, a more complex fitting function, or just
neglected. A masking envelope function M(q) is required
to zero the structure factor Φ(q) at low scattering angles
due to residual intensity from the central beam. This
function can also be used to zero the structure factor
Φ(q) at high scattering angles as well, due to residual

fitting errors in N〈f(q)
2〉 and IBG(q). Figure 13c shows

the single atom scattering fit, and Fig. 13d shows the
masked structure factor.

Next, we obtain the reduced radial distribution
function (RDF) g(r) by taking the discrete (type II) sine
transform of Φ(q), equal to

g(r) =

qmax∑
q=0

Φ(q) sin

[
π

qmax

(
q

∆q
+

1

2

)( r

∆r
+ 1
)]
,

(G2)
where qmax is the maximum q where Φ(q) is non-zero,
and ∆q and ∆r are the pixel sizes in diffraction and real
space respectively. g(r) should ideally approach 0 as r →
0 within the nearest neighbor shell, and approach 1 as
r → ∞, but errors in the above fitting procedure can
cause deviations from these results. [37] Other authors
recommend subtracting a 4th order polynomial from Φ(q)
in order to reduce low spatial frequency artifacts. Here,
we add a sigmoidal damping mask which clamps the RDF
to zero as r → 0. Figure 13e shows the final result of the
calculation, g(r).

Finally, we can also compute the atomic density ρ(r)
of our sample using the expression

ρ(r) = r [g(r) + 4πrρ0] , (G3)

where ρ0 is the bulk atomic density of the sample. This
expression can be used to determine the coordination
number of neighboring shells of atoms, by integrating
over the distances r corresponding to a specific shell.

H. Fluctuation Electron Microscopy

The FEM computation here follows the methods of
[73]. The first steps are identical to an RDF study,
namely calibrating the elliptic distortions, performing
the polar transformation and measuring the average

intensity as a function of scattering angle 〈I(q)〉φ,R from
all diffraction patterns at probe positions R. Next, we
measure the variance V (q) of the intensity as a function
of scattering angle over all diffraction patterns

V (q) = 〈[〈I(q)〉φ − 〈I(q)〉φ,R]
2〉R. (H1)

In order to reduce the effect of thickness when comparing
multiple datasets, we then compute the normalized
variance Vnorm(q) as

Vnorm(q) =
V (q)

〈I(q)〉2φ,R
(H2)

The RDF measurement described above is primarily
sensitive to the 2-body atomic pair correlations, whereas
the FEM variance is more sensitive to 4-body pair-pair
correlations [70].

I. Differential Phase Contrast

In this appendix we summarize the mathematical
underpinnings of the differential phase contrast method,
adapted from Ref. [102].

Following from Appendix A, we select for the STEM
detector in Eq. A1, the so-called first moment detector
function D(k) = k. Note that, in contrast to Eq. A1,
here we use a vector valued detector function, yielding a
vector valued image:

I(R) =

∫
|Ψ(k,R)|2kdk (I1)

Physically, this distinction reflects that such a detector
is sensitive to deflections of the total intensity of the
electron beam, which is itself a vector quantity. A good
approximation to Eq. I1 is possible using a segmented
detector geometries [103].

Substituting this into Eq. A3, this detector choice
allows us to write:

I(R) =

∫
|Fr→k (ψ(r,R))|2kdk

=

∫
Fr→k (ψ(r,R))F∗r→k (ψ(r,R))kdk

=
1

2πi

∫
Fr→k (∇rψ(r,R))

×F∗r→k (ψ(r,R)) dk

where ∗ indicates a complex conjugation, and in the last
line the derivative property of the Fourier transform has
been invoked.2

So far no assumptions have been made. If a thin
specimen is assumed3 we may model the probe-sample

2 I.e. Fr→k(∇f(r)) = 2πikFr→k(f(r))
3 A necessary but not sufficient condition is that the probe depth

of field (equal to 1.7λ/α2) is much greater than the specimen
thickness.



27

interaction as multiplication of the electron wave function
with a specimen transmission function T (r) and we can
continue with

I(R) =
1

2πi

∫
dk

∫
dre−2πik·r(

ψ0(r−R)∇T (r) + T (r)∇ψ0(r−R)

)
×
∫
dr′e2πik·r′ψ∗0(r−R)T ∗(r′)

=
1

2πi

∫
dr

(
|ψ0(r−R)|2∇T (r)T ∗(r)

+∇rψ0(r−R)ψ∗0(r−R)|T (r)|2
)

(I2)

We now take the phase object approximation and write
the transmission function as T (r) = eiσV (R). The second
half of the sum in Eq. I2 then becomes

1

2πi

∫
dr∇rψ0(r−R)ψ∗0(r−R)

=
~

2π

∫
drψ∗0(r−R)p̂ψ0(r−R)

=
~

2π
〈p〉

where 〈p〉 is the expectation value of the probe
momentum, and we’ve made use of the fact that the
momentum operator is p̂ = 1

i~∇. But 〈p〉 is independent
of R and thus provides some constant offset to I(R), and
can be neglected.

Continuing from Eq. I2 and again using the phase
object approximation, we find

I(R) =
1

2πi

∫
dr|ψ0(r−R)|2 (iσ∇V (r))

=− σ

2π

∫
drE(r)|ψ0(r−R)|2

=− σ

2π
E(R) ∗ |ψ0(R)|2 (I3)

where ∗ denotes a convolution, and we’ve made use of
the fact that E = −∇V .

To solve for V given I requires that we integrate
Eq (I3), and we follow [24, 82, 83] and write

V (R) = −F−1
k→r

[
k · Fk→r{I(R)}

ik2

]
/σ . (I4)

Technically a quantitative measurement of V (R) also
requires deconvolution of the probe wave function [105],
a step which we ignore in py4DSTEM due to the fact
that this serves to amplify noise in most experimental
datasets.

An additional challenge is the implicit assumption of
periodic boundary conditions in the use of fast Fourier
transforms to solve Eq. (I4). This is demonstrated in
Fig. 18 for reconstruction of a test image, a holographic

(a) (b) (c)

(e) (f)(d)

FIG. 18. (a) A test image, a holographic reconstruction of
a biological cell in saline from Ref. [104], along with the
numerical derivatives of a cropped region (white dashed line)
of the image in (b) and (c). A DPC reconstruction from (b)
and (c) produces (d), which has artifacts, most noticeably
that indicated with a red arrow, result form the boundary
conditions implicitly assumed by the use of fast Fourier
transforms. (e) The approach implemented by py4DSTEM,
discussed in the body text, is to reconstruct on a padded grid
[the original grid of (b) and (c) is indicated by the dashed
outline]. The result of 10 iterations is shown in (f) which
does not exhibit the same artefacts as (d).

reconstruction of a biological cell in saline from Ref. [104],
shown in Fig. 18(a). The x and y numerical derivatives
of a cropped region (indicated by a white dashed outline)
of Fig. 18(a) are shown in Fig. 18(b) and (c) respectively
and the result of the solution proposed in Eq. (I4) is
shown in Fig. 18(d). An artefact of the implicit periodic
boundary conditions can be seen in part of the white
cell on the right-hand side of the frame appearing on
the opposite left-hand side as indicated by a red arrow
in Fig. 18(d). The approach pursued in py4DSTEM to
remedy this is to solve Eq. (I4) on a larger grid, one that
has been “padded” with zeros as shown in Fig. 18(e).
The original grid corresponding to the input derivatives
in Fig. 18 is indicated by a white dashed outline in
Fig. 18. The gradient of the solution in Fig. 18(e) is taken
and the result subtracted from the input derivatives
Fig. 18(b) and (c). The result of this subtraction (the
residual) forms the input for another solution of Eq. (I4)
on a padded grid which is added to the phase solution
as a correction. This processes is iterated upon until
convergence, the result of just 10 iterations is shown in
Fig. 18(f), a more faithful reproduction of Fig. 18(a) than
Fig. 18(d).

J. Ptychography

In this appendix we summarize the mathematics of
the ptychographic reconstruction method implemented
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in Fig. 15. Beginning from the transmission function
approximation, the measured intensity I at a spatial
frequency k and a probe position R is given by

I(k,R) =

∣∣∣∣∫ ψ0(r−R)T (r)e2πir·kdr

∣∣∣∣2 . (J1)

The goal is to retrieve T from I.
We first consider the transformed datacube I(k,K) =

FR→KI(k,R), where K is the reciprocal coordinate to
scan position R. Thus this is the datacube has been
written in terms of scan frequencies. Assuming the
sample is a weak phase object, this may be written as
[106]

I(k,K) = |Ψ0(k)|2 δ(k)

+ Ψ0(k)Ψ∗0(k + K)T (−k)∗

−Ψ∗0(k)Ψ0(k−K)T (k) (J2)

where T (k) = Fr→kT (r). The latter two terms in
this expression each contain two copies of the aperture
function, one centered at the optic axis and one shifted by
the scan frequency K. For some given K, these terms can
each be nonzero only at values of k where both disks are
nonzero; that is, in the overlap between the shifted and
unshifted disks. By looking only at the nonzero overlap
between two disks, it is possible to simplify and solve
Eq. J2 by eliminating one of its terms.

To eliminate the third term, define the set of pixels

K = {k : (|k| < k0)

∧ (|k + K| < k0)

∧ (|k−K| > k0)}

where ∧ is the logical and operation and the maximum
disk size is k0 = α

λ for convergence semi-angle α and
electron wavelength λ. Here, the first line requires that
k is inside the central disk, the second line requires that
k is inside the disk shifted by −K, and the third line
requires that k is also outside the disk shifted by K. Thus
K selects a region of double overlap while also excluding
the region of triple overlap.

If only data from k ∈ K is used, the third term in
Eq. J2 vanishes, so that

T (−k)∗ =
∑
k∈K

I(k,K)

Ψ0(k)Ψ∗0(k + K)
, (J3)

and T (r) can be obtained with a subsequent inverse
Fourier transform. Since this uses only data from a single
double-overlap region, this method has been dubbed
single-sideband reconstruction.

This approach can be extended to include data from
the whole bright-field in the reconstructions. If the
sample is a weak phase object, it obeys Friedel symmetry,
so that T (k) = T (−k)∗ [106]. Inserting this into Eq. J2
and solving gives [91]

T (k) =
∑

k : |k|<k0

I(k,K) · Γ∗(k,K)

|Γ(k,K)|2
, (J4)

where Γ is the disk-overlap function

Γ(k,K) = Ψ0(k)Ψ∗0(k + K)−Ψ∗0(k)Ψ0(k−K). (J5)
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