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Abstract

Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced
by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic
peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action
against susceptible (S) or resistant (R) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA)
strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater
efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused
hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized STS and CA strains at both pH, whereas
permeabilization was modest for STR or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR
spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet,
concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest
helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at
pH 7.5. The present findings suggest that pH– and target–cell lipid contexts influence selective antimicrobial efficacy and
mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context–specificity of
antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal
concomitant cytotoxicity.
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Introduction

Host defense effector molecules such as antimicrobial peptides

are key contributors to first line defense against invading

microorganisms. Presently, over 3,000 naturally-occurring cationic

antimicrobial peptides have been isolated from organisms spanning

the evolutionary continuum [1,2]. Structurally, such peptides can be

divided into two major groups: 1) linear / extended peptides

predominantly of a-helical conformation; and 2) disulfide-contain-

ing peptides that largely exhibit b-sheet structures [1,2]. Mecha-

nisms of antimicrobial efficacy of host defense peptides can be

generalized to involve three complementary modes: cytoplasmic

membrane permeabilization, cytoplasmic membrane (bacterial) or

mitochondrial (eukaryotic pathogen) de-energization, and inhibi-

tion of macromolecular synthesis (e.g. cell wall, nucleic acid) or

essential pathways [2]. Such mechanisms are believed to involve

initial peptide targeting based on electrostatic and hydrophobic

interactions, followed by structural or functional organization of the

peptide upon or within target cell or organelle membranes [3].

Host defense peptides interact with pathogens in distinct

anatomic and physiologic settings. It follows that specific peptides

have evolved for optimal function in respective host contexts

against cognate pathogens. For example, neutrophil phagolyso-

somes or other inflammatory contexts exhibit acidic pH of 4.5 to

6.5 [4]. In contrast, the bloodstream and mucosal surfaces

maintain neutral pH of 7.2 to 7.5 [5]. We hypothesize that host

anatomic, physiologic, and microbiologic contexts shape peptide

selective efficacy or immunomodulatory functions in situ [1,6,7,8].

These conditional factors likely influence peptide selectivity for

specific cell targets, such as anionic versus zwitterionic phospho-

lipids, and prokaryotic versus eukaryotic differences in transmem-

brane potential (DY) [2].

Beyond fundamental characterization of a peptide, investigating

its interactions with target pathogens provides new opportunities

to understand specific mechanisms of action and selective toxicity.

In the current investigation, this approach was integrated to assess

the impact of pH and lipid context on pathogen-specific and

structure-mechanism relationships of the synthetic anti-infective
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candidate peptide RP-1 against prototypical Gram-positive,

Gram-negative, and fungal pathogens. The current studies were

designed to address the hypothesis that pH and/or target cell-

specific contexts, alone or in combination, impact antimicrobial

peptide selectivity and efficacy.

Results

Influence of pH on RP-1 Antimicrobial Specificity
RP-1 exerted potent efficacy against ST, SA and CA under one

or more experimental conditions (Table 1; also see Table S1).

However, several functional correlates were observed reflecting

pH and organism specificity. For example, RP-1 efficacy was

greatest overall against bacteria at pH 7.5. Interestingly, RP-1 had

equivalent efficacy against ST and SA strains at pH 7.5, with no

significant differences between respective S and R strains in this

condition. In contrast, pH 5.5 conditions disclosed significant

differences in RP-1 efficacy against the S and R phenotypes of ST

and SA strains. Moreover, RP-1 exerted greatest anti-candidal

efficacy at pH 5.5. There were no detectable differences in RP-1

susceptibility of the CAS and CAR strains at a given pH value.

Therefore, RP-1 target organism selectivity and efficacy were

distinctive as a function of pH.

Influence of pH and Target Cell Specificity on RP-1
Mechanisms of Action

As a complement to efficacy data, the impact of pH and target

specificity was studied for two comparative mechanisms of RP-1:

membrane permeabilization (MP) and DY (Figure 1; also see

Figure S1).

RP-1 vs. S. typhimurium
The ST study strains are known to differ in DY, conferring

distinct susceptibility profiles to certain cationic peptides. Consis-

tent with this relationship, basal membrane DY was reduced for

STR versus STS (Figure 1A). Flow cytometry corroborated

significant RP-1 efficacy against ST strains at pH 7.5. RP-1

exerted virtually complete MP of STS at pH 7.5 or 5.5, but modest

MP of STR at pH 7.5, and minimal MP at pH 5.5 (Figure 1B).

Interestingly, RP-1 exposure led to increased DY (hyperpolariza-

tion) of both ST strains at pH 7.5, but only the STR strain at

pH 5.5 (Figure 1C).

RP-1 vs. S. aureus
Present studies revealed that the basal DY of the SAR strain was

lower than its SAS counterpart, consistent with prior findings

(Figure 1A; [9]). RP-1 exposure led to alterations in DY and

permeabilization in SA that differed from those for ST. For

example, RP-1 induced minimal MP of either SA strain at pH 5.5

or 7.5 over 1 h exposure (Figure 1B). Nonetheless, RP-1-induced

depolarization of SA strains was equivalent under either pH

condition over the assay period (Figure 1C).

RP-1 vs. C. albicans
RP-1-induced permeabilization of CA strains was significant

and equivalent at pH 5.5. as well as 7.5 (Figure 1B). In contrast,

depolarization was minimal for either CA strain at either pH

(Figure 1C) over the time period evaluated.

Influence of pH on RP-1 Physicochemistry
Given the differences observed in RP-1 target organism

selectivity and efficacy as a function of pH, potential effects of

pH on RP-1 physicochemistry were assessed. RP-1 has a net

charge of +7.7 at pH 7.5, with a partial charge increase

calculated to +8.0 at pH 5.5 (Table 2). Based on its NMR-

determined 3-D structure, RP-1 conforms to a highly-ordered

amphipathic a-helix [10] Figure 2A). Such a conformation

segregates electrostatic charge and hydrophobicity to relative

contralateral facets of the peptide, yielding a polar angle of 178.6u
(Figure 2B). At pH 7.5, the calculated mean hydrophobic

moment (MH) for RP-1 is 0.66, with a net hydrophobicity of

21.45. No distinct impact of pH 5.5 on these parameters of RP-1

was detected in the current studies.

Influence of pH and Target Lipid Context on RP-1
Structure-Activity Relationships

To integrate pH and target lipid context influences on RP-1

structure-activity relationships, multiple and complementary

approaches were used to compare peptide secondary structure

and orientation in mimetic liposome systems reflecting bacterial

and eukaryotic membrane systems [11]. Several key findings

emerged from these investigations.

Influence of pH on RP-1 Affinity for Bacterial versus
Mammalian Lipid Systems

Kinetic interactions of RP-1 with membrane liposomes were

measured by two complementary methods. Importantly, surface

plasmon resonance (SPR) analysis demonstrated strongest associ-

ation between RP-1 and bacterial lipids at pH 7.5

(KD = 1.1561027 M). By comparison, the affinity of RP-1 for

eukaryotic mimetic lipids was markedly reduced at this pH

(KD = 5.2961027 M). Moreover, RP-1 also significantly associat-

ed with prokaryotic lipids at pH 5.5 (KD = 9.1861028 M), while

there was no detectable interaction of RP-1 and eukaryotic lipids

at this pH (Table 3). In addition, the temporal association of RP-1

with lipid systems varied with pH. Interestingly, at pH 7.5 there

was a multi-phasic interaction between RP-1 and both target lipid

ensembles (Figure 3). In contrast, at pH 5.5 the association of

RP-1 with bacterial lipids was relatively mono-phasic, while it was

undetectable for eukaryotic lipids.

Binding Kinetics
Binding studies showed that RP-1 has significantly greater

affinity for prokaryotic than eukaryotic lipids, particularly at

pH 5.5 (Figure 3). In agreement with efficacy and SPR outcomes,

KA was greatest between RP-1 and bacterial large unilamellar

vesicles (LUVs) at pH 7.5 (Table 3). Moreover, KA was

significantly reduced for RP-1 with the same membrane lipids at

pH 5.5. Interestingly, the association between RP-1 and a

mammalian lipid system was minimal at pH 5.5. Overall, these

data are concordant with antimicrobial efficacy outcomes.

Table 1. Antimicrobial activity of RP-1 versus representative
ST, SA and CA sensitive and resistant pathogen strain pairs.

S. typhimurium S. aureus C. albicans

pH STS STR SAS SAR CAS CAR

5.5 14.060.7{ 8.860.4 7.060.9{ 3.860.4 9.160.3 8.960.9

7.5 15.560.4* 14.560.7* 13.360.8* 12.861.8* 6.163.2 6.662.9

Antimicrobial efficacy is measured as the zone of inhibition (millimeters) around
a central well. Significant differences (P values#0.05) within strain at pH 5.5
versus 7.5 ({); or between sensitive and resistant strains at constant pH (*).
doi:10.1371/journal.pone.0026727.t001

Context Mediates Antimicrobial Peptide Efficacy
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Conformation
Conformation was measured using FTIR spectroscopy and

relative amounts of a-helix (1662–1645 cm21), b-sheet (1637–

1613 and 1710–1682 cm21), turn/bend (1682–1662 cm21), and

disordered or random (1650–1637 cm21) structures were estimat-

ed by Fourier self-deconvolution. Component peak areas were

calculated using curve fitting software. These analyses suggest that

RP-1 may be slightly more helical in bacterial mimetic lipids, with

52% helicity at pH 7.5 and 50% helicity at pH 5.5 (Table 3;
Figure S2). In contrast, in this mammalian lipid system, RP-1

exhibited less helical propensity, with 43% and 40% helicity at

pH 7.5 and 5.5 respectively. In each case, relative b-sheet

constituents reflected the modest differences corresponding to a-

helical content in the distinct lipid environments.

Angle of Insertion
The angle of RP-1 insertion in prokaryotic or eukaryotic

membrane systems was estimated by FTIR absorbance at 0u and

90u polarization (Table 3). These experiments indicated that the

greatest degree of helical tilt for RP-1 (51u) occurred in bacterial

lipid multilayers at pH 7.5. Reducing the pH to 5.5 yielded a 5u
reduction in the RP-1 helical tilt angle (46u). This difference in

insertion angle corresponded with the peptide spanning the bilayer

leaflet interface at pH 7.5, but not at pH 5.5 (see below). Notably,

the RP-1 helical tilt angle was markedly less acute (34u or 31u at

pH 7.5 or 5.5, respectively) upon peptide interaction with

zwitterionic, cholesterol containing membranes (Table 3).

Molecular Dynamics
As a complement to empirical studies of efficacy, conformation

and binding, in-silico studies of RP-1-lipid interactions were

performed by molecular dynamics using the initial NMR

(2RLG; [10]) structure consistent with conditions of pH 5.5.

Consistent with FTIR data, RP-1 penetrated the bacterial lipid

environment at a sharp angle (,48u) and was completely

embedded into the bilayer under these conditions (Figure 4).

Figure 1. Flow cytometric analysis of: (A) basal membrane electronegativity; and (B) membrane permeabilization or (C) energetics
for untreated and RP-1 treated cell populations at pH 7.5 and 5.5. (A) Basal membrane electronegativity (untreated stained cells) for
sensitive versus resistant ST and SA at pH 7.5 and 5.5. Comparison of membrane permeabilization (B) or energetics (C) between untreated (black) and
RP-1 treated microorganisms. RP-1 and Control panels (B,C) depict fluorescence (Y-axis) vs. FSC (forward scatter; size / granularity; X-axis) of individual
cells. Indicated values represent the percentage of cells that are beyond the control (black) area. Merged panel shows histogram analysis of: (B)
permeabilization - control (black) vs. RP-1 treated (red); or (C) energetics - control (black) vs. RP-1 treated (green). INT = intact cells;
PER = permeabilized cells; DEP = depolarized cells; HYP = hyperpolarized cells.
doi:10.1371/journal.pone.0026727.g001

Table 2. Sequence and biophysical properties of RP-1.

Calculated Charge at pH

Peptide Sequence MW pI 5.0 5.5 6.0 6.5 7.0 7.5

RP-1 A1LYKK5FKKKL10LKSLK15RLG18 2162.7 10.8 8.0 8.0 8.0 8.0 7.9 7.7

doi:10.1371/journal.pone.0026727.t002

Context Mediates Antimicrobial Peptide Efficacy
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Moreover, this extent of lipid insertion was such that RP-1

spanned the outer-to-inner membrane leaflet interface. Further

corroborating the biophysical data, the degree of lipid penetration

was reduced in the bacterial lipid system at pH 5.5, with RP-1

restricted to the outer membrane leaflet. In marked contrast to

prokaryotic lipids, simulations for RP-1 in eukaryotic membrane

environments at pH 7.5 predicted little if any membrane

penetration, and no detectable interaction at pH 5.5 (Figure 4).

Under either pH condition, RP-1 assumed a predominantly

random coil conformation, and was restricted to the phospholipid-

water interface with little detectable lipid interaction.

To explore the hypothesis that pH may influence RP-1

interactions with the study lipids, a detailed structure analysis was

performed comparing the present molecular dynamics data and

prior NMR data. Amino acid side chain conformations of RP-1

in POPE/POPG or POPC/CHO in conditions approximating

pH 5.5 or 7.5 were compared with those of previous NMR

studies of the peptide in membrane mimic micelles (pH 5.0; [10])

are shown in Table 4. Amino acid side chain orientations in

SDS and anionic lipids were similar. However, side chain

orientations in mammalian membrane lipid bilayers were distinct

from those of zwitterionic DPC, suggesting the degree of peptide

interaction with the POPC:CHO ensembles was different from

that with the micelles in the NMR studies. Thus, the present data

are consistent with prior NMR findings suggesting that pH may

influence RP-1 side chain interactions, particularly in the

bacterial lipid system, potentially contributing to context-specific

efficacy.

Figure 2. Structure and biophysical properties of RP-1. (A) Ribbon and space-filling representations of RP-1. Charge: blue, basic (Arg, Lys)
cationic residues. Amphipathicity: Kyte-Doolittle hydropathy plot; brown, most hydrophobic; green intermediate; blue most hydrophilic. Molecular
imaging by Chimera [52]. (B) Helical wheel representation with polar angle subtended by hydrophilic residues as indicated.
doi:10.1371/journal.pone.0026727.g002

Table 3. RP-1 interaction with lipid systems by quantitative FTIR spectroscopy.

Lipid System pH % Conformation Tilt Angle H KA (M21) KD (M)

a-helix loop-turn b-sheet disordered

POPE:POPG 7.5 51.5 31.6 6.5 10.4 51u 5.36104 1.261027

POPE:POPG 5.5 50.2 32.9 8.7 8.2 46u 1.36104 9.261028

POPC:CHO 7.5 42.9 33.8 13.2 10.1 34u 0.36104 5.361027

POPC:CHO 5.5 40.2 34.2 14.9 10.7 31u 0.16104 ND

The secondary structure and orientation of RP-1 was determined using representative bacterial (POPE/POPG; mole ratio 3:1) and eukaryotic (POPC/cholesterol; mole
ratio 1.2:1) mimetic liposomal systems. For conformation assessment lipid-peptide films were dispersed in deuterated buffer (10 mM PIPES pH 5.5 or 10 mM HEPES
pH 7.5) and FTIR spectra of the samples were averaged for 256 scans at a gain of 4 and a resolution of 2 cm21. The relative amounts of a-helix, b-turn, b-sheet, and
random (disordered) structures were estimated by Fourier self-deconvolution and the tabulated results represent means from four independent and highly
reproducible determinations for each environment SE 5%, or better. Kassoc was measured by introducing RP-1 to solutions containing large unilamellar vesicles (10 mM
PIPES pH 5.5 or 10 mM HEPES pH 7.5). The orientation of the RP-1 peptide in the lipid bilayer of eukaryotic and bacterial membrane mimetic systems was determined
using polarization (0u to 90u) to determine the insertion, or tilt angle of the peptide helical axis in the lipid multilayers. The binding of the peptide to lipid was expressed
as an association constant Kassoc [1], where [P] is the molar concentration of RP-1 peptide in solution, [L] is the molar concentration of lipid and [PL] is the molar
concentration of peptide bound to lipid [39].
doi:10.1371/journal.pone.0026727.t003

Context Mediates Antimicrobial Peptide Efficacy
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Discussion

Host defense peptides are expressed in highly diverse anatomic

and physiologic niches. Such expression is hypothesized to

concatenate structure and function of a given peptide in-context

to optimize efficacy against cognate pathogens. This concept is has

been termed immunorelativity of host defense peptides [6].

Moreover, to have potential utility as anti-infective therapeutics,

native or synthetic peptides must selectively function against target

pathogens in context of infection without concomitant host

cytotoxicity. An important barrier to development of novel anti-

infective peptides has been suboptimal efficacy, durability, or

toxicity in relevant host context. Thus, it is highly significant to

define context-specific and pathogen selective toxicity and

mechanisms of action of host defense peptides or synthetic

congeners thereof.

Figure 4. Molecular dynamic simulation of RP-1 interactions with representative bacterial versus eukaryotic lipid systems at pH 7.5
and 5.5. RP-1 was docked onto the polar head group domain of a pre-equilibriated POPE:POPG (3:1, mole:mole) bilayer, or POPC:CHO (1:1,
mole:mole) with Hyperchem 7.5. Pre-run dynamics were carried out for 20 psec at 311 K, followed by 10 nsec of molecular dynamics at 311 K.
Molecular model structures were rendered using PyMOL v0.99 (http://www.pymol.org).
doi:10.1371/journal.pone.0026727.g004

Figure 3. SPR analysis of RP-1 membrane interactions using bacterial and eukaryotic membrane mimetic systems. (A) Response units
for association of RP-1 with POPE:POPG (3:1) or POPC:CHO (1.2:1) immobilized lipid multilayers at pH 5.5. Note: SPR was not detectable for the
POPC:CHO system at pH 5.5. (B) SPR data for RP-1 interaction with the membrane systems described above at pH 7.5.
doi:10.1371/journal.pone.0026727.g003

Context Mediates Antimicrobial Peptide Efficacy
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Our prior studies have demonstrated RP-1 to exert rapid and

potent microbicidal activities, with significantly greater efficacy in

blood and blood matrices than in artificial media [12]. In contrast

to many classical antimicrobial peptides, RP-1 has striking

antimicrobial efficacy when administered intravenously in rigorous

models of infection in vivo. For example, systemic RP-1 is highly

efficacious alone or in combination with vancomycin in a murine

model of 7 d-established S. aureus catheter biofilm infection [13].

Hence, RP-1 sufficiently differentiates between pathogen and host

cell targets to achieve systemic efficacy without concomitant

toxicity.

In the present investigation, pH- and target organism-specific

efficacy, mechanisms of action, and lipid interactions of RP-1 were

compared in prototypic Gram-positive and Gram-negative

bacterial, and fungal pathogens, or mimetic systems representing

prokaryotic and eukaryotic lipid contexts. Based on highly

concordant results from integrative and complementary approach-

es, the current data indicate that pH- and/or target-specific

contexts mediate peptide efficacy and mechanisms of action

against respective microbial versus host cell targets. These

outcomes suggest that pH and cellular lipid environments may

induce subtle changes in peptide structure-function relationships

resulting in robust effects favoring peptide interactions with

pathogen rather than host cells.

A goal of the present FTIR studies was to assess if there were

any gross conformational changes in RP-1 structure as influenced

by lipid and/or pH context that may reflect a global conforma-

tional propensity. If such changes occurred, they might readily

explain differences in RP-1 binding to lipids, or distinct

antimicrobial effects at different pH. FTIR suggested modest yet

detectable changes in peptide conformations in distinct mem-

brane-like and pH contexts. In addition, a more detailed

comparison of prior NMR [10] and current FTIR data was

performed using molecular dynamics (Table 4). Prior solution

NMR was conducted on a residue specific basis to compare RP-1

backbone trajectories in micelles (SDS, bacterial mimic system; or

DPC, mammalian mimic system). In the current study, FTIR was

used to evaluate RP-1 conformation in multilayer films. Results

observed herein are consistent with prior NMR studies, providing

a basis for the hypothesis that side chain conformations of RP-1

differ in bacterial vs. mammalian lipid context. If so, subtle

variations in side chain conformation may be influenced by target

lipid composition and pH, contributing to antimicrobial specificity

and efficacy of RP-1.

Overall, microbial target, lipid membrane environment, and

pH each contributed to RP-1 structure efficacy relationships. For

example, prokaryotic versus eukaryotic lipid components had a

discernable impact on overall peptide conformation. These data

should be considered in context, recognizing that NMR and other

methods have limitations regarding structural resolution of helical

termini. RP-1 was determined to be more helical in prokaryotic

bacterial lipid systems (anionic), than in zwitterionic eukaryotic

lipid environments [10]. Further, RP-1 interactions were signifi-

cantly stronger for bacterial rather than eukaryotic lipid systems.

By comparison, the overall influence of pH on RP-1 structure-

activity relationships appeared to be more complex. In molecular

dynamic simulations, a reduction in pH from 7.5 to 5.5 decreased

the angle of penetration in bacterial lipids. These findings

corroborate the findings that RP-1 was more efficacious against

bacteria at pH 7.5. However, pH did not appear to have a

significant impact on the physicochemistry of RP-1 overall. These

results suggest two additional possibilities for future investigation:

Table 4. Comparison of RP-1 side chain conformations in membrane mimic environments using SCit side chain analysis.

ResidueNumber SDS (pH 5.0)
POPE/POPG RP-1
(pH 5.5)

POPE/POPG RP-1
(pH 7.5) DPC (pH 5.0)

POPC/CHO RP-1
(pH 5.5)

POPC/CHO RP-1
(pH 7.5)

Chi1 Chi2 Chi1 Chi2 Chi1 Chi2 Chi1 Chi2 Chi1 Chi2 Chi1 Chi2

1 ALA NV NV NV NV NV NV NV NV NV NV NV NV

2 LEU 29.8 122.1 29.6 122.1 2131.5 175.9 34.2 113.7 2144.6 2179.6 2144.6 2179.6

3 TYR 45.9 23.5 45.9 23.5 277.8 105.3 58.6 70.0 2165.6 85.7 2165.6 85.7

4 LYS 60.4 2106.7 60.9 2106.3 50.2 2169.5 62.0 2104.2 2104.3 275.3 2104.3 275.3

5 LYS 148.6 2159.3 148.2 2159.8 259.8 108.2 75.4 2143.8 260.4 171.2 260.4 171.2

6 PHE 255.1 21.4 255.1 21.5 271.9 2108.1 70.4 51.2 256.9 284.8 256.9 284.8

7 LYS 83.6 92.6 83.6 92.6 267.2 2179.9 172.9 2124.8 282.5 176.8 282.5 176.8

8 LYS 116.5 2111.2 116.2 2111.4 269.6 152.2 2103.2 2116.7 2140.0 81.4 2140.0 81.4

9 LYS 145.1 96.6 145.1 96.6 283.9 260.2 265.0 129.0 271.7 279.8 271.7 279.8

10 LEU 2157.4 111.5 2157.4 111.5 262.0 177.6 251.0 251.0 297.0 81.6 297.0 81.6

11 LEU 92.3 81.1 92.3 81.1 2177.5 50.2 250.4 177.2 278.0 168.6 278.0 168.6

12 LYS 141.1 2105.5 141.1 2105.5 49.3 2179.8 113.8 2128.0 259.0 273.7 259.0 273.7

13 SER 223.0 NV 223.0 NV 67.8 NV 170.7 NV 259.2 NV 259.2 NV

14 LEU 152.8 134.3 152.8 134.3 258.4 172.6 126.0 142.5 290.0 257.8 290.0 257.8

15 LYS 170.9 123.1 170.9 123.1 291.4 257.8 2179.9 285.9 2154.9 2135.8 2154.9 2135.8

16 ARG 130.3 66.0 2130.3 266.0 271.8 179.0 2175.3 34.2 283.9 2172.9 283.9 2172.9

17 LEU 68.9 83.4 68.9 83.4 277.0 174.0 100.9 94.5 271.6 2162.5 271.6 2162.5

18 GLY NV NV NV NV NV NV NV NV NV NV NV NV

SDS and DPC estimates are derived from previously defined NMR structures (PDB accession codes 2RLH or 2RLG; pH 5.0 [10]). In the present studies, RP-1 side chain
conformations were in simulated POPE/POPG and POPC/CHO lipid environments approximating protonating (pH 5.5) or non-protonating (pH 7.5) conditions. NV, no
consistent value.
doi:10.1371/journal.pone.0026727.t004
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1) pH may cause subtle changes in side chain orientation that

translates to different RP-1 efficacy as a function of pH [10]; and

2) pH may affect target organisms in such a way as to alter

susceptibility to RP-1. In either case, the present findings support

the view that efficacy of RP-1 and like peptides is a collective result

of intrinsic structural and functional optimization in context of

organism-specific targets and the microenvironment in which the

two interact.

The Gram-negative ST strains used in the current studies differ

in susceptibility to defensin family antimicrobial peptides [14]. The

genetic deficiency in STS results from inactivation of the gene

encoding the transcriptional regulator PhoP. PhoP disruption

voids multiple transcriptionally-induced peptide resistance mech-

anisms, including protease elaboration and differences in mem-

brane DY [2]. Interestingly, the current data revealed RP-1-

induced hyperpolarization of the ST strains, which was somewhat

greater at pH 5.5. Although not a main focus of this study, peptide

induced hyperpolarization has also been observed for the

antifungal peptides PAF [15] and Rs-AFP2 [16]. In general, the

current studies also suggested that RP-1 permeabilized and

inactivated the sensitive STS strain to greater degree than its

resistant counterpart. Such observations suggest mechanisms of a-

helical peptides such as RP-1 may not be differentiated by the STS

vs. STR phenotypes, but are influenced by pH.

In Gram-positive SA organisms, RP-1 also had significantly

greater efficacy at pH 7.5 versus 5.5. Equivalent efficacy was seen

against the SAS and SAR strains at pH 7.5, but significant

differences found at pH 5.5. Interestingly, RP-1 induced signifi-

cant depolarization of both SA strains at pH 5.5 and 7.5. In

contrast, little or no membrane permeabilization of SA was caused

by RP-1 against either strain in 1 hr. Xiong et al. previously

demonstrated that RP-1 is able to permeabilize SA after 2 h of

exposure [17]. Together, these findings agree with a temporal

process of RP-1 interaction with SA, in which initial membrane

interactions lead to rapid dissipation of DY, which precedes MP.

This scenario is entirely consistent with RP-1 inhibition of electron

transport [9], induction of a selectively permeable channel or pore,

inhibition of intracellular targets [17], or other perturbations of the

cell membrane without overt disruption of its lipid bilayer.

Resolving specific mechanisms of RP-1 action and selective

toxicity is a focus of ongoing studies. However, the current data

point to the initial interaction between RP-1 and SA, as influenced

by strain phenotype and context factors such as pH, as being

integral to selective targeting and ensuing efficacy.

Comparative efficacy and mechanisms of action in the

eukaryotic pathogen CA was of direct relevance to the hypothesis

that pH and lipid context impact RP-1 selective toxicity. In

contrast to bacteria, RP-1 exerted greater anti-fungal efficacy at

pH 5.5 than 7.5. The CA strains used in this study differ in

expression of the SSD1 gene product [18]. While its precise role in

peptide resistance is under investigation, SSD1 hyper-expression is

thought to confer resistance to certain host defense peptides

through altered CA envelope structure and mitochondrial

protection. We previously found depolarization can precede later

increases in phosphatidylserine accessibility during apoptotic-like

killing by host defense peptides in C. albicans [19]. Thus, the

fungicidal consequences of RP-1 are governed by events

subsequent to initial cell membrane interactions, including access

to and inhibition of fungal mitochondria. Supporting this concept,

Helmerhorst et al [20], Gyurko et al [21], and Jang et al [22] have

shown certain host defense peptides to enter CA species and

inhibit crucial intracellular targets, including mitochondria.

Biophysical experiments demonstrated the phospholipid context

to have a significant impact on RP-1 conformation, angle of

penetration, and kinetic interactions with respective target lipids.

Concordant FTIR, UV spectroscopy, SPR, and molecular

dynamics data indicate RP-1 exhibits highest affinity for anionic

bacterial lipids, with corresponding KA (5.36104 M21) and KD

(1.1561027 M) values, respectively. In this context, particularly at

pH 7.5, RP-1 assumes a highly-ordered helical conformation. In

contrast, in the eukaryotic zwitterionic lipid system, RP-1 assumes

a largely random coil structure. Furthermore, RP-1 penetration

into LUVs was significantly less in eukaryotic lipids as compared

with prokaryotic systems. Observed reductions in peptide helicity

and degree of penetration were corroborated by reduced

associations of RP-1 with eukaryotic lipids as determined by

FTIR and SPR. For example, the KA was approximately 10-fold

lower for eukaryotic versus prokaryotic lipid systems (Table 3).

Similarly, RP-1 KD was weak (pH 7.5) or undetectable (pH 5.5) in

the presence of eukaryotic membrane mimetics. These data are

highly consistent with our prior findings using NMR [10], and are

consistent with efficacy results in the current study. Together,

these observations support the hypothesis that RP-1 preferentially

targets prokaryotic and mitochondrial membranes, where it adopts

a well-ordered helix and penetrates into the bilayer in a pH

dependent manner.

Prevailing models of amphipathic a-helical peptide mechanisms

of action begin with the cationic antimicrobial peptide interacting

with the anionic bacterial surface [2,23]. Electrostatic affinity

derives from intrinsic cationic charge from the peptide primary

structure, and a composite of the electronegative phospholipid

membrane composition and DY of a target organism. For

example, bacteria typically have more electronegative lipid

composition (e.g. POPG and cardiolipin) than mammalian-like

cell membranes. Thus, DY of 2120 mV to 2150 mV are

commonly seen in bacterial and mitochondrial membranes,

whereas 260 mV to 280 mV are typical of eukaryotic cell

membranes [2,24]. In this model, RP-1 would initially have a

relatively disordered conformation in aqueous environments prior

to interaction with the anionic bacterial surface [2]. Only in

context of prokaryotic lipid environments does such a peptide

adopt a highly-ordered helical conformation, with an obtuse polar

angle. These events may drive penetration and permeabilization of

the membrane, dissipate DY, and ultimately result in massive de-

energization or alternative mechanisms that lead to the eventual

death of the bacterium [2,23].

Current findings also shed new light on RP-1 interactions with

and mechanisms of action against fungi. For example, RP-1

exerted anti-CA activity with a pH optimum of 5.5. These findings

are consistent with the antifungal properties of a-helical peptides

from other human kinocidins, such as human IL-8 [25].

Interestingly, RP-1 caused significant permeabilization, but only

modest de-energization of CA, within the assay period. Moreover,

all experimental measures of RP-1 interaction with eukaryotic

lipids suggested minimal affinity or interaction at pH 5.5. These

intriguing data suggest several possibilities for future investigation.

For example, specific membrane constituents in CA (e.g.

ergosterol) may uniquely influence RP-1 interactions to supersede

predictions made using phosphatidylcholine and cholesterol

(POPC:CHO). This model is consistent with RP-1 permeabiliza-

tion of the CA cell membrane, without significant membrane

penetration [26]. Alternatively, RP-1 may rapidly permeabilize

and penetrate the CA cell membrane, for eventual targeting of the

fungal mitochondrion. Although the current studies did not detect

significant DY dissipation by RP-1 in 1 h, our previous studies

showed that RP-1 or other peptides significantly de-energize the

CA mitochondrion at 2 h [8,22]. Hence, the kinetic mechanisms

of RP-1 may initially permeabilize the CA membrane as a means
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for the peptide to access and preferentially target the mitochondria

within. Lastly, it is possible that the models used in the present

studies limit further differentiation of eukaryotic rather than

prokaryotic pathogen membranes. For example, while the

zwitterionic membrane mimetic system employed herein reflects

eukaryotic themes, it is more similar to mammalian rather than

fungal lipid bilayers [2].

Finally, it is important to consider the potential indirect effects

of pH on efficacy of RP-1 or other peptides. For example, it is

likely that pH contributes to peptide susceptibility or resistance

pathways of the target organisms themselves. For example, mild

acidic conditions can induce stress response pathways in several

bacterial and fungal pathogens [27,28,29]. In some cases, response

to pH alters peptide susceptibility [8]. Alternatively, pH may have

distinct effects on efficacy of different host defense peptides. For

example, pH-influenced susceptibility to defensin-like peptides

may be distinct from those of a-helical peptides such as RP-1. This

concept would enable greater host defense coverage in dynamic

physiologic and microbiologic contexts.

It is also important to consider the methodologic constraints of

the current studies. In the prior NMR evaluation, RP-1 backbone

trajectory and side chain conformations were evaluated at pH 5.0

in micelles. While it is possible to assess RP-1 structure by NMR at

neutral or basic pH, amide H/D exchange is typically protein-

specific. Thus, in more disordered proteins — where amide

hydrogens are not H-bonded — exchange can occur more readily,

whereas proteins with strong helical or sheet propensities have

slower H/D exchange due to extensive N-H…O = C H-bonding.

For this reason, RP-1 and like helical peptides are preferably

analyzed at lower pH. The fact that RP-1 did not exhibit strong

HN signals in solution NMR at higher pH [10] affirms this

concept. While beyond the scope of the present studies, such areas

of investigation will likely contribute to a more complete

understanding of host defense peptide structure-activity relation-

ships.

In summary, the present results suggest that pH- and lipid-

specific contexts mediate selective toxicity of antimicrobial peptide

RP-1. These findings support the hypothesis that peptides such as

RP-1 exert selective or optimal toxicity against microbial

pathogens rather than host cells in relevant microenvironmental

context. This interpretation is consistent with the concept of host

defense peptide immunorelativity (AEGIS model), in which

molecular defenses concatenate peptide structure-function rela-

tionships corresponding to anatomic or physiologic sites or

conditions to optimize efficacy against cognate organisms therein

[6].

Materials and Methods

Microorganisms
A panel of microorganisms comprising prototypic Gram-

positive, Gram-negative, and fungal human pathogens was

investigated. Staphylococcus aureus (SA) strains ISP479C (peptide-

susceptible; [SAS]) and ISP479R (peptide-resistant [SAR]) exhibit

distinct susceptibilities to human host defense peptides in vitro (e.g.

platelet kinocidins [9]). Relative to parental strain ISP479C, the

ISP479R strain has a mutation in the snoD gene which encodes the

complex I NADH-ubiquinone oxidoreductase. Disruption of this

gene leads to a reduced membrane potential and increased

resistance to cationic antimicrobial peptides. Salmonella typhimurium

(ST) strain 5996s (peptide-sensitive; [STs]) and ATCC strain

14028 (peptide-resistant; [STR]) is resistant to human defensin

HNP-1 in vitro, and is hypervirulent in murine models of infection

[14]. Likewise, Candida albicans (CA) strain 36082S (peptide-

susceptible; [CAS]) is a human clinical isolate, while strain

36082R (peptide-resistant; [CAR]) is derived from 36082S [30]

and differs in expression of the SSD1 corresponding to its peptide

resistance phenotype [6]. Respective strains have otherwise

equivalent genotypes and growth characteristics. All organisms

were cultured to logarithmic phase in brain heart infusion broth

(BHI) at 37uC (SA or ST) or 30uC (CA). Cells were harvested,

washed, and briefly sonicated to assure singlet organisms.

Organisms were quantified by spectrophotometry and adjusted

to 16106 CFU in buffers as appropriate to specific experiments

(see below).

Antimicrobial Peptide RP-1
RP-1 is a synthetic antimicrobial peptide engineered based in-

part on C-terminal microbicidal helices of platelet factor-4 (PF-4;

CXCL4) family kinocidins from humans and other mammals

[31,32]. Our prior studies have demonstrated this domain

manifests much of the direct microbicidal activity of kinocidins,

recapitulating or exceeding the antimicrobial efficacy of respective

holoproteins [25,32]. RP-1 is comprised of 18 naturally occurring

amino acid residues (MW, 2162.8) and has an isoelectric point (pI)

of 10.8. Our previous NMR studies have substantiated that RP-1

has a highly-ordered a-helical conformation, particularly in

context of bacterial lipid systems [10]. Mean hydrophobic moment

(MH) and hydrophobicity of RP-1 were quantified using a

consensus hydrophobicity scale (www.bbcm.univ.trieste.it/

,tossi/HydroCalc), and its polar angle was determined using

the Zidovetski method [33]. The potential affect of pH 5.5 versus

7.5 on net 3-dimensional conformation of RP-1 was assessed using

the computational prediction of protonation software H++
(http://biophysics.cs.vt.edu/H++/index.php).

Comparative Antimicrobial Efficacy of RP-1
RP-1 efficacy against study organisms was evaluated using

radial diffusion at pH 5.5 or 7.5 [1,34]. In brief, logarithmic-phase

organisms were inoculated (106 CFU/ml) into buffered agarose

(10 mM MES, pH 5.5 or 10 mM PIPES, pH 7.5), and poured

into plates. Peptides (10 mg/well) were introduced into wells in the

seeded matrix, and incubated for 3 h at 37uC. After overlay of

nutrient medium, assays were incubated at 37uC or 30uC for

bacteria or fungi, respectively. Zones of inhibition were measured

at 24 h as the radius (mm) of complete or partial clearance

subtracting the well radius. Independent experiments were

repeated a minimum of two times.

Comparative Mechanisms of RP-1 Action
Flow cytometry was used to measure two mechanisms of RP-1

action at pH 5.5 and 7.5: 1) MP; and 2) de-energization as

measured by DY of bacterial cell membranes or fungal

mitochondria. A FACSCaliburH instrument (Beckton Dickinson)

was used to detect the following assay fluorophores: propidium

iodide (PI; Ex535 nm/Em620 nm; Sigma, St. Louis, MO) to assess

MP; and 3,3-dipentyloxacarbocyanine (DiOC5; Ex484 nm/

Em500 nm; Invitrogen, Carlsbad, CA) to assess DY. For experi-

ments, 26107 cells were incubated with peptide (10 mg/ml) in

1 ml of 10 mM PIPES (pH 7.5) or 10 mM MES (pH 5.5) for

either 5, 30 or 60 min with shaking at 30uC (C. albicans) or 37uC
(bacteria). At indicated time points, a stain buffer was added

(DiOC5, 0.5 mM plus PI, 5.0 mg/ml, in 50 mM potassium-

containing MEM (K+MEM; without phenol red, pH 7.2; Sigma).

Cells were allowed to stain at room temperature for 15 min prior

to analysis. Experiments included control cells exposed to well-

established perturbants of MP (70% EtOH), DY (CCCP;

100 mM; Sigma), or K+MEM buffer alone. Flow cytometry was
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performed at 20uC in 10 mM K+MEM, with forward light scatter

(FSC) data collected to ensure fluorescence was not an artifact of

aggregation. The validity of these methods to assess MP or DY
approaches the reliability of classical patch clamp methods

[35,36,37]. For each study, the fluorescence from a minimum of

5,000 cells was acquired and plotted against FSC. Results from a

minimum of two independent experiments done on different days

were included in statistical analyses.

RP-1 Binding to Membrane-Mimetic Liposomes
RP-1 interactions with membrane mimetic liposomes was

determined by introducing peptide to solution-phase large LUVs

in 10 mM PIPES (pH 5.5) or 10 mM HEPES (pH 7.5).

Liposomes of palmitoyoleoyl-phosphatidylethanolamine and pal-

mitoyloleoyl-phosphatidylglycerol (POPE / POPG, mole ratio of

3:1) simulated the bacterial inner membrane. By comparison,

liposomes of POPE-phosphatidylcholine and cholesterol (POPC /

CHO, mole ratio 1.2:1) simulated eukaryotic lipid membrane

systems [11]. RP-1-liposome solutions were incubated by shaking

for one hour at 25uC to reach equilibrium. The liposome-peptide

solution was centrifuged at 100,0006g (30 min; Beckman Airfuge)

to isolate liposomes with bound peptide. Concentration of RP-1 in

lipid and aqueous phases was determined by transmission UV

spectroscopy integrating a molar extinction coefficient of

1280 M21 cm21 for RP-1 at 280 nm [38]. Solution phase

measurements were made directly in supernatant, whereas the

lipid-peptide pellet was dispersed in 20 mM SDS-buffer to ensure

optical clarity for UV spectroscopy. Peptide-to-lipid binding was

expressed as an association constant Ka, where [P] is molar

concentration of RP-1 peptide in solution, [L] is the molar

concentration of lipid, and [PL] is the molar concentration of

peptide bound to lipid [39], as indicated in equation [1], below:

Ka~ PL½ �= P½ � L½ � ð1Þ

Kinetic Assessment of RP-1-Lipid Interactions by Surface
Plasmon Resonance

The kinetics of RP-1 interactions with lipid bilayers simulating

bacterial versus eukaryotic membrane ensembles were evaluated

by surface plasmon resonance (SPR) spectroscopy using a Biacore

3000 system (Biacore, Uppsala, Sweden). Liposomes (prepared as

above) were deposited by drying lipid films from chloroform under

high vacuum (12 h). Lipid films were then dispersed in PBS

(pH 7.4) by vortexing and sonication to give a final lipid

concentration of 20 mM. This suspension was extruded twenty

times using a mini-extruder (1 mm polycarbonate filter; Avanti

Polar Lipids, Alabaster, AL) to yield small unilamellar vesicles

(SUV). Resulting SUV liposomes were deposited (rate, 2 ml/min)

onto the surface of an L1 biosensor chip, forming lipid multilayers

which were washed (10 mM NaOH at 10 ml/min) to ensure

uniform lipid ensembles. For interaction kinetics, the running

buffer was 50 mM Tris, 50 mM malate, and 150 mM NaCl

adjusted to pH 5.5 [MES] or 7.5 [PIPES]. RP-1 interactions with

lipid ensembles were determined by injecting samples at 50 ml/

min for a 3 min association phase and a 3 min dissociation phase,

each at 37uC. Binding affinities of RP-1 to the lipid multilayers

were assessed by analysis of the SPR sensorgrams, with response

units (RU) plotted as a function of time. Resulting sensorgrams

were analyzed by BIAevaluation software (version 4.1) for curve

fitting to determine mean on- and off-rate constants (Kon and Koff)

and dissociation constant (Kd = Koff/Kon) from measurements

made at 1 mg RP-1/ml of buffer.

RP-1 Conformation and Orientation in Membrane
Mimetic Liposomes

The secondary structures and orientations of RP-1 were assessed

in two distinct membrane mimetic liposomal systems that reflect the

predominant lipids comprising bacterial versus eukaryotic mem-

brane contexts [11]. Dispersions containing anionic lipid (POPE/

POPG; mole ratio, 3:1) emulated the bacterial membrane, while

neutral lipid mixtures of POPC/cholesterol (mole ratio 1.2:1)

simulated eukaryotic membranes. The RP-1 peptide in ethanol was

co-solvated with lipid systems in cholorform (ethanol:choloroform,

1:1, v:v), followed by vacuum (10 mTorr) solvent removal under

nitrogen. Resulting lipid-peptide films were dispersed in deuterated

buffer (10 mM PIPES, pH 5.5 or 10 mM HEPES, pH 7.5) by

vortex and repeated freeze-thaw cycles to obtain large unilamellar

vesicles. Lipid-peptide samples were isolated by centrifugation

(100,0006 g; Beckman Airfuge TM). Pellets were re-suspended in

200 ml of deuterated water and transferred onto a germanium

attenuated reflectance (ATR) crystal (5062062 mm; 45u; Pike

Technologies, Madison, WI) to produce lipid-peptide films. Lipid-

peptide matrices were then exposed to deuterium vapor to yield

films $35% hydrated [40]. Infrared spectra were measured using a

Bruker Vector FTIR spectrometer equipped with a deuterated

triglycine sulfate detector (25uC). Resulting FTIR spectra were

averaged for 256 scans at a gain of 4 and a resolution of 2 cm21.

Relative amounts of a-helix, b-turn, b-sheet, or random (disordered)

structures were estimated using Fourier self-deconvolution

(GRAMS/AI8, version 8.0, Thermo Electron Corp, Waltham,

MA) and area of component peaks calculated using curve-fitting

software (Igor Pro, version 1.6, Wavemetrics, Lake Oswego, OR)

[41]. FTIR frequency limits were: a-helix (1662–1645 cm21), b-

sheet (1637–1613 and 1710–1682 cm21), turn/bend (1682–

1662 cm21), and disordered or random (1650–1637 cm21) [42].

To estimate the orientation of RP-1 in prokaryotic or eukaryotic

membrane mimetics, gold wire polarizers (Perkin Elmer, Wal-

tham, MA) were rotated from 0u–90u to obtain polarized IR

spectra of each lipid-peptide film [43]. The insertion (or tilt) angle

of RP-1 helical axes in the lipid multilayers was calculated based

on the ratio RATR = AI/A) , with areas of absorbance at 0u and

90u polarizations for the amide I band centered at 1656 cm21.

These measures assumed a thick film approximation with the

values for the electric field components of the evanescent wave to

be Ex = 1.398, Ey = 1.516, Ez = 1.625, and an angle a= 39u for

vibrational dipole relative to the molecular axis of the helix to

derive an order parameter, S in equation [2], below [44]. The

helical tilt angle, H was then derived from the order parameter

using equation [3], below [44].

S~ Ex2{RATR Ey2zEz2
�

Ex2{RATR Ey2{2 Ez2
� �

3 cos2 2a{1
�

2
� �{1

ð2Þ

S~ 3Scos 2 HT{1ð Þ=2 ð3Þ

Comparative Molecular Dynamics of RP-1 Interaction
with Lipid Mimetic Systems

Computational studies of RP-1 interactions with lipid systems

were conducted using GROMACS version 4.5.4 suite of

½1�

½2�

½3�
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molecular dynamics software [45]. Lowest energy atomic

coordinates for RP-1 within SDS micelles (PDB accession code

2RLG; pH 5.0) were used as a starting structure within bacterial

lipid environments, whereas the lowest energy conformer of RP-1

in DPC micelles (PDB accession code 2RLH; pH 5.0) was used as

starting structure for simulated mammalian membranes [10].

Structural files for POPE, POPG, and POPC were accessed via

the Tieleman website (http://moose.bio.ucalgary.ca). POPC

parameters for the ffG53a6 force field were downloaded from

(http://compbio.biosci.uq.edu.au/atb/) and POPE parameters

were derived from conversion of POPC parent files to POPE

values [46]. Topographies for POPG were those of Kukol [47].

Structure and parameter files for cholesterol were accessed

through the ATB database (http://compbio.biosci.uq.edu.au/

atb).

RP-1 peptide was initially docked onto the polar head group

domain of pre-equilibriated POPE:POPG (3:1, mole:mole) or

POPC:CHO (1:1, mole:mole) bilayers using Hyperchem (Gains-

ville, FL; version 7.52) with the CHARMM27 force field option

[10,48,49]. The resulting ensemble was placed in a 656656100 Å

periodic simulation box, solvated with SPC water and neutralized

by appropriate counter ions. RP-1-lipid ensembles were optimized

by lateral translation for molecular packing of lipids and peptide

using established Perl script function, INFLATEGRO (http://

moose.bio.ucalgary.ca/). Since there is no direct way to explicitly

adjust the pH in the Gromacs force field environment, pdb2gmx

(implementing the –lys option) was used to alter the degree of

protonation of the lysine side chains to emulate differences in pH in

the simulations [50]. Optimal lipid bilayer-peptide ensembles were

then refined using Polak-Ribiere conjugate gradient minimization,

and the systems were solvated by constraining the peptide over

20 psec of pre-run dynamics at 311 K. Pre-dynamics were followed

by 50 nsec of molecular dynamics at 311 degrees K utilizing the

ffG53a6 force field option (GROMACS) without constraints to

achieve thermodynamically reasonable approximation of equilibri-

um structure for a given construct in each lipid bilayer system.

Model structures for molecular graphics figures were rendered using

PyMOL (version 0.99; http://www.pymol.org). The comparison of

side chain conformations of simulated versus NMR peptide

structures in various environments were analyzed using SCit

(http://bioserv.rpbs.jussieu.fr/cgi-bin/SCit; [51]).

Statistical Analysis
Differences in experimental outcomes were compared by

student t or chi2 test as appropriate for specific data sets.

Bonferroni correction was applied as appropriate for non-

parametric data. P values#0.05 (95%) were considered significant.

Supporting Information

Figure S1 Quantitative analysis of RP-1 on membrane
energetics (DiOC5) and membrane permeabilization
(PI) in ST, SA and CA. Data are normalized to stained control

cell fluorescence and expressed as percent of control (dashed line is

equivalent to 100%). Time points: 5, 30 and 60 min. Data shown

represent exposure to either ethanol (yellow), CCCP (red) or RP-1

(blue). Data represent mean 6 one standard deviation for a

minimum of two independent experiments. Statistical significance

(P,0.05) indicated by asterisk. Data were generated using FCS

Express software (version 3.0; De Novo; Los Angeles, CA).

(TIF)

Figure S2 Secondary structure estimation as measured
by FTIR spectroscopy. Relative amounts of a-helix, b-turn, b-

sheet, or random (disordered) structures were estimated by Fourier

self-deconvolution (GRAMS/AI8, version 8.0, Thermo Electron

Corp, Waltham, MA) and area calculations of component peaks

calculated with curve fitting software (Igor Pro, version 1.6,

Wavemetrics, Lake Oswego, OR). The FTIR frequency limits

used for structures were: a-helix (1662–1645 cm21), b-sheet

(1637–1613 and 1710–1682 cm21), turn/bend (1682–

1662 cm21), and disordered or random (1650–1637 cm21).

(TIF)

Table S1 Differences in experimental outcomes were
compared by student t test. P values#0.05 (95%) were

considered to be significant and are indicated in red.

(DOC)
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