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Discovering and using perceptual grouping principles
in visual information processing

Michael C. Mozer

Department of Computer Science &
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430

Abstract

Despite the fact that complex visual scenes con-
tain multiple, overlapping objects, people perform
object recognition with ease and accuracy. Psy-
chological and neuropsychological data argue for
a segmentation process that assists in object recog-
nition by grouping low-level visual features based
on which object they belong to. We review sev-
eral approaches to segmentation/recognition and
argue for a bottom-up segmentation process that
is based on feature grouping heuristics. The chal-
lenge of this approach is to determine appropriate
grouping heuristics. Previously, researchers have
hypothesized grouping heuristics and then tested
their psychological validity or computational util-
ity. We suggest a basic principle underlying these
heuristics: they are a reflection of the structure
of the environment. We have therefore taken an
adaptive approach to the problem of segmenta-
tion in which a system, called macic, learns how
to group features based on a set of presegmented
examples. Whereas traditional grouping princi-
ples indicate the conditions under which features
should be bound together as part of the same ob-
Jject, the grouping principles learned by MaGIc also
indicate when features should be segregated into
different objects. We describe psychological stud-
ies aimed at determining whether limitations of
MAGIC correspond to limitations of human visual
information processing.

Recognizing an object in a visual scene involves
matching a collection of visual features in the scene
that correspond to the object against stored object
models. In scenes that contain multiple objects, the
matching process alone is insufficient for recognition
because it presumes that the features are partitioned
by object. Consequently, a complete model of scene
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recognition requires the ability to group features of an
object together, or equivalently, to segment the scene
into regions corresponding to different objects. Psy-
chophysical and neuropsychological evidence suggests
that the human visual system possesses such an abil-
ity (Duncan, 1984; Farah, 1990; Kahneman & Henik,
1981; Treisman, 1982).

Models of scene recognition can be divided rough-
ly into three classes (Figure 1). Interactive models
are based on the observation that the scene cannot be
properly segmented until object identities are known,
yet objects cannot be properly identified until they are
segmented. Consequently, segmentation and matching
form an iterative cycle in which the matching system
can propose refinements of the initial segmentation,
which in turn refines the output of the matching sys-
tem, and so forth (Hinton, 1981; Hinton, Williams, &
Revow, 1992; Hanson & Riseman, 1978; Waltz, 1975).
The problem with this approach is that it involves a si-
multaneous search for a good segmentation and a good
interpretation of the data. We are skeptical about the
computational feasibility of such massive combinatori-
al searches; they are slow and often lead to local optima
in the search space (e.g., Hinton & Lang, 1985).

Bottom-up models are based on the premise that
matching processes can be devised that do not require a
precise segmentation (e.g., Mozer, 1992). Consequent-
ly, segmentation can be viewed as an early heuristic
process that depends solely on low-level features. The
results of segmentation are fed to the matching sys-
tem, but the matching system does not directly influ-
ence segmentation. Although the heuristics used to
group features will not be infallible, the hope is that
they will suffice for most recognition tasks (Enns &
Rensink, 1992). In cases where recognition fails the
first time around, the segmentation can be adjusted
and the process restarted. Although this restarting
procedure is iterative, iteration is the exception, in con-
trast to the interactive model which intrinsically relies
on an iterative constraint-satisfaction process to per-
form segmentation and matching jointly. The difficulty
with the bottom-up approach is that an adequate set
of grouping heuristics is required. We return to this
issue later.



Interactive and bottom-up models attempt to
achieve object-based segmentation of the scene. That
is, features of an object are collected together even
if the features are noncontiguous in space and over-
lap with features of other objects. An alternative
approach, location-based segmentation, simply deter-
mines a coherent region of space that is sufficiently
large to be assured of containing all features of a single
object, even if the features of other objects are present
in that region. The hope is then to devise a matching
process that can ignore irrelevant context surrounding
the object of interest. It would seem quite difficult
to achieve this robust a matching process. Recently,
however, Rumelhart (1992; Keeler & Rumelhart, 1992)
have proposed such a system using neural net learning
techniques. The claim is that learning will find cues
reliably indicating the presence of an object regard-
less of the context in which it is embedded. Even if
such cues exist for real-world scenes—and of this we
are skeptical—this class of model is inconsistent with
the previously mentioned data indicating that people
perform object-based grouping of featural information.

Note that the interactive and bottom-up models do
not deny the possibility of location-based selection. In-
deed, prior to the operation of these models, a spatial
focus of attention may well be applied to select the
general region of interest. Such a preselection stage
would simplify the object-based segmentation task.

Our conviction is that the interactive and location-
based models have serious complications both in terms
of computational feasibility and psychological validity.
We have thus turned to the bottom-up model and at-
tempted to overcome its limitations. The primary con-
cern is whether, based on information from the scene
alone, a set of grouping heuristics exist that can deter-
mine which features belong together.

Gestalt psychologists have suggested a variety of
grouping principles that govern human perception. In
exploring how people group elements of a display, ev-
idence has been found for grouping of elements that
are close together in space or time, that appear sim-
ilar, that move together, or that form a closed figure
(Rock & Palmer, 1990). There is a long history of
attempts by the computer vision community to turn
these principles into grouping heuristics, with a fair
degree of success (e.g., Lowe & Binford, 1982). The
degree of success depends on the ingenuity of the re-
searchers in proposing an adequate set of heuristics.
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Figure 1: Three classes of object recognition models
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We believe there is a more basic principle that under-
lies these heuristics and that can be used to suggest
better heuristics. Namely, these grouping heuristics
are a reflection of the structure of the environment.
Preliminary evidence from neurobiology suggests that
experience can indeed affect the strength of synaptic
connections that may play a role in perceptual group-
ing (Lowel & Singer, 1992).

We have therefore taken an adaptive approach to
the problem of segmentation in which a system learns
how to group features based on a set of examples. We
call our system MAGIC, an acronym for multiple-object
adaptive grouping of image components. In many cases
MAGIC discovers grouping heuristics similar to those
proposed in earlier work, but it also has the capability
of finding nonintuitive structural regularities in scenes,
Hummel and Biederman (1992) have also discussed the
possibility of discovering grouping heuristics based on
environmental regularities.

MAGIC is trained on a set of presegmented scenes
containing multiple objects. By “presegmented”, we
mean that each feature is labeled as to which object
it belongs. MAGIC learns to detect configurations of
the scene features that have a consistent labeling in
relation to one another across the training examples.
Identifying these configurations then allows MAgIC to
label features in novel, unsegmented scenes in a manner
consistent with the training examples.

This training procedure is a form of supervised learn-
ing. Of course, the real world does not directly pro-
vides such examples to a learner. However, there is
a wealth of information in the environment that can
supply the supervision. Perhaps the most important
piece of information is motion. A rigid object moving
in the plane perpendicular to the line of sight will have
the property that all of its features travel across the
visual field with the same velocity vector. Thus, by
designing the learning system to treat velocity infor-
mation as a training signal, the system can discover
grouping principles that will also apply to stationary
objects. Evidence from developmental psychology in-
deed suggests that the representation of object unity
is initially derived from motion (Spelke, 1990).

The Domain

Our initial work has been conducted in the domain
of two-dimensional geometric contours. The contours
are constructed from four primitive feature types—
oriented line segments at 0°, 45°, 90°, and 135°—and
are laid out on a 25 x 25 grid. At each location on
the grid are units, called feature units, that represent
each of the four primitive feature types. In our present
experiments, scenes contain two contours. We exclude
scenes in which the two contours share a common edge.
This permits a unique labeling of each feature. Exam-
ples of several randomly generated scenes containing
rectangles and diamonds are shown in Figure 2. Al-
though the scenes we have tested are composed only of
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Figure 2: Examples of randomly generated two-dimensional geometric contours

shape features, MAGIC could be directly used to learn
grouping principles based on color, texture, ete.

Representing Feature Labelings

Before describing MAGIC, we must first discuss a repre-
sentation that allows for the labeling of features. Von
der Malsburg (1981; von der Malsburg & Schneider,
1986), Gray et al. (1989), Eckhorn et al. (1988),
and Strong and Whitehead (1989), among others, have
suggested a biologically plausible mechanism of label-
ing through temporal correlations among neural sig-
nals, either the relative timing of neuronal spikes or
the synchronization of oscillatory activities in the ner-
vous system. The key idea here is that each process-
ing unit conveys not just an activation value—average
firing frequency in neural terms—but also a second,
independent value which represents the relative phase
of firing. The dynamic grouping or binding of a set of
features is accomplished by aligning the phases of the
features.

In MAGIC, the activity of a feature unit is a com-
plex value with amplitude and phase components. The
phase represents a labeling of the feature, and the am-
plitude represents the confidence in that labeling. The
amplitude ranges from 0 to 1, with 0 indicating a com-
plete lack of confidence and 1 indicating absolute cer-
tainty. There is no explicit representation of whether a
feature is present or absent in a scene. Rather, absent
features are clamped off—their amplitudes are forced
to remain at 0—which eliminates their ability to influ-
ence other units, as will become clear when the activa-
tion dynamics are presented later.

The Architecture

When a scene is presented to MAGIC, units represent-
ing features absent in the scene are clamped off and
units representing present features are set to a small
amplitude and random initial phases. MAGIC’s task is
to assign appropriate phase values to the units. Thus,
the network performs a type of pattern completion.
The network architecture consists of two layers of
units, as shown in Figure 3. The lower (input) layer
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contains the feature units, arranged in spatiotopic ar-
rays with one array per feature type. The upper layer
contains hidden units that help to align the phases of
the feature units; their response properties are deter-
mined by training. There are interlayer connections,
but no intralayer connections. Each hidden unit is re-
ciprocally connected to the units in a local spatial re-
gion of all feature arrays. We refer to this region as a
patch; in our current simulations, the patch has dimen-
sions 4 x 4. For each patch there is a corresponding
fixed-size pool of hidden units. To achieve uniformity
of response across the scene, the pools are arranged in
a spatiotopic array in which neighboring pools respond
to neighboring patches and the patch-to-pool weights
are constrained to be the same at all locations in the
array.

The feature units activate the hidden units, which
in turn feed back to the feature units. Through a re-
laxation process, the system settles on an assignment
of phases to the features. One might consider an alter-
native architecture in which feature units were direct-
ly connected to one another (Hummel & Biederman,
1992). However, this architecture is in principle not
as powerful as the one we propose because it does not
allow for higher-order contingencies among features.

Once MAGIC reaches equilibrium, grouped features
can be passed on to an object matching system (Fig-
ure 1, middle panel). Essentially, this involves consid-
ering all phases in a particular range as belonging to
a single object. A filter situated between the segmen-
tation system and the matching system permits only
features having phases in this range to pass through.
The determination of how many objects are present
and their range of phases can easily be made using
Hough transforms (Ballard, 1981).

Network Dynamics

We summarize here the activation dynamics and learn-
ing algorithm. Further justification and intuitions un-
derlying each are presented in Mozer, Zemel, Behr-
mann, & Williams (1992).

The response of each feature unit ¢, z;, is a complex
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Figure 3: The architecture of MAGIC. The lower (input) layer contains the feature units; the upper layer contains
the hidden units. Each layer is arranged in a spatiotopic array with a number of different feature types at each
position in the array. Each plane in the feature layer corresponds to a different feature type. The grayed hidden
units are reciprocally connected to all features in the corresponding grayed region of the feature layer. The lines

between layers represent projections in both directions.

value in polar form, (a;,p;), where a; is the amplitude
and p; is the phase. Similarly, the response of each
hidden unit j, y;, has components (b;, ;). The weight
connecting unit i to unit j, wj;, is also complex valued,
having components (pji,f;i). The activation rule we
propose is a generalization of the dot product to the
complex domain. For a particular time step ¢,

net;(t +1) = x(t) - w; = 3. zi(t)wy;

where net; is the net input to hidden unit j and the
asterisk denotes the complex conjugate. The net input
is passed through a squashing nonlinearity that maps
the amplitude of the response from the range 0 — oo
to 0 — 1 but leaves the phase unaffected. The flow of
activation from the hidden layer to the feature layer
follows the same dynamics as the flow from the fea-
ture layer to the hidden layer. Note that updates are
sequential by layer: the feature units activate the hid-
den units, which then activate the feature units.

In MAGIC, the weight matrix is Hermitian, i.e., w;; =
w};. This form of weight symmetry ensures that MAG-
1c will converge to a fixed point (Zemel, Williams, &
Mozer, 1992).

Learning Algorithm

During training, we would like the hidden units to learn
to detect configurations of features that reliably indi-
cate phase relationships among the features. For in-
stance, if the contours in the scene contain extend-
ed horizontal lines, one hidden unit might learn to
respond to a collinear arrangement of horizontal seg-
ments. Because the unit’s response depends on the

phase pattern as well as the activity pattern, it will
be strongest if the segments all have the same phase
value.

The algorithm we have used is a generalization of
back propagation. It involves running the network for
a fixed number of iterations and, for each iteration,
using back propagation to adjust the weights so that
the feature phase pattern better matches a target phase
pattern. Each training trial proceeds as follows:

1. A training example is generated at random. This in-
volves selecting two contours and instantiating them
in a scene. The features of one contour have target
phase 0° and the features of the other contour have
target phase 180°.

2. The training example is presented to MAGIC by set-
ting the initial amplitude of a feature unit to 0.1 if its
corresponding scene feature is present, or clamping
it at 0.0 otherwise. The phases of the feature units
are set to random values in the range 0° to 360°.

3. Activity is allowed to flow from the feature units to
the hidden units and back to the feature units.

4. The new phase pattern over the feature units is com-
pared to the target phase pattern (see step 1), and
a measure of error is computed. This measure at-
tempts to minimize the difference between the target
and actual phases, and to maximize the confidence
in the response. The error measure factors out any
constant difference between the target and actual
phases. See Mozer et al. (1992) for details.

5. Using a generalization of back propagation to com-
plex valued units, error gradients are computed for
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Figure 4: An example of MAGIC segmenting a scene. The “iteration” refers to the number of times activity has
flowed from the feature umnits to the hidden units and back. The phase value of a feature is represented by a
gray level. The cyclic phase continuum can only be approximated by a linear gray level continuum, but the basic

information is conveyed nonetheless.

the feature-to-hidden and hidden-to-feature weights.

. Steps 3-5 are repeated for a maximum of 30 itera-
tions. The trial is terminated if the error increases
on five consecutive iterations.

. Weights are updated by an amount proportional to
the average error gradient over iterations. Weight
constraints are enforced to ensure that wj; = wj; and
that hidden units of the same “type” responding to
different regions of the scene have the same weights.

Simulation Results

We trained a network with 20 hidden units per pool
on examples like those shown in Figure 2. Each hid-
den unit attempts to detect and reinstantiate activity
patterns that match its weights. One clear and preva-
lent pattern in the weights is a collinear arrangement
of segments of a given orientation, all having the same
phase value. When a hidden unit having weights of
this form responds to a patch of the feature array, it
tries to align the phases of the patch with the phas-
es of its weight vector. By synchronizing the phases
of features, it acts to group the features. Thus, one
can interpret the weight vectors as the rules by which
features are grouped.

Whereas traditional grouping principles indicate the
conditions under which features should be bound to-
gether as part of the same object, the grouping prin-
ciples learned by MAGIC also indicate when features
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should be segregated into different objects. For exam-
ple, the weights of the vertical and horizontal segments
are generally 180° out of phase with the diagonal seg-
ments. This allows MAGIC to segregate the vertical
and horizontal features of a rectangle from the diag-
onal features of a diamond (see Figure 2, left panel).
We had anticipated that the weights to each hidden
unit would contain two phase values at most because
each scene patch contains at most two objects. How-
ever, some units make use of three or more phases,
suggesting that the hidden unit is performing several
distinet functions. As is the usual case with hidden
unit weights, these patterns are difficult to interpret.

Figure 4 presents an example of the network seg-
menting a scene. The scene contains two rectangles.
The top left panel shows the features of the rectan-
gles and their initial random phases. The succeeding
panels show the network’s response during the relax-
ation process. The lower right panel shows the network
response at equilibrium. Features of each object have
been assigned a uniform phase, and the two objects are
180° out of phase. The task here may appear simple,
but it is quite challenging due to the illusory rectangle
generated by the overlapping rectangles.

Empirical Tests of the Model

We are currently conducting psychological experiments
to examine the role of feature grouping in human visual



processing. Our experiments include the following:

e Previous studies have shown that judgements of two
features of a single object (e.g., size, texture) can
be made without loss of accuracy or speed whereas
a cost is incurred when the features to be judged
are drawn from two different objects (Duncan, 1984;
Vecera and Farah, 1992). Based on this rationale,
we might expect subjects to identify two elements of
a single contour (similar to those used with MAGIC)
more rapidly and accurately than elements of dis-
parate contours. This paradigm provides a means
of determining whether people group in the same
way as MAGIC and what the limitations of grouping
are. For instance, we are currently conducting ex-
periments to examine whether a contour is processed
as a single entity even when its features are spatial-
ly distant and it is partially occluded by a second
contour.

The bottom-up and interactive segmentation mod-
els presented in Figure 1 make divergent predictions
about the recognition process. In the bottom-up
model, segmentation is guided by low-level cues and
is not influenced by object knowledge per se. Hence,
familiarity should not influence segmentation per-
formance. This is a challenge to test empirically
because of the difficulty in measuring segmentation
performance directly. The paradigm we are consid-
ering involves a search for unfamiliar targets em-
bedded in—and difficult to segment from—a back-
ground of distractors. The familiarity of the distrac-
tors is manipulated. The interactive model suggests
that targets should be easier to identify among fa-
miliar distractors. The bottom-up model predicts
no effect of distractor familiarity.

If indeed there is a distinct stage of information pro-
cessing at which segmentation occurs, then it might
be possible to find a neurological patient who has
an impairment in segmentation. There are now two
such reports in the literature in which patients are
unable to bind individual features from disparate lo-
cations simultaneously (Grailet et al., 1990; Riddoch
and Humphreys, 1987). We are currently studying
the feature binding abilities of a visually agnosic sub-
ject, CK, and believe that he too has an impairment
at this stage of processing.
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