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ABSTRACT OF THE DISSERTATION

Efficient Algorithms for Road Networks and Noisy Sorting: an Experimental and
Theoretical Perspective

By

Evrim Ozel

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Distinguished Professor Michael T. Goodrich, Chair

Experimental algorithmics, also referred to as algorithm engineering, is the principled ap-

proach of using empirical methods to complement traditional theoretical methods, both of

which provide valuable insights for the analysis of algorithms. In this dissertation, we study

various algorithmic problems for road networks and noisy sorting, analyzing them from both

an experimental and theoretical perspective.

We first study the problem of exact learning for road networks, and introduce an efficient

randomized algorithm using simple distance queries, which can find missing roads and im-

prove the quality of routing services. We provide a partial theoretical analysis based on a

cluster degree parameter, dmax, then empirically show that this parameter is small for road

networks by evaluating our algorithm on road network data for the U.S. and 4 European

countries of various sizes. This analysis provides experimental evidence that our algorithm

issues a quasilinear number of queries in expectation for road networks and similar graphs.

We also study the small-world navigability of the U.S. road network, inspired by the famous

experiments done by Stanley Milgram which gave rise to the ”six degrees of separation”

expression. We introduce the Neighborhood Preferential Attachment Model, and perform

extensive experiments with this model on U.S. road networks to show that our model out-

xiii



performs other small-world models in terms of the average hop length, while having a more

realistic scale-free degree distribution.

We then study the problem of sorting n comparable distinct elements, subject to noisy com-

parison errors, such that the comparison of two elements returns the wrong answer according

to a fixed probability pe > 1/2. We provide new methods for sorting with comparison er-

rors that are data oblivious while avoiding the use of noisy binary search methods. We

then experimentally compare our algorithms and other sorting algorithms. Lastly, we study

the noisy sorting problem in an external-memory setting, providing new efficient methods

that are in the external-memory model for sorting with comparison errors. Our algorithms

achieve an optimal number of I/Os, in both cache-aware and cache-oblivious settings.

xiv



Chapter 1

Introduction

1.1 Road Networks

The development of road networks goes back to antiquity, when road transportation was

used for carrying goods over tracks via pack animals. Since then, increased urbanization

and the widespread usage of the automobile has led to a rapid increase of the volume of

such networks. Today, we rely on road transportation networks more than ever. We use

navigation and mapping software (such as Google Maps, Apple Maps, or OpenStreetMap)

in our daily lives. This has brought an increased interest in the development of algorithms

for road networks.

In Chapters 2 and 3, we present efficient algorithms for computational tasks that are mo-

tivated through road networks, and analyze these algorithms from theoretical and experi-

mental perspectives. Formally, we define a road network as an undirected and connected

graph, where each edge corresponds to a segment in the road network, and each vertex cor-

responds to either a junction between two road segments, or a terminus. Depending on the

application, we can consider road networks as weighted or unweighted graphs. For weighted

1



road networks, edge costs are typically either the real-world distance between two vertices,

or the travel time (which takes into account the average speed through a road). Another

well-known characterization of road networks is having a bounded maximum degree, which

is derived by physical and geographic limitations when constructing roads.

Figure 1.1: Road map of UC Irvine and surrounding areas (left), and a partial unweighted
graph representation of the this network (right). Left image is from OpenStreetMap and
is licensed under the Open Data Commons Open Database License (ODbL) by the Open-
StreetMap Foundation (OSMF).

1.1.1 Exact Learning of Road Networks

The first problem we study is the exact learning of graphs. In this problem, we are given

the vertices V of an unknown graph G = (V,E), as well as access to an oracle, which is able

to answer queries involving the vertices in the graph. The goal is to reconstruct the graph

by learning the set of edges E of the graph. While there are several querying models that

can be considered for this problem, we focus on distance queries, where the oracle is given a

pair of vertices u, v, and returns the number of edges on the shortest path between them in

G. In Chapter 2, we specifically study reconstruction algorithms for road networks, which is

2



motivated by the importance of the completeness of road network datasets used in various

routing services [9].

Prior Work and Motivation. The general problem of exact learning falls under the

umbrella of computational learning theory [74, 109, 60, 103]. The concept of exact learning

itself goes back to work done by Angluin [14, 13], who studied the problem of learning regular

language sets by introducing a two-party algorithm involving a teacher and learner, called

the L* algorithm. This involves the learner issuing a sequence of queries to the teacher,

such as membership queries (whether a given string belongs to the unknown regular set), or

equivalence queries (whether a predicted description of the regular set is accurate or not).

The learner, using these responses, updates its own prediction of the regular set iteratively.

Exact learning was later applied to graphs: Griebinski and Kucherov [67, 68] study the

problem of reconstructing an unknown Hamiltonian cycle in a complete graph by consid-

ering different querying models: the multi-vertex model, which issues queries on whether

the complete graph on a set of vertices intersects with the unknown Hamiltonian cycle or

not; the quantitative multi-vertex model, where the number of edges in the intersection is

queried instead; and two additional variants where the set of vertices issued in each query

is constrained by a predetermined parameter. Alon, Beigel, Kasif, Rudich, and Sudakov

[12] studied the problem of reconstructing matchings by issuing queries on whether a given

induced subgraph shares any edges with the unknown matching. Angluin and Chen [16]

extend this problem to general graphs using the same type of queries (referred to as edge

detection queries). The problem of graph reconstruction has since been studied extensively,

with applications in a variety of fields such as computer security, molecular biology, genome

sequencing, and internet network mapping; and through different query models, such as

distance queries (the distance of the shortest path between two vertices), shortest path

queries (the vertices that appear in the shortest path between two vertices) and betweenness

3



queries (whether a given vertex exists on the shortest path of two given vertices), e.g. see

[1, 6, 11, 22, 96, 113, 5, 7, 8, 16, 32, 36, 77, 98].

More recently, Kannan, Mathieu and Zhou [72] introduced a reconstruction algorithm for

connected, unweighted graphs using O(∆3n3/2 polylog(n)) distance queries in expectation,

where ∆ denotes the maximum degree of the graph, and also raised the open question of

whether we can achieve an algorithm that only uses O(n polylog(n)) distance queries in

expectation for bounded degree graphs. Mathieu and Zhou [87] later provided a partial

answer for that open question by providing an algorithm that uses O(n polylog(n)) distance

queries in expectation for random ∆-regular graphs. For general graphs of bounded degree,

their algorithm uses O(n5/3 polylog(n)) distance queries in expectation.

Results. In Chapter 2 present a randomized incremental algorithm for reconstructing road

networks (and similar graphs). We first theoretically analyze our algorithm and prove an

upper bound of O(d2maxn log n) expected queries, where dmax is an upper bound on the

degrees of vertex clusters defined during our algorithm. We then conduct an experimental

analysis of our algorithm using real-world road network datasets, and show empirically that

dmax scales logarithmically with the size of the input graph, which, combined with our

theoretical analysis, results in an empirical query complexity of O(n polylog(n)), providing

an empirical answer to an open question raised by [72]. We further experimentally compare

our algorithm with existing reconstruction algorithms, and show that our algorithm issues

significantly fewer queries.

1.1.2 The Small-World Phenomenon in Road Networks

Inspired by the famous small-world experiments conducted by Stanley Milgram in the 1960s

[88], we study the problem of modeling the small-world phenomenon, which is the idea that

all people are connected through a short chain of acquaintances that can be used to route
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messages, through random graph models. This topic has a rich history, with several published

papers proposing mathematical models to explain the phenomenon. However, most prior

work in this area, such as the well-known preferential attachment model by Barabási and

Albert [18], focus on the “short chain” of acquaintances rather than their ability to efficiently

route messages. A notable exception is the well-known model by Jon Kleinberg [79], which

shows that it is possible for participants to route a message in O(log2 n) hops using a random

graph model based on an n × n grid and using a simple greedy routing strategy. Although

this model is intriguing, it does not take into account the road network of the United States

used in the original Milgram experiments and its O(log2 n) number of hops for messages is

actually quite far from the average of six hops for successful messages observed by Milgram

in his experiments, which gave rise to the “six-degrees-of-separation” expression. Motivated

by the geographic nature of the small-world phenomenon, in Chapter 3 we present a new

small-world model that is based on the U.S. road network.

Prior Work and Motivation.

The small-world phenomenon was popularized through experiments done in the 1960s by the

social psychologist Stanley Milgram [88, 107]. The experiments involved randomly selecting

individuals in Omaha, Nebraska and Wichita, Kansas, and asking them to send a postcard to

a target person who lived in Boston, Massachusetts. The participants were given instructions

asking them to either mail the postcard directly if they knew the target person, or to forward

the postcard to someone who they think would be more likely to know the target person.

The surprising result from these experiments was that among the postcards that made it

to the target people, the median number of hops the postcards took was only about 6.

This popularized the idea that most people can be connected through a small chain of

acquaintances.

The small-world phenomenon has since had a large influence on a wide variety of fields, such

as rumor spreading, epidemics, electronic circuits, wireless networks, the World Wide Web,
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network neuroscience, and biological networks. For a survey on the small-world phenomenon

and its applications, we refer the reader to [114]. This has also led to an increased interest

in mathematical models that attempt to explain why the small-world phenomenon occurs,

e.g., see [41].

One well-known mathematical model for social networks is the preferential attachment model,

which is a random graph model for non-geographic social networks, such as the World Wide

Web. The history of this model goes back 100 years e.g., see [120, 37, 101], and was pop-

ularized and formalized by Barabási and Albert [18], who also coined the term scale-free,

which describes networks where the fraction of vertices with degree d follows a power law,

d−α, where α > 1. The construction of a preferential attachment network follows what is

often called a “rich-get-richer” process, which involves starting constant-sized “seed” graph,

and iteratively adding vertices to the graph one by one, where each new vertex is connected

to a fixed number of other vertices randomly, where the probability of a vertex receiving

a connection is proportional to the number of connections it already has, e.g., see [20]. A

rigorous analysis of this model, e.g. to determine the diameter and degree distribution, was

later studied by Bollabas and Riordan [26].

Watts and Strogatz [115] introduced a network model for generating random graphs with

small-world properties, such as a low average path length and high levels of clustering.

However, unlike the Barabási-Albert model, this model does not result in a scale-free degree

distribution. Roughly, the model involves constructing a ”re-wired” ring lattice, by starting

with a ring lattice where each vertex is connected to a fixed number of its closest neighbors,

called the local connections, then reassigning some of edges to other vertices chosen uniformly

at random, called long-range connections.

The paradigm introduced by Watts and Strogatz was then generalized by Kleinberg [79] to

address some of its drawbacks. A notable difference of this model from previous ones was

that Kleinberg’s model focused not only on the existence of short paths within the social
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network, but also on how people were able to find these paths using only knowledge of their

own local connections. Moreover, unlike previous models, this model incorporated distances

between people in the network as the deciding factor when adding random edges to the

network, illustrating how a simple decentralized routing strategy can work in a geographic

setting to efficiently route messages between pairs of points. Kleinberg’s model is built on a

two dimensional grid, where each grid point corresponds to a single person, and just like the

Watts-Strogatz model, it utilizes two types of connections—local connections and long-range

connections. The local connections of the network are made by connecting each grid point to

every other grid point within a fixed lattice distance. The long-range connections are made

by connecting each grid point to a fixed number of other grid points chosen randomly, such

that the probability that two grid points are connected is inversely proportional to their

lattice distance. Kleinberg showed that through a simple decentralized greedy algorithm,

where each message holder forwards its message to an acquaintance that is closest to the

target grid point, messages can be routed in O(log2 n) hops in expectation.

Results. In Chapter 3, we introduce a new small-world model, the Neighborhood Preferen-

tial Attachment model [64], which combines elements from both Kleinberg’s model and the

Barabási-Albert model, such that long-range links are chosen according to both the degrees

and (road-network) distances of vertices in the network. We empirically evaluate all three

models by running a decentralized routing algorithm, where each vertex only has knowledge

of its own neighbors, and find that our model outperforms both of these models in terms of

the average hop length. Moreover, our experiments indicate that similar to the Barabási-

Albert model, networks generated by our model are scale-free, which could be a more realistic

representation of acquaintanceship links in the original small-world experiment.
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1.2 Sorting with Noisy Comparison Errors

Sorting is a fundamental problem in computing. An important category of sorting algorithms

is comparison-based sorting, where we have access to a primitive operation, compare(a, b),

that takes as input two comparable elements a, b and determines which of the two elements

should appear first in a sorted ordering. In the classical setting, the task is to sort n distinct

comparable elements using a series of compare operations. In Chapters 4 and 5, we study

the Noisy Sorting problem, where with some fixed probability pe < 1/2, the comparison of

two elements returns the wrong answer, and otherwise returns the correct answer. Noisy

sorting algorithms with persistent errors are typically evaluated by the amount of dislocation

that occurs for each element, which is the distance between its position in a given (current

or output) array and its position in a sorted array. For sorting n elements, we can then

evaluate the maximum and total dislocation of the output array.

Comparison errors can be categorized into persistent errors, where the result of a comparison

of two given elements, x and y, always returns the same result, and non-persistent errors,

where the probabilistic determination of correctness is determined independently for each

comparison, even if it is for a pair of elements, (x, y), that were previously compared. Note

that sorting with persistent comparison errors is a much more difficult problem than sorting

with non-persistent comparison errors, as there is a trivial O(n log2 n) time solution that sorts

perfectly with high probability for the latter case, whereas for the former, there exists known

lower bounds of O(log n) and O(n) in expectation for the maximum and total dislocation

respectively [55, 54, 56].

Prior Work and Motivation.

Problems involving probabilistic comparison errors goes back to a classic two-player game by

Rényi [95] where player A is trying to guess something player B is thinking of by asking yes/no

questions, and player B lies with some probability. A similar two-player game is proposed by
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Ulam [108], where player A is trying to guess a number that player B is thinking of through

yes/no questions, but with player B being allowed to lie up to a fixed number of times; for

a survey, see [33, 92]. These ideas were later applied to the digital realm, with work being

done on noisy boolean gates [93], and sorting networks with noisy comparators [118].

Feige, Raghavan, Peleg and Upfal [46] consider a non-persistent noisy comparison framework,

where each comparison fails independently with a fixed probability p < 1/2, and provide tight

bounds for a variety of algorithms, including sorting and searching. Karp and Kleinberg [73]

study binary searching for a value x ∈ [0, 1] in an array of biased coins ordered by their

biases. There is also work done on a variant of this problem when the total number of faulty

comparisons is bounded rather than having probabilistic noisy comparisons (similar to the

constraint in Ulam’s game [108]), see e.g. [75, 97].

Finocchi and Italiano [47] consider a different error framework, the faulty-memory model,

where the contents of a memory location may get altered unexpectedly before or during an

algorithm’s runtime, such that unlike the noisy comparison framework, strategies based on

comparison replications would not work. They achieve a time and space-optimal comparison-

based sorting algorithm that is resilient to O((n log n)1/3) memory faults.

Braverman and Mossel [27] introduce the persistent-error model, where ”resampling” com-

parisons made previously is not possible. In this framework, where comparisons are persis-

tently wrong with a fixed probability, p < 1/2 − ε, they achieve a sorting algorithm that

achieves optimal maximum and total dislocations, and runs in O(n3+f(p)) time, where f(p)

is some function of p. Klein, Penninger, Sohler, and Woodruff [78] improve the running

time to O(n2), but have O(n log n) total dislocation w.h.p. The running time for sorting

optimally in the persistent-error model with respect to maximum and total dislocation was

subsequently improved to O(n2), O(n3/2), and ultimately to O(n log n), in a sequence of

papers by Geissmann, Leucci, Liu, and Penna [55, 56, 54].
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Motivation for sorting with comparison errors comes from real-world applications of sorting

algorithms on large volumes of data, e.g. as part of A/B testing [116], where there is a risk

of faults occurring while sorting. Another use case for noisy sorting is in applied cryptogra-

phy, where cryptographic comparison protocols have some known probability of failure, see

e.g. [84, 48, 117].

1.2.1 Data Oblivious Noisy Sorting

A sorting algorithm is data oblivious if its memory access pattern does not reveal any infor-

mation about the data values being sorted. This property plays an important role in applica-

tions such as secure cloud computing and cryptographic protocols, where privacy-preserving

algorithms can be beneficial. However, existing noisy sorting algorithms are unfortunately

not data oblivious, as they all make use of a data-sensitive procedure called noisy binary

search. In Chapter 4, we design efficient algorithms that are tolerant to noisy comparison

errors while not relying on noisy binary search.

Results. In Chapter 4, we provide several algorithms for sorting an array of n comparable

distinct elements subject to probabilistic comparison errors, with one of these algorithms

being data oblivious, while avoiding the use of noisy binary search methods. We provide

theoretical analyses for the time complexity and maximum dislocation of our algorithms,

and prove that they run in quasilinear time and achieve an optimal maximum dislocation

of O(log n). We also analyze our algorithms experimentally, and show that all of the data-

oblivious algorithms we provide have maximum and total dislocations that are comparable

to the optimal bounds of O(log n) and O(n) respectively for the best algorithms that are not

data oblivious.
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1.2.2 External-Memory Noisy Sorting

In Chapter 5, we study noisy sorting algorithms for the external memory model [10], which

is a model of computation consisting of a two-layer memory hierarchy: a fast cache of small

size, and a disk that can store larger files but is slower. The running time of an external

memory algorithm is defined as the number of memory transfers or input/output operations

(I/Os) between the two memory layers, where each I/O retrieves a block of size B from

external memory to internal memory. Efficient external memory algorithms then make use

of locality in their memory access pattern, by processing data elements that are stored close

to each other and thus minimizing the number of block transfers. External-memory noisy

sorting algorithms are motivated by applications in real-world systems where there is a large

volume of data to be sorted for which external-memory sorting can be beneficial. There are

various existing algorithms that can be utilized for sorting or near-sorting elements subject to

probabilistic comparison errors, but these algorithms do not translate into efficient external-

memory algorithms, because they all make heavy use of noisy binary searching. The main

disadvantage of relying on noisy binary search is that it is cache inefficient, in that it requires

performing memory accesses for widely-distributed storage locations.

Results. In Chapter 5, we provide several algorithms for sorting an array of n compara-

ble distinct elements subject to probabilistic comparison errors in cache-aware and cache-

oblivious settings. We provide a theoretical analysis for both algorithms and show that

they run in time O(n log2 n) in internal memory, or in external memory with an optimal

O((n/B) logM/B(n/B)) I/O’s, and have a maximum dislocation of O(log n) w.h.p., where M

denotes the size of internal memory and B denotes the size of a block of memory.
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Chapter 2

Exact Learning of Road Networks

2.1 Introduction

We study the problem of reconstructing an undirected, unweighted and connected graph

G = (V,E), by taking as input its set of vertices V and issuing queries to a distance oracle,

which takes as input a pair of vertices u, v ∈ V and returns the number of edges on the

shortest path between them. The goal is to learn the edges in E by using the results that

are returned from these queries. In particular, we are concerned with reconstructing road

networks, which have been characterized in numerous ways, e.g., see [34, 43, 44, 53]. As a

starting point, we can view road networks as undirected, unweighted, and connected graphs

with a constant maximum degree, where each vertex corresponds to a road junction or

terminus, and each edge corresponds to road segments that connect two vertices. In this

chapter, we present a randomized incremental algorithm for exact learning of road networks,

where we assume the existence of a distance oracle that responds to distance queries.

Even though our algorithm only works with unweighted graphs, it is possible to use weighted

graphs as input by subdividing each edge, replacing each edge e with ⌈w(e)⌉ edges, where
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w(e) is the weight of e. Since the average edge weight in road networks is typically small

(e.g., as observed in [53]), this will only increase the number of vertices and edges in the

graph by a constant factor that is independent of the size of the graph. This preprocessing

step is important for applications of road network reconstruction in routing services, where

the completeness of road network data has great importance. For example, machine learning

techniques have been utilized in the past to find the missing roads in incomplete road network

data [52]. Though our experiments focus on unweighted road networks, we include some

experimental results for weighted road networks with subdivided edges as well.

Another application relevant to this work is the use of structured encryption [31] in the

context of cloud computing, where a data owner encrypts structured data, such as a graph,

stores it in a database managed by a third-party cloud provider, and wishes to query it

privately (e.g., using single-pair shortest path queries [57]). In the scenario where an ad-

versary server is able to generate valid queries of its own, it would be able to use a graph

reconstruction algorithm to learn the edges in the graph, resulting in a breach of privacy.

A graph reconstruction algorithm A is evaluated based on the number of queries it issues,

which we call the query complexity of A, following nomenclature from learning theory (e.g.,

see [2, 3, 32, 39, 104]) and complexity theory (where this is also known as “decision-tree

complexity,” e.g., see [119, 25]). For instance, Kannan, Mathieu and Zhou [72] present exact

learning algorithms for connected, undirected graphs that have bounded degree, including

a randomized algorithm that has expected query complexity O(∆3n3/2 polylog(n)), where

∆ is the maximum degree of the graph, using distance queries. This bound simplifies to

O(n3/2 polylog(n)) for graphs with maximum degree O(polylog(n)).

We note that a bound on the maximum degree is necessary for subquadratic exact learning

algorithms, as there is a simple Ω(n2) lower bound for the query complexity of graphs

with unbounded degrees, e.g., see [72]. Likewise, a trivial upper bound for the task of

reconstructing a general graph G is O(n2) distance queries, as one can issue a distance query
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for every pair of vertices in the graph and return all pairs of vertices that have distance 1

between them as edges. We refer to this as an exhaustive search on G.

2.1.1 Related Prior Results

The problem of reconstructing graphs by issuing queries has been studied extensively, e.g.,

see [1, 6, 11, 22, 96, 113, 5, 7, 8, 12, 15, 16, 32, 36, 68, 69, 77, 98]. These works differ in

terms of their assumptions about the hidden graph (e.g., whether the hidden graph is a tree,

a general graph, or something else) or the types of queries that they issue.

In terms of the most relevant prior work, Kannan, Mathieu and Zhou [72] showed how to

reconstruct a connected, unweighted graph G using O(∆3n3/2 polylog(n)) distance queries

in expectation, where they performed an exhaustive search on the Voronoi cells created

by a call to a graph clustering algorithm inspired by Thorup and Zwick [106]. They also

raised the open question of whether we can achieve an algorithm that uses O(n polylog(n))

distance queries in expectation for bounded degree graphs. In a recent work [87], Mathieu

and Zhou provided a partial answer for that open question by providing an algorithm that

uses O(n polylog(n)) distance queries in expectation for random ∆-regular graphs. However,

this does not imply an algorithm with an expected query complexity of O(n polylog(n))

distance queries for road networks as they are not necessarily regular. For general graphs of

bounded degree, their algorithm uses O(n5/3 polylog(n)) distance queries in expectation.

In another work, Afshar, Goodrich, Matias and Osegueda [7] introduced a parallel imple-

mentation of the graph clustering technique of Thorup and Zwick [106] and presented a

parallel algorithm for reconstructing connected, unweighted graphs using O(∆2n3/2+ε) dis-

tance queries in O(1) parallel rounds for constant 0 < ε < 1/2, with high probability.
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2.1.2 Our Contributions

In this chapter, we introduce a randomized incremental algorithm for exact reconstruction of

bounded degree graphs and demonstrate through experiments that it has expected empirical

query complexity O(n polylog(n)), providing an empirical answer to the open question raised

by [72] mentioned above.

The main idea of our algorithm is to cluster the graph into cells by incrementally selecting

random vertices as centers. We then issue distance queries between that center and the rest

of the graph to decide which vertices should be added to the new cell. We continue this

process until the size of each cell is below some threshold value. The final step is to then

perform exhaustive searches in each cell.

Our algorithm uses the same overall strategy used in [72], which is based on finding a Voronoi

cell decomposition of the graph. However, our algorithm differs in a number of important

ways. In [72], the goal of the algorithm is to produce cells such that the size of each cell is

O(
√
n/∆). Our algorithm, however, produces cells that have size at most a chosen constant.

Since performing exhaustive searches on all of these cells requires onlyO(n) queries, the query

complexity of our algorithm depends mainly on the initial step of constructing the cells and

not the exhaustive querying step. Moreover, our algorithm incrementally constructs the cell

decomposition by updating it with each newly added center, whereas [72] updates the cell

decomposition only after adding multiple centers.

We perform experiments on several real-world road networks and show, by considering the

number of queries performed at each step, that our algorithm has expected empirical query

complexity O(n polylog(n)). Moreover, we theoretically analyze our algorithm and prove

an upper bound of O(d2maxn log n) expected queries, where dmax is the maximum degree in

the dual graph of cells during our algorithm. To characterize dmax, we collect data on the

maximum cell degrees during our experiments, and find that the value of dmax scales logarith-
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mically with respect to n for road networks. When combined with our theoretical analysis,

this results in an alternative way to obtain an empirical upper bound of O(n polylog(n))

expected queries for our algorithm. In addition, we perform experiments to directly com-

pare the number of queries our algorithm issues to the number of queries issued by existing

algorithms, and observe empirically that our algorithm issues significantly fewer queries.

This chapter is organized as follows. We provide some preliminaries in Section 2.2, our algo-

rithm is in Section 2.3, the results from our analysis are in Section 2.4, experimental results

are in Section 2.5, comparisons between theoretical/experimental results are in Section 2.6,

and the conclusions are in Section 2.7.

2.2 Preliminaries

We reconstruct graphs G = (V,E) that consist of n = |V | vertices and m = |E| edges, and

are undirected, unweighted and connected. For a graph G = (V,E), a cell is defined as

any subset of V . A cover of G is a set of cells C such that
⋃

C∈C C = V and for each edge

(u, v) ∈ E there exists at least one cell C ∈ C such that u, v ∈ C.

For two vertices u, v ∈ V , δ(u, v) denotes the number of edges on the shortest path between

u and v in G. For a subset of vertices A ⊆ V , δ(v, A) = mina∈A δ(v, a). For a vertex v and a

cell C, the subroutine Distances(v,C) determines δ(v, u) ∀u ∈ C by issuing distance queries

between v and every vertex in C.

2.3 Algorithm

The first component of our algorithm is reconstruct(V ), which takes as input the set

of vertices V of the input graph and returns the reconstructed graph with the correct edge
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Algorithm 1: reconstruct(V )

1 E ← ∅, C ← ∅, W ← V
2 Let M denote the maximum size of cells, initially +∞
3 while M > g do // g is a chosen constant
4 a← a random vertex from W
5 W ← W \ {a}
6 C ← cover(V, C, a)
7 M ← max

C∈C
{|C|}

8 for C ∈ C do
9 E ← E ∪Exhaustive-Query(C)

10 return E

assignments. We start by choosing a constant, g, which is the threshold value for the

maximum sized cell in our cover. In a loop, we randomly select an unselected vertex to be

the center for the new cell, and call cover(V, C, a) to get a new cover which includes the

new cell with center a. We describe how cover(V, C, a) works later in this section.

We keep performing this loop until the maximum sized cell in the cover becomes less than

g, in which case we terminate the loop and perform an exhaustive search on each cell of the

cover. The function Exhaustive-Query(C) takes as input a cell C and returns all edges

between vertices in C by issuing distance queries for each pair of vertices in C. We provide

details in Algorithm 1.

The second and main component of our algorithm is cover(V, C, a) (see Algorithm 2), which

takes as input the set of vertices V , a set of cells C and a vertex a, and returns a new cover

where a is the center of a new cell N . We define S, which we call the frontier, to be the set of

cells that we should search in expanding N , and we initialize it with the cells that a belongs

to. The only exception is when we first call cover(V, C, a), in which case we initialize S to

be {V } (see lines 3-6). Then, an arbitrary cell, C, from S is chosen, and we issue distance

queries between a and all of the vertices of C.
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Using the results from these queries, we determine which vertices in C are close to a, com-

pared to their distances to all the other centers. We define A to be a global variable that

stores the set of all centers that were added before the new center a. For a vertex v ∈ C,

if δ(a, v) ≤ δ(A, v) − 1, we remove v from all of the cells that contains it (see line 18). If,

however, δ(a, v) = δ(A, v) or δ(a, v) = δ(A, v) + 1, we consider v to be on the boundary

between C and N and so we do not remove v from any cells. In both cases, we add v to

the new cell N , and we add any unvisited cells that contain v to S since they might have

vertices that are close to a as well.

We say that a cell C2 ∈ C is a neighbor of C1 ∈ C if C1∩C2 ̸= ∅. In other words, two cells are

neighbors if there exists a boundary vertex that belongs to both of them. So, each iteration

of cover(V, C, a) ends up adding to the frontier all unvisited neighbors of the current cell

C ∈ S that share at least one boundary vertex with C such that this boundary vertex can be

added to N according to the closeness definition in line 15. Note that we do not necessarily

add all the neighbors of C to the frontier: if none of the boundary vertices v between C and

a neighboring cell N ′ have distance at most δ(A, v) + 1 to N ’s center, then it is clear that

none of the vertices in N ′ can be added to N .

2.4 Correctness and Analysis

Theorem 2.4.1. For any undirected, unweighted and connected graph G = (V,E),

reconstruct(V ) correctly reconstructs E.

Proof. We use an inductive argument to prove that the union of exhaustive searches per-

formed on the cells created by the algorithm discovers all (u, v) ∈ E.

Initially, there is a single cell containing all of the vertices V , which trivially covers all the

edges of E. Now, let Ai represent the first i centers that we add in the algorithm and assume,
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Algorithm 2: cover(V, C, a) algorithm for constructing a new cover after adding
a cell centered at vertex a
1 N ← {a} // N is the new cell centered at a
2 L← ∅ // L is the set of cells that have been visited
3 if C = ∅ then
4 S ← {V }
5 else
6 S ← {C ∈ C | a ∈ C} // S is the set of cells that we should search in expanding

N

7 while S ̸= ∅ do
8 C ← an arbitrary cell from S
9 S ← S \ {C}

10 L← L ∪ C
11 Distances(a, C)
12 // A is a global variable denoting the set of all cell centers
13 If A = ∅, ∀v ∈ V : set δ(A, v) = +∞.
14 for v ∈ C do
15 if δ(a, v) ≤ δ(A, v) + 1 then
16 S ← S ∪ {C ′ ∈ C | v ∈ C ′ and C ′ /∈ L} // add all of the unvisited cells

that contain v to the frontier S
17 if δ(a, v) ≤ δ(A, v)− 1 then
18 Remove v from all the cells that contain it

19 N ← N ∪ {v}

20 A← A ∪ {a}
21 return C ∪ {N}

at every step 2 ≤ s ≤ i, that for each edge (u, v) ∈ E there is a cell with its center in As

that contains both u and v. We then prove that if we create a new cell N , centered at the

(i+ 1)-th center a ∈ Ai+1, the union of the new cells still covers all the edges in E.

Consider an edge (e1, e2) ∈ E. Let x be the last center among the first i+1 centers such that

x = argmina∈Ai+1
{min(δ(a, e1), δ(a, e2))}. In other words, x is the last center that is closest

to either endpoint of the edge (e1, e2). If δ(x, e1) ̸= δ(x, e2), we denote the endpoint that is

closer to x as v, and denote the other endpoint as u. Otherwise, we denote the endpoints

arbitrarily as u and v. So, we have min(δ(x, e1), δ(x, e2)) = δ(x, v) = δ(Ai+1, v) ≤ δ(Ai+1, u).

We prove that both u and v belong to the cell centered at x, after the (i+ 1)-th iteration.
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First, we prove that we add both v and u to the cell at x. Let (s1, s2, . . . , sm) denote the

ordered vertices on a shortest path from x to v, where s1 = x and sm = v. Using the

inductive hypothesis for each 2 ≤ j ≤ m, there exists a cell that contains both sj−1 and sj

right before adding center x. Now, consider the smallest j such that sj is not added to the

cell at x during the loop at line 14. Since sj−1 is added to the cell at x, and since sj−1 and

sj are connected, then by the inductive hypothesis there is a cell C that contains both sj−1

and sj. Therefore, when we add sj−1 to the cell at x, we add C to the set of cells that we

should explore in expanding the cell centered at x (see line 16). On the other hand, since

sj is on the shortest path from x to v and δ(x, v) = δ(Ai+1, v), then δ(x, sj) = δ(Ai+1, sj).

Therefore, sj will be added to the cell at x when exploring cell C. Using this inductive

approach, all vertices on the shortest path from x to v will be added to the cell at x. Finally,

since δ(x, u) ≤ δ(x, v) + 1 = δ(Ai+1, v) + 1 ≤ δ(Ai+1, u) + 1, and since u and v also have a

common cell, we add u to the cell at x.

Next, we prove that if we add v and u to the cell centered at x, no other cells that we create

later on in the first (i+1)-th steps removes v or u from the cell at x. Note that for removing

a node from cell x, the condition at line 17 must hold. Since δ(x, v) = δ(Ai+1, v), there will

be no center b among the first (i + 1) centers such that δ(b, v) ≤ δ(Ai+1, v) − 1, meaning

that v will stay in cell at x. On the other hand, we remove u from x only if for a center b:

δ(b, u) ≤ δ(x, u) − 1. If δ(b, u) ≤ δ(x, u) − 1, and given the fact that δ(x, u) ≤ δ(x, v) + 1

and δ(x, v) ≤ δ(x, u), then δ(b, u) ≤ δ(x, v) ≤ δ(x, u). However, we assumed that x is the

last center, among the first i + 1 centers, that is closest to either of the endpoints u and v.

Therefore, u will also stay in the cell at x.

Theorem 2.4.2. The expected query complexity of reconstruct(V ) is O(d2maxn log n),

where dmax is the maximum cell degree over all steps.
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Proof. We use a backwards analysis [99] to derive an expression for the expected query

complexity of the algorithm. We assume i centers have already been added, and analyze the

expected number of queries we issue at step i.

We observe that our algorithm only issues distance queries for cells in the set S. Moreover,

the only cells we add to S are the ones that contain vertices that get added to the ith cell.

This means that all cells in S will become neighbors of the ith cell at the end of step i. So

the number of distance queries issued at step i is the sum of the sizes of each cell that gets

added to S, which is at most the sum of the sizes of the ith cell and its neighbors at the end

of step i. Denoting the set of cells at the end of step i as Ci, and the set of cells neighboring

any cell C as N(C), we have that the expected number of queries issued at the ith step is

≤
∑
C∈Ci

1

i
(|C|+

∑
C′∈N(C)

|C ′|)

=
∑
C∈Ci

(d(C) + 1)|C|
i

,

by observing that each cell size |C| is summed d(C)+1 times, where d(C) denotes the degree

of cell C, i.e. the number of neighboring cells it has. To bound this summation, we express

each cell size as the sum of boundary and non-boundary vertices. We have

∑
C∈Ci

(d(C) + 1)|C|
i

=
∑
C∈Ci

(d(C) + 1)(|C|NB + |C|B)
i

≤(dmax + 1)

i

(
(
∑
C∈Ci

|C|NB) + (
∑
C∈Ci

|C|B)

)

where dmax is the maximum degree of any cell during any step, | · |B denotes the number

of boundary vertices, and | · |NB denotes the number of non-boundary vertices. We use the

fact that
∑

C∈Ci |C|NB ≤ n, and observe that
∑

C∈Ci |C|B ≤ (dmax + 1) · n as each boundary

vertex can belong to at most dmax + 1 cells, and thus can only be counted that many times
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at most in the summation. So, we have

(dmax + 1)

i

(
(
∑
C∈Ci

|C|NB) + (
∑
C∈Ci

|C|B)

)
<

n(dmax + 2)2

i
.

The expected number of queries when all steps are considered is

<

#steps∑
i=1

n(dmax + 2)2

i
= n(dmax + 2)2

#steps∑
i=1

1

i
,

which is O(d2maxn log n). To finish our analysis, we also need to consider the number of

queries issued during the exhaustive searches in each cell. Since the total number of cells is

O(n), and each cell is of size at most a constant g, the exhaustive querying part has query

complexity O(n).

2.5 Experimental results

2.5.1 Implementation and Datasets

We implemented our algorithm in C++, and simulated the distance query oracle by per-

forming BFS in each iteration to compute distances between nodes while keeping track of

how many distance queries would be necessary to find these distances. We selected the value

of g to be 50. We include experimental results for road networks from 50 U.S. states and

Washington, D.C. obtained from the formatted TIGER/Line dataset available from the 9th

DIMACS Implementation Challenge website1 and road networks from Belgium, the U.K.

(limited to the road network of Great Britain), Italy, Luxembourg, and the Netherlands

obtained from formatted OpenStreetMaps data available from the 10th DIMACS Imple-

mentation Challenge [17]. For all of the datasets, only the largest connected component is

1http://www.diag.uniroma1.it/~challenge9/data/tiger/
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considered. In Section 2.6, we discuss how the upper bounds derived from these experiments

compare to our theoretical upper bound.

2.5.2 Batch Length

We define the batch length of a step to be the number of distance queries issued at that step.

To find the relation between batch length and the step number, based on the theoretical

upper bound we derived in Section 2.4, we fit the function Batch-Length(step) = a+b n
step

to the data points in our results, where a and b are the fitting parameters. Data points for

the batch lengths of some of our datasets are provided in Figure 2.1. We list our results for

all of the datasets in Table 2.1, which includes the best-fit parameters in columns a and b,

and the maximum number of cells visited at any step in column M .

We can see that parameter b does not exceed 2, and that parameter a is close to 0 for all of

the datasets. This suggests that a constant or logarithmic factor of n
step

could be an upper

bound for the batch size at any step, which leads us to predict an upper bound of log n · n
step

which we show in Figure 2.1. We report the percentage of steps that fall below this upper

bound for each dataset in Table 2.1, column U .

2.5.3 Maximum Cell Degree

To combine our experimental results with our theoretical upper bound, we collected data

on the maximum cell degree at each step. We combine the step-wise data in each dataset

using different measures: mean, max, and the 1st, 2nd and 3rd quartiles to see how the

data is spread. Then for each dataset, we represent the value corresponding to each measure

as a point. Based on our intuition, we fit the function a log n + b for each measure. We

list our results in Figure 2.2, which includes the best-fit parameters for each measure. We
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Figure 2.1: Batch lengths for select datasets of varying sizes.
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Table 2.1: Batch length results for all datasets. Columns a, b and U were rounded to 4, 2
and 2 decimal places respectively.
a, b: best-fit parameters for Batch-Length(step#) = a+ b n

step#

U: percentage of batch lengths that are below the upper bound of n
step#

log n

Dataset n a b U
AK 48 560 0.0036 1.69 96%
AL 561 459 0.0005 1.91 98%
AR 478 024 0.0005 1.85 98%
AZ 533 008 0.0005 1.95 95%
CA 1 595 577 0.0002 1.89 96%
CO 436 084 0.0006 1.91 96%
CT 152 036 0.0019 1.75 94%
DC 9522 0.0321 1.89 70%
DE 48 812 0.0053 1.77 91%
FL 1 036 647 0.0003 1.86 97%
GA 731 954 0.0004 1.97 97%
HI 21 774 0.0086 1.88 90%
IA 388 487 0.0008 1.92 93%
ID 265 552 0.0010 1.81 97%
IL 790 439 0.0004 1.89 96%
IN 495 581 0.0007 1.88 94%
KS 471 066 0.0007 1.87 93%
KY 463 542 0.0006 1.90 98%
LA 408 161 0.0006 1.84 97%
MA 294 345 0.0009 1.98 95%
MD 264 378 0.0010 1.86 95%
ME 187 315 0.0013 1.81 99%
MI 661 718 0.0005 1.74 95%
MN 541 166 0.0006 1.76 95%
MO 668 322 0.0004 1.89 97%
MS 409 994 0.0007 1.93 98%
MT 300 809 0.0007 1.80 98%
NC 876 954 0.0003 1.72 99%

Dataset n a b U
ND 203 583 0.0015 1.76 92%
NE 304 335 0.0011 1.99 93%
NH 115 055 0.0023 1.91 97%
NJ 329 404 0.0010 1.90 94%
NM 456 896 0.0006 1.88 97%
NV 253 012 0.0009 1.85 94%
NY 708 520 0.0004 1.76 97%
OH 672 527 0.0005 1.93 95%
OK 535 032 0.0006 1.87 96%
OR 529 702 0.0005 1.90 98%
PA 866 352 0.0004 1.83 97%
RI 51 642 0.0047 1.88 92%
SC 460 763 0.0005 1.81 97%
SD 206 998 0.0014 1.85 94%
TN 578 981 0.0004 1.70 98%
TX 2 037 156 0.0001 1.97 97%
UT 242 432 0.0010 1.95 96%
VA 620 680 0.0004 1.92 98%
VT 95 672 0.0022 1.95 98%
WA 560 336 0.0005 1.69 97%
WI 514 687 0.0006 1.89 96%
WV 292 557 0.0006 1.89 99%
WY 243 545 0.0010 1.92 97%
BE 1 441 295 0.0002 2.00 99%
GB 7 733 822 0 1.81 100%
IT 6 686 493 0 1.81 100%
LU 114 599 0.0019 1.96 99%
NL 2 216 688 0.0001 1.86 99%

can see that a < 2, and b is a small constant for each measure. The datasets with the

largest maximum cell degrees turned out to be VA, NV and OH, with values of 43, 43 and

42 respectively. It is clear from the figure that a small constant multiple of log n would be

enough to produce an upper bound that covers all of the data points, suggesting that the

maximum cell degree might have an upper bound of O(log n).
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(a) Best-fit lines for the function a+ b log n.

Measure a b
mean -2.34 1.48

1st quartile -4.52 1.48
2nd quartile -1.49 1.47
3rd quartile -0.2 1.53

max 4.4 1.50

(b) Parameters for best-fit lines. Columns a and
b were rounded to 2 decimal places.

Figure 2.2: Results from combining step-wise maximum cell degrees.

Road Networks with Subdivided Edges.

We provide experimental results in Table 2.2 for the maximum cell degrees of the weighted

road networks of the District of Columbia and the state of Hawaii, which we transform into

unweighted graphs by replacing each edge e with ⌈w(e)⌉ edges, where w(e) is the weight of e.

The size of each road network increased by factors of approximately 192 and 167 respectively,

while the maximum cell degree values ended up decreasing for both road networks. This

indicates that our algorithm can also perform efficiently on weighted road networks.

Table 2.2: Maximum cell degrees for weighted road networks compared to their unweighted
versions.

Unweighted Weighted
|V | dmax |V | dmax

DC 9522 23 1 826 049 12
HI 21 774 26 3 643 818 11
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Figure 2.3: Number of queries issued by our algorithm compared to [87].

2.5.4 Comparisons with Existing Algorithms

We directly compare the number of queries issued by our algorithm to the algorithm intro-

duced in [87], which takes as input a parameter s that affects the query complexity. The

authors prove their query complexity bounds for ∆-regular graphs and bounded graphs with

the value of s being set to log2 n and n2/3 respectively. We use these values for s in our ex-

periments, and we also try setting s to be the geometric mean of these values. We summarize

the results of our experiments on road networks in Figure 2.3.

We then compare our results to the number of queries issued by the algorithm in [72]. With-

out performing any experiments, it can be observed that this algorithm will issue significantly

more queries than our algorithm: the first iteration of Estimated-Centers (Algorithm 2

in [72]) will issue at least Ω(n ·∆
√
n · log n · log log n) distance queries.
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2.6 Comparison of Theoretical/Experimental Results

and Future Work

The theoretical upper bound we derived in Section 2.4 contains a d2max term, which can be

O(n2) in the worst case. However, our experiments show that the maximum cell degree is

actually low for road networks throughout the algorithm. From our results in Section 2.5.3,

we can see that O(log n) would be a suitable upper bound for dmax. In this case, the expected

query complexity of our algorithm would be O(n log3 n). The experimental results for batch

length support this observation, as the upper bound for the batch length at any step number

amounted to be n logn
step#

, from which we get an expected query complexity of O(n polylog(n))

as well. Future work might involve trying to find if there exists a better theoretical upper

bound on the query complexity of our algorithm. This might require making some additional

simplifying assumptions about the graphs being used as input.

We would like to point out a connection between our results and the graph-theoretical

Delaunay triangulation of road networks.

2.6.1 Delaunay Triangulations and dmax

We can consider the cells (resp. covers) that are constructed during our algorithm as a redef-

inition of graph-theoretical Voronoi cells (resp. diagrams) (e.g., see [45]). Similarly, we can

consider the dual graph connecting neighboring cells in the cover as being a form of a graph-

theoretical Delaunay triangulation of G. There exists prior work on bounding the expected

maximum degree of the Delaunay triangulation of a set of points selected randomly from

the Euclidean plane. In [24], the authors consider the Delaunay triangulation of a Poisson

point process limited to the portion of the triangulation within a cube of d dimensions. They

show that the expected maximum degree of this triangulation is Θ(log n/ log log n). Having
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such a bound for the expected maximum degree for our redefinition of the graph-theoretical

Delaunay triangulation might allow us to prove a theoretical quasilinear bound for the query

complexity of our algorithm, so another interesting direction for future work can be to adapt

this result for random point sets in Euclidean d-space to our setting, where the point set is

selected randomly from the vertex set of a road network.

2.7 Conclusions

We introduced an efficient exact reconstruction algorithm for road networks and showed

through experiments on several real-world road networks that our algorithm has an expected

empirical query complexity that is quasilinear. As mentioned in Section 2.6, an important

direction for future work can be to derive a theoretical upper bound for our algorithm that

matches our experimental results.
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2.8 Batch Length Results for All Datasets
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Chapter 3

The Small-World Phenomenon in

Road Networks

3.1 Introduction

The small-world phenomenon is the idea that all people are connected through a short chain

of acquaintances that can be used to route messages. This phenomenon was popularized

by the social-psychologist, Stanley Milgram, based on two experiments performed in the

1960s [88, 107], where a randomly-chosen group of people were given packages to send to

someone in Massachusetts. Each participant was told that they should mail their package

only to its target person if they knew them on a first-name basis; otherwise, they should

mail their package to someone they knew who is more likely to know the target person.

Remarkably, many packages made it to the target people, with the median number of hops

being 6, which gave rise to the expression that everyone is separated by just “six degrees of

separation” [70].
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Subsequent to this pioneering research, many papers have been written on the small-world

phenomenon, e.g., see [41], with a number of models having been proposed to explain it.

Nevertheless, based on our review of the literature, the models proposed so far do not fully

explain observations made by Milgram regarding his experiments [88, 107]. For example,

Milgram observed that message routing occurred in a geographic setting with distances

(measured in miles, presumably in the road network of the United States) roughly halving

with each hop; see Figure 3.1.

Figure 3.1: Illustration of geographic data from an original small-world experiment,
from [88].

In spite of the geographic nature of the early small-world experiments,1 we are not famil-

iar with any previous work that models the small-world phenomenon with road networks.

Thus, we are interested in this chapter in modeling the small-world phenomenon with road

networks. For example, one of the surprising results in the original small-world experiments

was that people were able to find very short paths among acquaintances with only a limited

knowledge of the social network of acquaintances. This suggests that a model should explain

how people can find short paths in a social network using a decentralized greedy algorithm,

where individuals, who only have knowledge of their direct acquaintances, attempt to send

a message towards a target along some path.

1The first experiment involved a group of people in Wichita, Kanasas who were asked to send a package
to the wife of a divinity student in Cambridge, and the second experiment involved a group of people in
Omaha, Nebraska (plus a small number of folks in Boston) who were asked to send a package to a stock
broker who worked in Boston and lived in Sharon, Mass [88].
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3.1.1 Related Prior Work

Arguably, the closest prior work on a model directed at explaining how small-world (social-

network) greedy routing can work in a geographic setting is a well-known model by Jon

Kleinberg [79]. Rather than using a road network, however, Kleinberg’s model is built on a

two dimensional n× n grid, where each grid point corresponds to a single person, with two

types of connections—local connections and long-range connections. The local connections

of the network are made by connecting each grid point to every other grid point within

lattice distance p ≥ 1. The long-range connections are made by connecting each grid point

to q ≥ 0 other grid points chosen randomly (typically with q = 1 or q being a small constant),

such that the probability that grid point u is connected to grid point v is proportional to

[dh(u, v)]
−s, where dh(u, v) is the lattice distance between u and v, and s is the clustering

exponent of the network. Kleinberg showed that in an n × n grid, a decentralized greedy

algorithm, where each message holder forwards its message to an acquaintance that is closest

to the target grid point, is able to achieve an expected path length of O(log2 n) for p = q = 1

and s = 2, with a constant of at least 88 in the leading term in his Big-O analysis [79].

When attempting to model the original small-world experiments, however, there are a num-

ber of drawbacks with the Kleinberg model. First, it requires that the underlying distances

are in the form of a grid, which is not compatible with how messages were sent in the original

small-world experiments, where messages were sent using the U.S. road network. Second,

the upper bound O(log2 n), with a hidden constant that is at least 88, for the expected

number of hops between vertices does not match the average hop length of six obtained in

the original small-world experiments. For example, if n =9,000, then 88 log2 n is approxi-

mately 15,000. Finally, as we show in Section 3.6, when acquaintanceship links are viewed as

bidirectional, the maximum degree in the resulting network for the Kleinberg model is quite

small. Having a degree distribution with a heavier tail might be more realistic for a social

network. Moreover, these high-degree vertices might improve the performance of the model
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during the routing step. Indeed, Milgram noted that in one of his experiments half of the

successfully delivered packages were routed through three “key” individuals; see Figure 3.2.

Figure 3.2: Final hops for the paths of delivered packages for people in an original small-
world experiment, from [88]. Roughly half of the paths were routed through three “key”
individuals, Jacobs, Jones, and Brown.

Another well-known social-network model is the preferential attachment model, which is a

random graph model for non-geographic social networks, such as the World Wide Web. This

model traces its roots back roughly 100 years, e.g., see [120, 37, 101], and was popularized and

formalized by Barabási and Albert [18], who also coined the term scale-free, which describes

networks where the fraction of vertices with degree d follows a power law, d−α, where α > 1.

A graph in the preferential attachment model is constructed incrementally, starting from a

constant-sized “seed” graph, adding vertices one-at-a-time, such that when a vertex, v, is
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added one adds a fixed number, m, of edges incident to v, where each other neighbor is

chosen with probability proportional to its degree at that time, e.g., see [20]. This is often

called a “rich-get-richer” process, and a rigorous analysis on the degree distribution and

diameter of this model was studied by Bollabas and Riordan [26]. Further, Dommers, Hofstad

and Hooghiemstra [40] investigated the diameters of several variations of the preferential

attachment model, proving that, for each variant, when the power law exponent exceeds

3, the diameter is Ω(log n), and when the power law exponent is in (2, 3), the diameter is

Ω(log log n).

To our knowledge, there does not exist any prior work combining a preferential attachment

model with Kleinberg’s model. In terms of the most relevant prior work, Flaxman, Frieze,

and Vera [49] introduce a random graph model that combines preferential attachment graphs

with geometric random graphs, with points created randomly on a unit sphere one-at-a-time,

such that for each added vertex,m neighbors that are within a fixed distance, r, of that vertex

are chosen with probability proportional to their degrees. Flaxman, Friex, and Vera show

that with high probability the vertex degrees in this model follow a power law assuming r is

sufficiently large, and they prove that the diameter of this graph model is O(lnn/r) w.h.p.,

but they do not study its ability to support efficient greedy routing. Indeed, when r ≥ π/2,

this model is just the preferential attachment model.

3.1.2 Additional Prior Work

Ever since being popularized by Milgram’s experiments and the subsequent work by other

researchers on complex networks, the small-world phenomenon has found applications in

a wide array of research fields, including rumor spreading, epidemics, electronic circuits,

wireless networks, the World Wide Web, network neuroscience, and biological networks. For

an overview of the small-world phenomenon and its applications, the reader can refer to [114].
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Incidentally, and not surprisingly, there has been a significant amount of additional prior

work that analyzes the small-world phenomenon on different types of social network models,

e.g., see [83, 102, 81]). Liben-Nowell, Novak, Kumar, Raghavan, and Tomkins [83] introduce

a geographic social network model, which uses rank-based friendships, where the probability

of assigning long-range connections from any person u to person v is inversely proportional

to the number of people in the network who are geographically closer to u than v. The

social network is modeled based on a 2D grid representation of the surface of earth, where

each grid point has a positive population value, and has local connections to its immediate

neighbors on the grid. Each grid point is then connected to a fifth neighbor based on their

rank. Liben-Nowell et al. prove an upper bound of O(log3 n) for the expected hop length

of paths formed by this model, which, of course, is worse than the expected O(log2 n) hop

lengths in Kleinberg’s model.

Kleinberg’s model and its extensions have also been studied extensively. Martel and Nguyen [86]

proved the expected diameter of the resulting graph is Ω(log n), but that a greedy routing

strategy cannot find such short paths, as they show that Kleinberg’s O(log2) analysis for

greedy routing is tight. They extend Kleinberg’s model by assuming each vertex has some

additional (unrealistic) knowledge of the network. For example, they show that when each

node u knows the long-range contacts of the log n nodes closest to u in the grid, the expected

number of hops is O(log3/2 n). Fraigniaud, Gavoille and Paul [50] provide a similar extension,

and they prove a bound of O(log1+1/d n)) expected hops in the general d−dimensional mesh,

and show that this bound is tight for a variety of greedy algorithms, including those that

have global knowledge of the network.
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3.1.3 Our Contributions

In this chapter, we study the small-world phenomenon with road networks, which is mo-

tivated by the fact that, as mentioned above, the network of connections in the original

small-world experiments were as much geographic as they were social [88, 107]. We in-

troduce a new small-world model, which we call the Neighborhood Preferential Attachment

model, which blends elements from the preferential attachment model of Barabási and Al-

bert [18] and Kleinberg’s model [79], but with underlying distances defined by a road network

rather than a square grid.

In a nutshell, our model generates a random social network starting from a road network. We

add the vertices to our model one-at-a-time at random from the vertices of the underlying

road network (whose vertices stand in as the participants in our social network). When we

add a new vertex, v, to our model, we create a fixed contant number, m ≥ 1, of additional

edges from v to existing vertices, with each other neighbor, w, chosen with a probability

proportional to the ratio of the current degree of w (counting just the added edges) and

d(v, w)2, where d(v, w) is the distance from v to w in the road network.

By using the constant, m, as parameter, we guarantee that the average degree in the network

is a constant, which matches another observation made by Milgram for his experiments [88].

Interestingly, researchers have observed that an upper bound of O(log n) on the expected hop

length in Kleinberg’s model can be achieved by having an unrealistic O(log n) outgoing links

for every vertex instead of a small constant, e.g., see [86]. Thus, our model tests whether

short paths can be found using greedy routing in a social network with constant average

degree, but with a few vertices having degrees higher than this, as was the case for the few

“key” individuals, Jacobs, Jones, and Brown, in an original small-world experiment [88].

One of the main goals in our design of the Neighborhood Preferential Attachment model

is to introduce a model that brings the average hop length for greedy routing closer to
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the six degrees-of-separation found in the original small-world experiments, while keeping

the average degree of the network bounded by a constant. To test this, we experimentally

evaluate instances of our model using road networks for various U.S. states. We empirically

compare the performance of greedy routing in our model to the performance for a variant

of Kleinberg’s model, where links are chosen with probability proportional to the inverse

squared road-network distances of vertices (rather than a grid), as well as with the well-

known Barabási-Albert preferential-attachment model. Interestingly, our experiments show

that the Neighborhood Preferential Attachment model outperforms both the Barabási-Albert

preferential-attachment model and the road-network variant of Kleinberg’s model. Moreover,

our experimental results show that our model has a scale-free degree distribution, which is

arguably a better representation of real-world social networks than Kleinberg’s model while

also being geographic, unlike the preferential-attachment model of Barabási and Albert.

3.2 Preliminaries

We view road networks as undirected, weighted, and connected graphs, where each vertex

corresponds to a road junction or terminus, and each edge corresponds to road segments

that connect two vertices. In our social network model, each junction or terminus in a road

network represents a single person, and each road segment represents a social connection

between two people, which we consider to be the local connections of the network. Intuitively,

our social network model can be seen as a mapping of each person in the population to

the road network vertex that is geographically closest to their address. Likewise, an edge

(u, v) in the road network represents the existence of social connections between people

who were mapped to vertices u and v. This is admittedly an approximation for a population

distribution, but we feel it is reasonable for most geographic regions, since population density
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correlates with road-network density, e.g., see [30, 19, 71]. Certainly, it is is more realistic

than modeling population density using a uniform n× n grid, as in Kleinberg’s model [79].

The distance between two vertices u, v ∈ V is denoted as d(u, v) and is the total weight

of the shortest path between u and v in the underlying road network. The hop distance

between two vertices is denoted as dh(u, v) and is the minimum number of hops required

to reach v from u, without considering edge weights and including both road-network edges

and additional edges added during model formation. In all of the social network models

we mention in this chapter, we assume all edges are undirected for the sake of distance

computations, which reflects the notion that friendships are bidirectional.

We define degG(v) to be the degree of v in a graph, G = (V,E), that is, the number of v’s

adjacent vertices in G. If G is understood from context, then we may drop the subscript.

3.3 The Road-Network Kleinberg Model

In this section, we introduce a variant of Kleinberg’s small-world model adapted so that it

works with weighted road networks rather than n×n grids. We denote this model throughout

this chapter as the KL model. Interestingly, as we show in our empirical analysis, although

this model is not as effective for performing greedy routing as our Neighborhood Preferential

Attachment model, it nevertheless is much more efficient in practice than the theoretical

analysis of Kleinberg [79] that is based on using n× n grids would predict.

As mentioned above, Kleinberg’s network model begins by defining a set of vertices as the

lattice points in an n × n grid, i.e., {(i, j) | i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . n}}, so that

the distance between any two vertices u = (i, j) and v = (k, l) is the Manhattan distance,

d(u, v) = |k − i| + |l − j|. Each vertex, u, has an edge to every vertex within distance

p ≥ 1, called the local contacts (typically, we just take p = 1, so these are just grid-neighbor
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connections), and each vertex has edges to m ≥ 1 other vertices selected at random, called

the long-range contacts, such that the probability that there exists an edge from u to v is

d(u, v)−s/z, where s ≥ 0 is called the clustering exponent and z is a normalizing factor that

ensures we have a probability distribution. Then, a decentralized greedy algorithm is used

to route messages between a source and target vertex as follows: at each step, the current

message holder forwards its message to a contact that has the smallest Manhattan distance

to the target vertex.

We now adapt this model to the KL model that works on weighted road networks. We

start with the set of vertices and edges of a road network, where each edge corresponds to

a local connection. Then, for each vertex, u, we add m ≥ 1 long-range edges randomly,

where the probability that there exists a long-range connection between u and a vertex,

v, is d(u, v)−s/z, where d(u, v) is the road-network distance between u and v (in miles or

kilometers), s ≥ 0 is the clustering exponent, and z is a normalizing factor that ensures we

have a probability distribution. See Algorithm 3, noting that we call it for a road network,

G = (V,E), and parameter, m ≥ 1, for the number of long-range connections to add for

each vertex.

Algorithm 3: Construct-KL(V,E, s,m)

1 E ′ ← ∅
2 for each v ∈ V do
3 P ← {1/d(v, u)s | u ∈ V, u ̸= v}
4 zv ←

∑
p∈P p

5 Normalize P by dividing each p ∈ P by zv
6 S ← sample m vertices according to their probabilities in P
7 E ′ ← E ′ ∪ {(v, w) | w ∈ S}
8 return G = (V,E ∪ E ′)

For his original model (on an n× n grid), Kleinberg [79] showed that the optimal value for

the clustering exponent s is 2, for which the decentralized greedy routing algorithm is able

to find paths of length O(log2 n) in expectation, and that for any other value of s ̸= 2, the
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greedy algorithm would only be able to find a path with length that is lower bounded by

a polynomial in |V |. Following Kleinberg, we usually select s = 2 for the weighted road-

network variant, KL, of this model, as well as for the Neighborhood Preferential Attachment

model, and we include some experiments that show the effect of varying this parameter for

the latter model on different road networks.

In the routing algorithm for the KL model, we use a weighted version of the decentralized

greedy algorithm, such that at each step, the current message holder forwards its message to

a directly adjacent contact in the social network that has the smallest road-network distance

to the target vertex (which could have easily been estimated in the 1960s using a road atlas

of the United States and which can be determined in modern times from any navigation

app, such as Google Maps, OpenStreetMap, Apple Maps, or Waze). We denote this greedy

algorithm as Weighted−Decentralized−Routing.

3.4 A Road-Network Preferential Attachment Model

In this section, we give a brief description of the preferential-attachment model; see, e.g.,

[89, 18, 40, 26]. This model is defined by an algorithm to generate random graphs whose

degree distribution follows a power law. The algorithm is based on a preferential attachment

mechanism, where vertices with larger degrees are more likely to receive new links.

The algorithm for building an instance of the preferential-attachment model starts with a

set, V , of n vertices, and an initial clique of m + 1 vertices from V .2 It then selects the

remaining vertices from V in random order, with each vertex, v, getting connected to m

existing vertices, where the probability that v connects to vertex u is proportional to u’s

degree at the time v is added. In the case of m ≥ 2, edges for a particular vertex are added

through independent trials, i.e., previous edges do not affect the degree counts when choosing

2There are other variations for the starting “seed” graph, but the results in the limit are similar [89].

44



later edges for the same vertex. The algorithm stops when it has constructed a graph with

n vertices. Note that the number of added edges is exactly nm. See Algorithm 4.

Algorithm 4: Construct-BA(V,E,m)

1 Select subset M ⊆ V of size m+ 1 by sampling vertices u.a.r.
2 E ′ ← {(u, v) | u, v ∈M,u ̸= v}
3 for each v ∈ V \M in random order do
4 P ← {degG′(u) | u ∈ V, u ̸= v}, where G′ = (V,E ′)
5 zv ←

∑
p∈P p

6 Normalize P by dividing each p ∈ P by zv
7 S ← sample m vertices according to their probabilities in P
8 E ′ ← E ′ ∪ {(v, w) | w ∈ S}
9 return G = (V,E ∪ E ′)

Although the preferential attachment model is defined as a non-geographic model, if the

vertices in the model have geographic coordinates, such as determined in a road network, we

can nevertheless apply the same distributed greedy routing algorithm as for the KL model.

Specifically, if we take the set of candidate vertices in the preferential attachment model to be

vertices in a road network and we union the edges of the final preferential attachment model

with the edges of the road network for the corresponding vertices (as shown in Algorithm 4),

then we can construct an instance of a preferential-attachment graph embedded in a road

network. This allows each participant to forward their message to a direct contact (including

both added edges and road-network edges) that is closest to the target (using road-network

distance). Indeed, for our experiments, this is what we refer to as the BA model.

3.5 The Neighborhood Preferential Attachment Model

We now introduce our Neighborhood Preferential Attachment (NPA) model. We start with

the same set of local connections as for the road-network Kleinberg model, KL, except now

we distribute long-range connections according to a combination of vertex degrees and road-

network distances between vertices. Thus, our model combines elements of the KL and BA
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models. Surprisingly, as we show below, rather than achieving a performance somewhere

between the KL and BA models, our NPA model outperforms both the KL model and BA

model.

To generate the network of long-range connections, we consider the vertices in random order,

adding new (long-range) edges, based on degrees, distances, and an input parameter, m ≥ 1.

Let G = (V,E) be a road network of n vertices. We begin by selecting a subset, M ⊆ V ,

of m + 1 vertices from G and we add all possible edges between them, so that every initial

vertex has an initial degree equal to m. That is, we start by forming a clique of size m + 1

of randomly chosen vertices from V . We then repeatedly randomly consider the remaining

vertices from V , until we have considered all the vertices from V . When we process a vertex,

v, we connect v tom other vertices, where the probability that there is an edge between a new

vertex v and another vertex u is proportional to the ratio deg(u)
d(v,u)s

, normalized by normalizing

factor,

zv =
∑
w ̸=v

deg(w)

d(v, w)s
,

for v, such that deg(v) is the degree of vertex v considering only added edges and d(v, u)

is road-network distance. Typically, we choose s = 2. When m ≥ 2, edges for a particular

vertex are added through independent trials. See Algorithm 5 and Figure 3.3.

Algorithm 5: Construct-NPA(V,E, s,m)

1 Select subset M ⊆ V of size m+ 1 by sampling vertices u.a.r.
2 E ′ ← {(u, v) | u, v ∈M,u ̸= v}
3 foreach v ∈ V \M in random order do
4 P ← {degG′(u)/d(v, u)s | u ∈ V, u ̸= v}, where G′ = (V,E ′)
5 zv ←

∑
p∈P p

6 Normalize P by dividing each p ∈ P by zv
7 S ← sample m vertices according to their probabilities in P
8 E ′ ← E ′ ∪ {(v, w) | w ∈ S}
9 return G = (V,E ∪ E ′)
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Figure 3.3: How edges are chosen in the Neighborhood Preferential Attachment model,
illustrated with the road network of San Francisco, Berkeley, and Oakland. When vertex v
is added, the ratio for the probability for a is 2/16(= 0.125), the ratio for the probability
for b is 2/144(= 0.014), the ratio for the probability for c is 4/144(= 0.028). Thus, even
though b and c are the same distance from v, c is twice as likely as b to be chosen, and a
is 4.5 times more likely to be chosen than c, because c’s degree of 4 is twice that of b or a,
but a’s squared distance is 9 times smaller than that of b and c. (Background image is from
OpenStreetMap and is licensed under the Open Data Commons Open Database License
(ODbL) by the OpenStreetMap Foundation (OSMF).)

Once the model-construction is finished, we add the local road-network connections back in.

Since we add m edges for each vertex in the network, and since road networks themselves

have a constant maximum degree, the average degree for our network model is a constant

when m is a constant. We refer to this as the NPA model. For the routing phase, we run

the same decentralized greedy routing algorithm for the NPA model as for the KL and BA

models.

47



3.6 Experimental Analysis

Intuitively, the BA model tries to capture how popularity is often distributed according to

a power law, with the “rich getting richer” as more people are added to a group, but it

completely ignores geography in forming friendship connections. That is, in the BA model,

if there is a popular person, u, in New York and an equally popular person, w, in Los Angeles,

a newly-added person, v, in San Diego is just as likely to form a long-range connection to u

as to w.

The KL model, on the other hand, tries to capture how friendship is correlated with geo-

graphic distance, but it completely ignores popularity. That is, in the KL model, if there is

a popular person, u, in Hollywood and an unpopular person, w, who is also in Hollywood,

a newly-added person, v, in San Diego is just as likely to form a long-range connection to u

as to w.

In contrast to both of these extremes, as illustrated above in Figure 3.3, our NPA model

tries to capture how friendship is correlated with both popularity and geographic distance.

That is, in the NPA model, if there is a popular person, u, in New York and an equally

popular person, w, in Los Angeles, a newly-added person, v, in San Diego is more likely to

form a long-range connection to w than to u. Furthermore, if there is a popular person, u,

in Hollywood and an unpopular person, w, who is also in Hollywood, a newly-added person,

v, in San Diego is more likely to form a long-range connection to u than to w.

Intuition aside, however, we are interested in this chapter in determining how effective the

BA, KL, and NPA models are at greedy routing. For example, which of these models is the

best at greedy routing and can any of them achieve the six-degrees-of-separation phenomenon

shown in the original small-world experiments [88, 107]?
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3.6.1 Experimental Framework

To answer the above question, we implemented the BA, KL and NPA models in C++

(using an open-source routing library [38] to find shortest paths), randomly sampled 1000

source/target pairs, then ran Weighted−Decentralized−Routing on each pair and measured

the average hop length. The datasets we used are road networks for 50 U.S. states and

Washington, D.C., obtained from the formatted TIGER/Line dataset available from the

9th DIMACS Implementation Challenge website.3 For each road network, only the largest

connected component was considered. The sizes of the road networks we used range from

9,522 to 2,037,156 vertices. As a preprocessing step, we normalized edge weights so that the

smallest edge weight is 1.

3.6.2 Hop Counts with Few Long-Range Links

The first set of experiments that we performed was to test the effectiveness of each of the

three models on each road-network data set assuming that we add only a small number

of long-range links. In particular, we tested each model for the cases when m = 1, 2, 3, 4.

We show the results of these experiments in Figure 3.4, which show that the NPA model

outperforms both the KL and BA models for each of these small values for m. For example,

even for m = 1, the number of hops for the NPA model tends to be half the numbers for the

BA and KL models. Once m ≥ 2, the KL model shows improved performance over the BA

model, with the KL model achieving degrees-of-separation values that are roughly half those

for the BA model. Nevertheless, for m ≥ 2, the NPA model still beats the KL model, with

hop-counts that are between a third and a half better than the KL model. Further, as would

be expected, all the models tend to do better as we increase the value of m. For example,

when m = 1, the NPA model achieves a degrees-of-separation value of between 40 and 60,

3http://www.diag.uniroma1.it/~challenge9/data/tiger/
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whereas when we increase m to just 4, the NPA model achieves a degrees-of-separation value

of between 10 and 20. Admittedly, this still isn’t 6, but it is getting closer, and it shows

what can be achieved with just a few added long-range links.
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Figure 3.4: Average hop lengths over 1000 runs of Weighted−Decentralized−Routing for 50
U.S. states and Washington, DC.

3.6.3 Dropouts

There is another aspect of the original small-world experiments, which (like most prior re-

search on the small-world phenomenon) we have heretofore ignored. Namely, as participants

perform greedy routing in the real world there is a probably that someone will simply drop

out of the experiment and not forward the package to anyone. For example, in one of the

original small-world experiments [107], Travers and Milgram observed a dropout probability
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of roughly p = 0.2 at each step in a routing operation. That is, in the original small-world

experiment, it was observed that some amount of messages never ended up reaching the

target person, e.g., due to recipients refusing to participate or not having anyone to forward

the message to. The longer a source-to-target path gets, the more likely it is that at least one

person will drop the message, so we expect that the average path length would decrease as

the probability of dropping messages increases. To see whether this could have contributed

to the small average hop length observed in the original small-world experiment, we ran a

variant of Weighted−Decentralized−Routing on the KL and NPA models, such that each

message holder has a fixed probability p of dropping the message. Our results can be seen

in Figure 3.5, for m = 4. As expected, these experiments show that the average hop counts

for successful paths decrease as we increase the dropout probability, p, but we still are not

quite achieving six degrees of separation for these values.
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Figure 3.5: Effect of varying the probability p of dropping the message at each step during
Weighted−Decentralized−Routing for the KL and NPA models, with m = 4.

3.6.4 Six Degrees of Separation

We can, in fact, achieve six degrees of separation in the NPA model, just by slightly increasing

the value of m. In particular, we provide experimental results in Figure 3.6 for the NPA

model withm = 30 with different dropout probabilities. As this result shows, even with p = 0
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(no dropouts), we can achieve 7 degrees of separation for modestly sized road networks (and

8 degrees of separation for the three largest road networks). With p = 0.2, for the majority of

road networks, we get average hop counts that match the findings in the original small-world

experiments, where the average hop length was found to be 6. For the largest road networks,

we get average hop counts that are between 6 and 7.
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Figure 3.6: Average hop length of the NPA model with m = 30 for different dropout proba-
bilities.

Intuitively, setting m = 30 is equivalent to assuming that people participating in a small-

world experiment would consult their address books when deciding who to send a package

to next and that the average number of entries in each address book is 30, which we feel is

a reasonable assumption.

3.7 Diving Deeper

We are actually interested in more than just showing that the NPA model can achive six

degrees of separation and thereby match the performance of the original small-world exper-

iments. In this section, we take a deeper dive into the models we introduce in this chapter,

with an eye towards trying to better understand what is going on during the greedy routing

done in each model.
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3.7.1 Degree Distributions

Comparing the degree distributions of the three models, which are shown in Figure 3.7, we

see that the KL model has a light-tailed distribution, whereas our model seems to be scale-

free, similar to the BA model. These results indicate that the NPA model, similar to the KL

model, is able to utilize local clustering when finding long-range contacts, while still having

the scale-free property.
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Figure 3.7: Degree distributions of the three main models with m = 4 on road networks of
different sizes.

3.7.2 How Distances to the Target Decrease

As shown above, we observe that the NPA model outperforms both of the KL and BA models

in terms of the average hop length. We also see that the KL model performs significantly

better than Kleinberg’s theoretical upper bound [79] on the grid, which was c log2 n for
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c > 88. Still, Kleinberg’s theoretical analysis was based on an interesting proof technique

that was inspired from Milgram’s figure showing how distances to the target tend to halve

with each hop, as shown above in Figure 3.1. At a high level, Kleinberg’s proof for his

O(log2 n) bound is based on finding that the probability that the distance from the current

vertex to the target is halved at any step is Θ(1/ log n); hence, this is a constant after

Θ(log n) hops, and we can reach the target by repeating this argument O(log n) times.

We provide experimental results in Figure 3.8 showing how the remaining distance to the

target changes for the NPA model over multiple runs of Weighted−Decentralized−Routing.

We see that for most runs, the distance typically gets halved every few steps, as Milgram

observed.
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Figure 3.8: Remaining distance to target, denoted as d, during 10 runs of Weighted-
Decentralized-Routing on two road networks, with m = 4. Each line corresponds to a sep-
arate run of Weighted-Decentralized-Routing, with the markers on each line corresponding
to the remaining distance at a particular step. The last data point for each run corresponds
to the penultimate step, i.e. when the message holder is one hop away from the target.
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3.7.3 Varying the Clustering Coefficient

In Figure 3.9, we see how varying the clustering coefficient affects the average hop length in

the NPA model for the HI and CA road networks. Though s = 2 is not the best-performing

clustering exponent for either road network in our experiments, the results indicate that

the best-performing clustering exponent seems to move towards 2 when the input size gets

larger, which suggests that the asymptotically optimal clustering exponent could still be

2. A similar effect could be observed in Kleinberg’s original model as well, since the lower

bounds that are proved for s ̸= 2 are Ω(n(2−s)/3) for s < 2 and Ω(n(s−2)/(s−1)) for s > 2,

both of which require input sizes that are orders of magnitude larger than real-world road

networks to be able to experimentally observe the optimality of s = 2.
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Figure 3.9: Effect of varying the clustering coefficient on the average hop length in the NPA
model for the road networks of Hawaii (|V | = 21 774) and California (|V | = 1595 577), for
m = 1.

3.7.4 Capping the Maximum Degree

We considered another variation of the NPA model, where we cap the maximum degree such

that only vertices of degree less than c are considered when choosing long-range contacts.
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We call this the NPA-cap model. We choose c = log n and c = 150 as possible maximum

degree caps. Intuitively, the cap on the maximum degree is like a cap on the size of someone’s

address book during a small-world experiment. We provide experimental results comparing

the models KL, NPA, and NPA-cap (for c = log n and c = 150), with m = 4, in Figure 3.10.
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Figure 3.10: Comparing the average hop lengths of the NPA, KL, and the NPA-cap models,
and the degree distribution of the NPA and NPA-cap models for Illinois, with m = 4.

In Figure 3.11, we compare the models NPA and NPA-cap (for c = 150), when there is a

dropout probability of p = 0.2, with m = 30.
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Figure 3.11: Comparing the average hop lengths of the NPA and NPA-cap (150) models
with a dropout probability of 0.2 and m = 30.

3.7.5 Routing Across Multiple States

The experiments we have performed so far have been limited to the road networks of indi-

vidual states. However, Milgram’s small-world experiments were performed across multiple

states. For this reason, we also performed experiments on the combined road networks of

Virginia, Washington, D.C., Maryland, Delaware, New Jersey, New York, Connecticut, and

Massachusetts.
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Figure 3.12: Degree distribution in the multi-state road network, using the NPA model with
a dropout probability of 0.2 and m = 30.
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For m = 30, we found that the average hop length was ≈ 8.06, and when we introduced

a dropout probability of p = 0.2, the average hop length was ≈ 7.15. In Figure 3.12, we

provide the resulting degree distribution of this road network when the NPA model with a

dropout of p = 0.2 was used.

3.7.6 Key Participants

We also considered the importance of key participants in performing greedy routing, as

shown in Figure 3.2, which motivated the NPA model in the first place. Having a long-tailed

degree distribution could be benefiting the routing phase, as we know that having more links

per vertex improves the asymptotic bound of Kleinberg’s model. In Figure 3.13, we compare

the degree distribution of vertices that were used during the routing phase with the degree

distribution of the whole network for both the NPA and BA models. We can see that for the

NPA model, high-degree vertices are being better utilized during an instance of the routing

algorithm compared to the BA model.
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Figure 3.13: Degree distributions in the Washington road network for vertices in the whole
network, and vertices visited during the routing phase, using the BA and NPA models with
m = 4.
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3.8 Conclusion

We introduced a new small world model, the Neighborhood Preferential Attachment model,

which combines elements of both Kleinberg’s model and the Barabási-Albert model, and

experimentally outperforms both models in terms of the average hop length. Importantly,

our model is built using real-world distances from nodes in a road network rather than

vertices in a square grid or random points on a sphere.

3.8.1 Future Work

For future work, given our experimental results, it would be interesting to perform a math-

ematical analysis of our model, e.g., to see whether our model has an asymptotic bound

on the expected hop length that is o(log2 n). Another interesting question is whether the

power law exponent of the degree distribution differs from the Barabási-Albert model in the

limit of the size of the network, or what the diameter of graphs generated by our model is.

Yet another interesting problem is whether Kleinberg’s lower bounds for the standard model

when the clustering coefficient is ̸= 2 still holds for our model.
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Chapter 4

Data Oblivious Noisy Sorting

4.1 Introduction

Given an array, A, of n distinct comparable elements, we study the problem of efficiently

sorting A subject to noisy probabilistic comparisons. In this framework, which has been

extensively studied [27, 85, 78, 54, 56, 55, 46, 91, 73, 112, 76, 82], the comparison of two

elements, x and y, results in a true result independently according to a fixed probability,

and otherwise returns the opposite (false) result. In the case of persistent errors [27, 78, 54,

56, 55], the result of a comparison of two given elements, x and y, always returns the same

result. In the case of non-persistent errors [46, 91, 73, 112, 76, 82], however, the probabilistic

determination of correctness is determined independently for each comparison, even if it is

for a pair of elements, (x, y), that were previously compared.

Motivation for sorting with comparison errors comes from multiple sources, including ap-

plied cryptography scenarios where cryptographic comparison protocols can fail with known

probabilities (see, e.g., [84, 48, 117]). In such cases, reducing the noise from comparison

errors can be computationally expensive, and the framework advanced in this chapter offers
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an alternative, possibly more efficient approach, where a higher error rate is tolerated while

still achieving the ultimate goal of sorting or near-sorting with high probability. Further,

other applications of sorting with comparison errors include ranking objects in online forums

via group A/B testing [116].

Since it is not possible to always correctly sort an array, A, subject to persistent comparison

errors, we follow the formulation of Geissmann et al. [55, 54, 56], and define the dislocation

of an element, x, in an arary, A, as the absolute value of the difference between x’s index

in A and its index in the correctly sorted permutation of A. Further, define the maximum

dislocation ofA as the maximum dislocation for the elements inA, and let the total dislocation

of A be the sum of the dislocations of the elements in A. By known lower bounds [55, 54, 56],

the best a sorting algorithm can achieve under persistent comparison errors is a maximum

dislocation of O(log n) and a total dislocation of O(n). Thus, coming close to such asymptotic

maximum and total dislocation guarantees should be the goal for a sorting algorithm in the

presence of persistent comparison errors.

Given the cryptographic applications of noisy comparisons, we desire sorting algorithms

that are data oblivious, which support privacy-preserving cryptographic protocols. A sorting

algorithm is data oblivious if its memory access pattern does not reveal any information

about the data values being sorted. Unfortunately, existing efficient algorithms for sorting

with noisy comparisons are not data oblivious. Indeed, they all make use of noisy binary

search [55], which is a data-sensitive random walk in a binary search tree, e.g., see Geissmann,

Leucci, Liu, and Penna [55], Feige, Raghavan, Peleg, and Upfal [46], and Leighton, Ma, and

Plaxton [82]. Instead, we desire efficient sorting algorithms that tolerate noisy comparisons

and avoid the use of noisy binary search, so as to be data oblivious (i.e., privacy preserving

if comparisons are done according to a data-hiding protocol).
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Related Prior Results. Problems involving probabilistic comparison errors can trace

their roots back to a classic problem by Rényi [95] of playing a two-person game where

player A poses yes/no questions to a player B who lies with a given probability; see a

survey by Pelc [92]. Notable prior results include a paper by Pippenger [93] on computing

Boolean functions with probabilistically noisy gates and work by Yao and Yao [118] on

sorting networks built from noisy comparators. There is also considerable work on searching

when the total number of faulty comparisons is bounded rather than considering probabilistic

noisy comparisons, including the work by Kenyon-Mathieu and Yao [75] and Rivest, Meyer,

Kleitman, Winklmann, and Spencer [97]. Also of note is work by Karp and Kleinberg [73],

who study binary searching for a value x ∈ [0, 1] in an array of biased coins ordered by their

biases.

Braverman and Mossel [27] introduce a persistent-error model, where comparison errors

are persistently wrong with a fixed probability, p < 1/2 − ε, and they achieve a sorting

algorithm that in our framework runs in O(n3+f(p)) time, where f(p) is some function of p,

with maximum expected dislocation O(log n) and total dislocation O(n). Klein, Penninger,

Sohler, and Woodruff [78] improve the running time to O(n2), but with O(n log n) total

dislocation w.h.p. The running time for sorting in the persistent-error model optimally with

respect to maximum and total dislocation was subsequently improved to O(n2), O(n3/2), and

ultimately to O(n log n), in a sequence of papers by Geissmann, Leucci, Liu, and Penna [55,

56, 54], all of which are not data oblivious because they make extensive use of noisy binary

searching, which amounts to a random walk in a binary search tree.

Our Results. In this chapter, we provide data-oblivious sorting algorithms that tolerate

persistent noisy comparisons. In addition, we empirically compare our algorithms to other

sorting algorithms, including the worst-case optimal algorithm, Riffle sort, by Geissmann,

Leucci, Liu, and Penna [55], which is not data oblivious, but it achieves an optimal maximum
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and total dislocation under noisy comparisons. It runs in O(n log n) time, but it makes use

of noisy binary search.

In addition to providing theoretical analysis for some of our algorithms, we empirically

study all of our algorithms by measuring the effect of changing the amount of noise and

the input size on the amount of dislocation, inversions, and number of comparisons. Our

experiments show that for all of the data-oblivious algorithms we provide in this chapter,

the maximum and total dislocations are comparable to the optimal bounds of O(log n) and

O(n) respectively for the best algorithms that are not data oblivious. Moreover, we include

experimental results for some standard sorting algorithms such as insertion sort, quick sort,

and shell sort, for which we provide emipirical evidence that all of our algorithms significantly

outperform these other algorithms in terms of the maximum and total dislocation metrics.

These results indicate that our algorithms are able to combine the properties of both having

a good tolerance to noisy comparisons while also being data-oblivious.

4.2 Window-Sort

Our first sorting algorithm is a version of window-sort [54], which will be useful as a subrou-

tine in our other algorithms. We describe the pseudo-code at a high level in Algorithm 6,

for approximately sorting an array of size n that has maximum dislocation at most d1 ≤ n

so that it will have maximum dislocation at most d2 = d1/2
k, for some integer k ≥ 1, with

high probability as a function of d2.

In addition to implementing window-sort data obliviously, we provide a new analysis of

window-sort, which allows us to apply it in new contexts. We begin this new analysis with

the following lemma, which establishes the progress made in each iteration of window-sort.
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Algorithm 6: Window-Sort(A = {a0, a1, . . . , an−1}, d1, d2)
1 for w ← 2d1, d1, d1/2, . . . , 2d2 do
2 foreach i← 0, 1, 2, . . . , n− 1 do
3 ri ← max{0, i− w}+ |{aj < ai : |j − i| ≤ w}|
4 Sort A (deterministically) by nondecreasing ri values (i.e., using ri as the

comparison key for ai)

5 return A

Lemma 4.2.1. Suppose the comparison error probability, pe, is at most 1/16. If an array,

A, has maximum dislocation at most d′ prior to an iteration of window-sort for w = 2d′

(line 1 of Algorithm 6), then after this iteration, A will have maximum dislocation at most

d′/2 with probability at least 1− n2−d′/8.

Proof. Let ai be an element in A. Let W denote the window of elements in A for which

we perform comparisons with ai in this iteration; hence, 2d′ ≤ |W | ≤ 4d′. Because A has

maximum dislocation d′, by assumption, there are no elements to the left (resp., right) of

W that are greater than ai (resp., less than ai). Thus, ai’s dislocation after this iteration

depends only on the comparisons between ai and elements in its window. Let X be a random

variable that represents ai’s dislocation after this iteration, and note that X ≤ Y , where

Y is the number of incorrect comparisons with ai performed in this iteration. Note further

that we can write Y as the sum of |W | independent indicator random variables and that

µ = E[Y ] = pe|W | ≤ d′/4. Thus, if we let R = d′/2, then R ≥ 2µ; hence, we can use a

Chernoff bound as follows:

Pr(X > d′/2) ≤ Pr(Y > d′/2) = Pr(Y > R) ≤ 2−R/4 = 2−d′/8.

Thus, with the claimed probability, the maximum dislocation for all elements of A will be

at most d′/2, by a union bound.

This implies the following.
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Theorem 4.2.2. Suppose the comparison error probability, pe, is at most 1/16. If an ar-

ray, A, of size n has maximum dislocation at most d1 ≥ log n, then executing Window-

Sort(A, d1, d2) runs in O(d1n) time. Further, we can execute Window-Sort(A, d1, d2) data-

obliviously to result in A having maximum dislocation of d2/2 with probability at least 1 −

2n2−d2/8, where d2 = d1/2
k, for some integer k ≥ 1.

Proof. For the running time and data obliviousness, note that we can perform the determin-

istic sorting step using a data-oblivious sorting algorithm (e.g., see [63]) in O(n log n) time.

The windowed comparison steps (step 3 of Algorithm 6) are already data-oblivious and their

running times form a geometric sum adding up to O(d1n); hence, the total time for all the

deterministic sorting steps (step 4 of Algorithm 6) is O((log(d1/d2))n log n), which is at most

O(d1n) for d1 ≥ log n.

For the maximum dislocation bound, note once w = 2d2 and the arrayA prior to this iteration

has maximum dislocation at most d2, then it will result in having maximum dislocation at

most d2/2 with probability at least 1− n2−d2/8, by Lemma 4.2.1. Thus, by a union bound,

the overall failure probability is at most

n
(
2−d2/8 + 2−2d2/8 + 2−4d2/8 + · · ·+ 2−d1/8

)
< n2−d2/8

∞∑
i=0

2−i = 2n2−d2/8.

In terms of efficiency, we note that our data-oblivious implementation of window-sort is only

time-efficient for small subarrays; hence, we need to do more work to design an efficient

data-oblivious sorting algorithm.
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4.3 Window-Merge-Sort

In this section, we describe a simple algorithm for sorting with noisy comparisons, which

achieves a maximum dislocation of O(log n). Our window-merge-sort method is a windowed

version of merge sort; hence, it is deterministic but not data oblivious. Nevertheless, it does

avoid using noisy binary search.

Suppose we are given an array, A, of n elements (we use n to denote the original size of A,

and N to denote the size of the subproblem we are currently working on recursively). Our

method runs in O(n log2 n) time and we give the pseudo-code for this method in Algorithm 7,

with d = c log n for a constant c ≥ 1 set in the analysis.

Algorithm 7: Window-Merge-Sort(A = {a0, a1, . . . , aN−1}, n, d)
1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)

3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Merge-Sort(A1, n, d)
5 Window-Merge-Sort(A2, n, d)
6 Let B be an initially empty output list
7 while |A1|+ |A2| > 6d do
8 Let S1 be the first min{3d, |A1|} elements of A1

9 Let S2 be the first min{3d, |A2|} elements of A2

10 Let S ← S1 ∪ S2

11 Window-Sort(S, 4d, d)
12 Let B′ be the first d elements of (the near-sorted) S
13 Add B′ to the end of B and remove the elements of B′ from A1 and A2

14 Call Window-Sort(A1 ∪ A2, 4d, d) and add the output to the end of B
15 return B

Our method begins by checking if the current problem size, N , satisfies N ≤ 6d, in which

case we’re done. Otherwise, if N > 6d, then we divide A into 2 subarrays, A1 and A2, of

roughly equal size and recursively approximately sort each one. For the merge of the two

sublists, A1 and A2, we inductively assume that A1 and A2 have maximum dislocation at

most 3d/2 = (3c/2) log n. We then copy the first 3d elements of A1 and the first 3d elements

66



of A2 into a temporary array, S, and we note that, by our induction hypothesis, S contains

the smallest 3d/2 elements currently in A1 and the smallest 3d/2 elements currently in A2.

We then call Window-Sort(S, 4d, d), and copy the first d elements from the output of this

window-sort to the output of the merge, removing these same elements from A1 and A2.

Then we repeat this merging process until we have at most 6d elements left in A1 ∪ A2, in

which case we call window-sort on the remaining elements and copy the result to the output

of the merge. The following lemma establishes the correctness of this algorithm.

Lemma 4.3.1. If A1 and A2 each have maximum dislocation at most 3d/2, then the merge

of A1 and A2 has maximum dislocation at most 3d/2 with probability at least 1−N2−d/8.

Proof. By Lemma 4.2.1 and a union bound, each of the calls to window-sort performed

during the merge of A1 and A2 will result in an output with maximum dislocation at most

d/2, with at least the claimed probability. So, let us assume each of the calls to window-sort

performed during the merge of A1 and A2 will result in an output with maximum dislocation

at most d/2. Consider, then, merge step i, involving the i-th call to Window-Sort(S, 4d, d),

where S consists of the current first 3d elements in A1 and the current first 3d elements in A2,

which, by assumption, contain the current smallest 3d/2 elements in A1 and current smallest

3d/2 elements in A2. Thus, since this call to window-sort results in an array with maximum

dislocation at most d/2, the subarray, Bi, of the d elements moved to the output in step

i includes the d/2 current smallest elements in A1 ∪ A2. Moreover, the first d/2 elements

in Bi have no smaller elements that remain in S. In addition, for the d/2 elements in the

second half of Bi, let S
′ denote the set of elements that remain in S that are smaller than

at least one of these d/2 elements. Since the output of Window-Sort(S, 4d, d) has maximum

dislocation at most d/2, we know that |S ′| ≤ d/2 Moreover, the elements in S ′ are a subset

of the smallest d/2 elements that remain in S and there are no elements in (A1 ∪ A2) − S

smaller than the elements in S ′ (since S includes the 3d/2 smallest elements in A1 and

A2, respectively. Thus, all the elements in S ′ will be included in the subarray, Bi+1, of d
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elements output in merge step i+ 1. In addition, a symmetric argument applies to the first

d/2 elements with respect to the d elements in Bi−1. Therefore, the output of the merge of

A1 and A2 will have maximum dislocation at most 3d/2 with the claimed probability.

Window-merge-sort clearly runs in O(n log2 n) time. This gives us the following.

Theorem 4.3.2. Given an array, A, of n distinct comparable elements, one can determin-

istically sort A in O(n log2 n) time subject to comparison errors with probability pe ≤ 1/16,

so as to have maximum dislocation of O(log n) w.h.p., assuming that the block size B is at

least log n.

This method is not data oblivious, however. For example, in a merge of two subarrays, A1

and A2, if each element in A1 is less than all the elements in A2, then with high probability

the merge will take almost all the elements from A1 before taking any elements from A2.

4.4 Window-Oblivious-Merge-Sort

In this section, we describe a deterministic data-oblivious sorting algorithm that can tolerate

noisy comparisons, which uses our data-oblivious window-sort only for small subarrays. Our

method is an adaptation of the classic odd-even merge-sort algorithm [21] to the noisy

comparison model, and it runs in O(n log3 n) time, and achieves a maximum dislocation of

O(log n), set in the analysis. We give our algorithm in Algorithm 8, with d = c log n, where

c is a constant set in the analysis.

Note that, assuming d is O(log n), the running time for window-merge is characterized by

the recurrence, T (n) = 2T (n/2) + n log n, which is O(n log2 n); hence, the running time for

window-odd-even-sort is characterized by the recurrence, T (n) = 2T (n/2) + n log2 n, which

is O(n log3 n).
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Algorithm 8: Window-Odd-Even-Sort(A = {a0, a1, . . . , aN−1}, n, d)
1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)

3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Odd-Even-Sort(A1, n, d)
5 Window-Odd-Even-Sort(A2, n, d)
6 B ← Window-Merge(A1, A2, d)
7 return B
8

9 Window-Merge(A1, A2, d):
10 if |A1|+ |A2| ≤ 6d then
11 return Window-Sort(A1 ∪ A2, 4d, d)

12 Let Ao
1 (resp., Ae

1) be the subarray of A1 of elements at odd (resp., even) indices
13 Let Ao

2 (resp., Ae
2) be the subarray of A2 of elements at odd (resp., even) indices

14 B1 ← Window-Merge(Ae
1, A

e
2, d)

15 B2 ← Window-Merge(Ao
1, A

o
2, d)

16 Let B be the shuffle of B1 and B2, so its even (resp., odd) indices are B1 (resp., B2)
17 for i = 0, 1, 2, . . . , |B|/d do
18 Window-Sort(B[id : id+ 6d], 4d, d)

19 return B

even odd

A1

even odd

A2

(a)

even odd

(b)

even odd

(c)

1

Figure 4.1: Window-Merge (a) Subarrays A1 and A2. (b) A before the merge. (c) A after
the merge.
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The correctness of window-merge is proved using induction and the 0-1 principle, which is

that if a data-oblivious algorithm can sort an array of 0’s and 1’s, then it can sort any

array1 [80]. Let n be a power of 2, and consider the elements of each of A1 and A2 arranged

in two columns with even indices in the left column and odd indices in the right column.

(See Figure 4.1.) By the 0-1 principle, if A1 and A2 each have maximum dislocation at most

d, then, for each arrangement of A1 and A2, the difference between the number of 1’s in the

left column and the number of 1’s in the right column is at most d+ 1.

Next stack the two-column arrangement of A1 on top of that for A2 and note that our

window-merge algorithm recursively sorts each column, which, by induction will each have

maximum dislocation d. That is, by the 0-1 principle, each column will consist of a contiguous

sequence of 0’s, followed by a sequence of length at most 2d comprising a mixture of 0’s and

1’s, followed by a contiguous sequence of 1’s. Further, by how we began our arrangement,

the difference between the number of 1’s in the left column and the number of 1’s in the right

column in the full arrangement of A1 and A2 is at most 2d+2. Thus, all the unsortedness is

confined to a region of at most 4d+2 consecutively-indexed elements in the merged sequence,

which are then completely contained in a region of 5d consecutively-indexed elements that

begin at a multiple of d. Our window-merge method is guaranteed to call window-sort for

this region of elements, bringing its maximum dislocation to be at most d. We observe that

there are other calls to window-sort as well, but these will not degrade the sortedness of this

region. Thus, the result is that the maximum dislocation of the merged list is at most d.

This gives us the following.

Theorem 4.4.1. Given an array, A, of n distinct comparable elements, one can determin-

istically and data-obliviously sort A in O(n log3 n) time, subject to comparison errors with

probability pe ≤ 1/16, so as to have maximum dislocation of O(log n) w.h.p.

1It is straightforward to show that the 0-1 principle holds for our noisy sorting setting as well.
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We note that the only randomization here is in the comparison model. The algorithm for

Theorem 4.4.1 is deterministic. If we are willing to use a randomized algorithm, however,

we can achieve a faster running time.

4.5 Randomized Shellsort

In this section, we describe a randomized data-oblivious sorting method that runs inO(n log n)

time. The method is the simple randomized Shellsort algorithm of Goodrich [61], which we

review in an appendix in Algorithm 9. It is based on peforming region compare-exhanges

between subarrays of equal size, which, for a constant c ≥ 1 set in the analysis, consists of

constructing c random matchings between the elements of the two subarrays and perform-

ing compare-exchange operations between the matched elements. We study the dislocation

reduction properties of randomized Shellsort empirically.

4.6 Annealing Sort

We briefly review here the annealing sort algorithm (see Algorithm 10 in an appendix), first

introduced by Goodrich [62], which is a randomized data-oblivious sorting algorithm, and

uses the simulated annealing meta-heuristic that involves following an annealing schedule

defined by a temperature sequence T = (T1, T2, . . . Tt) and a repetition sequence R =

(r1, r2, . . . , rt). This algorithm essentially uses a randomized round-robin strategy of scanning

the input array A and performing, for each i = 1, 2, . . . , n, a compare-exchange operation

between A[i] and A[s] where s is a randomly chosen index not equal to i. At each round

j, the temperature Tj is then used to determine how far apart the candidate comparison

elements with indices i and s should be at each time step. Following the simulated annealing

metaheuristic, the temperatures in the annealing schedule decrease over time, and each

71



random choice is repeated rj number of times in round j. In our experiments, we follow the

same three-phase annealing schedule used in the analysis of this algorithm in [62].

4.7 Experiments

To empirically test the performance of our algorithms under persistent noisy errors, we im-

plemented each of the algorithms described in Sections 4.2 to 4.6, along with riffleSort,

which is a non-data-oblivious noisy sorting algorithm introduced by Geissman, Leucci, Liu,

and Penna [55] that we review in an appendix in Algorithm 11. We also compare our

algorithms to the standard and well-known insertion sort, randomized quicksort, and Shell-

sort [100] algorithms, e.g., see [35, 66]. For completeness, we include pseudo-code for these

classic algorithms in an appendix in Algorithm 12.

We have also considered a variant of randomized Shellsort, which we denote by random-

izedShellSortNo2s3s that does not include the 2 hop and 3 hop passes (lines 7-8 in

Algorithm 9), as we do not think that they are necessary for the algorithm to perform well

in practice. For standard Shell sort, we used the Pratt sequence [94], which uses a gap se-

quence consisting of all products of powers of 2 and 3 less than the array size, and we denote

this algorithm by shellSortPratt.

Parameter configurations. The riffleSort algorithm uses a parameter c to determine

the group sizes during noisy binary search. Geissmann, Leucci, Liu, and Penna [55] assume

c = 103 in their analysis; however, we set c = 5 so that the algorithm works with the input

sequence sizes we use. We also set a parameter, h, of riffle-sort, which affects the height of the

noisy binary search tree, to be log(⌊n+1
5d
⌋), where d is the maximum dislocation of the input

sequence given to the noisy binary search tree. For all other parameters, we follow the values

used in [55]. We have also made a significant and potentially risky modification to the noisy
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binary search algorithm described by Geissmann, Leucci, Liu, and Penna [55] so that it works

in a practical setting. In particular, while the original description of this subroutine fixes an

upper bound τ = ⌊240 log n⌋ on the total number of steps performed in a noisy binary search

random walk, we found that this resulted in unreasonably long running times for the input

sequence sizes we used, and we instead lowered this upper bound to τ = ⌊7 log n⌋ in our

implementation. Despite using lower τ , the algorithm surprisingly produces good dislocation

bounds, while taking significantly less time. Because of its reliance on noisy binary searching,

riffle-sort is not data-oblivious, so we used its performance as the best achievable empirical

dislocation bounds, which our data-oblivious methods compare against.

For annealing sort, we follow the annealing schedule and constants used in [42], which defines

additional parameters h, gscale, and finds suitable values for them alongside the existing pa-

rameters c and q defined by Goodrich [62], all of which affect the temperature and repetition

schedules used in the algorithm; hence, we set h = 1, gscale = 0, c = 10, and q = 1.

For windowMergeSort and windowOddEvenMergeSort, we set d = log n. Though

a larger constant multiple of log n is required for the theoretical proofs of these algorithms,

we found that this wasn’t necessary in practice; in fact we observed that d = log n resulted

in lower inversions and dislocations in our experiments.

Lastly, forwindowSort, we set d1 = n/2 and d2 = log n, and for randomizedShellSort,

we set c = 4.

Experimental setup. We implemented each algorithm in C++2, and compared the per-

formance of each algorithm by measuring the total dislocations, maximum dislocations, and

the number of inversions of the output arrays, as well as the total number of pairwise com-

2Our implementations of all algorithms can be found at https://github.com/UC-Irvine-Theory/

NoisyObliviousSorting.
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parisons that were done. Each data point in the following plots correspond to the average

of 5 runs of the algorithm with random input sequences of integers.

To implement noisy persistent comparisons, we make use of tabulation hashing [90, 105]. In

our tabulation hashing setting, we let f denote the number of bits to be hashed, and s ≤ f

be a block size, and t = ⌈f/s⌉ be the number of blocks. We initialize a two dimensional

t× 2s array, A, with random q bit integers. Given a key, c, with f bits, we partition f into t

blocks of s bits. For our experiments, we set f = 64, s = 8, and q = 14. If ci represents the

i-th block, the hash value h(c) will be derived using the lookup table as follows:

h(c) = A[0][c0]⊕ A[1][c1]⊕ · · · ⊕ A[t][ct]

For simulating a noisy comparison, given two 4-Byte Integers, x < y, we first concatenate

the numbers to get the key, c = (x · 232) + y. Then, we hash c to derive h(c), a random

q = 14 bit integer. We determine that the comparison of these two numbers is noisy if and

only if h(c) ≤ p ·2q, where p is the noise probability, and output the result of the comparison

accordingly.

We performed two sets of experiments: one with a varying probability p of comparison error

and fixed input size n = 32768, and the other with varying input size n and a fixed probability

p = 0.03 of comparison error. In our experiments, p takes on values (2−1, 2−2 . . . , 2−10), and

n takes on values (216, 215 . . . , 27).

Results and analysis. We first consider experiments with varying p, and compare the

maximum dislocations, total dislocations and inversions between each algorithm. We see

from Figure 4.2 that all of the data-oblivious algorithms we describe in this chapter have max-
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imum and total dislocations that are inline with the theoretical optimal bounds of O(log n)

and O(n) respectively, as well as riffleSort, particularly when p < 0.1.
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Figure 4.2: Effect of varying the comparison error probability p on the inversion and dislo-
cation counts, with input sequences of size 32768.

For example, we see that windowOddEvenMergeSort tends to be the best-performing

data-oblivious algorithm for different values of p, achieving a total dislocation of at most

≈ 35 300, a maximum dislocation of at most 12, and at most ≈ 19 200 total inversions for

values of p < 0.1.

We see that all of the non-standard algorithms tend to form an S-shaped curve, in terms of

their dislocation bounds, such that as p starts to increase, the number of dislocations and

inversions start to increase slowly, then there is a sharper increase after we reach p > 0.1.

As expected, we see that the highest dislocation and inversions is when p = 0.5, which is

the worst-case scenario for p (for any value of p > 0.5, reversing the output should result
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in a sequence with lower dislocation). In particular, as p goes from 1/32 to 1/2, all of

the non-standard algorithms go from having up to 100 maximum dislocation and ≈ 28 900

total dislocation to having up to ≈ 30 000 maximum dislocation and ≈ 345 million total

dislocation. These results match our theoretical analyses in this chapter, as we assume

that p ≤ 1/16 in order to prove bounds for the dislocation. The proof for the version of

riffleSort we use assumes similar bounds for p [55]. On the other hand, we see that our

implementations of insertion sort, quick sort, and Shell sort do not have the tendency to form

an S-curve, and their inversion and dislocation counts are significantly higher compared to

our algorithms.

In Figure 4.3, we see the effect of varying p and n on the number of comparisons made during

the algorithm.
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Figure 4.3: Effect of varying the comparison error probability p and the input size n on the
number of comparisons.

We see that the number of comparisons tends to grow smaller as p increases in riffleSort,

insertionSort and shellSortPratt. When the input size is varied, we see that riffleSort,

insertionSort and quickSort use the fewest number of comparisons. Notably, we see

that randomizedShellSort (and its variant without 2 and 3-hop passes), as well as

annealingSort, are the best-performing data-oblivious algorithms in terms of the number

of comparisons. Overall, we found that riffleSort was the best-performing algorithm in
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both sets of experiments; however, it uses the noisy binary search subroutine and is thus not

a data-oblivious algorithm.

We also consider how the dislocation is distributed across the output array for each algorithm.

In Figure 4.4, we see the average dislocation across different array indices for 5 runs of each

algorithm with input sequences of size 16384, and p = 0.03. For each output array, we

grouped the indices into 128 bins and took the average dislocation inside each bin. From

this figure we can see the significant difference in dislocation counts between the standard

sorting algorithms insertion sort, Shellsort and quick sort, compared to the other algorithms

we implemented. All of the standard sorting algorithms have bins with over 2000 dislocation

on average, whereas none of the other algorithms have any bins with over 1.2 dislocations

on average, with riffleSort having less than 0.2 dislocations on average accross all of its

bins.

While the distribution of dislocation is similar accross most algorithms, we see that insertion

sort has most of its dislocation at the two ends of the array, whereas quickSort has a few

bins with high dislocation and has lower dislocation for most of the remaining bins.

4.8 Conclusions and Future Work

We introduced the sorting algorithms Window-Merge-Sort and Window-Odd-Even-Sort,

both of which are tolerant to noisy comparisons, with the latter also being data-oblivious,

with the key difference from existing algorithms being that we do not require use of a noisy

binary search subroutine for either algorithms. We then provided both theoretical and

experimental analyses, comparing our algorithms to some standard well-known sorting algo-

rithms, and saw that our algorithms perform well in a practical setting as well. Interestingly,

we found that the data-oblivious algorithms Annealing sort and Randomized Shellsort per-
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Figure 4.4: Averaged dislocation counts at different array indices over 5 runs for each algo-
rithm on input sequences of size 16384, and p = 0.03. Each bar in the histogram corresponds
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formed quite well under noisy comparisons in our experiments, though we have not provided

a theoretical analysis for either of these algorithms. Therefore one possible direction for

future work could be to prove similar bounds for these two algorithms.

4.9 Descriptions of Some Existing Sorting Algorithms

In this section, we review some existing sorting algorithms that we included in our tests.

4.9.1 Randomized Shellsort

The first existing sorting algorithm we review is the randomized Shellsort of Goodrich [61],

which we give in Algorithm 9. This algorithm is data oblivious.

Algorithm 9: Random-Shellsort(A = {a0, a1, . . . , an−1})
1 for o = n/2, n/22, n/23, . . . , 1 do
2 Let Ai denote subarray A[io .. io+ o− 1], for i = 0, 1, 2, . . . , n/o− 1.
3 begin a shaker pass
4 Region compare-exchange Ai and Ai+1, for i = 0, 1, 2, . . . , n/o− 2.
5 Region compare-exchange Ai+1 and Ai, for i = n/o− 2, . . . , 2, 1, 0.

6 begin an extended brick pass
7 Region compare-exchange Ai and Ai+3, for i = 0, 1, 2, . . . , n/o− 4.
8 Region compare-exchange Ai and Ai+2, for i = 0, 1, 2, . . . , n/o− 3.
9 Region compare-exchange Ai and Ai+1, for even i = 0, 1, 2, . . . , n/o− 2.

10 Region compare-exchange Ai and Ai+1, for odd i = 0, 1, 2, . . . , n/o− 2.

4.9.2 Annealing Sort

The next existing sorting algorithm we review is the annealing-sort method of Goodrich [62],

which we review in Algorithm 10. This algorithm is also data oblivious.
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Algorithm 10: Annealing-Sort(A = {a0, a1, . . . , aN−1}, n, T,R)

1 for j = 1, 2, . . . , t do
2 for i = 1, . . . , n− 1 do
3 for k = 1, 2, . . . , rj do
4 Let s be a random integer in the range [i+ 1,min(n, i+ Tj)]
5 if A[i] > A[s] then
6 Swap A[i] and A[s]

7 for i = n, n− 1, . . . 2 do
8 for k = 1, 2, . . . , rj do
9 Let s be a random integer in the range [max(1, i− Tj), i− 1]

10 if A[s] > A[i] then
11 Swap A[i] and A[s]

4.9.3 Riffle Sort

We include pseudo-code for the riffle-sort method of Geissman, Leucci, Liu, and Penna [55],

which we review in Algorithm 11, for k = (log n)/2 and γ = 2020. The pseudo-code uses a

subroutine test(x, v) (see [55], Definition 1), which checks whether some element x approx-

imately belongs to the interval pointed to by some node v in the noisy binary search tree,

which is the main place where this algorithm is not data oblivious.

4.9.4 Well-known Sorting Algorithms

For the sake of completeness, we also include pseudo-code for the well-known insertion-sort,

quick-sort, and Shellsort algorithms, in Algorithm 12. None of these three algorithms are

data oblivious. One can modify insertion-sort to be data oblivious, however, by continuing

the compare-and-swap inner loop process to the beginning of the array in every iteration.

Likewise, the Shellsort algorithm can also be modified to be data oblivious in the same man-

ner, since its inner loop is essentially an insertion-sort carried out across elements separated

by the gap distance in each iteration.
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Algorithm 11: Riffle-Sort(A = {a0, a1, . . . , an−1})
1 T0, T1, . . . , Tk ← Partition(A)
2 S0 ←WindowSort(T0,

√
n, 1)

3 for j = 1, . . . , k + 1 do
4 Si ←Merge(Si, Ti−1)
5 Si ←WindowSort(Si, 9γ log n, 1)

6 return Sk+1

7

8 Partition(A) :
9 for i = k, . . . , 1 do

10 Ti ← 2i−1
√
n elements chosen u.a.r. from A \ {Ti+1, . . . , Tk}

11 T0 ← remaining
√
n elements in A

12 return T0, . . . , Tk

13

14 Merge(A, B) :
15 foreach x ∈ B do
16 rankx ← NoisyBinarySearch(A, x)

17 Insert simultaneously all elements x ∈ B according to rankx into A
18 return A
19

20 NoisyBinarySearch(A, x) :
21 Construct noisy binary search trees T0, T1 as described in [55], section 3.1.
22 for j = 0, 1 do
23 t← 7⌊log |A|⌋
24 curr ← Tj.root
25 while t > 0 do
26 if curr is a leaf of Tj then
27 return curr

28 Call test(x, c) for each child c of node curr.
29 if exactly one of the calls pass for some child node c then
30 curr ← c

31 else
// all tests have failed

32 curr ← curr.parent

33 t← t− 1

34 return an arbitrary index // both walks have timed out
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Algorithm 12: Well-known sorting algorithms, assuming the input array, A, is of
size n and indexed starting at 0. We sort A by calling Insertion-Sort(A, n), Quick-
sort(A, 0, n− 1), or Shell-sort(A, n,G), where G is a non-increasing gap sequence of
positive integers less than n, such as the Pratt sequence [94], which consists of all
products of powers of 2 and 3 less than n.

Insertion-sort(A, n):
for i← 1, . . . , n− 1 do

j ← i
while j > 0 and A[j − 1] > A[j] do

Swap A[j] and A[j − 1]
j ← j − 1

Quick-sort(A, l, h):
if l < h then

Choose x uniformly at random from the subarray A[l..h]
Partition A into A[l..p− 1], A[p], and A[p+ 1..h], where A[i] < x for i ∈ [l, p− 1],
A[p] = x, and A[i] ≥ x for i ∈ [p+ 1, h] (if these subarrays exist)
Quick-sort(A, l, p− 1)
Quick-sort(A, p+ 1, h)

Shell-sort(A, n,G):
foreach g ∈ G do

for i← g, . . . , n− 1 do
j ← i
while j ≥ g and A[j − g] > A[j] do

Swap A[j] and A[j − g]
j ← j − g
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Chapter 5

External-Memory Noisy Sorting

5.1 Introduction

Given n distinct comparable elements, we study the problem of efficiently sorting them

subject to noisy probabilistic comparisons. In this framework, which has been extensively

studied in internal-memory settings [27, 85, 78, 54, 56, 55, 46, 91, 73, 112, 76, 82], the

comparison of two elements, x and y, results in a true and accurate result independently

according to a fixed probability, p < 1/2, and otherwise returns the opposite (false) result.

In the case of persistent errors [27, 78, 54, 56, 55], the result of a comparison of two given

elements, x and y, always returns the same result. In the case of non-persistent errors [46,

91, 73, 112, 76, 82], however, the probabilistic determination of correctness is determined

independently for each comparison, even if it is for a pair of elements, (x, y), that were

previously compared.

Motivation for sorting with comparison errors comes from multiple sources, including ranking

objects online via A/B testing [116], which evaluates the impact of a new technology or

technological choice by executing a system in a real production environment and testing
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two instances of its performance (an “A” and “B”) on a random subset of the users of the

platform. Such systems can involve many users and choices to compare via A/B testing,

e.g., see [59, 111]; hence, we feel that managing such implementations could benefit from

external-memory solutions.

Since one cannot always correctly sort an array, A, subject to persistent comparison errors,

we follow Geissmann et al. [55, 54, 56], and define the dislocation of an element, x, in an

array, A, as the absolute value of the difference between x’s index in A and its index in

the correctly sorted permutation of A. Further, define the maximum dislocation of A as the

maximum dislocation for the elements in A, and define the total dislocation of A is the sum

of the dislocations of the elements in A. By known lower bounds [55, 54, 56], the best a

sorting algorithm can achieve under persistent comparison errors is a maximum dislocation

of O(log n) and a total dislocation of O(n).

In this chapter, we are interested in sorting algorithms that are in the external-memory

model. Unfortunately, the existing algorithms for sorting with noisy comparisons are not

easily converted into efficient external-memory algorithms, because they all make use of noisy

binary search, which involves a random walk in a binary search tree [55, 46, 82]. Instead,

we desire efficient sorting algorithms that tolerate noisy comparisons and have an efficient

number of input/output operations, primarily for the persistent model, since we can sort an

array with maximum dislocation of O(log n) in the non-persistent model by a single scan

where we repeat each comparison in internal memory O(log n) times.

Intuitively, the main disadvantage of relying on noisy binary search is that it is cache ineffi-

cient, in that it requires performing memory accesses for widely-distributed storage locations.

Large-scale applications need to minimize the number of input/output (I/O) operations to

external memory. Thus, we also desire sorting algorithms that tolerate noisy comparisons

and minimize the number of I/Os. In external-memory applications, I/Os occur in terms of

memory blocks. In this context, we use M to denote the size of internal memory and B to
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denote the size of a block of memory, and we note that the best I/O bound that is possible

for sorting an array of size N in external-memory is Θ((N/B) logM/B(N/B)), see, e.g., [110].

Thus, we also desire sorting algorithm that tolerate noisy comparisons and have this bound

on their number of I/Os. Moreover, we desire solutions that are either cache-aware (taking

advantage of knowledge of the parameters M and B) or cache-oblvious (which don’t know

the parameters M and B).

Related Prior Results. The non-persistent error model traces back to a classic problem

by Rényi [95] of playing a game involving posing questions to someone who lies with a

given probability; see, e.g., the survey by Pelc [92]. Braverman and Mossel [27] introduced

the persistent-error model, where comparison errors are persistently wrong with a fixed

probability, p < 1/2−ε, and they achieved a running time of O(n3+f(p)) time with maximum

expected dislocation O(log n) and total dislocation O(n). Klein, Penninger, Sohler, and

Woodruff [78] improve the running time to O(n2), but with O(n log n) total dislocation

w.h.p. The internal-memory running time for sorting in the persistent-error model optimally

with respect to maximum and total dislocation was subsequentially improved to O(n2),

O(n3/2), and ultimately to O(n log n), in a sequence of papers by Geissmann, Leucci, Liu,

and Penna [55, 56, 54].

Feige, Raghavan, Peleg, and Upfal [46] provide a parallel algorithm for sorting with non-

persistent errors that, with high probability, runs in O(log n) time and O(n log n) work in

the CRCW PRAM model, and Leighton, Ma, and Plaxton [82] show how to achieve these

bounds in the EREW PRAM model.

None of these prior algorithms translate into efficient external-memory algorithms, however,

where we focus on optimizing the number of input/output (I/O) operations. The main

reason is that they all use noisy binary searching, which is a random walk in a binary search
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tree, where each step involves a noisy comparison. As an external-memory algorithm, this

search algorithm unfortunately involves far-flung comparisons; hence, it causes a lot of I/Os.

Frigo, Leiserson, Prokop and Ramachandran [51] introduced the notion of cache-oblivious

algorithms, which are algorithms that do not have any variables dependent on hardware

parameters such as cache or block size that need to be tuned for it to perform optimally.

The authors also introduced the (M,B) ideal-cache cache model to analyze cache oblivious

algorithms, and defined the cache complexity Q(n) and work complexity W (n) of an algorithm

with input size n, which respectively measure the number of cache misses the algorithm incurs

in the ideal-cache model, and the conventional running time of the algorithm in a RAM

model. The authors then introduced a cache-oblivious sorting algorithm, Funnelsort, and

showed, assuming M = Ω(B2) (also known as the tall-cache assumption), that Funnelsort is

cache-oblivious, has work complexity O(n log n) and cache complexity O(1+ n
B
(1+ logM n)),

which matches the Ω( n
B
logM/B

n
B
) lower bound for sorting in the external-memory model.

Our Results. In this chapter, we provide efficient sorting algorithms in the external-

memory model that tolerate noisy comparisons. All our algorithms utilize an optimal num-

ber of I/Os. In particular, we provide solutions for either the persistent or non-persistent

error models, and for the cache-aware and cache-oblivious external-memory models. Our

algorithms avoid using noisy binary searching by instead utilizing a generalized subroutine

that is an external-memory version of window-sort. This allows us to then design win-

dowed versions of external-memory merge-sort and funnel-sort. Both algorithms run in time

O(n log2 n) in internal memory, or in external memory with an optimal O(n/B) logM/B(n/B)

I/O’s, subject to comparison errors with probability pe < 1/2 so as to have a maximum dis-

location of O(log n) w.h.p. For both algorithms, we assume that the block size is at least

logarithmic in the problem size, i.e., B = Ω(log n). Our windowed version of funnel-sort will
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also use the tall-cache assumption, i.e., M = Ω(B2). In the sections that follow, we describe

our algorithms for sorting with comparison errors.

5.2 Window-Sort

We begin with a version of window-sort [55], which will be useful as a subroutine in our

algorithms. We provide the pseudo-code in Algorithm 6, for approximately sorting an array

of size n that has maximum dislocation at most d1 ≤ n so that it will have maximum

dislocation at most d2 = d1/2
k, for some integer k ≥ 1, with high probability as a function

of d2.

We note that determining the ri values can be done by scans; hence, that step is I/O efficient

in either cache-aware or cache-oblivious settings. Moreover, the sorting step can be done

with an I/O efficient algorithm, in either the cache-aware or cache-oblivious settings, e.g.,

see [28, 51, 29]. We note that to simplify our presentation, we assume pe ≤ 1/16, however

this constraint can be relaxed to any pe < 1/2 to obtain the same asymptotic results.

We implement window-sort in external memory, as follows.

Theorem 5.2.1. Suppose the comparison error probability, pe, is at most 1/16. If an ar-

ray, A, of size n has maximum dislocation at most d1 ≥ log n, then executing Window-

Sort(A, d1, d2) runs in O(d1n) time in internal memory. It can be implemented in external

memory with O(n/B) I/Os if n ≤ M ; otherwise, it can be implemented with O((nd1/B) +

(log(d1/d2))(n/B) logM/B(n/B)) I/Os. Executing Window-Sort(A, d1, d2) results in A hav-

ing maximum dislocation of d2/2 with probability at least 1−2n2−d2/8, where d2 = d1/2
k, for

some integer k ≥ 1.
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Proof. For the internal-memory running time, note that we can perform the deterministic

sorting step using any efficient sorting algorithm in O(n log n) time. The running times for

the windowed comparison steps (step 3 of Algorithm 6) form a geometric sum adding up

to O(d1n) and the total time for all the deterministic sorting steps (step 4 of Algorithm 6)

is O((log(d1/d2))n log n), which is at most O(d1n) for d1 ≥ log n. For the external-memory

model in both the cache-aware and cache-oblivious settings, a cache-efficient sorting algo-

rithm can be used, requiring at most O(log(d1/d2))(n/B) logM/B(n/B)) I/Os for all the

sorting steps. The scanning step can also be done in an cache efficient way, requiring at

most O(nd1/B) I/Os.

The remainder of the proof follows the same steps in Theorem 4.2.2.

5.3 Window-Merge-Sort

In this section, we describe a simple external-memory algorithm for sorting with noisy com-

parisons, which achieves a maximum dislocation of O(log n). The number of I/Os for this

algorithm is optimal. As is common (see, e.g., [23]), we assume that the block size is at least

logarithmic in the problem size, i.e., B ≥ log n.

We start from the internal-memory version of this algorithm, which we have already described

and proved the correctness of in Section 4.3, that runs in O(n log2 n) time and then we show

how to generalize this method to an efficient external-memory method that uses an optimal

number of I/Os. The pseudo-code for this method is in Algorithm 7, with d = c log n for a

constant c ≥ 1 set in the analysis.

To convert this algorithm to an external-memory one, we just need to make a few changes.

First, rather than divide A into 2 subarrays for the recursive calls, we divide A into m =

Θ(M/B) ≥ 2 subarrays, A1, A2, . . . , Am, each of roughly equal size, and recursively sort
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each one. For the merge step, we bring the first max{3d, |Ai|} elements from each Ai, group

them together into a list, S, and call Window-Sort(S, 4md, d) on this list, performing this

computation entirely in internal memory (so it does not require any additional I/Os). Then

we output the first d elements from this window-sort, and continue as in Algorithm 7. This

implies the following.

Lemma 5.3.1. If A1, A2, . . . , Am each have maximum dislocation at most 3d/2, then the

result of the their merge has maximum dislocation at most 3d/2 with probability at least

1− 6mN2−d/8.

Proof. The proof follows by similar arguments used in the proof of Lemma 4.3.1.

This gives us the following.

Theorem 5.3.2. Given an array, A, of n distinct comparable elements, one can deter-

ministically sort A in internal memory in O(n log2 n) time or in external memory with

O((n/B) logM/B(n/B)) I/Os subject to comparison errors with probability pe ≤ 1/16, so as

to have maximum dislocation of O(log n) w.h.p., assuming B ≥ log n.

5.4 Window Funnelsort

In this section we describe WindowFunnelSort (see Algorithm 13), a noise-tolerant ver-

sion of the Funnelsort algorithm that sorts n distinct comparable elements so as to have

at most O(log n) maximum dislocation, with W (n) = O(n log2 n) work complexity and

Q(n) = O(1 + (n/B)(1 + logM n)) cache complexity, which matches the lower bound of

Ω( n
B
logM/B

n
B
) for sorting in the external-memory model. In our pseudocode, n denotes the

original input size, while N denotes the size of the input array given to each function call,

which can be less than n during recursive calls.
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We require a stronger assumption on the cache size for our algorithm: in addition to the tall-

cache assumption M = Ω(B2), we also require that the block size B be at least logarithmic

in the problem size, i.e. B ≥ γ log n for some constant γ > 0 that will be determined in

the analysis. In our analysis, we follow the same general proof structure used in [51] with

the ideal cache model. For the remainder of this section, we assume that the maximum

dislocation bound we would like to obtain, d, is (3c/2) log n for some constant c > 0 that

will be determined later. The main difference in our analysis compared to [51] is that in the

recursive definition of a k-merger, we define the base cases differently such that each base

case k-merger will now use a similar merging method to the one used in Algorithm 7, and

our base cases are defined over multiple values of k, instead of just k = 2 as done in [51].

Algorithm 13: Window-Funnel-Sort(A = {a0, a1, . . . , aN−1}, n)
if N ≤ (c log n)3/2 then

return WindowSort(A,N, c log n)

Divide A into N1/3 subarrays, A1 . . . , AN1/3 , each of size N2/3

for i = 1, . . . , N1/3 do
Ai = Window-Funnel-Sort(Ai)

A← output of merging A1 . . . , AN1/3 using a N1/3-merger, as described in
Section 5.4
return A

We first describe how to construct a k-merger, which is defined recursively in terms of smaller

mergers. We follow the same general structure for constructing a k-merger in the original

Funnelsort algorithm [51], however in the recursive definition of a k-merger, instead of having

k = 2 as the base case, we view k-mergers with
√
c log n ≤ k < c log n as base cases. As an

invariant, each k-merger outputs the next k3 elements of the approximately sorted sequence

obtained by merging its k input sequences.

Our base case k-merger works similarly to the merging procedure in Algorithm 7. We read in

3c log n elements from each of the k inputs into an array S, callWindowSort(S, 4kc log n, c log n),

then output the last c log n elements from this call. Then, we replace the c log n elements

in the k-merger that were just written to the output as follows: for each element e written
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to the output, we read into the k-merger a new element from the input queue that e be-

longed to. We then call windowSort again on this updated set of elements, and repeat

this process until the k-merger has outputted k3 elements.

For all other values of k ≥ c log n, a k-merger will work the same way as in [51], which

we describe here for completeness. A (non-base case) k-merger is built recursively out of
√
k-mergers by first partitioning the k inputs into

√
k sets of

√
k elements, which forms the

input to
√
k left mergers L1, L2, . . . , L√

k, each of which is a
√
k-merger. Each Li is connected

to an output buffer i, implemented as a circular queue that can hold up to 2k3/2 elements.

Each buffer is then connected as input to R, which is another
√
k-merger. The output of R

then becomes the output of the whole k-merger. Following our invariant, in order to output

k3 elements, the k-merger will invoke R k3/2 times. Since the input queues connected to

R might become empty, the k-merger first fills all buffers that have less than k3/2 elements

before each invocation of R, which is done by invoking the corresponding left merger Li

that connects to buffer i. Since each left merger invocation will output k3/2 elements to

the corresponding buffer, each Li will only need to be invoked at most once before each

invocation of R.

Let us first consider the cache complexity of WindowFunnelSort. Following the proof in

[51], we first consider how much space a k-merger requires.

Lemma 5.4.1. A k-merger requires at most O(k2) contiguous memory locations when k ≥

c log n.

Proof. A k-merger with k ≥ c log n requires O(k2) memory locations for the buffers, and it

also requires space for its
√
k+ 1

√
k-mergers. Thus, the space S(k) required by a k-merger

satisfies the recurrence relation

S(k) ≤ (
√
k + 1)S(

√
k) + βk2,
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for some constant β > 0. We prove inductively that S(k) ≤ Zk2 for some constant Z. For

k-mergers with
√
c log n ≤ k < c log n, we will read in c log n elements from k input queues,

then perform windowSort on them, requiring S(k) = O(k log n) space for some constant

β > 0. Thus for c log n ≤ k < (c log n)2, we have S(k) ≤ (
√
k + 1)O(

√
k log n) + βk2 ≤ Zk2

for sufficiently large Z.

For k ≥ (c log n)2, we inductively have

S(k) ≤ (
√
k + 1)S(

√
k) + βk2

≤ (
√
k + 1)Zk + βk2 ≤ Zk2

for sufficiently large Z. Thus we have S(k) = O(k2) for any k ≥ c log n.

Any k-merger with
√
c log n ≤ k < c log n reads in 3c log n elements from less than c log n

inputs, and will require O(log2 n) space in total. Therefore we require that the block size B

is at least γ log n for an appropriate constant γ > 0 such that after applying the tall-cache

assumption M = Ω(B2), any k-merger with
√
c log n ≤ k < c log n will fit inside the cache.

Therefore, more generally, through Lemma 5.4.1, any k-merger with
√
c log n ≤ k ≤ c log n ≤

α
√
M , where α is a sufficiently small constant, will also fit inside the cache and run without

any additional cache misses.

The following lemma, which is proved in [51], shows that the
√
k buffers used in a k-merger

can be managed cache-efficiently.

Lemma 5.4.2 (Lemma 4.2. in [51]). Performing r insert and remove operations on a

circular queue causes O(1+ r/B) cache misses if two cache lines are available for the buffer.

We now bound the cache complexity Qk of one invocation of a k-merger.
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Lemma 5.4.3. One invocation of a k-merger incurs

Qk = O(k + k3/B + k3 logM k/B)

cache misses.

Proof. We first consider the case
√
c log n ≤ k ≤ α

√
M . From Lemma 5.4.1 and our as-

sumption on the cache size, we know that any k-merger with
√
c log n ≤ k ≤ α

√
M will fit

inside the cache and run with no additional cache misses. Each k-merger has k input queues,

and loads a total of O(k3) elements. Let ri denote the number of elements extracted from

the ith queue. Since k ≤ α
√
M and B = O(

√
M), there are at least M/B = Ω(k) cache

lines available for the input buffers. Thus, through Lemma 5.4.2, the total number of cache

misses for accessing the input queues is

k∑
i=1

O(1 + ri/B) = O(k + k3/B).

Similarly, the cache complexity of writing to the output queue is O(1+k3/B). The k-merger

incurs an additional O(k2/B) cache misses through using its internal data structures, for a

total of Qk = O(k + k3/B) cache misses.

We then consider the case k > α
√
M . We prove by induction that Q(k) ≤ (Zk3 logM k)/B−

A(k) for some constant Z > 0, where A(k) = o(k3). We first verify that values of αM1/4 <

k ≤ α
√
M also satisfy this inequality: from the first case, we have Q(k) = O(k + k3/B) =

O(k3/B) since B = O(
√
M) = O(k2) and k = Ω(1).

For k > α
√
M , for a k-merger to output k3 elements, the number of times the left mergers

are invoked is bounded by k3/2 + 2
√
k. The right merger R is also invoked k3/2 times. The
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k-merger also has to check before each invocation of R whether any of the buffers are empty.

This requires at most
√
k cache misses and is repeated exactly k3/2 times, for a total of at

most k2 cache misses. Therefore the cache complexity Qk of a k-merger satisfies the following

recurrence relation:

Qk ≤ (2k3/2 + 2
√
k)Q√

k + k2

≤ (2k3/2 + 2
√
k)(

Zk3/2 logM k

2B
− A(

√
k)) + k2

≤ Z

B
k3 logM k + k2(1 +

Z

B
logM k)− (2k3/2 + 2

√
k)A(

√
k),

which is at most (Zk3 logM k)/B − A(k) if A(k) = k(1 + (2Z logM k)/B).

Theorem 5.4.4. WindowFunnelSort incurs at most Q(n) cache misses, where

Q(n) = O(
n

B
logM/B

n

B
).

Proof. If n ≤ αM for a sufficiently small constant α, the algorithm will incur at most

O(1+n/B) cache misses, since only one k-merger will be active at any time, and the largest

possible k-merger will require O(n2/3) < O(n) space. This case also covers the base case in

Line 1 of Algorithm 13 through our assumption on the cache size.

If n > αM , have the recurrence

Q(n) = n1/3Q(n2/3) +Qn1/3 .

From Lemma 5.4.3, we have Qn1/3 = O(n1/3+n/B+(n logM n)/B). Therefore the recurrence

simplifies to

Q(n) = n1/3Q(n2/3) +O((n logM n)/B),
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which has solution Q(n) = O(1 + (n/B)(1 + logM n)) by induction, which matches the

Ω( n
B
logM/B

n
B
) lower bound for sorting in the external-memory model.

We now prove that windowFunnelSort is tolerant to persistent comparison errors.

Lemma 5.4.5. Given k input queues with maximum dislocation at most 3
2
c log n for some

constant c > 0, one invocation a k-merger outputs k3 elements with maximum dislocation at

most 3
2
c log n with probability at least 1− 2Zk3(c log n)52−(c logn)/8 for some constant Z > 0.

Proof. We first consider k-mergers with
√
c log n ≤ k < c log n. Each such k-merger will

call WindowSort k3

c logn
< (c log n)2 times, with each call working on at most (c log n)2

elements. Therefore, using a similar argument to Lemmas 4.3.1 and 5.3.1 and a union

bound, the resulting sequence after (c log n)2 calls to windowSort will have maximum

dislocation at most (3c/2) log n with probability at least 1− 2(c log n)42−(c logn)/8.

We then consider the case k ≥ c log n. We have
√
k left

√
k-mergers, along with a

√
k-

merger R. Each left merger inductively outputs k3/2 elements with dislocation at most

3
2
c log n, which is used as the input to the

√
k-merger R that also inductively outputs k3/2

elements with dislocation at most 3
2
c log n. Using a similar argument to Lemma 4.3.1, the

output queue of the k-merger will also have dislocation at most 3
2
c log n. To find the success

probability, we consider the number of times windowSort is called. Since the number of

invocations of smaller k-mergers is bounded by 2k3/2 + 2
√
k, the number of invocations of

windowSort, I(k), satisfies the recurrence relation

I(k) =


(2k3/2 + 2

√
k)I(
√
k) k ≥ c log n

1
√
c log n ≤ k < c log n,

which has solution I(k) = Zk3 log k for some constant Z > 0 using a similar derivation to the

one in Lemma 5.4.3. Therefore, using a union bound, the probability that a k-merger outputs
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k3 elements with maximum dislocation at most 3
2
c log n is at least 1−2Zk3(c log n)52−(c logn)/8.

Theorem 5.4.6. Given an array A of n distinct comparable elements, and assuming B =

Ω(log n), one can deterministically sort A subject to comparison errors with probability pe ≤

1/16, so as to have maximum dislocation of at most c
2
log n for some constant c > 0 w.h.p.,

with at most O( n
B
logM/B

n
B
) cache misses in the cache-oblivious model, and taking O(n log2 n)

time in a RAM model.

Proof. By induction, each of the n1/3 input sequences given to the n1/3-merger has maxi-

mum dislocation at most 3c
2
log n w.h.p. From Lemma 5.4.5, we have that a n1/3 merger

outputs n elements with maximum dislocation at most 3c
2
log n with probability at least

1 − 2Zn(c log n)52−(c logn)/8 for some constant Z > 0. Choosing an appropriate value for c

establishes this theorem.

We now bound the work complexity of WindowFunnelSort, by first bounding the work

complexity Wk of a k-merger.

Lemma 5.4.7. The work complexity Wk of one invocation of a k-merger is O(k3 log2 n).

Proof. We first consider k-mergers with
√
c log n ≤ k < c log n. The k-merger reads 3c log n

elements from k input queues, each of which have maximum dislocation at most O(log n)

from Theorem 5.4.6, for a total of 3kc log n elements, then performs window-sort on these

elements, which takes O(k log2 n) time. To output k3 elements, the k-merger needs to repeat

this O( k3

logn
) times, taking a total of O(k4 log n) time, which is bounded by O(k3 log2 n) since

k < c log n.

For k-mergers where k ≥ c log n, to output k3 elements, the left mergers and right merger

are invoked at most k3/2 + 2
√
k and k3/2 times respectively. The k-merger also has to check

before each invocation of R whether any of the buffers are empty. This takes O(
√
k) time and
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is repeated exactly k3/2 times, for a total of O(k2) time. Therefore the total work complexity

W (k) of a k-merger satisfies the following recurrence relation:

Wk ≤ (2k3/2 + 2
√
k)W√

k +O(k2).

Using a derivation similar to the one in Lemma 5.4.3, we can show that Wk = O(k3 log2 n)

by induction.

Theorem 5.4.8. The work complexity W (n) of windowFunnelSort is O(n log2 n) for

any input sequence of n elements.

Proof. We have the recurrence

W (n) = n1/3W (n2/3) +Wn1/3 .

From Lemma 5.4.7, we have Wn1/3 = O(n log2 n). Therefore the recurrence simplifies to

W (n) = n1/3W (n2/3) +O(n log2 n),

which has solution W (n) = O(n log2 n) by induction.

5.5 Conclusions and future work

We provided efficient sorting algorithms that tolerate noisy comparisons and are cache effi-

cient in both cache-aware and cache-oblivious external memory models. In [51], the authors

introduced another cache-oblivious sorting algorithm based on distribution-sort, that has

the same work and cache complexities as funnel-sort. One direction for future work could be
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to design and analyze a windowed version of the cache-oblivious distribution sort algorithm

that has similar bounds on the work and cache complexities.
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