
UCLA
UCLA Previously Published Works

Title
Turning Datamining into a Management Science Tool: New Algorithms and Empirical
Results

Permalink
https://escholarship.org/uc/item/3jf5h4kr

Journal
Management Science, 46(2)

ISSN
0025-1909

Authors
Cooper, Lee G
Giuffrida, Giovanni

Publication Date
2000-02-01

DOI
10.1287/mnsc.46.2.249.11932

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jf5h4kr
https://escholarship.org
http://www.cdlib.org/

Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results
Author(s): Lee G. Cooper and Giovanni Giuffrida
Source: Management Science, Vol. 46, No. 2 (Feb., 2000), pp. 249-264
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2634762 .
Accessed: 03/03/2011 18:43

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=informs. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/2634762?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs

Turning Datamining into a Management

Science Tool: New Algorithms and

Empirical Results

Lee G. Cooper * Giovanni Giuffrida
Anderson Graduate School of Management, 110 Westwood Plaza, Suite B518, University of California at Los Angeles,

Los Angeles, California 90095-1481
Computer Science Department, University of California at Los Angeles, Los Angeles, California 90095

lee.cooper@anderson.ucla.edu * giovanni@cs.ucla.edu

T his article develops and illustrates a new knowledge discovery algorithm tailored to the
action requirements of management science applications. The challenge is to develop

tactical planning forecasts at the SKU level. We use a traditional market-response model to
extract information from continuous variables and use datamining techniques on the residuals
to extract information from the many-valued nominal variables, such as the manufacturer or
merchandise category. This combination means that a more complete array of information can
be used to develop tactical planning forecasts. The method is illustrated using records of the
aggregate sales during promotion events conducted by a 95-store retail chain in a single
trading area. In a longitudinal cross validation, the statistical forecast (PromoCastTM) pre-
dicted the exact number of cases of merchandise needed in 49% of the promotion events and
was within + one case in 82% of the events. The dataminer developed rules from an
independent sample of 1.6 million observations and applied these rules to almost 460,000
promotion events in the validation process. The dataminer had sufficient confidence to make
recommendations on 46% of these forecasts. In 66% of those recommendations, the dataminer
indicated that the forecast should not be changed. In 96% of those promotion events where
"no change" was recommended, this was the correct "action" to take. Even including these
"no change" recommendations, the dataminer decreased the case error by 9% across all
promotion events in which rules applied.
(Datamining; Rule Generators; Residual Analysis; Promotion Event Forecasting)

Introduction
"Turning a mining tool loose in a large data set might
produce more than 2,000 findings, all but 20 of them
obvious, irrelevant or flawed.... One tool told us
income is higher for people who have big balances.
Well, yippee," warns Mike Eichorst, Vice President of
Predictive Modeling and Data Mining at The Chase
Manhattan Bank Corp.'s consumer credit unit in New
York in the article "Data Mining for Fool's Gold"

(Computerworld, January 12, 1997). The growth of
business databases has created the need for datamin-
ing. The rapid expansion of computer resources has
created the potential. Utilizing the potential to fulfill
the need has been hampered by a lack of communica-
tion between management scientists and computer
scientists. This joint effort describes how datamining
can augment traditional management science tools-
market-response models in this instance (Blattberg

0025-1909/00/4602/0249$05.00 MANAGEMENT SCIENCE ? 2000 INFORMS
1526-5501 electronic ISSN Vol. 46, No. 2, February 2000 pp. 249-264

COOPER AND GIUFFRIDA
Tuninig Datamnining into a Managenment Science Tool

and Neslin 1990, Lilien and Rangaswamy 1998, Rao
and Steckel 1998)-and what we have learned from
applying a new datamining algorithm to a large-scale,
empirical effort aimed at tactical promotion planning.

Management science is action oriented. Businesses
possess vast historical databases, and managers want
to know how the information in them can help pro-
scribe what actions to take in various sets of current
and future circumstances. In our application, we al-
ready had a tactical forecasting tool (PromoCastTM)
that was calibrated to handle any of the over 150,000
stock keeping units (SKUs) for which a promotion
event might be planned by a grocery retailer in a
particular geographic market (Cooper et al. 1999).
That tool has to cope with the huge variability in
results, from the six units that some well-known brand
might sell in one event to the 250,000 baskets of
strawberries that suddenly appear on sale one Febru-
ary and move over the scanner. The statistical fore-
caster did this well. In the first pilot market, almost
49% of the forecasts predicted exactly the number of
cases of product needed. Over 82% of the forecasts
were within + one case. However, Procter & Gamble
might claim that, when TideTM goes on sale at a large
discount and appears in major ads, it gets a bigger
sales boost than estimated by the market-response
model. A thousand other manufacturers could make a
similar claim in each particular product category.
Market-response models are not sufficiently robust to
respond to the addition of 1,000 dummy variables for
the manufacturers, 1,200 dummy variables for the
merchandise divisions in a grocery store, 95 variables
for the store-by-store effects, the possible interactions
between these sets of indicators, or the possible inter-
actions with the many other variables in the tactical
forecasting model.

The statistical model has been designed to be trans-
portable (after recalibration) across retailers and geo-
graphic markets. PromoCastTM uses 67 variables that
capture how the history of each item (SKU) and the
history of each store in a trading area combine with a
proposed promotion plan to help retailers decide how
much they should expect to sell in an upcoming
promotion event. To characterize the promotion style,
the model uses unit price, the percentage discount,

whether the promotion is an X-for-the-price-of-Y sale,
main effects for ads and displays, two- and three-way
interactions of ads, displays, and the percentage dis-
count, and a large number of historical averages (e.g.,
the item's average promoted sales volume on similar
promotions in the focal store).

In spite of tracking many influences, the parameters
that reflect the importance of item-specific information
in PromoCastTM may overrepresent or underrepresent
the importance of that item's history for a particular
manufacturer. Factors that are specific to a manufac-
turer, a retail store, or a geographic area do not fit well
with the general scheme of a market-response model.
A datamining algorithm, however, could be great at
finding rules such as: "When manufacturer A under-
writes a major promotion for its flagship brand B in
major market C, the forecast tends to underpredict by
D cases." Nominal variables with many levels are
obvious candidates from which to extract the local
information that could improve a forecast. The statis-
tical forecaster handles the quantitative (continuous)
variables that tend to characterize all markets,
whereas the dataminer handles the nominal-scale
variables that are more specific to a particular retailer
and geography. We do this sequentially; first, the
statistical forecast is developed on the quantitative
variables, and then the dataminer is applied to the
residuals from the statistical forecast. In other words,
our datamining tool is oriented to discovering pat-
terns in the residuals that correspond to local knowl-
edge. We then use this local knowledge to form rules
to improve the forecast. As we show, using these rules
lets us know when we can be especially confident in
the existing forecast, when we can expect a substantial
overall reduction in forecasting error, and when we
are not certain enough to act.

In this paper, we discuss our experience in design-
ing and implementing a datamining tool that discov-
ers patterns in the residuals that correspond to local
knowledge. We do this on an enterprise scale. Our
training database (used to develop rules) is a stratified
random sample of more than 1.6 million records
pulled out of a total database of more than 19 million
records, reflecting retail grocery promotions from the
95 outlets of a major retailer in a large metropolitan

250 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Turning Datanlining into a Management Science Tool

Figure 1 Overall Forecast System Design

Historical
Sales
Data

Promotion romo as Promotion

Plan Forecast Forecast

Forecaster Historical
Correc

Forecaster Promotion Actions
?------ Learning path Forecast Generator

. Classification path

Ru e
Knowledge

Discovery-- a ue

Design Overview System
as Rules

area. Our population database represents about 30
months' worth of promotion events. Here we present
a validity study based on out-of-sample results-a
hold-out sample of almost 460,000 records that were
collected after the statistical model was calibrated and
after the local knowledge was mined.

The objective of the project was stated clearly at the
beginning: how to produce forecasts that are useful for
promotion planning. Grocers need to know how much
stock to order for an upcoming promotion event.
Grocers want to minimize inventory costs and out-of-
stock conditions (often conflicting goals). Manufactur-
ers want to maximize shipments, putting them some-
what at odds with the goals of the grocers. Possibly
mitigating this conflict are the very large databases
containing information on prior promotion experience
for each separate SKU in each store within a retail
chain for as far back as good records have been kept.
Efficient Market Services, Inc. (ems, inc.) has been
keeping such records on their clients' promotions.
Databases exist for over 3,000 stores, and more are
being developed.'

In Figure 1, the overall design is depicted. Cooper et
al. (1999) developed a statistical forecaster called Promo-
CastTM that has a traditional market-response model
orientation. It is a production forecast, not a custom
model. Excluded from this model were nominal vari-
ables such as which manufacturer made the item to be

'See www.ensinfo.com for more information.

promoted or what class of merchandise was being pro-
moted (i.e., subcommodity). These two variables alone
would add 2,200 dummy variables to the market-re-
sponse model even before considering possible interac-
tions of manufacturer or subcommodity with variables
included in the model. A lot of information would be left
in the residuals that would not easily be incorporated
into a market-response model. This is the task we set up
for the dataminer. We need a rule-induction algorithm to
discover when the information in the excluded variables
indicates that we should modify our forecast. Once a set
of discovered rules is built, we can use such rules to
adjust the forecast. This is the task of the "Corrective
Action Generator" module. Such corrective actions sug-
gest an offset (positive or negative) to be added to the
forecasted value in order to get higher overall accuracy.

Rule Syntax and Semantics
The datamining algorithm finds rules such as the
following:

IF

DCS = 'Gelatin' and

TPR = 'Very High' and
Mfr = 'General Foods,'

THEN
U 12 = 0,
U_4_11= 58,
U_3 = 221,

U_2 = 1149,

U_1 = 3583,

Ok = 1115,

0_1 = 7,

0_2 = 1,

0_3 = 0,
0_4_11= 0,
0 12 = 0,

where the independent variables in the "if conditions"
have the following meaning:

* "DCS" stands for the triple Department-Com-
modity-Subcommodity, identifying a particular class
of merchandise being promoted (e.g., yogurts, gela-
tins, or prepared dinners).

* "TPR" identifies the level of the Temporary Price
Reduction. Promotions usually involve some item

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 251

COOPER AND GIUFFRIDA
Turn1iing Dataminiiig inlto a Managemient Scienice Tool

price reduction. Values for this variable have been
generalized to a set of five possible discrete values:
none, low, mnedium, high, and very high.

* "Mfr" identifies the manufacturer of the given
product.
The other variables that we mined were:

* Promotion conditions "ME" identify a nine-fold,
mutually exclusive and exhaustive classification of the
ad and display conditions. Newspaper ads were clas-
sified as major ads, minor ads, or no ads. In-store
displays were classified as major displays, minor
displays, or no displays. The "ME" conditions were
the cross-classification of this 3 X 3 classification.

* "Model" specifies one of the eight models used in
PromoCastTM. Although the same variables (as de-
scribed above) were used, separate parameters were
estimated for each of the four major promotion-plan-
ning periods (one-, two-, three-, or four-week dura-
tion), crossed with slow-moving items versus fast-
moving items. Slow-moving items were those that
were expected to sell less than 10 units a week in an
individual store (based on historic performance).

* "Store Node" allows for store-specific effects or
interactions for each of the 95 stores belonging to one
retail chain in the pilot market.

Errors in the forecast are expressed in a number of
cases (i.e., the minimum order quantity for each partic-
ular SKU, usually 12 units in a case). For example, an
error of -3 means that we underestimated the sales for
that specific promotion by three cases ("U_3" class); a
value of 5 means that we overestimated five cases
("G_411" class). In our application, the entire set of
possible errors has been generalized into a reduced set of
11 possible values for the class variable, namely:

0o12_: Over by 12 or more cases
0_4_11: Over by 4 to 11 cases
0_3: Over by 3 cases
0_2: Over by 2 cases
O_1: Over by 1 case
Ok: No error
U_1: Under by 1 case
U_2: Under by 2 cases
U_3: Under by 3 cases
U_4_11: Under by 4 to 11 cases
U_12_: Under by 12 or more cases

The previous rule, for example, states a clear ten-
dency to underforecast products in the subcommodity
"gelatin" for the manufacturer "General Foods" when
a large price discount is offered. As we will see later,
we save a lot by specifying a corrective action in such
circumstances that simply increases our forecast by
one case.

We turn now to a discussion of the datamining
algorithm we call KDS (Knowledge Discovery using
SQL-Structured Query Language) and the applica-
tion of KDS to our problem.

Knowledge Discovery from
Databases/Data Mining (KDD/DM)
Some remarkable industrial failures cooled down the
initial enthusiasm of KDD/DM developers. The
promised wonders of KDD/DM tools have too often
resulted in some form of obvious, superfluous, or imprac-
tical findings. Datamining advertisements portray a
potbellied 30-ish man dressed only in diapers and tout
such findings as "At 6:32 PM every Wednesday, Owen
Bly buys diapers and beer. Do not judge Owen.
Accommodate him" (Wall Street Journal, May 15, 1997,
p. B3). Such messages cause the eyes of management
scientists, used to enterprise-scale applications, to
glaze over. However, it is not our purpose to discuss
the potential uses of datamining for mass customiza-
tion of targeting, service, or customer support. Rather,
we will demonstrate the ability of a datamining algo-
rithm to find useful and well-supported patterns in
data that market-response models are not designed to
harvest.

KDS is a highly scalable, rule-generating, datamin-
ing system that is not bound by physical memory, is
bottom up, and requires little or no data preprocess-
ing. KDS is implemented, following the tightly cou-
pled model, with DB2?. The entire algorithm is exe-
cuted as a sequence of complex Structured Query
Language (SQL) queries sent to the database manage-
ment system (DBMS). Each of these attributes is de-
scribed below.

Rule Generation
The output of KDS is a set of symbolic rules in the form:
"if <pattern> then <class-distribution>." The pattern is

252 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Turning Datamnining into a Management Science Tool

the conjunction of particular values for the indepen-
dent variables (e.g., a = A & b = B & c = C, where
A, B, and C are particular levels of the variables a, b,
and c, respectively). At this time, KDS does not allow
continuous variables; only discrete (nominal) vari-
ables currently can be part of the set of explanatory
variables. This makes it an ideal complement for
traditional market-response models that thrive on
continuous variables, but have problems with large
numbers of dummy variables.2 The class-distribution is
a frequency distribution of the dependent measure
(number of case errors in our application) of all the
input examples satisfying the condition specified on
the "if" part. In the following, we refer to conjunctions
of the form "a = A" as one-term patterns and
conjunctions of the form "a = A & b = B" as
two-term patterns, and so on.

Top-Down versus Bottom-Up Algorithms
Most of the mining algorithms in the literature are
based on a separate-and-conquer approach (Furkranz
1996). In a nutshell, this is a recursive procedure
where, at each recursion, the input dataset I is sepa-
rated in two mutually exclusive and exhaustive parts

Ii and I2 (say all "General Foods" promotions versus
all other SKUs). The separation is performed in a way
that maximizes a function if. Different algorithms use
different functions; usually they tend to minimize the
entropy of the class distribution on one of the sub-
parts. Each separation generates a new rule R that
covers all observations in I1 (say all "General Foods"
promotions are underforecast by two cases). In turn,
after R is generated, I is assigned to I2 (the set of
observations not covered by R-all SKUs that are not
"General Foods" in this example), and the recursion
continues on I (the conquer phase).3 The recursion
halts as soon as no more splitting can take place (i.e.,
the database is smaller than a given threshold of
support, namely the minimum support).

2 Prior ad-hoc discretization can be used to transform continuous
variables such as temporary price reduction (TPR) into levels of
discount (e.g., none, low, medium, high, and very high).

3 Classification tree discovery algorithms (Quinlan 1993) are based
on a slightly different approach, namely divide-and-conquer. In such
an approach, after the database is split into n subparts, the same
procedure is recursively called on each subpart.

The most expensive part of these algorithms is the
splitting phase in which some form of "for each
possible feature" loop takes place to maximize i], that
is, an exhaustive search is performed over the entire
set of features. We argue that, when combinations of
thousands of possible features have to be considered,
this can be costly for large feature spaces. Besides the
additional complexity of testing thousands of features,
a separate-and-conquer approach may be inefficient
since every possible combination of features is tested.
Many of these combinations may not even exist in the
input database (e.g., Yoplait, diapers, Hamburger
Helper batteries). This is a misplaced legacy inherited
from machine-learning practice in which small feature
spaces were the norm and the costs of testing features
were small. When dealing with thousands of features,
the possible combinations may be numerous, with
many missing combinations. We refer to the process of
testing all possible combinations of features as a
top-down approach.

In contrast, KDS works in a bottom-up way, starting
from the input database. Rules are built incrementally,
starting from the simplest ones (one-term patterns)
and then progressively proceeding to more special-
ized rules (two-term, three-term, and so on). The first
iteration generates all observed one-term patterns, the
second generates all observed two-term patterns, and
so on. Each iteration specializes all the patterns gen-
erated so far by adding a new term to the "if <pat-
tern>." In each iteration, a (possibly large) set of new
rules is added to the accumulating rule set. The
iteration halts as soon as rules cannot be further
specialized because their popularity (number of sup-
porting records) drops below a specified minimum-
support threshold. Because rule popularity decreases
monotonically on each iteration, the process is guar-
anteed to terminate. The algorithm is sketched in the
appendix.

As stated above, in a separate-and-conquer ap-
proach, the first rule is induced from the entire input
database. Then, all covered examples are removed and
the second-best rule is induced on what is left over.
Successive rules are thus induced from smaller and
smaller portions of the database. Such progressive
fragmentation of the input database yields reduced

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 253

COOPER AND GIUFFRIDA
Turning Datamining into a Management Science Tool

numerical support for rules discovered later in the
induction process. Holte et al. (1989) demonstrate that
a substantial proportion of the overall classification
error is due to rules covering a small set of observa-
tions, which they call the "small disjuncts problem."
Inducing rules on increasingly smaller sets (as done in
separate-and-conquer algorithms) indirectly exacer-
bates the small disjuncts problem. KDS follows the
conquer-without-separating strategy, proposed by
Domingos (1996a, b), which avoids the small disjuncts
problem by discovering all rules from the entire input
data set.

No Memory-Bound Processing. Any form of dis-
covery algorithm is inherently memory intensive.
Most of the induction algorithms presented in the
machine-learning literature exacerbate the small dis-
juncts problem by loading the entire data set (and the
discovered knowledge) into the main memory. If the
memory (physical and virtual) is full, the process
stops. We have watched a C implementation of a
standard algorithm, CN2 (Clark and Niblett 1989),
crash on a database of about 70,000 records (with a
large feature set) after about 10 hours of processing,
even after allocating 400 Mbytes of main memory
(physical plus virtual memory). Our management
science applications are much larger than this. Al-
though recent developments of machine-learning
techniques claim to reduce the cost of rule-finding
algorithms (Domingos 1996a), the cost is often com-
puted under too ideal situations. Cohen (1995) tested
the "Ripper" algorithm on a system with eight RISC
processors and one gigabyte of physical memory. In
that relatively ideal computational environment, the
Ripper algorithm was the "best of class." Our need to
be able to scale management science applications to
the enterprise level, however, implies that, in many
contexts, not enough physical memory will be avail-
able. The virtual memory facility will be needed. The
cost of swapping between physical and virtual mem-
ory invalidates the original cost estimates for an
algorithm.

We tried Ripper on our training database using a
Windows NT dual processor system (2 X 200 Mhz
Pentium Pro) equipped with 128 Mbytes internal
memory and enough virtual memory to avoid crash-

ing the algorithm. Even with no other tasks running at
the same time, Ripper executed for 21 days without
finishing. Datamining algorithms based on physical
and/or virtual memory are not practical for manage-
ment science applications of this scope. KDS, in con-
trast, is implemented in a tightly coupled (cf. Agrawal
and Shim 1995, 1996), client-server model described
below. Whenever the problem size is too large to fit
into physical memory, the kind of client-server model
described below should have a substantial practical
advantage over CN2 or Ripper.

Minimal Data Preprocessing. Most discovery al-
gorithms require the input data to be in a specific
format, usually a single, flat-text file. This requires an
export operation from the DBMS hosting the data (i.e.,
the mining tool is decoupled from the DBMS). Export-
ing a very large database can be a lengthy and tedious
process, causing an extremely large text file to be
generated. The benefits of the relational data model
can no longer be exploited. This leads to data replica-
tion and redundancy that can make the flat file much
larger than the size of the original relational database.
Furthermore, data need to be clean and formatted as
requested by the mining tool. Data preprocessing can
easily count for 70%-80% of the total KDD processing
time. In the literature, very often, algorithms are
compared on computation time (efficiency) without
considering the time spent in data preprocessing.

In a loosely coupled, client-server model (Agrawal
and Shim 1995, 1996), the mining tool extracts the
records from the DBMS one at a time. Such an
operation is typically performed through exploitation
of cursors in an embedded SQL application. While this
approach eliminates the hassles of generating and
handling large flat-text files, in loosely coupled mod-
els, substantial data communication takes place be-
tween the client (the mining tool) and the server. The
entire database has to be transferred, record by record,
since the processing is performed entirely on the client
side while the data reside in the DBMS.

KDS is implemented as a tightly coupled, client-
server model, in which the largest part of the mining
process is implemented on the server. The communi-
cation traffic between the two systems is reduced to
delivery of commands and retrieval of results. The

254 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Turning Datamnining into a Management Science Tool

Figure 2 Rule Network Example

C-ND & GF & TPR=No GF & Gelatin & TPR=Non

- G & TPReone G & TPRRe elatin & TPRSone GF & Gelatin

Major d - N Dipay F~ea Foods TNoeDCGean

client acts as a control to synchronize the different
phases of the process. The complete task is achieved
by a sequence of complex queries execution and/or
calls to User Defined Functions (UDFs) (cf. Agrawal
and Shim 1995). We believe that the tightly coupled,
client-server model is by far the most promising for
developing highly scalable, datamining processes be-
cause of how rules are generated, organized, and
ranked. These issues are discussed below.

Rule Generation and Organization. In most in-
duction algorithms, the rule-generation and rule-rank-
ing phases are tightly integrated. A rule-scoring mech-
anism generates the best rule for each iteration. This is
fine for exploration, but not for action-oriented man-
agerial applications. In management science applica-
tions, we need to see what stored knowledge tells us
about a current situation and act accordingly. We may
not need to take action until long after the learning.
However, we may need to increment what we learn
with new information. The advantage, then, goes to a
method that separates the learning phase from the
action phase. In KDS, there is a crisp separation
between the rule-generation (learning) phase and the
action (rule-ranking and selection) phase. KDS creates
all the rules from the input database and arranges
them in a rule network. The rule-ranking and selection
task is postponed until the action phase (discussed
below). KDS typically generates a large set of discov-
ered rules. The rule network optimizes rule retrieval
and speeds up the classification task (i.e., the task of

finding which rules in the network apply to a given
new situation). An example of rule network is seen in
Figure 2. The lowest levels of the rule network contain
the one-term patterns. Up one level are the two-term
patterns, and so on. This architecture simplifies the
process of selecting all rules containing a specific
pattern. They are simply identified by all the ancestors
of the node containing the pattern of interest. Each
node of the rule network contains the specification of
the pattern itself and the class distribution vector.4

The Action Phase-Classifying and Acting on New
Examples
Once the rule network has been created, we move to
the action phase, in which classification of new exam-
ples takes place. With a rule network in place, a new
event occurs. In our case, the new event is a planned
promotion for which a forecast has been made. We
need to determine whether to alter that forecast, given
the local knowledge in the rule network. We must
figure out which rules apply to this new event and
take the appropriate action. Classification in KDS is
performed through the following steps:

1. Rule selection: find all the rules covering the
example to be classified.

2. Rule ranking: select the best rule(s) according to
the ranking criterion.

4 In the actual implementation of KDS, we also record entropy, rule
coverage, and number of features. This additional information is
useful in speeding up the classification process.

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 255

COOPER AND GIUFFRIDA
Tuirning Datarnining into a Managemnent Science Tool

Figure 3 Activated Nodes in Rule Network Example

M-ND & GF & TR

M-D& GF M-ND & TPR~Nn GF & TPR=None

Major d - N Disply MFRGenera Foods TRNo

3. Examnple classification: assign the most likely class
of the chosen rule(s) to the input example (e.g., is it
most likely that this event is overforecast by two
cases?).

As explained above, the rule network makes the
selection of all rules applying to a new case efficient.
For instance, given the rule network of Figure 2 and
the input example {ME = "Major Ad and No Display,"
Mfr = "General Foods," Tpr = "None," DCS = "Yo-
gurt"), Figure 3 shows all the rules in the rule network
that are triggered by the input example (i.e., the set of
rules covering the given example). Notice that rules
whose pattern contains the feature DCS = "gelatin"
have not been activated since such a condition does
not occur in the input example. The selection algo-
rithm starts from the bottom of the rule network by
activating the one-term rules corresponding to the
features of the input example. Then the activation is
propagated upward, and each higher node is acti-
vated if all of its children are active. The activation
goes up to the highest nodes of the network. At this
point, all rules covering the input examples are
marked. Among these rules a ranking has to be
performed that indicates to which action class this
new example most likely belongs.

Entropy-based rule ranking is widely exploited in
rule classifiers. Entropy is computed from the class
distribution vector. Because there can be different
costs associated with certain types of misclassifica-
tions in the class distribution, we felt that a simplified
procedure would be more robust (cf. Hand 1997, p. 7).
In the winning-group procedure we developed, the
class distribution is rearranged to perform only three
types of corrective actions: No-Action, Add Cases, and
Subtract Cases. Basically, we use the most populated

class in the original distribution to decide the winning
group. For instance, let us consider that the most
populated class is "Under_3." As such, the winning
group will be a new class whose population is ob-
tained by summing up all the "Under" classes to-
gether, while the others are obtained by summing up
all the "Over" classes plus the "Ok" class. If "Ok" is
the winning group, the others are obtained by sum-
ming up all the "Over" classes plus the "Under" class.
The entropy is then computed on this two-class dis-
tribution. We then store the rule along with this
normalized entropy. An algorithm analysis is pre-
sented in the appendix.

The Action Phase-Corrective Actions
The rule network assures us that we can easily find the
set of rules that apply to a new event. We still,
however, must decide which corrective action to take.
To aid this, each rule is annotated with the entropy and
confidence value. The entropy value is computed by the
formula: E = -E, p log(p), where the estimates of the
p values come from the relative frequencies in the
class distribution for a rule in the calibration data set.
The confidence value is computed as: 10,000 x (1
- E'), where E' is the entropy normalized to remove
differences due only to the number of categories in a
class distribution. Confidence, basically, gives us an
estimate of how how strong the rule is, that is, how
much we trust the rule. A class distribution with only
one nonempty class, out of the 11 possible classes,
gives us the highest confidence value. Conversely, a
uniform distribution, in which all the classes are
equally populated, gives us the highest entropy and
the lowest confidence.

A corrective action is taken following a forecast to try
to reduce error. Corrective actions are suggested by
the induced rules. Different types of corrective actions
can be taken. The simplest one is based on adjusting
the forecast value according to the most likely class.
Consider again the rule:

IF

DCS = 'Gelatin' and
TPR = 'Very High' and
Mfr = 'General Foods,'

256 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Tulrniing Datainining inito a Managemiienit Scienice Tool

THEN

U_ 12 0,
U_4_11 58,
U_3 221,
U_2 = 1149,
U_1 = 3583,
Ok = 1115,

0_1 7,
0_2 1,
0_3 = 0,

0_4_11= 0,
0 12 0 ,

Here, the simplest (most intuitive) corrective action
would suggest incrementing the forecasted value by
one, since the most populated (most likely) class is
U_1 (indicating that our forecaster tends to underfore-
cast under these specified conditions). This simple
action leads to overall improved accuracy. That is,
without the corrective action the total case error for the
previous rule is computed by the class distribution as:

12*0 + 4*58 + 3*221 + 2*1149 + 1*3583 + 0*1115

+ 1*7 + 2*1 + 3*0 + 4*0 + 12*0 = 6785.

Once we perform the corrective action of adding one
case to all estimates, we get the following total case
errors:

12*0 + 4*0 + 3*58 + 2*221 + 1*1149 + 0*3583

+ 1*1115 + 2*7 + 3*1 + 4*0 + 12*0 = 2897.

By shifting one case up, we basically fix the 3,583 U_1
cases (that now lead to an "0" error); we also reduce
the error for all U_xx cases. At the same time, we
increase the errors for Ok (the 1,115 Ok cases now
have an error of one case each) and all the O_xx
classes. However, the frequency distribution after the
correction yields a substantial error reduction [(6785-
2897)/6785 = 57.3%] for the set of examples covered
by that rule. Intuitively, no corrective action should be
taken when the most populated class is "Ok."

While for this example almost 77% of the forecasts
were within ? one case, across all events in this pilot
market, over 82% of the forecast errors are within
? one case. In light of this a priori knowledge, we

restricted our actions to a maximum of ? one case. We
used this method in the results below, but hope to
generalize the method in the future.

Results
The parameters of the statistical forecast were cali-
brated on 1.3 million observations from a stratified
random sample of promotion events from the prior 30
months in a large metropolitan market area for 95
stores of a retail chain. The dataminer was run on
nonoverlapping 1.6 million observations from the
same event population, and 28,187 rules were gener-
ated. The summaries reported here are based on a
large data set (459,526 records) from a hold-out, cross-
validation period that occurred months after the pa-
rameters of the market-response model had been
estimated. The "Ok" class is by far the most popu-
lated. As stated earlier, for almost 49% of the promo-
tion events, the market-response model forecast the
correct number of cases. For 82% of the events the
model was within ? one case, and for 90% of the
events the model was within ? two cases. The average
absolute error is far less than one case per promotion
event. This gives a clear idea of how well the statistical
forecaster works, even before applying the dataminer.
The task of the dataminer is therefore extremely
challenging. Even a small improvement (in terms of
error reduction) is hard to achieve since it is on top of
an already highly accurate system.

The confidence for acting on a rule was set relatively
low (900 out of a maximum value of 10,000).5 The
dataminer had sufficient confidence to recommend ac-
tion on 46% of the forecasts (209,912 events). In the
spirit of the physician's rule to first do no harm, the
dataminer recommended "No Change" in 66%
(138,614) of these events. "No change" was the correct
"action" to take 96% of the times it was recommended.
In such instances the dataminer added credibility to
the original forecast.

5 The minimum confidence threshold value depends upon the
current user's goal. The higher the value, the fewer rules are created
and the fewer records are classified. However, these fewer records
are classified with a higher degree of confidence. More applied
studies have to be conducted before precise guidelines can be
developed.

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 257

COOPER AND GIUFFRIDA
Turning Dataniiining into a Management Science Tool

The dataminer compensates for the kind of patterns
no manager would be expected to recall and no
market-response model would traditionally incorpo-
rate. For example, for 2,635 four-week promotion
events for cat food, with a medium level of price
reduction, the PromoCastTM overforecasts 58% of the
time and underforecasts 26% of the time. Simple
corrective action leads to a 46% reduction in case
errors. For 350 21-day promotion events for Pedigree
Dog Food (with a medium level TPR), PromoCastTM
underforecasts 88% of the time and overforecasts just
2% of the time. Simple corrective action reduces case
errors by 79%. For long (28-day) promotions for Yo-
plait Yogurt (2,445 events), PromoCastTM overforecasts
59% of the events and underforecasts 24%. Simple
corrective action reduces case errors by 42%. For short
(seven-day) promotions for Dannon Yogurt (1740
events), PromoCastTM underforecasts 78% of the
events, while overforecasting just 3%. Simple correc-
tive action reduces case errors by 60%.

In this validation study, the benefit showed mostly
on the underforecast side. That is, the dataminer
tended to catch somewhat more situations where the
statistical model underforecasts sales. This may, in
part, be due to the truncation that occurs in out-of-
stock conditions. If the store runs out of stock, the
forecast may appear to be too large for a reason that
the dataminer cannot detect. To a minor extent, the
corrective actions worsened the overforecast classes.
Of course in the instances when the dataminer sug-
gested that we "correct" an already accurate forecast,
the dataminer worsened case errors. For this to be
managerially acceptable, we need the overall effect to
be beneficial, which it is in this case. The cumulative
case error from PromoCastTM for the 209,912 events in
which rules applied was 112,860 cases of merchandise.
Across all actions taken (including "No Change"), the
dataminer reduced errors by 10,117 cases (8.9%). To
put the 8.9% across-the-board improvement in per-
spective, we report the efforts of Krycha (1999). He
provided two teams with the data used by Promo-
CastTm and KDS for the pilot market (1.2 million
records). One team consisted of graduate students and
two consultants from the SAS Institute Austria. They
used the SAS Enterprise MinerTM to try to reduce case

errors. The other team consisted of graduate students
and two consultants from Eudaptics (a statistical con-
sulting group in Vienna that specializes in self-orga-
nizing maps). This group used SOMineTM to try to
reduce case errors. After a semester of effort, both
groups reported that they could not improve on
PromoCastTM. Viewed from this perspective, even the
8.9% across-the-board improvement seems more im-
pressive.

Table 1 summarizes the rules that were used to
change forecasts for 209,912 events. Table 2 summa-
rizes the rules that were used to support not changing
the forecasts for 249,614 events. We mined up to
four-term rules. Of the rules we used, approximately
75% were either two-term or three-term rules. The
relative frequencies for the number of terms in a rule
(i.e., the bottom row of each table) were stable be-
tween rules pointing to a change and rules indicating
no change. Over 85% of the activated rules had more

Table 1 Events Where Rules Change Forecast, N = 209912

Terms in Rule

Variable 1 2 3 4

Promotion Condition-ME 0% 9% 17% 22%
Store Node 0% 10% 11% 7%
Model 27% 29% 27% 23%
Manufacturer 34% 17% 11% 12%
Subcommodity-DCS 39% 19% 11% 13%
TPR 0% 16% 22% 22%
Pct. of Rules in Column 14% 34% 39% 13%

Table 2 Events Where Rules Do Not Change Forecast, N = 249614

Terms in Rule

Variable 1 2 3 4

Promotion Condition-ME 2% 15% 21% 22%
Store Node 3% 16% 14% 8%
Model 42% 20% 21% 22%
Manufacturer 13% 12% 11% 15%
Subcommodity-DCS 19% 14% 11% 12%
TPR 20% 23% 23% 21%
Pct. of Rules in Column 13% 37% 38% 12%

258 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Tuirning Datarniniing into a Management Science Tool

Table 3 Datamining Results for the 10 Most Frequently Promoted Categories

No. of Events PromoCastTM PromoCast@ + KDS Case Percent
Subcommodity Covered by Rules Errors Case Errors Improvement Improvement

Carbonated Beverages 6827 11165 9573 1592 14.3%
Cookies 4440 1651 1632 19 1.2%
Prepared Meals 4009 2265 1892 373 16.5%
Frozen Pizza 2460 1034 983 51 4.9%
Yogurts 3737 4445 3214 1231 27.7%
Ice Creams 5259 3827 3223 604 15.8%
Crackers & Savory Snacks 3483 1198 1182 16 1.3%
Shampoos 5503 1087 1087 0 0.0%

than one term. Reconsidering the problem of adding
1,200 dummy variables for merchandise divisions and
1,000 dummy variables for manufacturer, we now see
that these additions grossly underestimate the speci-
fication problem. Over 85% of the actions we take
invoke rules reflecting higher-order interactions. The
dataminer represents an enterprise-scale method for
finding these interactions.

The cell percent reflects what percentage of n-term
rules used the variable in that particular row. Some
interesting patterns emerge. Note in Table 1 (change
rules) that no one-term rules appear for Promotion
Condition-ME, Store Node, or TPR. For Promotion
Condition-ME, this is not too surprising since a
similar term already appears in the model, leaving
only higher-order interactions potentially unused. We
also would not expect to have to change all the
forecasts relating to a particular Store Node. TPR is a
five-step, categorical variable that is monotonically
related to the discount variable in the PromoCastTM
model. However, we would be mistaken to assume
that all the information in TPR is used in the market-
response model. We see this when we compare the 0%
of events that invoked one-term rules used TPR to
change forecasts (cf. Table 1), whereas 20% of events
that invoked one-term rules used TPR indicate no
change in the forecasts (cf. Table 2). Further investiga-
tion shows that almost all of these "no change" rules
involved lower levels of TPR-probably reflecting low
sales for these event for which one case was sufficient.
Similarly, 42% of one-term rules in Table 2 involve
Model. Further investigation shows that when we
forecast for slow movers for longer events (two-,

three-, or four-week events), we can have extra confi-
dence in the original PromoCastTM forecast.

Overall, 30% of the events invoked rules involving
manufacturers or merchandise categories (or both). To
get a better feel for how the dataminer would help a
manager, we will look at these rules for the biggest
manufacturers and the biggest merchandise catego-
ries. Table 3 summarizes the datamining results for
the eight most frequently promoted categories (sub-
commodities). Carbonated beverages are difficult to
predict. Where KDS rules apply, the PromoCastTM
errors are nearly four times as big as the average
category. KDS reduces these errors by 14.3%. Even
bigger percentage error reduction occurs for prepared
meals, yogurts, and ice creams. For cookies, crackers
and savory snacks, and shampoos, the error reduction
is modest. Notice that these categories have small
average errors. The rules that KDS finds for the most
part say "No Change."

Table 4 shows the datamining results for the eight
most frequently promoted manufacturers. By far, the
largest is the private label category in which the
retailer is presented as if it were the manufacturer.
This "manufacturer" cuts across so many areas that
we should not be surprised that it reflects just about
the average error reduction of 8.9%. Double-digit error
reductions occur with dataminer rules for General
Mills, Kraft, Coca Cola, Frito Lay, and General Foods.
Rules for Procter & Gamble give a 4% error reduction
even though the PromoCastTM forecasts for Procter &
Gamble events in these instances are much more
accurate than the average.

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 259

COOPER AND GIUFFRIDA
Turnfiing Dataininiiig inlto a Management Scienice Tool

Table 4 Datamining Results for the 10 Most Frequently Promoted Manufacturers

No. of Events PromoCastTM PromoCastTM + KDS Case Percent
Manufacturer Covered by Rules Errors Case Errors Improvement Improvement

Store Private Labels 29972 21983 20028 1955 8.9%
Procter & Gamble 7179 2570 2465 105 4.1%
Nabisco 3805 1466 1435 31 2.1%
General Mills 3745 2808 2231 577 20.5%
Kraft 3663 3081 2761 320 10.4%
Coca Cola 1797 4086 3536 550 13.5%
Frito Lay 616 898 774 124 13.8%
General Foods 3104 3059 2452 607 19.8%

Discussion
Using the discovered rules, we can spot subdomains
in which the PromoCastTM forecast performs either
brilliantly or poorly. The symbolic rule representation
gives us a precise, understandable description of these
subdomains. There are two primary ways to take
advantage of such information. The first way would
be to review the statistical forecast model itself to
embed such information. This, in essence, would
correct for misspecification of the original statistical
model. This is what modelers typically do. They find
what is missing from the original specification and
modify accordingly. However, since any particular
rule typically covers only a small percentage of the
total event pool, and since the data driving the im-
proved performance due to the dataminer are typi-
cally nominal-scale variables, the potential for directly
modifying the statistical forecast model is small. We
are trying to achieve a synthesis of methods. Promo-
CastTM is designed to be transported across markets
and retailers. The 67 variables in the basic model will
have different importance in different applications,
but the totality (explained variance) should be rela-
tively stable.6 The customization to each retailer-mar-
ket combination involves the development of local
knowledge. Here the marketing value associated with
such information may be large. Manufacturers want
forecasts tailored to their individual merchandize
lines. Category managers need help in handling such

6 Applications of PromoCastTNI in five other pilot markets support
this. However, the KDS algorithm has only been applied in the pilot
market described in this report.

demands. The dataminer essentially provides that
kind of mass customization. While the results pre-
sented here are for a cross-validation data set, the data
set on which the knowledge is developed could be
used to inform managers when they can have extra
confidence in the original PromoCastTM forecast (i.e.,
when the dataminer indicates the forecast is "Ok,"
when local knowledge can be used to improve the
forecast, and when we are uncertain, that is, when
there are no rules covering a forecast).

Future Directions
Many issues are still open to investigation. Our high-
est priority concerns the incremental acquisition of
knowledge. Induced knowledge should be persistent
and updateable over time in a data-intensive, dynamic
environment. Incremental learning has received some
attention in recent years (Agrawal and Psaila 1995,
Shan and Ziarko 1995, Thomas et al. 1997), but most of
the machine-learning-rooted, rule-induction algo-
rithms are based on a "all-at-once" execution model.
This means that data are read and the rules are
generated in just one step. Updating the discovered
knowledge with these algorithms requires a fresh
remaining of the entire database. This situation may
be unacceptable in a dynamic, data-intensive environ-
ment. Think of a grocery retailer whose cash registers
process purchases of thousands of different items
daily. A good KDD/DM system should be able to
update the knowledge discovered so far with the new
incoming records. Because of the separation between
the rule-generation phase and the rule-ranking phase,

260 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Tturning Datamining into a Managemwent Science Tool

KDS is capable of doing this. This capacity has yet to
be tested in real applications.

Another new area involves a reorganization of the
rule network to extend the rule syntax by allowing
set-valued features in the rule antecedents (Cohen
1996). This is like considering the "or" rule as well as
the "and" rules emphasized so far. Consider the
following two rules:

IF TPR= None &
Mfr_Code = General Foods &
DCS Luncheon Meats;

THEN
No = 0,
Ok 115.

IF TPR None &
Mfr_Code = General Foods &
DCS = Puddings;

THEN
No 0,
Ok = 113.

They can be merged into the following single rule:

IF TPR= None &
Mfr_Code= General Foods &
DCS in tLuncheon Meats, Puddings

THEN
No 0,
Ok = 228.

The variable DCS has been combined into a set of
values; notice also the combined class distribution.
The merging of such rules can take place thanks to the
overlapping nature of the antecedents and the uni-
form class distribution of the two rules. This extension
would draw the dataminer closer to the domains in
which CART algorithms are used (Breiman et al.
1984). CART applied to nominal-scale variables, such
as those used here, looks at all possible binary splits.
This is totally impractical for a variable such as
manufacturer with 1,000 levels or DCS with 1,200
levels.

We also have begun investigation of a hierarchical
or sequential approach to the action stage of datamin-
ing for management science applications. We would
first decide whether we should change the forecast at
all. We would then decide whether this new event is

going to be an overforecast or an underforecast. If an
underforecast, we would then try to decide how many
cases under. Such an approach would allow us to
probe more specifically into what contributes to over-
or underforecasts. More important, this approach
should allow us to extend the range of corrective
actions beyond the simple ? one case described here.
Preliminary research has been encouraging, but more
development is needed.

Limitations
Any technique that focuses on using history (stored
knowledge) to help correct future actions has inherent
limitations in new product research and forecasting.
Neither PromoCastTm nor KDS has anything to say
about forecasts for new products. In both of these
applications, historical data are the strategic asset
being exploited.

Out-of-stock conditions also create a limitation for
KDS. Some of the errors arise when the forecast would
be accurate if only the store did not run out of
inventory. So we are more likely to observe errors
associated with overstocking than with understock-
ing. The truncation of errors associated with this issue
is very difficult to handle. Cooper et al. (1999) discuss
some aspects of the issue, but a full treatment is not
possible within either the statistical model or the
dataminer.

The other obvious limitation deals with uses of KDS
for finding model misspecification in PromoCastTM.
Our design is one that focuses on using KDS on
information that is not easily incorporated into a
traditional market-response model. To now turn
around and say that we could use KDS to find
variables that could be included in the specification of
PromoCastTM is somewhat awkward. KDS is best used
in the discrete-variable space, PromoCastTM in the
continuous variable space. There are, however, many
exceptions. PromoCastTM uses indicator variables for
ads and displays and holiday effects. KDS breaks the
continuous variable TPR into bins for "Very High
TPR" and the like. As such, it is possible to use KDS on
such "binned" variables as a way to look more sys-
tematically at model residuals (for possible misspeci-
fication). What we really advocate, however, is that

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 261

COOPER AND GIUFFRIDA
Turning Datamining into a Management Science Tool

researchers use any tool available to study the resid-
uals from their models. Learning from what is left
behind in model specification is a fundamentally
important part of model building. KDS does this
naturally when what is excluded is of a different data
type (discrete data) than that used in the base model
(continuous data).

Conclusions
The sequential application of statistical forecaster
and dataminer provides a natural way to use a
broader set of information that easily can be used by
either. Sure, it is theoretically possible to use mar-
ket-response models to incorporate the 28,000 rules
we found in this pilot market. Sure, it is theoreti-
cally possible to discretize all the variables used in
the market-response model so that they could be
analyzed with the dataminer. But we feel strongly
that we are better off using each of the techniques
where each best fits. We feel the benefits demon-
strated so far justify our continued exploration of
these techniques.7

'The authors wish to thank Dominique Hanssens, Donald Morri-
son, Wesley Chu, and David F. Midgley for their helpful comments
and the editors and referees of Management Science for their thought-
ful critique and suggestions. We thank Sharon L. Bear, Ph.D.
(BearWrite@aol.com), for her editorial assistance. This research has
been supported by grants from Intel Corporation and software
donations from Microsoft. The data were provided by ems, inc. The
assistance of Penny Baron, Mike Swisher, and Bill Weissenberg is
gratefully acknowledged.

Appendix-Algorithm Description and Analysis
KDS works by a progressive rule specialization. The nth iteration
creates all the n-term rules existing in the input database. Rule
coverage (i.e., the number of records "covered" by a rule) must
decrease monotonically at each iteration. The process is halted as
soon as further specialization leads to coverage below the spec-
ified minimium suipport for all new generated rules. Only observed
combinations of features are considered when building rules,
which is much more efficient than algorithms that process all
theoretical combinations of features (Clark and Niblett 1989,
Cohen 1995). R[N] represents the set of N-term rules. The set S
contains all the N-term rule combinations assigned to the current
record. For instance, say the input record is: {a = 10, b = low, c
= john}, then the set S at the second iteration (N = 2) contains all
two-term conjunctions: {a = 10 & b = low, a = 10 & c = john,
b = low & c = john}. Likewise, the set T is constructed from the
elements of S. For instance, for the element {a = 10, b = low} of

S, T would be: {{a = 101, {b = low}}, a set of (N - 1)-term
patterns. The notation R[N].supp(X) specifies the popularity of
the pattern X in the rule set R[N].X.class is the class value of the
input example X, while R[N].class(Y, C) is the frequency of the
class C for the rule Y in the rule set R[N].

The rule generation performs a total of k iterations, where k is
either the maximum number of terms in the patterns before the
coverage drops below the minimum support value (for all the new
rules), or the maximum number of terms in the rule antecedents
that we feel able to interpret. The upper bound for k is the
number of independent variables. Therefore, the "while loop" in
the algorithm has a cost that is linear in k and e, where e is the
number of input examples. The nth iteration exploits the results
of the (n - 1)th iteration. For instance, to add the new pattern "a
& b & c" at the third iteration, it is necessary (but not sufficient)
that "a & b", "a & c", "b & c" are all previously supported. The
size s of the set S in the algorithm (shown in Exhibit 1 at nth

Exhibit 1

I = input database;
N = 1;
Flag = True;
While Flag

Flag = False;
R[N] = 0;
For each record W in I do
S = {N-term pafterns from W};
For each X in S do
T = {(N - 1)-term pafterns from XI;
If (N = 1) or
(all elements in T are supported)

then
Flag = True;
If X E R[N] then
R[N].supp(X) = R[N].supp(X) + 1;

Else
R[N] = R[N] U {X};
R[N].supp(X) = 1;

End If
Increment R[N].class(X, X.class);

End If
End For

Pruning by minimum support
For each Y in R[N] do

If R[N].supp(Y) < min-supp then
R[N] = R[N] - Y;

End If
End For
N = N + 1;

End While

262 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

COOPER AND GIUFFRIDA
Turning Datamining into a Management Science Tool

iteration) is a!/[n!(a - n)!], where a is the total number of
independent variables. The set S contains the candidates for new

patterns to be added to the rule set. For each element of S the set

of subpatterns is generated and stored in the set T whose size we
refer to as t. For each element of T a lookup (with logarithmic

cost) is executed until one element is not supported or all the

elements have been verified to be supported. In the worst case, t

lookups have to be performed for each of the s elements of S. The

total cost becomes linear in k, e, s, t and log(l) where I is the size

of the R[n - 1] set at the nth iteration. Furthermore, for each
iteration a pruning loop is executed to remove all new rules that

are not supported (i.e., had fewer instances than the user-

definable, minimum-support threshold). This component has a

minimal cost that can be omitted in the cost computation. In the

previous computation s is a function of the number of combina-
tions of independent variables, so the cost of the KDS rule-

generation phase increases roughly with the square of the size of

the variable space. The total cost is not a function of the number

of features (i.e., number of levels of a nominally valued indepen-
dent variable). This makes KDS more suitable for databases with

a large number of records and a small number of independent
variables, each of which has a large number of levels or features.
The cost independence from the number of features makes KDS
noise tolerant. Noise in databases results in some features with
minimal support. The bottom-up induction style of KDS leads to

very little additional work for infrequently supported features
(recall that no "for each possible feature" loop takes place in the

algorithm). Furthermore, poorly supported features are promptly
dropped by the pruning loop at the end of each iteration. Noise

represents a difficult issue for many induction algorithms whose

cost increases an order of magnitude in presence of noisy data.

Some algorithm's performance worsens to being a quartic func-

tion (e4) in noisy domains, where e is the number of training

examples (Cohen 1995).
In KDS, rule ranking occurs during the classification of new

examples. Rule selection is actually executed prior to the ranking;

only rules applying to the example to be classified are selected.
This greatly reduces the rule search space for the rule-ranking

activity. The rule-selection algorithm described above has a small

cost, which is the cost of looking up each feature of the input

example in the one-term rule set. Then an upward search of the
rule network will mark all parent rules. This last operation has

negligible cost close due to the indexed structure of the pattern
network. This leads to a total cost for each new record to be
classified being a linear function of v and log(l) where v is the
number of independent variables and I is the total number of

one-term patterns in the rule network.
The execution of KDS on our large database took a total of five

hours with a tightly coupled implementation with DB2? in a

Windows NT system. This is a substantial improvement compared
to the 21 days (and still counting) for the decoupled Ripper
implementation.

References
Agrawal, R., G. Psaila. 1995. Active data mining. Proc. First Internat.

Conf. Knowledge Discovery Data Mining. AAAI Press, Mon-
treal, Canada.

, K. Shim. 1995. Developing tightly-coupled data mining appli-
cations on a relational database system: Methodology and
experience. IBM Research Report RJ 10005(89094).

, . 1996. Developing tightly-coupled data mining applica-
tions on a relational database system. Proc. Second Internat. Conf.
Knowledge Discovery & Data Mining. AAAI Press, Portland,
OR.

, M. Metha, J. Shafer, R. Srikant. 1996b. The Quest data mining
system. Proc. Second Internat. Conf. Knowledge Discovery & Data
Mining. AAAI Press, Portland, OR.

Anand, T. 1996. The process of knowledge discovery in databases: A
human-centered approach. Usama M. Fayyd, Gregory Pia-
tetsky-Shapiro, Padhr Smith, Ramaswamy Uthurusamy, eds.
Advances in Knowledge Discovery and Data Miniing. AAAI Press/
The MIT Press, Boston, MA.

Blattberg, R. C., S. A. Neslin. 1990. Sales Promotion: Concepts,
Methods, and Strategies. Prentice-Hall, Englewood Cliffs, NJ.

Breiman, L., J. H. Friedman, R. A. Olshen, C. J. Stone. 1984.

Classification and Regression Trees. Wadsworth International
Group, Belmont, CA.

Cheung, D. W., J. Han. 1996. Maintenance of discovered association
rules in large databases: An incremental updating technique.
Proc. 12th ICDE. New Orleans, LA.

Clark, P., T. Niblett. 1989. The CN2 induction algorithm. Machine
Learning 3(1) 261-283.

Cohen, W. W. 1995. Fast effective rule induction. Proc. Twelfth
Internat. Conf. Machine Learning. Lake Tahoe, CA.
. 1996. Learning trees and rules with set-valued features. Proc.
Eighth Annual Conf. Innovative Applications of Artificial Intel-
ligence, AAAI-96. Portland, OR.

Cooper, L. G., P. Baron, W. Levy, M. Swisher, P. Gogos. (1999)
PromoCast@: A new forecasting method for promotion plan-
ning. Marketing Sci., 18(3) 301-316.

Domingos, P. 1996a. Linear-time rule induction. Proc. Second Inter-
nat. Conf. Knowledge Discovery & Data Miniing. AAAI Press,
Portland, OR.

. 1996b. Unifying instance-based and rule-based induction.
Machine Learning 24 141-168.

Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, R. Brachman. 1996.
From data mining to knowledge discovery: An overview.
Usama M. Fayyd, Gregory Piatetsky-Shapiro, Padhr Smith,
Ramaswamy Uthurusamy, eds. Advances in Knowledge Discovery
and Data Mining. AAAI Press/The MIT Press.

Feldman, R., Y. Aumann, A. Amir, H. Mannila. 1997. Efficient
algorithms for discovering frequent sets in incremental data-
bases. Proc. 1997 SIGMOD Workshop on DKMD. Tucson, AR.

Furkranz, J. 1996. Separate-and-Conquer Rule Learning. Technical
Report OEFAI-TR-96-25. Austrian Research Institute for Artifi-
cial Intelligence, Vienna, Austria.

MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 263

COOPER AND GIUFFRIDA
Turning Datamining into a Managemnent Science Tool

Hand, D. J. 1997. Construction and Assessmiient of Classification Rulles.
John Wiley & Sons, Chichester, UK.

Holte, R. C., L. E. Acker, B. W. Porter. 1989. Concept learning and
the problem of small disjuncts. Proc. Eleventh Interncat. Joint Conf.
Artificial Intelligence. Morgan Kaufmann, Detroit, MI.

John, G. H., B. Lent. 1997. SIPping from the data firehose. Proc. Third
Internat. Conf. Knowledge Discovery & Data Mining. AAAI Press,
Newport Beach, CA.

Kakemoto, Y., S. Ohsuga. 1997. KDD process planning. Proc. Third
Internat. Conf. Knowledge Discovery & Data Mining. AAAI Press,
Newport Beach, CA.

Krycha, K. A. 1999. Case study growmart: The effects of promo-
tional activities on sales. UJbung aus Verfahren der Marktfor-
schung Endbericht. Universitat Wien, Institute fuir Betriebswirt-
schaftslehre, Vienna, Austria.

Lilien, G. L., A. Rangaswamy. 1998. Marketing Engineering: Comptut-
er-Assisted Marketing Analysis and Planning. Addison-Wesley,
Reading, MA.

Liu, B., W. Hsu, S. Chen. 1997. Using general impressions to
analyze discovered classification rules. Proc. Third Internat.
Conf. Knozvledge Discovery & Data Mining. AAAI Press, New-
port Beach, CA.

Ng, V. T., C. Y. Wong. 1996. Maintainance of discovered association
rules in large databases: An incremental updating technique.
Proceedings of the 12th ICDE. New Orleans, LA.

Piatetsky-Shapiro, G., R. Brachman, T. Khabaza, W. Kloesgen, E.
Simoudis. 1996. An overview of issues in developing industrial
data mining and knowledge discovery applications. Proc. Sec-
ond Internat. Conf. Knowledge Discovery & Data Mining. AAAI
Press, Portland, OR.

Provost, F. J., V. Kolluri. 1999. A survey of methods for scaling up
inductive algorithms. J. Data Mining and Knowledge Discovery
3(2) 131-169.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Francisco, CA.

Rao, V. R., J. H. Steckel. 1998. Analysis for Strategic Marketing.
Addison-Wesley, Reading, MA.

Shan, N., W. Ziarko. 1995. Data-based acquisition and incremental
modification of classification rules. J. Comput. Intelligence 11(2)
357-370.

Silberschatz, A., A. Tuzhilin. 1996. What makes patterns interesting.
in knowledge discovery systems. IEEE Trans. Knowledge Discov-
ery Data Eng. 8(6) 970-974.

Thomas, S., S. Bodagala, K. Alsabti, S. Ranka. 1997. An efficient
algorithm for the incremental updation of association rules in
large databases. Proc. Third Internat. Conf. Knowledge Discovery &
Data Mining. AAAI Press, Newport Beach, CA.

Zhong, N., C. Liu. 1997. KDD process planning. Proc. Third Internat.
Conf. Knowledge Discovery & Data Mining. AAAI Press, New-
port Beach, CA.

Accepted by Dipar C. Jain; received April 17, 1998. This paper has been zvith the authors 6 months for 3 revisions.

264 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000

	Article Contents
	p. [249]
	p. 250
	p. 251
	p. 252
	p. 253
	p. 254
	p. 255
	p. 256
	p. 257
	p. 258
	p. 259
	p. 260
	p. 261
	p. 262
	p. 263
	p. 264

	Issue Table of Contents
	Management Science, Vol. 46, No. 2 (Feb., 2000), pp. 169-332
	Front Matter
	How the Incumbent can Win: Managing Technological Transitions in the Semiconductor Industry [pp. 169 - 185]
	A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies [pp. 186 - 204]
	Capital Budgeting, the Hold-Up Problem, and Information System Design [pp. 205 - 216]
	Stock Replenishment and Shipment Scheduling for Vendor-Managed Inventory Systems [pp. 217 - 232]
	On the Determination of Subjective Probability by Choices [pp. 233 - 248]
	Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results [pp. 249 - 264]
	Improving Manufacturing Performance Through Process Change and Knowledge Creation [pp. 265 - 288]
	Third Degree Stochastic Dominance and Mean-Risk Analysis [pp. 289 - 301]
	The Effects of Coefficient Correlation Structure in Two-Dimensional Knapsack Problems on Solution Procedure Performance [pp. 302 - 317]
	Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem [pp. 318 - 326]
	Technical Note
	Mathematical Properties of the Optimal Product Line Selection Problem Using Choice-Based Conjoint Analysis [pp. 327 - 332]

	Back Matter

