UC Irvine
ICS Technical Reports

Title
Draco 1.3 users manual

Permalink
https://escholarship.org/uc/item/3jd48361

Authors

Neighbors, James M.
Arango, Guillermo
Leite, Julio C.

Publication Date
1984-10-30

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3jd4836r
https://escholarship.org
http://www.cdlib.org/

" LIBRARY
University of California
[RVINE o

Draco 1.3 Users Manual

e m——

30 October 1984

Technical Report 230

Department of Information and Computer Science
University of California at Irvine
Irvine, Ca. 92717

Copyright (C) 1984 James M. Neighbors, Guillermo Arango, Julio C. Leite
et ..?-/
This work was supported by the National Science Foundation Software
Engineering Section under NSF grants MCS-81-03718/MCS-83-04439 and by the
Air Force Office of Scientific Research.

Table of Contents

1. An Introduction to the Draco System

e
N w R

The Draco View of Software Production

. Running the Draco System
- Interacting with Draco Menus

Termina. Definition for Draco

. Overview of the User Manual

2. Describing a Domain Language

N
[

2.2,

2.3.

2.4.
. Using the Draco Parser Generator

2.5

External Form (Syntax) Specification

1.1. Draco BNF Described in BNF

1.2. An Example of Draco BNF

1.3. The PREFIX and SUFFIX Rules

1.4. Controlling Parser Backtracking

1.5. Error Recovery During Parsing

1.6. Elements of External Form Description

1.7. Recognizing the End of the Eile

e Complete External/Internal Form Speciflcation
.2.1. External/Internal Form Specification
.2.2
.2.3
.2.4
.2.5
.2.6.
eci
.3.1.
3.

it

. Specifying a Legal Parser
. A Complete External/Internal Form Example
. An Example Internal Form
. Variable Length Structures in Internal Forms
Elements of Internal Form Description
cial Functions in Parsers
Checking Consistency in ‘Parsers
2. Notifying the User
2.3.3. Non-Standard Parser Constructs
Class of PARGEN Parsers

3. Building a Prettyprinter with PPGEN

3.1.
3.2.
3.3.

3.0.1. The Syntax of a Prettyprinter Description
3.0.2. An Example of a Prettyprinter Description
3.0.3. Output Device Dependent Codes

3.0.4. Elements of a Prettyprinter Description
Prettyprinting TREEs and CHARTs

Special PrettyPrinter Functions

Using the BUILD Subsystem to Create a Prettyprinter

4. Building a Transformation Library with XEMGEN

4.1.

4.2.

The Transformation Library and Metarules
4.1.1. Transformation Metarules
Specifying the Program Transformations’
4.2.1. The Syntax of a Transformation Insertion File
4.2.2. An Example of a Transformation Insertion File
4.2.3. Elements of a Transformation-Insertion File

i .

OO BbwWH M

O

10
11
12
13
15
17
18
19
19
20
21
22
23
25
26
26
27
28
28
30

33

33
34
37
37
39
42
42

45

45
46
47
47
48
49

- 7. Using

4.2.4. The Application Code of a Transformation

4.3. The Catalog of Transformations for a Domain
4.4. Using the TRANSFORMATION BUILDER SUBSYSTEM: XEMGEN

5. Building a Component Library with REFGEN
5.1. The Constituent Parts of a Component
5.2. The Motivation for Libraries of Components
5.3. Building a Component Library

6. Converting a Program to Internal Form with PARSE
6.1. Using the PARSE Subsystem

6.2. How Transformations are Suggested in PARSE
. 6.3. Multiple Domains

TEMREF the Program Manipulation Subsystem

. The TFMREF Commands Which Set- the Context

7.1.1. The DOMAIN command
7.1.2. The INSTANCE command
7.1.3. The LOCALE Command

. The Miscellaneous TFMREF Commands

.1. The PP Command

.2. The INFO Command

.3. The HARDCOPY Command

.4. The SAVE Command

.5. The EXIT Command

. A Summary of the TFMREF Commands
. An Example Session with TEMREF

\l\l\l\l\)
NNNNN

the Program Transformation Mechanism

. The SUGGEST command

. The APPLY Command

. The TRANSFORM Command
. The ?TRANS Command

. The ?CLASS Command

. The UNLOAD-TRANSFORM Command
Example

the TFMREF Refinement Subsystem

. The TFMREF Commands Which Work With Refinements
. How components are used ’
. The Refinement Mechanism

. The TFMREF Command: REFINE
. Commands available through the Refinements User Interface .

9.5.1. The TRY command
. The USE command
. The DEFER command
. The ABORT command

OO0
nnon
AN N

ii

50
51
52

57

SH
62
63

67

67
68 .-
68

71

71
72
72
73
74
74
74
74
75
75

75

76

. 85

85
86
86
87
87
87
88

95

95
95
96
97
98
98
98
99
99

. The DO command
. The HELP command
. The INFORMATION command

tD\D\OkO
U"(ﬂ(ﬂ(ﬂ
(I)\lo\(n

9.6. An example of a sessicn with REFINE

10. Using the TFMREF Tactics Subsystem

I.A Complete’External/Internal Lanuage Definition
I.1. External/Internal SIMAL Definition
I.2. Example SIMAL Programs

10.0.1. Quadratic Equation

II. The Definition of Draco BNF in Draco BNF
II.1. The File PARGEN.DEF |

III. The Defiﬁition of a Prettyprinter Description
III.1. The File PPGEN.DEF

IV. An Example Prettyprinter Description

~ IV.1. A SIMAL Prettyprinter Description

V. An Example Set of Transformations |
V.l._SIMAL Transformations

VI. The Definition of a Component Insertion File

VI.1. The File REFGEN.DEF

- VII. The Definition of Tactics

VII.1. The File TACTIC.DEF
VIII. Draco Terminal Definition
IX. Tactics Prettyprinter Definition
X. Draco Error, Noté, and Syserr Messages

Index

iii

A summary of the RE: TINEMENTS commands

93
99
100
101
101

113
117

117
119

119

121

121
125
125
127
127
129
129
135
135

137

137

141
145

147

149

List of Figures

Figure
‘Figure
Figure
Figure

BNE for Parser Definition

Sample of Library-creation dialogue

New transformation-insertion file

Adding transformations to an existing library

.10

53
53

53

CHAPTER 1
’AN INTRODUCTION TO THE DRACO SYSTEM
It has beeﬁ a common practice to name héﬁ éomputer languages after stars.
Since the system described in this manual.is a mechanism which manipulates
special purpose languageé, it seems only fitting to name it after a
structure of stars--a”galaxy. Dracol is a dwarf elliptical galaxy in our
local group of galaxies (which is dominated by two large spiral galaxies,
the Milky Way and Andromeda) and is situated near.the Milky Way (1.2x105
solar masses and 68 kiloparsecs from Earth). Because it is small iﬁ size

and close to earth, its name is well-suited to the current system which is a

small prototype.

1.1. The Draco View of Software Production

The Draco system addresses itself to the routine production of many
systems which are similar»to each other. The theory behind its operation is
describedvin detail in Neighbors' PhD. Thesis.2 Three themes dominate the
way Draco operafes:'the use of special-purpose high-level lahguages fof the
domains or problem areas in which many similar systems are needed; the use
of software components to implemenf p;oblems stated in these languages in a
flexible and reliable way; and the use of source-to-source program

transformations to tailor the components to their use in a specific context.

The basic steps in the production of a specific syétem using a

1 :

Draco is Latin for dragon
2 , v ‘
James M. Neighbors, "Software Construction Using Components", Technical

- Report 160, University of California, Irvine, 1980.

1l

Introduction to the Draco Systeml

Draco-supported, domain-specific, high-level langusge are as follows:

. When an analyst with experience in developing many systems in a
certain problem domain decides that the domain is sufficiently
comprehensible, he defines a language which can comfortably and
easily describe other systems in the problem domain. This person
is called the Domain Analyst, and the language described is
called the Domain Language. The Domain Analyst describes the-
domain and its internal form with the parser generator part of
the BUILD subsystem of Draco, which is described in Chapter 2.

. Once the Domain Analyst has described the external and internal
form of the domain, he describes how to print the domain program
fragments clearly and accurately. This is-called prettyprinter
generation, and it is done by the Draco BUILD subsystem using the
notations described in Chapter 3.

. The Domain Analyst must provide simplifying relations among the
objects and operations of the domain. These are used for
simplification and optimization of programs in the domain. These
simplifications are accepted in terms of source-to-source program
transformations by the BUILD subsystem which forms them into a
library of transformations. The creation of transformations is
discussed in Chapter 4. -

. Finally,vthe Domain Analyst must prepare a prose description of
the meaning of the operations and objects in his domain.

. This prose description is turned over to a Domain Designer. He.
specifies components for each object and operation in the domain
which refine the object or operation of the domain into objects
and operations in other domains known to the Draco system. These
components are formed into libraries by the Draco subsystem BUILD
from specifications described in Chapter 5. A component is a set
of refinements, each capable of implementing a 'domain object or
operation under certain stated conditions while making certain
implementation assertions.

. A new(system which can be described in a Domain Language known to
Draco can inherit some analysis, design, and coding from the
Draco library. The statement of the system to be constructed is
cast in a Domain Language. The Domain Language program is then
turned into an internal form by the PARSE subsystem. The use of
the PARSE subsystem is described in Chapter 6. This internal
form is then given to a System Specialist. ’

. The System Specialist interacts with the transformation and
refinement subsystem of Draco called TFMREF. The basic operation
in this phase is the selection of an appropriate set of software
components in order to- 1mp1ement the operations and. objects in
the domain which are used in the problem statement. These

Introduction to the Draco

System
components are spec1allzed by program transformation (described
in Chapter 8) to the problem at hand and then separately refined
(described in Chapter: 9) into another (or the same) domain, and
the cycle begins again. The TFMREF subsystem allows the
definition of refinement tactics (described in Chapter 10)
capable of removing the burden of answering low-level questions
from the System Specialist.

8. The process that the System Specialist uses to refine the problem
is, of course, not strictly top-down, but the TEFMREF subsystem
keeps a record of the process which makes it look top-down.

After the program is in an executable form, it is printed out by
the System Specialist. If it is not acceptable, the
specification cycle begins again w1th the existing Domain

Language program.

9. The refinement history of a program may be examined by a user of
’ the EXAMINE subsystem which states what refinements were used in
I S '

the production of this program. A higher-level description of
all parts of the program to whatever level (up to the level of
the original Domain Language) always exists in the refinement
history. It is hoped that these higher levels of abstraction in
an existing program will be useful in understanding the program
durlng the maintenance phase of its lifecycle.

The process described briefly above is dealt with in more detail in
S : 4 ’
Neighbors' Thesis which presents an SADT model of the process.

1.2. Running the Draco System

This section describes the loading and eiecution of the Draco system on
'the}ICS DEC System 2020 at U.C. Irvine as of August 1, 1983. 1In all the
example transcrlpts in this manual the user input is underlined and

terminated with RETURN. Comments are enclosed in {} brackets.

3
The EXAMINE subsystem and history recording are not operatlonal in

the current system
4
SADT is a registered trademark of SofTech Inc.

4 : , ‘ Introduction to the Draco Systerrl

{we enter at the monitor level on the PDP20}
@DEFINE DRACO: <DRACO> {the Draco disk area}
@DRACO ‘ ' . '
{screen clears}

Draco 2.0

{some notices and bug messages are printed here}
Draco>HELP ALL

{the current legal Draco commands are prlnted}
The Draco commands are:

BUILD - generate a domain language parser (.DEF->.PAR)
' - - generate a domain language internal form
- prettyprinter (.PPD->.DPP) :
- generate a domain transformation library (.TEM->.TLB)
- - generate a domain refinement library (.REF->.RLB)
PARSE

- parse a program into internal form (?->.INT)
TEMREF - transform and refine a program (.INT->.INT)
SET - set terminal type and other environmental parameters
EXIT - return to the monitor level
LISP - reenter LISP
HELP - this listing
Draco>

The rest of the sections of the manual assume that Draco is loaded and in

execution.

1.3. Interacting with Draco Menus
Draco uses a standard menu interaction which includes command completion

o : 5 :
and a help facility . The following keys control the menus in Draco:

- RETURN terminates commands and'requests execution.

- LINEFEED requests information about the options which exist at the
current point in the menu. :

5

We would have liked to have made the Draco menu driver compatible with
the standard Tops-20 Exec but in UCI Lisp under the PAl1050 simulator we have
input activation only on linefeed, carriage return, and escape. These are
the control keys used by the menu driver.

Introduction to the Draco

System 5
- ESCAPE requests that the menu driver fill in the current choice if
it is unambiguous, and prompt for the next menu item required. If
the current command. is still ambiguous, then the terminal will
beep and the cursor will not move. At this point a RETURN will
abort the command because it is amblguous and a LINEFEED will

list the acceptable inputs.

Once oné of the abbve activatioﬁ characters has been given; characters fyped
prior to the activating character cannot be deleted. This has the effect of
only activating on the above characters, not on RUBOUT, DELETE, or
BACKSPACE. A command which has been entered inéorrectly is usually,aborted
with a RETURN. The following error messages are givén by the menu driver.

when a command is aborted:

- 2Incomplete Command is issued when all the fields required by the
command have not been filled in, and a RETURN was given to

activate the command.

- 2Ambiguous Command is issued when a RETURN was given to activate
the command, and either a sub-command is needed or the
specification of the original command does not contain enough
characters to differentiate between a group of commands. LINEFEED
at the same point will show the possible commands needed to
complete.

- - 2Unknown Command is issued when a RETURN was given to activate the
command, and the given command is not one of the possible choices.

- 2Command Unconfirmed is issued when all the fields of a command
have been filled in, but the last field was not terminated by a
RETURN. The assumption is that a user does not understand the
command if he prompts for more fields on the last field.

- 2 <fieldname> was not specified is issued when some, but not all

of the required fields of a command have been specified. The
fieldname given is the next field to be entered.

The easiest way to use Draco Menus is with the ESCAPE key after each user

input, so that the properAformat will be displayed by the system. Another

- way of gettihg help from the system is to type a space and‘a LINEFEED after

each user input.

6 . ‘ Introduction to the Dracc Systeml

DRACO>b. <esc> UILD (DOMAIN NAME) WG <esc> (DOMAIN PART)
L <esc> RANSFORMATION LIBRARY

DRACO> build <linefeed>
enter name: domain name
. DRACO> build

1.4. Terminal Definition for Draco
Some of the features available in new terminals are used by Draco to
highlight information and interact with the user. Primarily, these

interactions are based around the ANSI terminal standards.

Some flexibility in defining new terminals is described in appendix 8.
Commands from the main menu of Draco (i. e. , commands acceptable at the
DRACO> menu prompt) can be put into a command file entitled DRACO. INI.

ThlS is useful for setting up terminal types and getting updates of the

Draco software

1.5. Overview of the User Manual

The manual is organized in 10 chapters and 10 appendixes. The Chapters
are organized as follows:
- Chapter 1 - Introduction to the Draco approach and general gulde

of the system

- - Chapter 2 - Detailed explanation of how to write parse definitions
: using Draco, and how to build a parse for a domain language.

- Chapter 3 - Detailed explanation of how to write a prettyprinter
definition and how to build a prettyprinter for a domain language.

- Chapter 4 - Explanations of how to write transformations and how
to build a transformation library for a domain language.

Introduction to the Draco ,
System 7

Chapter 5 - Explanations of how to write components and how to
build a component library.

Chapter 6 - Explain and give example of how to convert a program
in a domain language to the Draco internal form.

Chapter 7 - Explain the use and the main commands of the <
Transformation and Refinement subsystem of Draco.

Chapter 8 - Explaln ‘how a transformation library should be used to
optimize a given program.

Chapter 9 - Explain how a System Spec1allst should use the system
to refine a program written in a domain language into an

executable language. It describes all the necessary commands to
do a refinement. : ’ :

Chapter 10 - Explain the Tactics Subsystem and show how to use it.
Appendix I - Gives a complete example of a Domain language (SPL) .

Appendix II - Gives the ‘definition of the Main Parser Generator,
that_is, the Draco Parser written in Draco.

Appendix III - Gives the deflnltlon of the Draco prettyprinter
domain.

Appendix IV - Gives an example of a prettyprlnter description
(SPL) .

Appendix V - Gives an example of transformations.

Appendix VI - Gives the definition of the Draco Component Librafy
Scanner, that is, the language used in describing components.

Appendix VII - Gives the definition of the interpreter of the

Tactics subsystem.

Appendix VIII - Shows a example of how to define a terminal
definition.

Appendix IX - Givesbthe definition of the Tactics prettyprinter.

Appendix X - Draco Errors and Messages.

Introduction to the Draco Systeml

CHAPTER 2
DESCRIBING A DOMAIN LANGUAGE
dnce‘the analysis of a problem domain has been completed, the Domain
Anélyst must define a language suitablé for describing solutions to
programming problems iﬁ_the domain. This high-level language should be very
specific to the domain and capable of describing the objects‘and operations

of the domain in a comfortable way.

In this section we are concerned with how to specify the external form
(syntax) and internal form of a domain language to the Draco subsystem
BUILD. The chapters on transformations and refinements are concerned with

specifying the semantics of the language.

2.1. The External Form (Syntax) Specification ..
Classically, BNF's have been used to describe the syntax of languages.
Draco carries on this tradition. The Draco BNF is similar to the BNF used

. _ 6
in syntax-directed compiling which is the foundation of the META systems.

6 _ ,

Schorre, D.V., "META II: A Syntax-Oriented Compiler Writing Language", In
Proceedings of the ACM National Conference, pages D1.3-1 to D1.3-11, 1964.
Where <character> matches any character and <schar> matches any character
except a double quote (" :

10 , _ . - Describing a Domain Languagel

2.1.1. Draco BNF Described in BNF | | . l
The Draco BNF is described below in standard BNF format with the

following metasymbols: <name> denofes a rule, {obj} denotes zero or more I

‘occurrences of obj, | denotes alternation, a single word or character with .

quotes on either side denotes itself, <character> matches any character, andl

<schar> matches any character except a double quote (").

<DracoBNF>::= .DEFINE <1dent1f1er> {<Draco-rule>} END
<Draco-rule>::= <parse-rule> ; | <token-rule> ;
<parse-rule>::= <identifier> = <parse-exp>

<parse-exp>.:= <parse-seq> { / <parse-seq>} |

<parse-seq> { | <parse-seq>}

<parse-seq>:.= <parse-ele> {<parse-ele>}
<parse-ele>::= <identifier> | <string> | (<parse-exp>) |
4 <parse-iteration> | .EMPTY |
[[<parse exp>] <parse-exp>]

<parse-iteration>: § < <iteration-range> > <parse- e1e> |

~ § <parse-ele>
<iteration-range>::= <iteration- number> : <iteration-number>
<iteration-number>::= <number> | ?.
<token-rule>::= <identifier> : <token-exp>
<token-exp>:.:= <token-seq> { / <token-seq>}
<token-seq>::= <token-ele> {<token-ele>}

<token-ele>::= <identifier> | <char-rule> | (<token-exp>) |

<token-iteration> | .EMPTY

<token-iteration>::= § < <iteration-range> > <token-ele> |
: ' 8§ <token-ele>

<char-rule>::= .ANY (<char-exp>) | .ANYBUT (<char-exp>)
<char-exp>::= <char-range> { ! <char-range>}
<char-range>::= <char-value> | <char-value> : <char-value>
<char-value>::= <number> | ' <character>
<identifier>::= <alphabetic> |

, <alphabetic> {<digit>} {<ident1f1er>}
<number>::= <digit> {<digit>}
<string>::= " <schar> " o
<alphabetic>::= A | B | ... | Z | a|b | ... | z
<digit>::=0 | 1 | ... | 9 ’

Figure 2-1: BNF for Parser Definition

Where <character> matches any character and <schar> matches any character

except a double quote (").

Describing a Domain Language : 11
2.1.2. An Example of Draco BNF |

The <token-rule> productibn specifies how to collect characters into
tokens (lexémes),'while_the <parse-rule> production specifies how to group
tokens together to parse the external form. The <char-rule> productions
specify what characters to accept within a <token-rule>. The iteration

rules, <parse-iteration> and <token-iteration>, are similar to the {}

notation used above, and they specify sequences which may occur zero or more

times (up to an optional limit). The Kleene * and + are a subset of the

available values of iteration.

As an example of the Draco BNF, consider the following description of
simple, parenthesized, arithmetic, ALGOL-like assignment statements:
.DEFINE ASGN

[This is an example parser definition]
[comments are enclosed in square brackets]

ASGN = IDENTIFIER ":=" (EX1 / STRING) ":" ;

EX1 = EX2 §("+" EX2) ;

EX2 = EX3 &("*" EX3)

EX3 = EX2 (""" EX3) :

EX4 = IDENTIFIER ("(" EX1 &("." EXl) me s EMPTY) /

NMER / "(" EXI ")"

PREFIX : SPACES ;

IDENTIFIER : SPACES ALPHA $<?: 5>(ALPHA / DIGIT) ;
NUMBER : SPACES DIGIT $DIGIT

STRING : SPACES ANY('") $.ANYBUT('") .ANY('") ;
ALPHA : .ANY('A:'Z ! 'a:'z) ; 4
DIGIT : .ANY('0O:'9) ;

SPACES : §.ANY(32) ;

.END

The .DEFINE tells Draco that this is a domain language description, and that

‘the name which follows is the name of the first rule to be invoked.

Characters enclosed in double quotes (") are literal strings which are

tested to see if they appear (without double quotes) in the input stream.

12 s : Describing a Domain Languagel
The slash (/) denotes alternation similar to the logical bar (|) of the BNF.
An ASGN is started by an IDENTIFIER, which must be followed by the sequence

, which is followed either by a :sequence described by rule EX1 or by a '

<

IDENTIFIER is a <token-rule>, and it scans off individual characters. An

STRING. A semicolon (;) must follow either sequence.

IDENTIFIER is a sequence of zero or more spaces (32 is the decimal ASCII '
representatioh of a space), follqwéd by an upper or lower case letter of the;
alphabet, fo;lowed by zero to five letters or digits. A STRING is a l
sequence of zero or more sbaces, followed by a double quote, followed by thel
string characters (any character except a double quote), followed by a

double quote. The following are legal ASGN statements according fo, the abovel

Draco BNF: -

PHI := (col7 + col5)*FUDGE ;
Person := "Edward the Great" ;
VAL7. := 5+3%*6°4 ;

ITS := ((A+6)*3)+7+6+5 power ;
Zee := factor*SIN(2*Pi) ;
APE := FURD(5,FURD(3,B)) :

2.1.3. The PREFIX and SUEFIX Rules

Two rule names, PREFIX and SUFFIX, are used to shorten the Draco BNF. 1If
a Draco BNE description contains a PREFiX rule, then this rule is applied
before every test for a literal string (characters enclosed in quotes in the
BNF) . Thus, g

ASCGN = IDENTIFIER ":=" (EX1 / STRING) "." .
PREFIX : SPACES ;

is the same as

Describing a Domain Language - ' 13

ASGN = IDENTIFIER SPACES ":=" (EX1 / STRING) SPACEsS ";"

The SUFFIX rule operates in a similar manner except, if it exists, it is
applied after the test for the literal string has been successful. If the

SUFFIX rule didn't exist in the example above, then the statement

PHI:=(col7+ col5)* FUDGE:

would be legal, while

PHI := (col7 + col5)*FUDGE ;

would not be legal because of the embedded spaces. In general, the PREFIX
and SUFFIX rules are useful in shortening the description of languages

without fixed fields.

2.1.4. Controlling Parser Backtracking

The alternation (/) used in Dracd assumes that one of the alternatives
will succeed in matching the input stream. A sequence succeeds in matching
the input stream if all of the objects indicated in the sequence are found‘
in the input stream (remember the sequence operator is a blank). If the
first object in the sequence is not found, then the sequence operator
indicates a recognition failure. If the first object in the sequence is
found, but some other part of the sequence is not found, then a problem
occurs since the pointer into the input stream has already'been advanced
over the first object. The sequence operator indicates tﬁat a syntax error
has occurred, but does not report it to the user yet. The alternation

operator (/) passes the syntax error on up to the construct above it.

The backtracking operator (|) traps a sYntax error returned by a nested

14 | | | ' | Describing a Domain Languagel
s'equence_. operator, restores the state of the parser to the point where the l
backtracking operator was entered, and tries the next alternative. 1In

short, a backtracking operator is the same as an alternation operator exceptl
that the state of the pérser is saved and restored between the alternatives..
The backtacking operatcr.indicates recognition failure if none of the
alternatives are present in the input stream. The backtracking operator
never results in a syntax error indication. The backtracking operator is_
more expensive in time and space because it saves and restores its state.
One could use only backtracking operators in a parser definition without any
alternation operators, but the resulting parser would be very slow in
execﬁtion. The justification for having two similar operators is the
ability to specify a language that is simple LL(1l) parseable in a parser

description where LR (k) parsing must be used.

As an example of where backtracking is needed, consider the following
Draco BNF description:

B I "a" " f" " g"

g "a" "f" "h" / lla" "f" "i" .

The strings "afg" and "afh" are recognized by the grammar, but the string

afi would result in a failure of the rule A without advancing the input
pointer. If given an "afi" in the input stream, the B rule would recognize
the "a" and "f" in the first alternative and issue a syntax error to the
backtracking operator in the A rule because the first two elements of the
sequence were present, but the "h" was missing. The other alternative is

not even tried because the first element ("a") was present in the input.

The "afg" is recognized because the B rule returns a syntax error to the

b
9]

Describing a Domain Language

"ot

backtrack in A which restores the parser input pointer to point to the "a

and then tries its next alternative. We could rewrite the grammar in two
ways: by replacing the alternative in the B rule by a backtrack

B ‘ lla|' " fH HgH

g "a" "fll th! l "al;' " f"~ "i" ;

or by factoring the alternative in the B rule.

A - B I "a" " f" "gH .
B = lla" " f" ("h" / ":l") -
The second option is, of course, faster in execution; but the main issue in

writing parser descriptions is'to clarify the grammar.

2.1.5. Error Recovery During Parsing

If the only control constructs we used in parser descriptions were’
sequence, alternation, and backtracking, then the error recovery power of
the parsers would be severely limited. Here error recovery means being able
to handle ill-formed statements in the language, report them to the user,

pass over them in the input stream, and continue parsing.

Once a sequence operator reports a syntax error, all alternation
operators will pass on the error: and backtracking operators will trap the
error andftry their next alternative. A simple ill-formed expression will
usually cause the entire parse to fail either by backtracking out of the
top-level rule, or by passing a syntax error back from the top-level rule

which will abort the pérse.

Some error control could be built in by using the backtracking opérator,

but we have decided to introduce a special error-recovefy mechanism called

16 Describing a Domain Languag

an error block. The syntax of an error block is as follows:

[[<parse-e1é>] <parse-e1e>]

The first expression of the block is attempted. If a syntax error results,.:

then the state of the parser is restored to the point where the error block

was encountered, an error message is printed indicating the rule which

originated the error and the positien in the input stream at the time of the

error. Finally, the second expression is attempted. It is the goal of the

second expression to skip over the ill-formed statement. If the second

- expression results in an error then the user is again notified that error
recovery was unsuccessful, and the syntax error is returned as the result of

the error block. The state of the parser is restored to the point where the

error block was encountered. If the first expression in the error block
succeeds or fails, then it is the result of the efror block. The error

block only stops syntax errors.

As an example of using an error block, consider the following grammar

which recognizes statements (STMT) followed by a semicolon:

BODY = &[[STMT ";"] STERR ";"]
STERR : .TOKEN §.ANYBUT(';) .DELTOK ;

The error recovery strategy for an ill-formed STMT is to scan all the

characters up a semicolon. The error reporting is already handled by the

e

error block. If a syntax error occurs inside of the error recovery part of I

an error block, then a message is given that the error recovery has failed,

and the syntax error propagates out of the error block. It is important forl i

the parser designer to remember that an error message is printed to the user

Describing a Domain Language , : 17
every time a syntax error occurs. Thus, syntax errors should not be used by

a parser designer as a control strategy. Backtracks should be used in these

instances.

Token rules (indicated by a : rather than a =) never generate a syntax
error and never advance the input pointer op a failure. The foken buffer
always contains the token recognized in'the input by the last token'which
succeeded. The manipulation of the token puffer will be described in a

later section on internal forms.

Sometimes it is useful to be able to explicitly control the issuing of
syntax—error and rule-failure conditiohs in the parser. This can be done
using the .FAIL and .ERROR constructs. As can be guessed, the .FAIL
construct fails the current parse rule immediately, without regard for any
alternatives, sequences, backtracks, or errorblocks in which it is embedded.
The .ERROR construct raises a syntax error when_it is encountered, and it is

" dealt with in a manner similar to other syntax errors.

2.1.6. Elements of External Form Description

This section summarizes the external form description mechanisms in the

Draco BNF. In both <parse-rule> and <token-rule>

AB ... sequence - an A followed by a B followed by
| AlB[... ' backtrack - A or backtrack B ... |
A/B/... alternation - an A or a B or
.EMPTY the iast element of a alternation states that none of the
alternatives need be taken :
[[A]B] error block - tfy A and B handles errors
(A) : encapsulation.- treat as one unit

18 ‘ Describing a Domain Language
SA iteration - zero or more instances of A
$<n:m>A ' iteration - n to m instances of A (? implies any number)

In <token-rule> only

.ANY (A) scan any char described by A

.ANYBUT (A) scan any char not described by A
Inside .ANY or .ANYBUT character class descriptions

‘A characters equal to the ASCII value of A (65)

65 . ~ characters equal to the ASCII value of 65 (A)
A!B!... characters matching A or B or

A:B . characters whose ASCII value C is such that A<=C<=B

The precedence of the parser control constructs is as follows:

Rank - Operator Symbol

Highest encapsulation ()
sequence space
backtrack |

Lowest alternation , /

2.1.7. Recognizing the End of the File

Some languages do not have explicit end of input markers (sﬁch as END
statements), so Draco has a facility enabling domain-language parsers to
recognize the end af an input file. When Draco recqgnizes the end of the
input file, it places gne control-Z (ASCII 26) in'the input-stream»to be
recognized by the parser. If the parser does not recognize the control-Z

and tries to read further, then an error will occur.

Describing a Domain Language _ 19

' 2.2. The Complete External/Internal Form Specification

The Draco system expects the internal representation of a program to be a

tree. Each node in the tree must have an identifying name as the first

~ entry in the ncde. is form is called prefix form. As an example, the -

fragment 5*A+B+C"7 could be represeﬁted internélly_as

This is a 1egal prefix form since the leftmost entry in each node is a name
(the prefix keyword). Each node has a fixed number of entries. All nodes

with the same prefix keyword have the same number of entries.

These prefix-form trees are built from the bottom up as Draco scané a
program in a domain language. In particular, when a token is recognized in
é <token-rule>, it is stored in a token buffer. It is then the
responsibility of a <parse-rule> to take the token, combine it into a new
node, and insert it into the growing tree. The growing tree is maintainéd
as a stack of objects which have not yet béen combined into higher nodes.
The prefix form for a domain should have a single root which ié left as the

last node on the stack by the first rule invoked.

2.2.1. External/Internal Form Specification
The operators for constructing internal forms are mixed in with the Draco
BNF notation, and each is preceded by a period (.) . The internal-form

construction operators should not be confused with .ANY and. .EMPTY which are
\ N

><parse-e1e>:&= <identifier> | <string> | (<parse-exp>)

20 | ‘ Describing a Domain Language
part of the external-form specification. Only two rules from the earlier
BNF specification of the syntax need be changed in order to add the

tree-construction operatoré. The two revised rules. and a new rule are given

below:

<parse-iteration> | .EMPTY | .LITERAL | .LITCHAR |
.NODE (<identifier> {<node-ele>}) |
.TREE (<identifier> <identifier> <parse-exp>) |
: .CHART (<identifier> <identifier> <parse-exp>) |
<token-ele>::= <identifier> | <char-rule> | (<token-exp>) |
<token-iteration> | .EMPTY | .TOKEN | .DELTOK

2.2.2. Specifying a Legal Parser
Some restrictions exist as to what a parse rule may add to the stack of

nodes which constructs the internal-form tree.

1. If a parse rule succeeds, it can only put one node in the node
stack. Multiple nodes may be constructed during the parse rule

-.(constructing subtrees), but when the rule succeeds the net
change in the number of nodes in the node stack can be only one.
This rule makes sure that the internal from returned by a
nonterminal in the syntax (a parse rule) is always a tree with
the single node returned being the root. This concept will be
used later when we discuss describing software components.

2. If a pafse rule fails, it may not add any nodes to the node
stack. '

Remember, that the parsing goal of Draco is to produce an internal form

which captures all the information in the syntax of the problem domain. The

one parse-rule, one-node restriction we have found guides the parser

designer in capturing the entire domain syntax in internal form.

\
\
\
\
\
\
‘ '
\
»

2.2.3. A CompletehExternal/Internal Form Example
We will redo our assignment-statement examplé from a previous section,
adding the internal-form construction information:

.DEFINE ASGN

J
o |
Describing a Domain Language 21 |
[example with internal form building]

ASGN = IDENTIFIER .LITERAL

":=" (EX1 / STRING .LITERAL)

"." _NODE (ASSIGN #2 #1) ;
EX1 = EX2 §("+" EX2 .NODE(ADD #2 #1)) ; -
EX2 = EX3 & ("*" EX3 .NODE (MPY #2 #1)) :
EX3 = EX4 8("~" EX3 .NODE(EXP #2 #1)) ;.
EX4 = IDENTIFIER .LITERAL

(" (" APARAMS ")" .NODE (FNCALL #2 #1) /
.EMPTY) /
NUMBER .LITERAL / _
"(" Ex1 ")H ; _

APARAMS = .TREE (APARAMS APSEQ EXP §("," EXP)) .

PREFIX : SPACES ; _

IDENTIFIER : SPACES .TOKEN ALPHA $<?:5>(ALPHA / DIGIT) .DELTOK ;
NUMBER : SPACES .TOKEN DIGIT $DIGIT .DELTOK ;

STRING : SPACES .TOKEN .ANY('") &.ANYBUT('") .ANY('") .DELTOK :
ALPHA : .ANY('A:'Z ! 'a:'z) ; _

DIGIT : .ANY('0:'9) : '

SPACES : §.ANY(32)

.END

First of all, notice the .TOKEN and .DELTOK operations which have been
added to the token rules. The .TOKEN states which character should be the
first in the token, and the .DELTOK places the token in the token buffer.
In this case the .TOKEN in the IDENTIFIER rule states that the initial

spaces are not part of the identifier.

The <parse-rule> production forms internal-tree nodes from a stack of
objects. The operator .LITERAL takes the last token put into the token
buffer by a .DELTOK and pushes it on the stack. The operator .NODE creates

a new node by taking objects from the stack (#). the token buffer (*), and

\

22 ' - ‘Describing a Domain Languagel

literal data (ADD, MPY etc.) and pushes it on the stack. -NODE (*) forms a
new node from the token buffer only and pushes it on the stack. The

‘operation .NODE (ADD #2 #1) creates a new node using the literal ADD and the

two topmost elements of the stack. The operation .NODE(MPY #1 #1) forms a .

new node from the literal MPY and the top two elements of the stack.
- WARNING

Note carefully that .NODE(EXP #1 #2) forms a new node from the
top of the stack and the third element of the original stack. The #
operation removes the elements from the stack when they are fetched.

2.2.4. An Example Internal Form

Using our assignment-definition example (see above), the prefix internal

form of the statement

ANS :=CEO (B, 2*E) +E~2°C ;

is :
------- +-==
] !]
ASSIGN ANS i I +
! ! '
ADD. ----- LR R 2 B i &
ENCALL GEO .------~ + EXP E e e——t
' ! R
APARAMS .------ +--+ EXP 2 C
! ! '
APARAM B .------ dmmmmm e +
. ! [] !
APARAM ,---+4--4+ *OMEGA¥*
Lot
MPY 2 E

Notice that the precedence of the operators is assigned by ordering the

<parse-rule>'s, and that * (multiply) is left-associative while °

)

_ Describing a Domain Language 23

(exponentiation) is right-associative.

2.2.5. Variable Length Structures in Internal Forms
Due to the restriction that all nodes of a certain type have the same
number of subtrees, some mechanism must be developed to allow a variable

number of elements in some cases. For example, not all programs have the

‘same number of statements in them, so some structure must be developed to

hold a variable number of statements. In Draco this is done by means of
right-leaning trees with header nodes, internal nodes, and a special
termination marker. For example, the set of program statements could be

represented internally as:

STMT-SEQ stmtn *OMEGA*

If we had a parée rule GET-STMT which would build nodes for statements in a
particular language. then the construction of this internal form could be

achieved by the syntax |)
.TREE (STMTS STMT-SEQ §GET-STMT)

The .TREE construct always takes three arguments: the header node name for
the tree, the internal node name for the tree, and an expression which

produces multiple nodes to be linked together in the tree. This |

24 Describing a Domain Language

internal-form structure is known and expected by the refinement part of
Draco. It is acceptable to have a tree with no internal nodes indicating a

variable length structure with no elements.

While the .TREE constructor is used for scanning variable-length
structures from '"top to bottom" and building a tree, some mechanism must be
defined for scanning sets of variable lengfh structures from "1eft to
right." An example of such a structure is a table in which we wish to
associate the columns togefher in a.tree rather than the rows, even though
we must scan through the table a row at a time. Consider the problem where

we wish to scan the following table of data:

female Sally
male Dick
female Jane

into the following internal form:

S-SEQ M .-------- N-SEQ Dick .---------=-

' ' ' ' '
S-SEQ F *OMEGA* N-SEQ Jane *OMEGA*

Given the parse rules GET-NAME and GET-SEX which produce the appropriate

nodes, this internal form could be constructed by the fragment
.CHART (SEX S-SEQ NAMES N-SEQ & (GET-SEX GET-NAME)) .NODE (SET #1 #1)

The .CHART construct accepts a variable number of header-nodes and

-

Describing a Domain Language - ' 25
internal-node pairs followed by an expression to produce nodes. The number

of nodes produced by the expression before it fails must be an even multiple

of the number of node name pairs.

2.2.6. Elements of Internal Form Description
This section summarizes-the internal-form mechanisms in the Draco BNE.

In <token-rule>'s only

. TOKEN show the start of the token

.DELTOK 'put.the token into the token buffer

In <group-rule>'s only

.LITERAL push the token buffer on the stack

.NODE () . form a new node and pﬁsh it on the stack. Parentheses may be
used to indicate a structure of nodes to be constructed.

.LITCHAR ~push the ASCII value of the next character on the stack

.TREE(A B E) evaluate E uﬁtil fail and build right-leaning tree with‘A

top node, B internal nodes (possibly none), and *OMEGA*
terminator of the sequence (vertical parsing)

.CHART(A B ... CDE) . ‘
' evaluate E until fail, then build n number of right-leaning
trees with A,..,C as top nodes and B,..,D as internal nodes,

and *OMEGA* as terminator of all trees (horizontal parsing)

‘Inside of a ;NODE() only

‘<identifier> -literal data <number>
literal data # <number>
pop nth object on stack and use as is

26

2.3. Special Functions in Parsers

In this section we will discuss three major features available to parser
builderé thch qo not affect the syntax of the language. 1In pafticular, we
will discuss data-flow-consistency checking functions, diagnostics to the

user, and nonstandard, internal-form constructors.

2.3.1. Checking Consistency in Paréers

Within a parser for a certain lanéuage, it is nice to be.able fo check
the consistency of the objects given in the usér's program. For example, if
the language aliows function calls, and if a function is called in the
user's program, the parser should ensure that the function is defined later.

Equivalently, if a function is defined then the parser should ensure that

Describing a Domzin Language

some other part of the program is using it. Within Draco, these operations

are carried out by the following parser constructs: I

.DEF (type) .

.USE (type)

.RESOLVE (type)

.RETRACT (type)

The .DEF construct declares that the contents of the token l
buffer contain the identifier of an object which is defined
to be of the given type. The type is just a name made up byl

~the parser builder. FUNCTION would suffice for the example

given above.

The .USE construct declares that the contents of the token I
buffer contain the identifier of an object which has been
referenced as the given type.

The .RESOLVE construct checks to see that all the objects of l
the given type which have been defined have been referenced.
It also checks that all the objects of the given type which
have been referenced have been defined. Error messages will

‘be printed if any discrepancies occur. However, no syntax
error or failure will be issued from the construct.

The .RETRACT construct erases any .USE's or .DEF's for the l
given type in the current context.

.CONTEXT-PUSH (type) .

The .CONTEXT-PUSH construct saves all .DEF's and .USE's for
the given type on a stack and erases them in the current
context. This is useful for objects with nested scoping I

Describing a Domain Language 27

such as labels local to BEGIN-END blocks. Upon entering the
block the labels are pushed, and upon exiting the block the
labels are first resolved, and then popped.

.CONTEXT-POP (type)

.ASSUME (type)

The .CONTEXT-POP construct retrieves the definitions for the
type previously saved on the stack. The stack is pot the
same as the stack used in constructing trees.

The .ASSUME construct can be used to assume declarations for
objects of the type which have been .USEd and not .DEFed.
Each time the .ASSUME construct is referenced, it will
either result in a fail (which means that there are no more
objects of the type to be assumed), or it will result in
syntax recognition with the identifier of the next object of
the type to be assumed put on the node stack and
automatically DEFed. For example, this is useful in the
declaration of local variables in a function. All variables
used in the function, and not declared to be global, could
be assumed to be local without having to have both a local
and a global declaration.

2.3.2. Notifying the User

While the parser is parsing the user's program, it is nice to be able to
p P g progr

tell the user what is going on. For example, it is nice to tell the user

what major part of the program is currently being parsed. This is done with

the .MSG construct. Within the .MSG construct the following items are

acceptable:

"abced"

*

.CR

.COL (value)

A string to be printed.
Print the token buffer contents.
Print a carriage return and linefeed.

Advance the carriage to the given column.

Each time a "crlf" is encountered, "*" markers are printed as the parser

does its work. Most parser messages will need a .CR first.

_J

28 Describing a Domain Language

2.3.3. Non-Standard Parser Constructs
The following parser constructs are briefly described in the interest of

completeness, but they should not be used by domain parser builders:

.LIST (name expression) ,
Forms a variable-width node from all the nodes returned by
the expression. The name gives the node name.

.SEXPN (expression _ -
' Forms a LISP S-expression from the nodes returned by the
expression.
.EXECUTE This treats the top of the node stack as a LISP expression

and executes it.

Once again - DON'T USE THESE CONSTRUCTS IN A DOMAIN. They are for internal

use only!

2.4, Class of PARGEN Parsers

The PARGEN system pr;oduces parsers which scan 1eft-to-'right with explicitl
backup. The class of‘languages handled is less powerful than context-free.
Some thought must be given to the ordering and content of the <p’arse-fq1e>'s.
and <token-rule>'s . Rules which could recur without scanning-off a
character are illegal. The worst case of left recursion is, of course, l

illegal and must be removed by the author.

Backtracking rules must be included in the grammar whenever the
complexity of the language to be recognized exceeds the poﬁer of an LL(1)
parser. In particular, a set of rules (a grammar) is LL(1l) parseable if,

and only if, there is‘a rule of the form:

ARULE = ALPHA / BETA ;

Describing a Domain Language o : 25
the following conditions holdf
1. For no terminal symbol a do ALPHA and BETA derive strings
beginning with a. '
2. At most, one of ALPHA and BETA can derive the empty string. The
current implementation imposes the further constraint that only

the last element of an alternation should directly derive the
empty string with a .EMPTY.

3. If BETA can derive the empty string through a series of rule
applications, then ALPHA does not derive any strings beginning
with a terminal symbol which is a member of the set of terminal

symbols that can appear immediately to the right of ARULE in some
sentential form. :

' 7
Further information on LL(1l) languages is found in Aho, which is the source

of the explanation above.

As an example of fitting the rules into the constraints imposed by the

parser generator, the rule
RELOP = EXP "<" EXP / EXP "<=" EXP .
would have to be changeq to
RELOP = EXP ("e=" s/ "<") EXP ;

or the less efficient

RELOP = EXP "<" EXP | EXP "<=" EXP ;

There are two reasons fpr this change. First, in the original RELOP the

7
Aho, A.V., Ullman, J.D., "Principle of Compiler Design", Addison-Wesley

Publishing Co., 1977.

30 _ ' Describing a Domain Languagel
first nonterminal of the two alternatives was the same (EXP), so the first
alternative would always be taken if an EXP object appearéd in the input

stream. In a seéuence;-if the first object is present in the input stream,

then the rest of the sequence must be present, or a syntax error is

generated. Second, the "<=" must be tested for before the "<"; otherwise
the "<" might match the first part of a "<=" in the input stream, and the

wrong alternative would be taken.

A larger example of a complete external/internal, domain-language
specification is given in Appendix I along with some example programs in the

language.

2.5. Using the Draco Parser Generator
For the purposes of this example, we assume that the definition of a
language is already prepared in the Draco BNF and in the file LANG.DEF. The

following is an example transcript:

Draco>BUILD LANC PARSER :
{where LANG is the domain name and the file LANG.DEF
is its definition}

{screen clears}

*hkkktkk . {one * signifies a line processed}
Parse Completed O errors dectectedO

{the extension defaults to .PAR}

NOTE: LANG.PAR created

NOTE: LANG.DEC created

NOTE: LANG.PPD prototype prettyprinter. created
Draco>

Once the parser'has been created, programs in the new language may be parsed
by the Draco subsystem PARSE. If the parse had not completed successfully,

then the system would have stated why, ji.e..:

°

Describing a Domain Language : . - o3

ok ok ok kK

ERR: Syntax error - rule EX3
STMTS = STMT <scan>%<?:256>STMT {a line from LANG.DEF}

{the <SCAN> marker is highlighted on some terminals and

indicates the position in the input stream}

kkkkkkkkkhkkkx [more lines processed}
Parse Completed - 1 errors detected
The rule EX3, cited from PARGEN, means the rule EX3 in the file PARGEN.DEF,
which describes the Draco BNF of parsers in Draco BNF. Other possible
errors are discussed in the section on errors (see ERR:). PARGEN.DEF is

reproduced‘inbAppendix II; and it gives the exact syntax of a

domain-language definition.

o)
O
m,
c
o
-
o]
L
o
iR
o]
A
o
o
o
K
L
Ea
o
0
0
0
&}

CHAPTER 3
BUILDING A PRETTYPRINTER WITH PPGEN

After the external and internal forms of a domain language have been

‘described to Draco with BUILD, Draco must be told how the internal form is -

to printed out. The preftyprinter is also constructed using the BUILD
subsystem which is described in this chapter. The prettyprinter for a
domain language is used whenever Draco needs to communicate a program
fragment to a user. In particular, the transformation library constructing
subsystem (BUILD), the transformation and refinement subsystem (TFMREF), and
the program examination subsystem (EXAMINE) use the prettyprinter for a

Domain Language.

The basic scheme for building prettyprinters is to describe a printing
form for each node in the prefix internal form of the program. Carriage

positioning may be added to these printing forms.

3.0.1. The Syntax of a Prettyprinter Description
In this section we use the standard BNF notation to describe the simple

syntax of a prettyprinter definition.

<DracoPPdef>::= .PRETTYPRINTER <identifier> {<node-rule>} .END
<node-rule>::= <identifier> = <node-item> {<node-item>} ;
<node-item>::= <string> | <number> | # <number> | .LM |

.COL(<number>) | .SLM | .SIM(<number>) |
<list-scan> | .LM(<snumber>)
. TREEPRINT
(<identifier>, <number>, <node-item>, <node-item>) |
.CHARTPRINT
(<identifier>, <number>, <node-item>, <node-item>
{<identifier>, <number>, <node-item>, <node-item>}) |
.CHARPRINT (<number>) |

. .LISTPRINT (<node-item>)

<snumber>::= + <number> | - <number>

33

34 ' Building a Prettypr interl.

In the ébove BNF a <string> is a string of characters contained in double
quotes '("). An <identifier> mzy be enclosed in angle brackets (<>), thus

the identifier <FURD> is legal. The identifiérs in angle brackets are usedl
to define a print definition for the classes defined during transformation .-
library construction (see Chapter 4). If an error occurs during the
definition of a prettyprinter, then the rule cited is not included as part l

of the file PPGEN.DEF which defines the syntax of a prettyprinter in Draco

BNE. The current version of PPGEN.DEF is included in Appendix III of this l

document.

3.0.2. An Example of a Prettyprinter Description
The following is an example of a prettyprinter for the

assignment-statement example.

Using PPGEN : 35

.DEFINE ASGN :
[example with internal form building]

IDENTIFIER .LITERAL

ASGN =

";=" (EX1 / STRING .LITERAL)

. "." _NODE (ASSIGN #2 #1)
EX1 = EX2 s("+" EX2 .NODE(ADD #2 #1)) .
EX2 = EX3 &("*" EX3 .NODE (MPY #2 #1))
EX3 = EX4 $(""~" EX3 .NODE (EXP #2 #1)) :
EX4 = IDENTIFIER .LITERAL
(" (" APARAMS ")" .NODE (ENCALL #2 #1) /
.EMPTY) /
NUMBER .LITERAL /
"‘(ll EXl ll)" ;

APARAMS = .TREE (APARAMS APSEQ EXP &(".," EXP)) :

PREFIX : SPACES ;

IDENTIFIER : SPACES .TOKEN ALPHA $<?:5>(ALPHA / DIGIT) .DELTOK ;
NUMBER : SPACES .TOKEN DIGIT $DIGIT .DELTCK ;

STRING : SPACES .TOKEN .ANY('") $.ANYBUT('") .ANY('") .DELTOK ;
"ALPHA : .ANY('A:'Z ! 'a:'z) ;

DIGIT : .ANY('0O:'9)

SPACES : §.ANY(32) ;

.END

.PRETTYPRINTER ASGNSTMT

ASSIGN = #1 ":=" .IM #2 ";" ;
ADD = $1 "+" #2 ;

MPY = $1 "/" %2 ;

EXP = $1 """ §2 ;

ENCALL = #1 "(" .IM #2 ")" ;
APARAMS = #1 "," .SLM(60) #2 :
.END

' Notice that there is one line for each possible prefix keyword in the
internal form. The #l1 in the above lines refers to the first entry in the
internal-form node after the prefix keyword. The strings in quotes (") are

strings which will be printed verbatim with no spaces on either side.

36 _ B.uilding a Prettyprinte'rl
The .LM fixes the left margin to the position of the printing carriage atl
the time the .IM is enccuntered. This left margin prevails for the given
rule and all rules called from it. A .LM with an unsigned number fixes the I
left margin at the column indicated by the number. A .ILM with a signed o
number sets the left margin to the sum of the given signed number and the l
left margin which prevailed when the prettyprint rule was entered. The .SLM
seeks the left margin set by the last .ILM. If the carriage is before the
current left margin, then .Sf.M will 6utput tabs and spaces to get to the l
left margin. 1If the carriage is past the current left margin, then .SLM
will perform a carriage return before tabbing an_d spacing over to the left l
margih. Remember, if the output of the prettyprintef for a domain is to be
acceptable input for the parser of the domain, then that parser must accept

tabs and spaces in positions where the prettyprinter indicates there will bel

A numerical argument‘giveh to .SLM as in .SIM(65) will cause the .SLM to
be effectivé‘only if the column position of the carriage is greater than thel

whitespa_ice in the prettyprinted output.

argument. If, in the example above, a function call has more arguments than
will fit on a line (60 columns), then the arguments which overflow will be

printed under the first argument to the function.

If a number appears by itself in a prettyprinter description, then that
ASCII code is sent to the output. It is legal to send literal,
carriage-control characters to the output because the prettyprinter

understands where the carriage is. However, it is not a very good idea.

e

Using PPGEN | ' 37
3.0.3. Output Device Dependent Codes

These are currently unimplemented, but ﬁhey are planned to provide an
abstraction of different output devices for highlighting and cursor cohtfol.
The basic information needed by the prettyprinter for these operations is
the character sequence to send and the change in screen position resulting.

from the code. Some example control codes are given below:

1. normal mode
2. reverse video
underlined

blinking

n b W

16 combinations of the above

3.0.4. Elements of a Prettyprinter Description

This section summarizes the elements which may appear in a prettyprinter

line.

"abcd" print a literal string

<number> print the ASCII character

.IM fix left margin at current position

.ILM(-<number>) . fix left margin at original margin minus the argument

.LM(¥<number>) fix left margin at original margin plus the argument, (the
plus sign is optional)

.COL (<number>) move to column number; do crlf; if necessary use tabs and
spaces -

.SLM seek left margin (from .LM); do crlf.; if necessary use tabs
and spaces

.SIM(<number>) - do .SLM if print column is greater than the given column

The printing of ASCII codes does not confuse the line column counter, and

s | Building a Prettyprinter'
these may be freely combined with the other directives. It is important to I

note that the prettyprinter will output tabs and spaces when it indents. If

the output from the prettyprinter is to be read back into PARSE, then these l
successful prettyprinter relies on an internal form which represents I

because we cannot create a prettyprinter that can take an internal form and l

characters must be acceptable input.

Since the prettyprinter can only print from the internal form, a

everything from the external (syntactic) representation.

The internal form of the assignment-statement example is deficient

print it in a form which can be parsed into fhe original internal form. The
problem with our example is that parentheses are not represented explicitly l
in the internal form. The parentheses are represented implicitly by the
hierarchy of the operators and the structure of the tree, but precedence
information is available only to the parser, not the prettyprinter. The
precedence for aﬁ arbitrary domain language is not fi*ed. For example, if

we input
ANS := at* (B+C:)' ‘;

it would be ~pr¢ttyprinted by our .defined prettyprinter as
ANS := a*B+C ;

While the internal representation is still correct, the external
representation is incorrect. Quite a bit of thought must go into what will
be represented in the internal form and how this representation will be

accurately and esthetically printed. To solve our problem we should give

Using PPGEN : 33

the parentheses an internal representation by changing the line
" (H EXl ")H .
in the assignment-statement example

EX4 = IDENTIFIER .LITERAL
(" (" APARAMS ")" .NODE (ENCALL #2 #1) /

.EMPTY) /
NUMBER .LITERAL /
ll(",Exl ll)" ’.

to the line
"(" EX1 ")" .NODE (PAREN #1) ;

To print this internal form node we must make the following prettyprinter

definition:
PAREN - n(n #1 ") [1] .

Now only thé parentheses which appeared in the original program will be
printed. It is useful tb put é representation of most text level items into
fhe internal form. This increases the accuracy of the prettyprinting, the
range of possible transformations, and the range of possible refinements.
However, it makes the transformation definitions a bit more complex because

‘they will be responsible for removing and maintaining the text level forms.

3.1. Prettyprinting TREEs and CHARTs
As mentioned in the previous chapter on parser construction, the parsers
can build two kinds of special forms called TREEs and CHARTs. The

prettyprintérs have two special constructs to print these forms as TREEPRINT

40 Building a Prettyprinter

and CHARTPRINT._

The prettyrinting of a right-leaning tree is achieved using TREEPRINT. I

we have the following TREE internél form:

it could be prettyprinted in the IT prettyprint rule using

. TREEPRINT (IT-SEQ, 1, expressionl, expression2)

1))
o}
<
o]
. 0
[o N
0]
[v)
X
1
]
o}

The TREEPRINT construct would then iook to see if the first subtree in the

IT node is rooted with an IT-SEQ node. If so, the first subtree of that node

would be prettyprinted followed by the evaluation of expressionl and the
prettyprinting of its second subtree. If the subtree is empty (i.e., it
contains an *OMEGA*), then expréssionz is evaluated. This recursive scheme
8
is used to print trees of varying length.
The use of TREEPRINT does not relieve the burden of producing

prettyprinter rules for IT-SEQ type nodes. These prettyprinter rules are

used only in printing fragments for transformation and refinement purposes.

8 .

In fact the scheme is actually iterative to avoid very large levels of
recursion resulting from printing large programs where the statements are in
a tree. This is necessary to avoid blowing the LISP special and regular
pushdown lists.

Using PPGEN . : 41
The CHARTs whiéh can be created by the parsers aré printed using

CHARTPRINT. The use of CHARTPRINT is similar to the use of TREEPRINT. If we

had the following node:

we could use the following definition in the any-node prettyprinter rule to

print a two column chart:
.CHARTPRINT (A-SEQ, 2,"->"," as " ,B-SEQ,3,"["."]1")

If used in the above chart internal form, it would result in the following

" output:

->a as [1]

->b as [2]

The CHARTPRINT directive pulls one element at a time from each of the
right-leaning, intefnal-form trees and prettyprints theme across the page.
The two expressions assoclated with each tree are printed before and after
the tree element. If all the trees of a chart are empty then the chartprint

does no printing.

‘ 42 _ Building a Prettyprinter

) » 3.2. Special PrettyPrinter Functions
The CHARPRINT directive takes one subtree specification (e.g., #1) and
attempts to treat the selected item as a ndmber. If it is a number, it is

i sent as an ASCII code. For example,

.CHARPRINT (2)

applied to the internal form

|
any-node 23 65

would print an A since 65 is the ASCII code for an A. This is used where a

domain language contains special quoted characters.

The .LISTPRINT prettyprinter directive is the printing analog of the
.SEXPN and .LIST‘parsing directives. These are for internal use only and

should not be used in domain languages.

3.3. Using the BUILD'Subsystem to Create a Prettyprinter
This section presents an example transcript. Comments are in {} and user

responses are underlined and terminated by a RETURN.

Draco>BUILD LANG EBEII!EBINIER
{file LANG.PPD contains prettyprinter definition}
{screen clears}
Prettyprinter Generator
Rule <rule name> #*%
{for each rule, each * means that a line has been processed}
Rule <rule name> **,

Parse Completed O Errors Detected
NOTE: LANG.DPP created

{the extension defaults to .DPP}
Draco>

Using PPGEN 43
As in pérser generation, an error which gives a rule is printed out if
prettyprinter generétion is not completed. In the case of PPGEN, this rule
is contained in the file PPGEN.DEF which is reproduced as Appendix III of
this manual. For other errors see Appendix X on errors. Appendix IV

contains a complete prettyprinter example for the language presented in

Appendix I.

CHAPTER 4
BUILDING A TRANSFORMATION LIBRARY WITH XEMGEN
After the Domain Analyst has settled upon an internal and external
representation of the domain language and has described this to Draco
through PARGEN, the simple relationships between the objects and operations
in his language must be described. These relationships are describéd as

program transformations on the prefix internal structure of the domain.

The transformations will be used to simplify program fragments written in
the language. These fragments may come from refinements of other domain
languages into this language, results of transformations on this language,

or the use of PARSE to take in a program in this language.

The transformations usually represent relations which the Domain Analyst
9
regards as "obvious", such as x+O implies x. The transformations will be
used to strip the generality from software components written in the

language when they are used in a specific problem.

4.1. The Transformation Library and Metarules
The subsystem XFMGEN takes the view that transformations are
incrementally added to a library of transformations for a domain. If a

library does not exist, XEMGEN will create one.

" There are two basic reasons'fof the incremental construction of the

transformation library. First, it is hard to come up with all the useful

9
Draco uses "=>" to denote implication for transformations.

45

46 ' ' Building a Transformation Library

transformations for a domain at once. Second, if automatic metarule
generation (discussed below) is used, it is computationally expensive to

start a libfary from scratch.

4.1.1. Transformation Metarules

As XFMGEN reads in thé.transformafions, it has the capability to
automatically produce "metarules". Briefly, these metarules give Draco
information about what itAcan do after it applies a transformation.. The
metarules state where it is'important fo apply which transformations and in

what order.

‘The metarules are expensive to préduce. For every transformation added
to the library, every transformation_in the library (including the new one)
must be examined for possible relationships to the one being added. The
examination process is expensive also. Thus, if we have a library of n;l
transformations, the complexity df adding a new transformation is O(n),
while the complexity of reconstructing the whole library is O(n*n). Since
the library for a domain typically consists of 200-1000 transformations
(sample size of two), the difference between incremental addition to a

library and reconstructing the library is significant.

The specific scheme for automatically generating transformation metarules

is described in Neighbors' Thesis, chapter 3 and appendix II.

Specifying the Program Transformations 47
4.2. Specifying the Program Transformations

Unfortunately, the program transformations must be specified in the
prefix internal form of the domain language. The reason for this is that

some transformations are not syntactically correct, according to the

external definition of the language. Also, it is sometimes useful to input

special markers with a transformation (such as *EMPTY; or *UNDEFINED*) which
will start off other transformations. For examplé, the transformation
X/O=>*UNDEFINED* prevents the propagation of undefined forms in a language.
Remember, if you insert such markers then the domain prettyprinter ﬁust have
a definition for printing theﬁ. In addition, all markers which do not have
an associated component must be removed before refinment is attempted, or an

error will occur.

4.2.1. The Syntax of a Transformation Insertion File
In this section we use standard BNF notation to describe the syntax of a
transformation-insertion file which contains a packet of transformations to

be added to a library.

<DracoTIfile>::= {<TIcmnds>}
<TIcmnds>::= <pvardef> |
<classdef> | <transdef> | (ERASEPVARS)
<pvardef>::= (PVARS <identifier> {<identifier>})
<classdef>::= (CLASS < <identifier> > <identifier>
{<identifier>})
<transdef>::= (TRANS <identifier> <number> <lhs> <rhs>)
<rhs>::= <identifier> | <intform>
<lhs>::= <intform>
<intform>::= (<identifier> {<rhs>})
<identifier>::= <idchar> {<idchar>}
<idchar>::= A | ...| Z |a] ... lz | !' | # | %| & | *

A <number> is a simple sequence of numerals. Notice that the name of a

class (the first identifier in the list) must be surrounded by angle

S

48 . Building a Transformation Librar-yl

brackets (<>). This helps to separate class names from a prefix keyword. '

4.2.2. An Example of a Transformation Insertion File
~If we refer back to our assignment-statement example (see index) with thel

internal form descriptions, we have the following transformation-insertion l
file.

(PVARS X Y 2Z)

(CLASS <COMOP> ADD MPY)

(TRANS ADDXO 12 (ADD X O) X)

(TRANS MPYXO 11 (MPY X O) O)

(TRANS EXPXO 11 (EXP X O) 1)

(TRANS <COM>XY 5 (<COMOP> X Y) (<COMOP> Y X))

(TRANS PARENPAREN 12 (PAREN (PAREN X)) (PAREN X))

(TRANS LDISTMPYADD 5 (MPY X (PAREN (ADD Y Z)))
(PAREN (ADD (MPY X Y) (MPY X Z))))
(ERASEPVARS) -
In the above example the nodes of the internal form are represented as lists
of objects enclosed in parentheses. If a node contains a pointer to another
node, that node is shown inside of the first node. An identifier which is
declared as a pattern variable (PVARS) will match a subtree or a constant.

Thus the X.,Y, arid Z's in the example are all pattern variables.

A class (<COMOP> in the example above) represents a restricted pattern
vafiable. If the class name appears, only members of that class are
matched. The class <COMOP> represents the commutative operators and their

commutativity is stated as transformation <COM>XY. A class can only contain

identifiers, but it can appear anyﬁhere in an internal form. The
transformations (TRANS) have a name, application code, left-hand-side (lhs)/l
and right-hand-side '(rhsA). The lhs of a transformation must be an internal
form (not a simple identifier):. the rhs of a transformation may be an I

internal form or an identifier. The application code specifies the type of l

Specifying the Program Transformations 49
the transformation, as described in the following sections. -The lhs of a
transformation is the form to be matched; the rhs of a transformation is the

form which will replace it.

The ERASEPVARS command sets the list of current pattern variables to
émpty; The pattern variables are defined only for the transformations in
the insertion file; they do not have to be the same ones used for
transformations already in the library. The ERASEPVARS command is useful
for concatenating transforﬁation insertion files to recreate .a library from

scratch.

Notice that the PAREN form, which we added to the assignment statement
example in the PARGEN section, is cleverly used in the LDISTMPYADD
transformation given above. The lhs of the transformation assumes that

there is a PAREN between the MPY and the ADD because in no other way could

-the tree have been constructed. The rhs is embedded in a PAREN because the

-precedence of ADD is less than MPY, and the precedence must be maintained.

The transformation PARENPAREN (and some others) is needed to maintain
required PAREN's. To reiterate, the selection of what to represent in the

internal form, and how to represent it, is a difficult process.

4.2.3. Elements of a Transformation-Insertion File
This section summarizes the commands to XFMGEN which may appear in a

transformation-insertion file.

50 : o ' : Building a Transformatior: Libraryl

(CLASS <classname> <identifier>...<identifier>)
This declares a restrlcted pattern variable named
<classname> which can match any of the identifiers
given. The <classname> may appear anywhere in a

- transformation.

(PVARS <identifier>...<identifier>)
This declares all the identifiers as unrestricted
pattern variables. If a pattern variable appears twice
in a pattern then the objects it matches must
be the same.

(TRANS <transname> <application-code> <lhs> <rhs>)
This describes a transformation with name <transname>

- and other fields as shown.

(ERASEPVARS)
This erases all current pattern variables but not
Classes.

" 4.2.4. The Application Code of a Transformation

In the above transformations and in Appendix V, the application codes
10
follow the rough guidelines given below : (EC stands for enabling

conditions.)

100-up Markov algerithm (can enlarge locale)
95-99 Always do this transformation (no EC's)
90-94 Always try this transformation (has EC's)
85-99 Convert to canonical form (no EC's)
80-84 Convert to canonical form (has EC's)
75-79 Reverse canonical form (no EC's)

70-74 Reverse canonical form (has EC's)

60-69 Operator arrangement (no EC's)

50-59 Operator arrangement (has EC's)

40-49 Flow statement arrangement (no EC's)
30-39 Flow statement arrangement (has EC's)
20-29 Program segment arrangement (no EC's)
10-19 Program segment arrangement (has EC's)
00-09 Start a Markov algorithm

These are completely arbitrary; you may make up your own codes. The codes

10

We plan to replace numbers with domain-specific names for these
operations

Specifying the Program Transformations A 51
for source-to-source transformations run from 10 to 99; Markov algorithms
use 100-up and O. The Draco system knows nothing about particular

application codes except that odd codes represent transformations with

enabling conditions.

Since the current system does not support checking of enabling
conditions, it stops and asks the user before it applies any transformation
with an odd code. The codes are used in the TEMREF subsystem by the

TRANSFORM command.

In the future application codes may be used for a best, first-style

lookahead, so better transformations should have higher application codes.

4.3. The Catalog of Transformations for a Domain

When XFMGEN produces a new library, it gives the option for a catalog
listing. The catalog is a listing of all the transformations in
alphabetical order prettyprinted by the domain prettyprinter. To
pretfyprint classes they must be defined to the prettyprinter. Our previous

example would require the line
<COMOP> = #1 "<COMOP>" #2 ;

to be added to the prettyprinter for the assignment-statement example in the

section on PPGEN. For our above example, the catalog would have looked

like:

52 Building a Transformation Libraryl
4/6/82 ~ 18:00:00 LANG.TLB
<COMCOP> = {ADD,MPY}
<COM>XY: 5 ?X<COMOP>?Y => ?Y<COMOP>?X
ADDXO: 12 ?X+0 => ?X
EXPXO: 11 ?2X°0 =>1
LDISTMPYADD: 5 PX*(?Y+?Z) => (PX*?Y+?X*?Z)
MPYXO: 5 ?X*0 => O
PARENPAREN: 12 (X)) => (?X)

The first line gives the date, time, and name of the file which contains
the library. The pattern variables in each transformation are preceeded by
a question mark (?). These catalog listings are useful references when
working with the TEFMREF subsystem.' Appendix V presents an example catalog
of transformations for the language defined in Appendix I. It is

interesting to note how the special marker *UNDEFINED* is used in

Appendix V, and how the metarules can take advantage of such markers.

4.4. Using the TRANSFORMATION BUILDER SUBSYSTEM: XFMGEN

In this example, we assume that the file PARSER.TFM (see figure below)
contains some transformations to be inserted into the library of the PARSER
domain. We further assume that the PARSER domain currently has no

transformation library.

(PVARS x y z) _

(TRANS true 95 (compr x x) *truet)

(TRANS false 97 (uneq x x) *falset)

(TRANS not# 95 (negation (uneq x y)) (compr x y))
(TRANS not= 95 (negation (compr x y)) (uneq x y))
(TRANS ifeliml 99 (ifthen *true* x) x)

(TRANS ifelim2 99 (ifthen *false* x) *empty*)
(TRANS ifelim3 99 (ifelse *true* x y) x)

(TRANS ifelim4 99 (ifelse *false* x y) y)
(ERASEPVARS)

We activate the XEMGEN subsystem through the BUILD command. In the first

session shown below, XFMGEN notes it is creating a new transformation

Using the Draco XFMGEN Subsystem 53

library. It follows a list of the transformations inserted in the library,
and the user is offered a pretty-printed version of the transformation
library. Finally, the transformation library PARSER.TLB is created (see

Figure 4-1).

DRACO> build (DOMAIN NAME) parser (DOMAIN PART) transformation-library

Transformation Library Builder working on PARSER domain
NOTE: creating a new transformation library

true false not# not= ifeliml ifelim2 ifelim3 ifelim4
Prettyprinted Transformation Catalogue Listing ? (Y/N) >n
NOTE: PARSER.TLB created

DRACO>

Figure 4-1: Sample of Library-creation dialogue

When new transformations have to be added to the library, the procedure
to follow is similar. Let us assume that at some point in the future the
insertion file PARSER.TFM includes the following transformations:

(PVARS x y z) '
(TRANS parenthelim 99 (paren (paren x)) (paren X))

(TRANS parenthelim2 98 (stmnt (paren x) stmnt) (stmnt x stmnt))
(TRANS parenthelim3 98 (stmnt (paren x) *OMEGA*) (stmnt x *OMEGA*))

' (TRANS stmnteliml 12 (stmnt *empty* stmnt) stmnt)

(TRANS stmntelim2 12 (stmnt *empty* *OMEGA*) *OMEGA*)
(TRANS bodyelim 12 (body (stmnt x *OMEGA*)) x)

(TRANS bodyelim2 12 (body (stmnt *empty* *OMEGA*)) *empty*)
(ERASEPVARS)

Figure 4-2: New transformation-insertion file

'~ The following dialogue updates PARSER.TLB with the content of the new

transformation-insertion file:

In this second session, XFMGEN, the Transformation Library Builder, notes

that a transformation library (PARSER.TLB) already exists. A prettyprinted

54 Building a Transformation Libraryl |

DRACO> build (DOMAIN NAME) parser (DOMAIN PART) transformation library

Transformation Library Builder working on PARSER domain

"NOTE: adding to an existing transformation library

parenthelim parenthelim2 parenthelim3 stmnteliml stmntelim2
bodyelim bodyelim2

Prettyprinted Transformation Catalog Listing? (Y/N)>y

NOTE: PARSER.CAT created

- NOTE: PARSER.TLB created

Figure 4-3: Adding transformations to an existing library

version of the updated library (PARSER.CAT) is produced as shown below:

-

Using the Draco XFMGEN Subsystem

3/24/84 1:49:2pm PARSER.TLB

bodyelim: 12

bodyelim2:
false: 97
ifeliml: 99
ifelim2: 99
ifelim3: 99
ifelim4: 99

X => 7x
*empt}r.‘& => *empty* .

X # ?x => *false?

if *true*
then
X
end if ; => 7?x
if *false*
then
X
end if ; => ‘*empty*
if *true*
then
?x
else
2y
end if ; => ?x
if *false*
then

end if ; => 7?2y

not#: 95 (?x # ?y) not => ?x = ?y
not=: 95 (?x = ?y) not => ?x # ?y
parenthelim: 99 ((?x)) => (?x)
parenthelim2: 98 (?x).

=> ?x;

parenthelim3: 98 (?x):

stmnteliml:

stmntelim2:

true: 95 ?x

| Usually, as the small packets of transformations in insertion files are
added to the transformation library, the user should concatenate these

lpackéts into a file (as shown below) in case the transformation library ever

=> ?x;

12 ‘*empty*:
=> stmnt

12 ‘*empty*:

=>
= ?x => ‘ttrue*

needs to be generated from scratch.

56

(PVARS

' (TRANS

| (TRANS
(TRANS

(TRANS

(TRANS

(TRANS

(TRANS

; (TRANS
| (TRANS
(TRANS

(TRANS

(TRANS

(TRANS

(TRANS

(TRANS

Building a Transformation Library.

XYy z)

true 95 (compr x x) *true?)

false 97 (uneg x x) *false*)

not# 95 (negation (uneqg x y)) (compr x y))

not= 95 (negation (compr x y)) (uneqg x y))

ifeliml 99 (ifthen *true* x) x)

ifelim2 99 (ifthen *false* x) *empty*)

ifelim3 99 (ifelse *true* x y) x)

ifelim4 99 (ifelse *false* x y) Yy)

parenthelim 99 (paren (paren x)) (paren x))
parenthelim2 98 (stmnt (paren x) stmnt) (stmnt x stmnt))
parenthelim3 98 (stmnt (paren x) *OMEGA*) (stmnt x *OMEGA*))
stmnteliml 12 (stmnt *empty* stmnt) stmnt)

stmntelim2 12 (stmnt *empty* *OMEGA*) *OMEGA*)
bodyelim 12 (body (stmnt x *OMEGA*)) x) .

bodyelim2 12 (body (stmnt *empty* *OMEGA*)) *empty*)

(ERASEPVARS)

\
.
v

CHAPTER 5

BUILDIN. A COMPONENT LIERARY WITH REFGEN

5.1. The Constituent Parts of a Component

An example component for exponentiation is shown in the figure below.
The component provides the semantics for EXP internalfform nodes for the
language SIMAL, which is pot a domain-specific language, but will be uéed as
such so that the reader will not have to learn a domain-specific language at

this point.

57

58 ‘ ' Building a Component Library

COMPONENT: EXP (A, B) :
PURPOSE: exponentiation, raise A to the Bth power
IOSPEC: A a number, B a number / a number
DECISION:The binary shift method is O(1n2(B)) while
the Taylor expansion is an adjustable number
of terms. Note the different conditions for
"each method.
REFINEMENT: binary shift method
CONDITIONS: B an integer greater than O
BACKGROUND: see Knuth's Art of ... Vol. 2,
. 399, Algorithm A ' :
INSTANTIATION: FUNCTION, INLINE
RESOURCES: none
CODE: SIMAL.BLOCK
[[POWER:=B ; NUMBER:=A ; ANSWER:=1 ;
WHILE POWER>O DO
[[IF POWER.AND.1 # O
THEN ANSWER: 'ANSWER*NUMBER ;
POWER :=POWER//2
NUMBER : =NUMBER*NUMBER]]
RETURN ANSWER]] _
END REFINEMENT
REFINEMENT: Taylor expansion
CONDITIONS: A greater than O
BACKGROUND: see VNR Math Encyclopedia, pg. 490
INSTANTIATION: FUNCTION, INLINE
ASSERTIONS: none
ADJUSTMENTS: TERMS[20] - number of terms,
error is approximately (B*1ln(A)) " ~TERMS/TERMS!'
CODE: SIMAL.BLOCK
[[SUM:=1 ; TOP:=B*LN(A) . TERM:=1 ;
FOR I:=1 TO TERMS DO '
[[TERM:=(TOP/I)*TERM
. SUM:=SUM+TERM]]
RETURN SUM]]
END REFINEMENT
END COMPONENT

Each component has a name and a list of possible arguments in the
COMPONENT field. The name is the prefix keyword of the internal-form nodes
to which the component applies. The list of possible arguments name the
subtrees of the internal form node. If a node has a variable number of

subtrees, a name prefaced by a ">" is used to denote the rest of the

subtrees in the node.

Using REEFGEN 5¢

A prose description of what the component does is given by the PURPOSE

>fie1d. If the component takes objects as arguments and/or produces objects,

then the type of these objects in terms of the objects in the domain is
given in the IOSPEC field of the component. The DECISION field presents a .-
prose description of the possible refinements of the component and the

considerations involved in choosing between the alternatives.

Finally, there is a set of refinements of the component which represent a--
possible implementation of the component in terms of the objects and

operations of other domains.

The first REFINEMENT in the set of refinements is the default refinement.
In the absence of any other information, Draco will attempt to use this
refinement first. Each REFINEMENT has a name and a BACKGROUND where more
information about the method may be found. The BACKGROUND is a prose

description of the method the refinement implements and to which it

references.

The CONDITiONS field of a refinement lists conditions which must be true
before the component may'be used. There are basically two kinds of
conditions: conditions on the domain objects on which the component operates
and conditions on previouély-made implementation decisions. The conditions
on the domain objects are local to the locale where the component will be
used. The conditions on the implementation decisions are global to the
domain instance being refined. The ASSERTIONS field of a refinemeht makes
assertions about the implementation decisions the component makes if it is

used. The assertions are the opposites of the conditions on implementation

decisions.

~required to perform initialization if the refinement is chosen. The

60 | ' Building a Component Libraryl

The RESOURCES field of a refinement states what other components will be

resource components are program parts which are executed before the
resulting program begins execution (initialization phase), and they create |,

information resources for the refinements used in the program.

An example use of a resource is a refinement for cosine which
interpolates a table of cosines duringvexecution. The table must be built
during the initialization phase and the name of the table must be passed to
the interpolation refinement of the component cosine. This is a;hieved by
building a refinement which interpolates tables and requires a resource

component which builds interpolation tables.

The ADJUSTMENTS field of a refinement states fine tuning settings for a
refinement, the meaning of the adjustment, and a default setting. An
example adjustment term might adjust the accuracy of a refinemént or limit

the amount of time spent in calculating in the refinement.

The GLOBAL field lists all names used in the refinement which are not to
be renamed. The primary use of a GLOBAL definition is to define variable

names which are reserved by a domain and cannot be renamed. The SNOBOL

variable &ANCHOR is an example global. GLOBAL definitions should be used
rarely, and are always suspect. They seem to stem from a poor analysis of a I
domain. Labels which are defined in the refinement are defined in the

LABELS field of the refinement. : l

The way a refinement may be inserted into the internal form tree during l

refinement is governed by the INSTANTIATION field of the refinement. The

Using REFGEN ,) | 61
three modes of instantiation are INLINE, FUNCTION, and PARTIAL. More than
one instantiation may be given for a refinement; the first one listed is the
default instantiation. INLINE instantiation means the refinement is
substituted directly into the internal-form tree. All variables used in the.:
refinement are renamed (including labels) except for those declared global
and the arguments. FUNCTION instantiation substitutes a call for the
component in the internal-form tree and-defines a function using the
refinement for the body. .A new function is defined only if the same

function from the same domain has not already been défined. PARTIAL

" instantiation substitutes a call for the component in the internal form tree

with some of the arguments already evaluated in the body of the function
defined. Limitations are placed on the partially evaluated forms allowed.
When a function is defined, the defining domain,»cdmponent name, and a
version number are'used to différentiate between functions of the same name

in different domains and FUNCTION and PARTIAL versions of the same function

in the same domain.

The final field of a refine&ent is either a DIRECTIVE to Draco or the
internal form of a domain. The internal form of a domain may be described
either in a parenthesized tree notation with the INTERNAL:domain directive,
or it may be specified in the external form (domain language) of the domain
with the CODE:domain.nonterminal directive. The CODE directive causes the
parser for the specified domain to be read in and‘started in order to
recognize the given ﬁonterminal symbol. A.DIRECTIVE to Draco is one of the
following alternatives: view the component as a function definition by the
uéer program, view'the component.as a function call, defer froﬁkrefining

this component, or.remove the node which invoked this component from the

‘processing of a single component for inclusion in the component library of a

62 Building a Component Libraryl
internal-form tree. The Draco DIRECTIVEs are used when a domain language I

which allows function definitions, function calls, and such things as

refinements for comments (which remove comments from the program since they I ‘

are saved in the refinement history) are defined.

.
‘

Not all the component and refinement fields are required for each

-cAomponent definition. Basically, the only required fields are COMPONENT, I

REFINEMENT, INSTANTIATION and CODE. I
5.2. The Motivation for Libraries of Components
Components are placed into libraries in much the same way, and for much

the same reason, that transformations are placed into libraries. The

domain is very expensive. For each refinement in the component, the parser
for the domain(s) in which the fefinement is written must be loaded to parsel
the external form into internal form. Once the code for the refinement is
in internal form, the agendas of the infernal form are annotated with

transformations of interest from the transformation library of the target
domain. The transformation suggestions will point out things of interest
when the refinement is used. Thus, Draco supports a Component library

consfruction facility where a group of components may be replaced or added

without disturbing the other compohents in the library.

Us iné REFGEN , 63
5.3. Buildiné a'Component Library |

The REFGEN subsystem in DRACO supports the construction of libraries of
components. The process is activated by using a variant of the BUILD
command. The éomponeﬁts to be inserted in the library are kept in a <domain
name>.REF,file. When the building process begins, the Refinement Library (a
<domain name>.RLB file) may not exist, and it is created from scratch. If

the library is not empty, the components in the <...>.REF file are

incorporated into it; those that were already there are updated according to

the new definition from the <...>.REF file. Thus, this variant of the BUILD

command is used both for creating and updating the refinement libraries.

To illustrate the dialogue with REFGEN. (the Component Library Builder),
we will use a set of refinement components of DRACO itself as input:
DRACO.REF. As we already have a Refinement Library for Draco,‘REFGEN_NOTEs
and it provides a list of the components defined. At this point, if no
<domain name>.REF or <domain name>.DEC files are found in the user
directory, REFGEN wiil flag an error, and the process will be aborted.

REFGEN prints asterisks as it parses each line of the component definitions.

The following figure is a fragment of the input file, DRACO.REF, showing
some of the components that were processed through the dialogue transcribed
above. The next example shows the contents of the relevant fragment of file
DRACO.RLB, the Refinements Library, with the suggested transformations

generated by REFGEN.

64

Component *PROCLIST* **
Refinement LISP function list as a read execution sequence
: WA hhkhkkd :
Component *PROCLIST-SEQ* *x

Building a Component Library

DRACO>build (DOMAIN NAME) dracoc (DOMAIN PART) component-library

Component Library Builder working on DRACO domain

NOTE: existing component library contains:

APARAMS *APARAMS-SEQ* *FPARAMS* *FPARAMS-SEQ* *LABELS*
LABELS-SEQ *LOCALS* *LOCALS-SEQ* *PARTIALS* *PARTIALS-SEQ*
PROCCALL *PROCDEE* *PROCLIST* *PROCLIST-SEQ* *SEQUENCE¥

NOTE: insertion file components replace library components

Refinement LISP function list as a read execution sequence
khkkhhh®

Compohent *PROCDEF * .

Refinement LISP function definition
hhkkkdkdk
etc....

v

Using REFGEN

[0)])
n

COMPONENT : *PROCLIST* (PROCS)
PURPOSE: The list of functions known to Draco
REFINEMENT: LISP function list as a read executlon sequence
INSTANTIATION: INLINE
INTERNAL:LISP
(LISPPGM {{PROCS} })
END REFINEMENT
END COMPONENT

COMPONENT : *PROCLIST-SEQ* (PROCS1, PROCS2)
PURPOSE: The list of functions known to Draco
REFINEMENT: LISP function list as a read execution sequence
INSTANTIATION: INLINE
INTERNAL:LISP
(LISPSEQ {{PROCS1}} {{PROCS2}})
END REFINEMENT
END COMPONENT

COMPONENT : *PROCDEF * (DOMAIN, NAME, VERSION, BODY,
FPARAMS, LOCALS,PARTIALS, LABELS)
PURPOSE :A Draco function definition
REFINEMENT: LISP function definition
BACKGROUND: WARNING: could cause naming problems!
INSTANTIATION: INLINE
CODE: LISP.SEXPN
{{ (DE {{NAME}} {{FPARAMS}} (PROG {{LOCALS}}
. (RETURN {{BODY}}))) }}
END REFINEMENT
END COMPONENT

Building a Component Librafyl

(DEFINE-COMPONENT *PROCDEF* (COMPONENT *PROCDEF *)
(CPARAMS DOMAIN NAME VERSION BODY FPARAMS LOCALS PARTIALS LABELS)
(PURPOSE A/ Draco/ function/ definition)

(REFSET (REFLIST (REFINEMENT LISP/ function/ definition) (BACKGROUND

WARNING:/ could/ cause/ naming/ problemsl) (INSTANTIATION INLINE)
(LOCALS DE RETURN) (CODE (*DOMAIN* LISP (*AGENDA* ((50 NILL1))
(SEXPN (*AGENDA* NIL

(SEXPNSEQ (*AGENDA* NIL (LISPNAME DE)) (*AGENDA* NIL (SEXPNSEQ
(*PVAR* NAME) (*AGENDA* NIL (SEXPNSEQ

(*PVAR* FPARAMS) (*AGENDA* NIL (SEXPNSEQ (*AGENDA* NIL (PROG
(*PVAR* LOCALS) (*AGENDA* ((95 CANO2))

(PROGBOD (*AGENDA* ((95 CANOl) (85 PROGSEQNIL PROGSEQT))

(PROGSEQ (*AGENDA* ((50 NILL1)) (SEXPN (*AGENDA* NIL

(SEXPNSEQ (*AGENDA* NIL (LISPNAME RETURN))

(*AGENDA* NIL (SEXPNSEQ (*PVAR* BODY) *OMEGA*)))))) *OMEGA*))))))
OMEGA)))))))))))) (DOMAIN LISP))))

(DEF INE-COMPONENT *PROCLIST* (COMPONENT *PROCLIST*)

(CPARAMS PROCS) (PURPOSE

The/ list/ of/ functions/ known/ to/ Draco//) .

(REFSET (REFLIST

(REFINEMENT LISP/ function/ list/ as/ a/ read/ execution/sequence)
(INSTANTIATION INLINE) (LOCALS)

(CODE (*DOMAIN* LISP (*AGENDA* NIL (LISPPGM (*PVAR*PROCS)))))
(DOMAIN LISP))))

(DEFINE-COMPONENT *PROCLIST-SEQ* (COMPONENT *PROCLIST-SEQ*)

(CPARAMS PROCS1 PROCS2)

(PURPOSE The/ list/ of/ functions/ known/ to/ Draco//)

(REFSET (REFLIST

(REFINEMENT LISP/ function/ list/ as/ a/ read/ execution/sequence)
(INSTANTIATION INLINE)

(LOCALS) (CODE (*DOMAIN* LISP (*AGENDA* NIL (LISPSEQ (*PVAR*PROCS1)
(*PVAR* PROCS2))))) (DOMAIN LISP))))

-

CHAPTER 6
CONVERTING A PROGRAM Td INTERNAL FORM WITH PARSE
When a new system which can be described in one of Draco's doﬁain
languages needs to be built, the PARSE subsystem is used to convert the
domain-language program into the internal form that Draco can manipulate.
The PARSE subsysteﬁ reads in the parser built by the PARGEN subsystem for

the domain language.

If there are transformations defined for the domain, these
transformations will be attached to the program's internal form. If not,
the message "ERR: transformation library <DOMAIN>.TLB unavaible for
suggestions" will be issued. Even with this message, an internal form will
be created for the program; but this pfogram will not have suggestions for

transformations.

6.1. Using the PARSE Subsystem
The following is an example interaction with the PARSE subsystem. LANG

is the name of the domain, and PROG.PGM is a file which contains a prdgram

written in LANG.

Draco>P <esc> ARSE (DOMAIN NAME) LANG <esc> (SOURCE FILE)
PROG <esc> . PCGM

{Draco loads the parser for the domain}
Parsing from LANG from file LANG.PGM
Akkddkd {one * signifies a line read}
Parse Completed O errors detected
PROG.INT created

Draco>

The error conditions'and error messages are similar to those for PARGEN and

PPGEN that is, if an error occurred while parsing a rule name, the offending
67

68 ’ Converting a Program to Internal Form
line would be printed. In this'case, the offending line would come from
PROG.EXT; and the rule would be contained in the parser definition for the

domain, LANG.DEF.

6.2. How Transformations are Suggested in PARSE

If the transformation library is available for the Domain then some
suggestions of transformations are made in the internal form that PARSE
builds. These transformations are suggested by the prefix keyword at each
node in the tree, and no further matching is done. Thus, any transformation
which could pgéﬁiblx apply is suggested. Many of those suggested will ﬁot

apply.

The suggestion mechanism assumes that the TRANSFORM command of the TEMREF
subsystem will be used to weed out any inapplicable transformations very
quickly. The suggested transformations are ordered by their application

codes (see XFMREF) .
6.3. Multiple Domains
when'writing programs in one Domain we can use statements in other

Domains._ To do this we need to signal to the parser that a'change of

domains will take place. This is done with the following construct:
{{<DOMAIN-NAME> .<RULE-NAME>{{<statemenents>}}}}

No blanks are allowed between thé braces and text.

The rule name can be the main rule of the parser of the inside Domain, or

’

How Transformations are'Suggested in PARSE

it can be a specific rule just related to the statement(s)

we want to use.

69

70 Converting a Program to Internal Forn#

-

CHAPTER 7
USING TFMREF THE PROGRAM MANIPULATION SUBSYSTEM
The transformation and refinement subsystem of Draco (TFMREF) is used by
a System Specialist to refine a program written in a domain language inté an
executable language. Before the TFMREF system can manipulate a program, it

must be converted into the prefix internal form for the domain by PARSE.

The basic cycle of a System Specialist using TEMREF is to first transform
the program to removelinefficiencies. Then the prpgram is refihed by
selecting an appropriate refinement (software component) to implement the
primitives of the domain used in the program. This cycle is répeated again
and again, with the soffware components introducing meaning and the

transformations stripping the generality out of the software components.

Each time a refinement is made, a record is kept. Thus, the EXAMINE
subsystem can account for the purpose of any line at any level of refinement

in the resulting system.

7.1. The TEMREF Commands Which Set the Context

When working on the refinement of a large and complex system in an iterim
stage of development, it is important to bind the context of refinement
considered by the System Specialist. In TEMREF this is achieved with three

mechanisms: DOMAIN, INSTANCE, and LOCALE.

While a program is being refined, it may exist as program fragments in
many domains at once. The different domains are used as modelling domains
for the problem. The first element of context to be bound is the DOMAIN in

which the System Specialist intends to work.
71

72 . . o Program Manipulation uéing TEMREF
Once the domain is selected, specifying an INSTANCE of it provides a

second restriction on context.

s

Finally, provision is made for the System Specialist to specify a

restricted LOCALE within the instance of the selected domain.

All of these nérrowings of the context serve to focus both tﬂe System
Specialist and TFMREF in examining what can be done. When TFMREF is entered
initially, it requests the file containing the internal form of the program
to be refined, the domain, and the instance. The following sections
describe the commands which restrict the context. The selected context can

be displayed in a shorthand notation using the INFO command.
7.1.1. The DOMAIN command

DOMAIN <domain name>

The domain command is used to change the domain in which the System

Specialist wishes to work. TFMREF automatically performs a DOMAIN command

upon entry. All parts (prettyprinter, tr‘a-ns.for'mations, and refinements) of l

the old domain are removed from memory, and the prettyprinter (if one

exists) for the new domain is loaded: The instance is unselected when a old l

domain is removed. '

7.1.2. The INSTANCE command l
INSTANCE

The INSTANCE command is used to change the instance of the currently

selected domain to some other instance of the domain in the selected

-

The TFMREF Commands Which Set the Context 73
program. To select the instance, TEMREF scans the selected program loocking
for program fragments written in the selected domain. If it finds one, it
prettyprints the fragment to a certain depth using "..." to indicate
supressed detail. It then asks the user if this was the instance he had in‘
mind. If so, it selects the instance. If no instance is selected, the
other commands in TEMREF which require an instance will either select an

instance automatically or not function until an instance is selected.

7.1.3. The LOCALE Command
LOCALE [No. of levels]

The LOCALE command restricts the context to a part of the selected
instance by traversing the prefix-tree internal form. If you expect to
apply transformations one at a time, the locale command must be used to set
the location of applicafion. This is a tedious operation since TEMREF must
be able to traverse the internal form of any domain without the System

Specialist having to know the internal form of the domain.

When the locale command is given, the system prints the selected locale.
A negative number (-n) moves up the tree n levels (limited by the instance
root), while a positive nﬁmber (n) moves down the nth subtree. Error
messages are printed when the number of levels exceed‘the number of

available sub trees.

The PP command prettyprints the current locale if one has been selected.

74 ' Program Manipulation using TEMREF

7.2. The Miscellaneous TFMREF Commands

This section presents the commands of the TFMREF subsystem which either

present or save environmental information. These commands are not specific

to locale, transformations, or refinements.
7.2.1. The PP Command
PP

The PP command prettyprints the selected locale completely, without the

shorthand. The output may be safely aborted with a control-O.
7.2.2. The INFO Command
INEFO

The INFO command prints the time, date, program file you are working on,

‘domain selected, what is in memory (PP=prettyprinter, TFM=transformations,

REF=refinement index), the short version of the instance, and the short

version of the locale.
7.2.3. The HARDCOPY Command

HARDCOPY <filename.ext>

The HARDCOPY command enables the System Specialist to get a disk file of

the prettyprinted version of the entire domain instance. When a program has

been refined from one domain language into an executable language, this

command must be used to get a copy of the resulting program.

The Miscellaneous TEFMREF Commands 75

7.2.4. The SAVE Command

SAVE

The SAVE command saves the entire prefix internal form, suggested
transformations, and refinement recora over the old program file. The name
of the program file is given by the INFO command. Upon EXITing the TEMREF
subsystem, the user is automatically asked if he wants to save the internal
form. This command is included for incremental saves in case a crash wipes

out the_entire session.
7.2.5. The EXIT Command

EXIT

The EXIT command exits the TEMREF subsystem, asks if a SAVE should be

done, and then returns to Draco.

7.3. A Summary of the TEFMREF Commands

The TEMREF Subsystem has a HELP command which prints out the following

summary of the TFMREF commands:

76 Program Manipulation using TEMREF

The TEMREF commands are:

DOMAIN - specify a new domain to work with

INSTANCE - specify which instance of the chosen domain to work with
NOINSTANCE- remove any instance selection for autoselection

LOCALE - specify a subpart of the instance to work with

PP - display the locale selected

INEFO - print out environment stats .

UNLOAD-TRANSFORM - unload the transformations for the domain
UNLOAD-REFINE . - unload the components for the domain A
REFLRU - set the LRU stack length for no. of components in mem.
?TRANS - print out a transformation

?CLASS - print out a class

SUGGEST - suggest transformations to apply to the locale

APPLY - apply a transformation to the locale

TRANSFORM - scan for transformations in the current locale

ANNOTATE - attach transformations in <domain>.TLB to internal form
REFINE - scan for refinements in the current locale »
TACTICS - invoke the tactics subsystem

SAVE - save all the work so far

HARDCOPY - prettyprint the instance to a file

EXIT - exit the TEMREF subsystem

HELP - this list

The TFMREF commands for transformation and refinement are described in

Chapters 8 and 9, respectively. Tactics are described in Chapter 10.

7.4. An Example Session with TEMREF

This section presents a session with TEMREF. In this session concern
should not be with the meaning of the domain language being manjpulated
(SIMAL see Appendix I). What is of concern is the way TFMREF commands
interact with the user to manipulate this small, trivial example. In the
transcript, {} denote comments. underlining denotes user responses. All

user responses are terminated with a RETURN.

77

An Example Session with TEMREF

-

78

Program Manipulation using TFMREF

Draco>TEMREF (PROBLEM FILE) guad
{extension defaults to .INT}
. {screen clears}
Transformation and Refinement Subsystem

. NOTE: file last modified on 2/3/84 6:5:41pm.

The modules are:
DRACO.START.O () [1{}
<DL : DOC_DOCUMENT>
(Y/N) >n o
TEMREF>Domain (DOMAIN NAME) SIMAL
{ALGOL-1ike lang for examples}
NOTE: DRACO domain being removed

TEMREE>instance
.PROGRAM QUADRATIC {shorthand printout}
$QUADRATIC
[[LOCAL
.. 1]
S
.END
(Y/N) >Y {is this the instance?}
TEMREEF>PP : {let's see all of program}
.PROGRAM QUADRATIC
$QUADRATIC
[[LOCAL A,B,C,ROOT1,RO0TZ;
LOOP :
PRINT ("QUADRATIC EQUATION SOLVER", CRLF) ;
PRINT ("INPUT A,B,C PARAMETERS ") ;
A :=READNUM;
IF A=O THEN RETURN ;
B:=READNUM;
C:=READNUM;

ROOT1 := (-B+SQRT (B~2-4*A*C)) / (2*A) ;

ROOT2 :=(-B-SQRT (B~2-4*A*C)) / (2*A) ;

PRINT ("THE ROOTS ARE: ",ROOT1," AND ",ROOT2,CRLF);
GOTO LOOP]]

$

.END

TEMREF>LOQCALE (NO.OF LEVELS) 1 {let's restrict the context}
.PROGRAM QUADRATIC
$QUADRATIC
[[...
.11
8

.END

TEMREF>locale 1

$SQUADRATIC
[[LOCAL ...;

.

An Example Session with TEMREF 79

.13
$
TEMREF>locale 1

[[LOCALAA,B,C,ROOTl,ROOTZ:

LOOP:
..]]
TEMREF>locale 2
LOOP: :
PRINT(...):
PRINT(...):

D)

TEMREF>l1ocale 2
PRINT ("INPUT A,B,C PARAMETERS ") ;
A :=READNUM;

.’

 TEMREF>locale 2
A :=READNUM;
IF ... THEN ...;

TEMREF>]locale 2
IF A=0 THEN RETURN
B :=READNUM;

.’

TEMREF>locale 2 {progressi?ely deeper into program}
. B:=READNUM; _
C:=READNUM:;

.’

TEMREF>locale 2 ,
C:=READNUM;
ROOT1:=...;

.’

TEMREE>1ocale 2
ROOT1: AR
ROOT2:=...;

|
|
l . ‘
.

80

Program Manipulation using TEMREF

TEMREF>locale 1
: ROOT1:=(...)/(...).
TEMREF>locale 2 : . .
number too large {an error - try again}
TEMREF>locale 1
(...+...)/(2*A)
TEMREF>]ocale 1
(-B+SQRT(...))
TEMREF>locale 1
‘ -B+SQRT (.. .)
TEMREE>locale 2
SQRT(...-...)
TFMREF>locale 2
number too large
TEMREF>locale 1

B"2-...*C
TFMREF>locale 1
Subsystem
B"2-4*A*C
TEMREF>locale 1
B~2 .
{ok lets look at the ~* operator}r
TEMREF >pp
. B°2 » {yes we are really there}
TEMREEF>suggest {ask for transformation suggestions}
10 OIDDEF {transformation name and application code}
7 EXPX2 {in application code order}
3 <OP>XIF
2 <OP>IFX -
TEMREF>2trans expx2 {what does expx2 transformation do}
transformations loaded {first get the transformation }
: {library}
EXPX2: 7 ?X°2 => ?2X*?X . {it makes " into *}
TEMREF>2trans QIDDEF {what is an OIDDEF}
OIDDEF: 10 ?X<OIDOPS>1 => ?X {1 identity operators}
TFMREF>2class <QIDOPS> {which operators are 1 identity}

<0IDOPS> = {MPY,EXP} {the set MPY and EXP}
TEMREF>apply expx2 {lets do expxz here at B~2}
EXPX2: 7 B"2 => B*B- (Y/N) >Y {before and after}
TEMREF>locale 1 {zoom out from where tfm took place}

B*B
TEMREF>locale 1

——

An Example Session with TFMREF

B*B-4*A*C

TEMREF>locale 1
SQRT(...-...)

TEMREEF>1locale -100 {get me to the instance root now}
.PROGRAM QUADRATIC '
SQUADRATIC

(C...
.11
$

.END
TEMREF>pp {did the program change?}
.PROGRAM QUADRATIC
8QUADRATIC
[[LOCAL A,B,C,RO0OT1,RO0T2;
LOOP:
PRINT ("QUADRATIC EQUATION SOLVER", CRLF);
PRINT ("INPUT A,B,C PARAMETERS "); ,
A :=READNUM;
IF A=O THEN RETURN ;
B:=READNUM;
C:=READNUM;
{we changed this line}
ROOT1 : =(-B+SQRT (B*B-4*A*C))/ (2*A) ;
ROOT2:=(-B-SQRT (B~2-4*A*C))/(2*A);
PRINT ("THE ROOTS ARE: ",ROOT1," AND ",ROOT2,CRLF);
GOTO LOOP]] :
8
.END

TEMREF>TRANSFORM (LO CODE) 3 (HI CODE) 12 (APROVAL MODE)ASK
{the easier way to do tfms}
{3 and 12 mean: application codes 3 to 12 and
ask me before doing any transformations.
A 3:12 would not ask me first.
All tfms with enabling conditions will ask anyway.}

EXPX2: 7 B"2 => B*B (Y/N) >Y
{TRANSFORM applies transformations throughout the
currently selected locale}
TEMREE>pp {lets see where the change was made}
.PROGRAM QUADRATIC
$QUADRATIC
[[LOCAL A,B,C,ROOT1,RO0T2;
LOQOP:
PRINT ("QUADRATIC EQUATION SOLVER",CRLF);
PRINT ("INPUT A,B,C PARAMETERS. ")
A :=READNUM;
IF A=O THEN RETURN ;
B:=READNUM;
. ' C:=READNUM; '
. ROOT1:=(-B+SQRT (B*B-4*A*C))/ (2*A) ;
{this line changed}

»
~

81.

82

Program Manipulation using TEMREF

ROOT2 : = (-B-SQRT (B*B-4*A*C)) / (2*A) ;
PRINT ("THE ROOTS ARE: ",ROOT1," AND ",ROOT2,CRLEF) ;
GOTO LOOP]]

$
.END

TEMREF>info {what am I doing with what and when}

2/3/84 6:10:50
PROGRAM: QUAD.INT

{prettyprinter and transforms in memory}
DOMAIN: SIMAL PP TEM

{instance and locale are same}
INSTANCE: .PROGRAM QUADRATIC

SQUADRATIC

g
.END

LOCALE: .PROGRAM QUADRATIC
$SQUADRATIC
([...
1]
$

.END
TEMREF>unload-transform

TEMREF>locale 1
.PROGRAM QUADRATIC
SQUADRATIC
(C...
1]
g
.END

{remove transformations}

TEMREF>locale 1
8QUADRATIC
[[LOCAL ...;

1]

§

TEMREEF>1ocale 1
[[LOCAL A,B,C,RO0OT1,RO0TZ;
LOOP .

.
s

1

TEMREF>]ocale 1
LOCAL A,B,C,ROOT1,RO0T2;

An Example Session with TEMREF 83

. TEMREF>info .
5/25/79 23:29:21
PROGRAM: QUAD.INT

{transformations removed}
DOMAIN: SIMAL PP

{instance and locale different}
INSTANCE: .PROGRAM QUADRATIC

SQUADRATIC

$
.END

LOCALE: LOCAL A,B,C,ROOT1,RO0T2;

TEMREF>hardcopy {make file of prettyprinted instance}
Output File>QUAD {no default extension}
QUAD created
TEMREF>exit {get out of TEMREF to Draco}
Do you want to save the changes ? (Y/N) >Y {SAVE check}
' QUAD.INT saved
Draco>

Program Manipulation using TEMREF

»

CHAPTER 8
USING THE PROGRAM TRANSFORMATION MECHANISM
The form and power of the transformations is discussed in the chapter on

the transformation library generator (XEMGEN). The TEMREF subsystem assumes

"that the transformation library already exists. The transformation library

is loaded only when it must be in order to save working rcom in memory.
Everytime the TFMREF system performs a transformation, it prints out the
before and. after versions of the program fragment and, if desired, requests
a user OK. The subsections below present the transformation-related

commands .

8.1. The SUGGEST command
SUGGEST

The SUGGEST command causes the system to examine its internal form of the
current locale and to suggest what transformations it would apply or look
at. The sﬁggest command goes hand-in-hand with the automatic suggestion of
the transformation option of the PARSE subsystem. If the automatic |
suggestion option was not taken, then the suggest command would not bg able

to suggest any transformations until one is performed manually.

Even if you intend to perform transformations one at a time manually, it
is a good strategy to use the automatic-suggestion-of-transformation option
followed by the TRANSFORM command discussed below. This strips out all the
transformations which don't really apply (see the discussion of how

transformations are suggested by PARSE) .

85

86 : Program Transformation Mechanism

8.2. The APPLY Command
APPLY <transformation name>

The APPLY command applies a specified transformation to the current
locale. Remember, by locale we mean only the root of the internal-form tree
described by locale commands. Using APPLY is very tedious, and it is not
recommended. It is included simply because most transformation éystems in
the past have used such a command extensively. The TRANSFORM command

discussed below is the recommended replacement for the APPLY command.

8.3. The TRANSFORM Command
TRANSFORM [LO CODE]<code> [HI CODE]<code> [APPROVAL MODE]<answer>

The TRANSFORM command automatically applies transformations within a
certain application code range over the selected locale. It allows the
System Specialist to instfuCt the system té request his approval of each
transformation (the answers: ASK, NOASK). The transformations are applied
to the locale from the leaves of the internal-form nodes up to the root of .
the locale. At each node the transformation with the highest application

code is applied first.

When a transformation is successfully applied; and, if the information in
the metarules specifieé transformations on the new program fragment, then
the bottom-up process begins again on the new fragment. It suffices to Say
that all the information in thé metarules is taken advantage of by
TRANSFORM. After a TRANSfORM, the SUGGEST coﬁmand will give rules suggested

during the TRANSFORM by the metarules whose application codes were outside

Using the TEMREF commands ' ‘ 87

the rahge given to TRANSFORM. The more obscure transformations are usually

suggested by the system in this way.
8.4. The ?TRANS Command

?TRANS <transformation name>

The ?TRANS command prints out the text of a transformation. It is useful
for examining a transformation suggested by the SUGGEST command. The format

of the transformation is the same as a catalog listing (see catalcg).

8.5. The ?CLASS Command
?CLASS <class name>

The ?CLASS command prints out the prefix keywords which match a class.
It is only‘included because the ?TRANS‘command may print out a class name as
part of the transformation, and an initiate of the domain may want to
remember what is included in the class. (See Elements of the Transformation

Insert File in Chapter 4).

8.6. The UNLOAD-TRANSFORM Command
UNLOAD-TRANSFORM

When the transformations are loaded, notice is given to the user. As
mentioned before, the transformations are loaded automatically when
required.‘ However, if the System Specialist decides to perform some

refinements and needs more room in memory, he may remove the transformations

k
I
»

from memory with the UNLOAD-TRANSFORM command. If needed again, they will I

8.7.. Example ‘ ’ : l

88 Program Transformation Mechanism

be loaded automatically

The example given below shows a fragment of a session in which
transformations are applied. Following the example session a prettyprinted I
version of a locale being refined is given. It is included here so that the

reader may compare it with the final code once the transformations have been l

applied.

Comments between square brackets are included in the example to improve

the readers' understanding of the session log.

{ The following is a transcription of the original code in the locale,

before the available transformations were applied.}

Using the TFMREF commands 89

TEMREEF >PP
(DE GWOODS (gendict gentree) (PROG (genrslt genrstack)

(SETQ gentree (LIST gentree)) :

(GO 'STREE)

(NILL ~ -====-=-===-)

STREE

(OR (AND T T) (GO alab))

(PUSH genrstack 'rlab)

(PUSH gentree))

(GO SUBJECT)

rlab

. (PUSH genrstack rlabl)

(PUSH gentree)

(CO VERB-PHRASE)

rlabl

(GO S1)

alab 7

(NILL ~ --=--------)

(GENERR)

S1

(OR (AND (EQUAL 'QUESTION))
(GO alabl))

(POP gentree)

(GO exit)

alabl

(NILL =~ -=====-----)

(OR (AND (EQUAL 'DECLARE))
(GO alabl))

(POP gentree)

(GO exit)

alab3d

(NILL ====--==----)

(GENERR)

exit

(OR genrstack (RETURN genrslt))

(GO (POP genrstack))))

{ The systems specialist wishes to apply all transformations with

application codes in the range 50 : 90 . He also requires the system to ASK

before each transformation is applied.}

TFMREF>TRANSFORM (LO CODE) S50 (HI CODE) 90 (APPROVAL MODE) ASK

{ The transformation library is loaded. If there were no <...>.TLB file

available, an error message would be displayed and the process would be

°10)

aborted.}

NOTE: transformations loaded

{ In the following lines Draco asks the systems specialist if it should
apply each transformation. For each transformation Draco gives the

following:

<name> : <application code> <lhs> => <rhs>. 1If the specialist

Program Transformation Mechanism

confirms the transformation (Y), the left-hand-side (lhs) expression is

substituted by the right-hand-side (rhs) expression at that point in the

ANDEMPTY: 80
(OR T (GO alab)) => T (Y/N) >Y

locale.}
NILL1l: 50
ANDSEQT: 80
ANDSEQT: 80
ORT: 80

(NILL ~ —===-==----) => NIL (Y/N) >Y
(AND T) => (Y/N) >Y
(AND T) => (Y/N) >Y

(AND) => T (Y/N) >Y

{ The following transformation relates fairly large lhs and rhs

expressions. Look for the "=>" delimiter }

91

Using the TFMREF commands

S2

| 'DECLARE) (Y/N) >Y
NILL1: 50 (NILL = -=-=----- ---) => NIL (Y/N) >Y
PROGSEQNIL: 85 NIL => (Y/N) >Y
PROGSEQNIL: 85 NIL(OR (EQUAL 'DECLARE)

(GO alab3))

(POP gentree)

(GO exit)

alab3

Program Transformation Mechanism

PROGSEQT: 85 T(PUSH genrstack '...)
(PUSH gentree)
(GO SUBJECT)
rlab
(PUSH genrstack '...)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl
(GO 81)
alab ,
=> (PUSH genrstack '...)
(PUSH gentree)
(GO SUBJECT)
rlab :
(PUSH genrstack '...)
(PUSH gentree) '
(GO VERB-PHRASE)
rlabl -
(GO S1)
alab
(Y/N) >Y

{ By succesively applying NILL1 and PROGSEQNIL, the
(NILL ----------) will be eliminated from the locale }

NILL1: 50 (NILL = ===========) => NIL (Y/N) >Y

PROGSEQNIL: 85 NIL => (Y/N) >Y
AND1: 80 (AND (EQUAL 'QUESTION)) => (EQUAL
- 'QUESTION) (Y/N) >Y

NILL1: 50 (NILL = =========-e-) => NIL (Y/N) >Y
AND1: 80 (AND (EQUAL 'DECLARE)) => (EQUAL |

=> (OR (EQUAL 'DECLARE) (GO alab3))
(POP gentree)
. (GO exit)
: alab3
(Y/N) >Y

BEE N S S on S v an B 0 A an e BN A e N AR am

Using the TFMREF commands

PROGSEQNIL: 85 NILSTREE

alab
(GENERR)

S1

(OR)

alabl
OR)

alab3
(GENERR) => STREE

alab
(GENERR) S1
(OR)

alabl
(OR)

alab3
(GENERR) (Y/N) > Y

{ At this point, the specialist interrogates the
system about the functions available to him.}

TEMREF> {use the <space><linefeed> mechanism to get help}

One of the following:

?CLASS ?TRANS ANNOTATE APPLY DOMAIN EXIT HARDCOPY
HELP INFO INSTANCE LOCALE NOINSTANCE PP
REFINE REFLIRU SAVE SUGGEST TACTICS TRANSFORM

UNLOAD-REF INE UNLOAD - TRANSEORM

{ The pretty-printed version of the locale (given below)
shows the new version of the code after the previous
transformations were applied.}

94 Program Transformation Mechanism

TEMREF>PP
(DE GWOODS (gendict gentree) (PROG (genrslt genrstack)

(SETQ gentree (LIST gentree))
(GO 'STREE)
STREE
(PUSH genrstack 'rlab)
(PUSH gentree)
(GO SUBJECT)
rlab ’
(PUSH genrstack 'rlabl)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl
(GO S1)
alab

| (GENERR)

| S1

(OR (EQUAL 'QUESTION)

’ | (GO alabl)) '
(POP gentree)

| (GO exit)

| alabl ' '
(OR (EQUAL 'DECLARE)

(GO alab3l)) '

(POP gentree)
(GO exit)
alab3
(GENERR)
exit _
(OR genrstack (RETURN genrslt))
(GO (POP genrstack))))

BN S SN s A DO oat G o OO0 GO BN BN R O A e Gam Om

CHAPTER 9

USING THE TEFMREF REFINEMENT SUBSYSTEM
9.1. The TFMREF Commands Which Wofk With Refinements

9.2. How components are used
This section discusses how the fields of a component are used in the
refinement process to choose an implementation for the operation of object

the component represents.

First, the IOSPEC conditions on the component should be verified by
examining the internal form or refinement history of the surrounding
internal form of the node ta be refined. Restrictions on which legall
internal forms are accepted by the domain language paréer might make this

step easier.

Second, a REFINEMENT is chosen, and the réfinement CONDiTIONS are
checked. If an implementationvdecisioﬁ condition is violated, the
refinement may not be used. Local conditions on the domain objects are
formed into surrounding code for the refinement body. The hope ié that
transformations for the domain will be able to remové this surrounding code

by "proving" that the conditions are correct.

" Third, the refinement body is instantiated into ‘the internal form
according to the user's wishes for INSTANTIATION and/the allowed
instantiations for the refinement. The body is instantiated with minimal
renaming to avoid naming conflicts. If the refinement is instantiated as é

function, and a function already exists, the previously-defined function is
95 ' :

96 _ Using the Refinement Sﬁbsystem

used. ' : ' : l

Finally, the ASSERTIONS for the refinement are made in the scope of the
domain instance. The assertions are a type of lock-and-key mechanism with
the cond'iti.o_ns of othér refinements. When tﬁo domain instances are merged | l
into a single instance of the same or'énother domain, then the assertions
are checked for consistency. This piaces the overly "str‘ongl restriction that l
-all objects in a domain of the same typé have the same implementation. More ‘l
experience with domains could probably remove this restriction. If the

asserted conditions conflict, then the refinement of the program must be

backed-up.

9.3. The Refinement Mechanism

The refinement mechanism of Draco applies the component library of a
domain to a locale within an instancé of the domain in the internal-form
tree for the program being refined. The locale is bounded by a domain
instance which is a part of the internal form tree in the internal form of a
particular domain. Refinements are made in one domain at a time on an
instance of the domain. ‘The locale mechanism is important for refinements
since the "inner loop" of the program should be refined first in order to
choose efficient implementations. These implementation decisions will affect
choices outside the inner loop through the assertion and condition

mechanisms of the components.

The Draco refinement mechanism applies the components to the locale's
internal-form tree by means of application policies similar to

transformation application policies. In general, top-down application is

The TEMREF Commands - 97

the best policy for avoiding conflicting conditions which would require a

backup of the refinement.

From the previous discussion about the selection of a refinement for a
component and the user interaction necessary to make a choice, if_is eviden£
that the user needs some mechanism to keep Draco from asking too many
questions. The user needs the ability to specify guidelines for answering

the questions. These guidelines are called "tactics."

The TACTICS subsystem of Draco allows the user fd interactively define
tactics which answer refinement questiohs for the refinement mechanism (see
Chapter 10). The subsystem also allows the user to read and write tactics
from storage. A standard set of tactics is already available. When the
refinement mecpanism requires a user response, it first applies the tactics

to see if one of them provides an answer.

The refinement user interface could be used for applying refinements one
at a time. This would Be very tedious work, as tedious as applying
transformations one at a time. In genéral, early versions of a high-level,
domain-specific program are refined by the default tactics. These use easy
and uncomplicated default refinements to obtain a first implementation and

to check whether the system implements everything the user desires.

9.4. The TFMREF Command: REFINE

While interacting with TEMREF (the Program Manipulation Subsystem) the
Systems Specialist may use the REFINE comand to invoke the Refinement User
Interface. This is a new set of sub-commands which enables the usef to

per form refinements and to apply tactics.

98 Using the Refinement Subsystem

9.5. Commands available through the Refinements User Interface
The following sections describe the Refinement commands that are

accessible through the Refinements User Interface.
9.5.1. The TRY command

TRY [REFINEMENT NUMBER] <ref> [UNDER INSTANTIATION] <inst>

where: <ref> stands for a refinement number
<inst> defines the instantiation mode:
INLINE or FUNCTION.

The TRY command attempts to apply the selected refinement from a refinement

set (using the refinement number), and instantiates it INLINE (inline code,
as in a macro-expansion) or as a FUNCTION. The user is asked about

executing the refinement before it is performed.
9.5.2. The USE command

USE [REFINEMENT NUMBER] <ref> [UNDER INSTANTIATION] <inst>

where: <ref> stands for a refinement number
<inst> defines the instantiation mode: INLINE or
FUNCTION.

The USE command applies a selected refinement from a refinement set
(using the refinement number), and instantiates it INLINE (inline code, as
in a macro-expansion), or as a FUNCTION. The user is not asked about

RAN

executing the refinement or shown the effect of performing it.

»

The TEMREF Commands . 99

9.5.3. The DEFER command
‘DEFER

.The effect of the DEFER command is similar to that of ABORT, that is, it-
interrupts the refinement process; but in this case it defers back to

control of the *entry* tactics.
9.5.4. The ABORT command

ABORT

The ABORT command aborts the refinement process and transfers control

back to the TEMREF subsystem level. Tactics are halted.
9.5.5. The DO command
DO [TACTICS COMMAND] <tactic *CMD* name>

The DO command produces a search of the tactics list for the given

tactic. If the list is not empty, it executes the associated command group.
9.5.6. The HELP command
HELP

The HELP c&mmand‘prints a summary of the commands available through the
Refinements User Interface.on the user's terﬁinal. The printed text is read
from the file REFUSR.HLP. Thus, it can be customized, if necessary, by
modifying the file. A transéription of the current help facility is given in

Section 9.5.8 below.

100 Using the Refinement Subsystem

G9.5.7. The INFORMATION command

The INFORMATION command enables the System Specialist to acquire

information on Assertions and the use of memory by the system. Thus, there

are two different formats:
- Information on Assertions. The command has the format:

INFORMATION [ABOUT] ASSERTIONS [IN] <domain specification>

where the domain specification'can be:

ALL-DOMAINS
CURRENT-DOMAIN
DOMAIN (NAMED) <domain name> (ON) <objects and operations>

In each case the user gets a list of the relevant assertions: in all
domains being used, in the domain of the instance being refined, or in a

specific domain and in relation to specific objects or operations.

- Information about memory usage. The format of the command is:
INFORMATION [ABOU?] MEMORY-USAGE
The System Specialist gets a report of thé form:
Free Storageiv N Full-word Space: M

where N, M stand for the number of free locations.

>

The TFMREE Commands , : 101
9.5.8. A summary of the REFINEMENTS commands
A summary of the REFINE subcommands can be obtained through the HELP

command as follows:

REFINE>HELP
The Refinement User Interface Commands are:
TRY <refinement> <instantiation>
attempt to use a refinement - ask before use

' USE <refinement> <instantiation>
use a refinement and don't show or ask

DEFER _ _
defer back to control of the *entry* tactics

ABORT

return to the TEMREF subsystem level - stop tactics
DO <tactic *CMD* name>

do a predefined tactic command
HELP

this message .

9.6. An example of a session with REFINE
Tﬂis section presents a session with REFINE. In the session don't be

concerned with the meaning of the domain language being manipulated (it‘is
the same one used in the example of Chapter 8). What is of concern in the .
example is the way in which the commands of the Refinements User Interface
interact with the user to manipulate this example. In the transcript, user
respénses are underlined énd comments included between curly brackets. In
pérticular, evefy time { } appears, it means that the output from Draco
is similar for different components, and it is not transcribed in order to

prevent the example from being excessively long. The transcript follows:

Using the Refinement Subsystem

102

\

The TEMREF Commands | : 103
TFMREF>7
One of the follow1ng ' '
?CLASS 7?TRANS ANNOTATE ~ APPLY DOMAIN EXIT HARDCOPY
HELP INFO INSTANCE - LOCALE NOINSTANCE PP

REFINE REFLRU SAVE SUGGEST TACTICS TRANSEFORM
UNLOAD-REFINE UNLOAD-TRANSFORM

TEMREEF>tactics

*NOTE: file DEMO.TCT accessed from Draco disk area.

khkhkhkhhhbkhkhhbhkhhkhhbhhhhd

Parse Completed O errors detected
%k

Parse Completed O errors detected
TFMREF>domain gen

NOTE: DRACO domain being removed
TEMREF>instance

GENERATOR GWOODS

NETWORK STREE

(Y/N) >X
TEMREE >PP
GENERATOR GWOODS
NETWORK STREE

STREE Sl | : | .
| | gen SUBJ at SUBJECT
| . | gen VP at VERB-PHRASE

S1 exit | TYPE='QUESTION | out "2"

exit | TYPE='DECLARE | out "."

"END

TFMREE>pnoinstance

NOTE: no domain instance selected

TEMREE>refine

NOTE: component llbrary index loaded
NOTE: new domain instance automatically selected

COMPONENT: DNAME

‘PURPOSE :

Represent the given name as a data item rather than as
a variable representing a value.

STREE
REFINEMENT: quote the name for LISP

- DOMAIN: LISP

COMPONENT : - COMMENT

104 : o : Using the Refinement Subsystem
PURPOSE: To represent comments from the ATN domain

REFINEMENT LISP comment mechanism

BACKGROUND :

This is an in-memory comment, perhaps a comment scanned
off by a LISP read would be better.

DOMAIN: LISP

COMPONENT : NOTEST
PURPOSE : No arctest is performed thus the test always succeeds.

REFINEMENT: use a LISP true for the test
DOMAIN: LISP

COMPONENT: NOTEST
PURPOSE: No arctest is performed; thus, the test always succeeds.

REFINEMENT: use a LISP true for the test
DOMAIN: LISP

COMPONENT: TEST- SEQ
PURPOSE:
Iry testl; if it succeeds then try test2; otherwise fail the test.

|
REFINEMENT: use McCarthy LISP AND for test sequence

DOMAIN: LISP

NOTE: tactics interrupted by user
NOTE: tactics have failed to find a refinement

User Refinement Interface

REFINE>do summary

Component Summary

COMPONENT: TEST-SEQ

PURPOSE : A

Try testl; if it succeeds then try test2; otherwise fail the test.
The component appears in the program as:

The refinements for the component are:

REFINEMENT: use McCarthy LISP AND for test sequence
INSTANTIATION: INLINE

DOMAIN: LISP

REFINE>help

The TFMREF Commands _ v 105

TRY <refinement> <instantiation>

attempt to use a refinement - ask before use
USE <refinement> <instantiation> '

use a refinement and don't show or ask"
DEFER
' ~ defer back to contrecl of the *entry* tactics
ABORT

return to the TEMREF subsystem level - stop tactics -
DO <tactic *CMD* name>

do a predefined tactic command
HELP : '
this message

All of these commands are discussed in more detail in the
Draco user manual.

REFINE>information (ABOUT) memory-usage
Free Storage: 40836 Full-Word Space: 6488

REFINE>defer

COMPONENT: TEST

PURPOSE: Try tests for arc

REFINEMENT: use McCarthy LISP AND for test sequence
DOMAIN: LISP -

COMPONENT: DNAME

PURPOSE :

Represent the given name as a data item rather than as
a variable representing a value.

SUBJ
REFINEMENT: quote the name for LISP
DOMAIN: LISP

COMPONENT: GTFETCH

PURPOSE .)

Get the subtree associated with the selector at the top
level of the tree being generated

REFINEMENT: check tree existance with LISP OR-

DOMAIN: LISP

NOTE: function GEN.GTFETCH.O defined

NOTE: tactics interrupted by user
NOTE: tactics have failed to find a refinement

User Reflnement Interface

REFINE>information (ABOUT) assertions (IN) all_dgma;ns
GEN actions as

LISP_inline_sequence

106 ’ Using the Refinement Subsystem

(GEN/ACTION-SEQ/execution sequence in a LISP PROG)
GEN arcs as LISP_inline_sequence (GEN/GARC/use a LISP COND)
GEN states as LISP_inline_sequence

(GEN/GCALL/simulate the call in LISP)

REFINE>do summary
Component Summary
COMPONENT : GSTATE
PURPOSE: define a state in the generator network

The component appears in the program as:

STREE

The refinements for the component are:
REFINEMENT: as inline LISP

ASSERTIONS: GEN states as LISP_inline_sequence
INSTANTIATION: INLINE :

ASSERTIONS: GEN states as LISP_inline_sequence
DOMAIN: LISP

REFINE>defer

COMPONENT: DNAME

PURPOSE :

Represent the given name as a data item rather than as
a variable representing a value.

TYPE :
REFINEMENT: quote the name for LISP
DOMAIN: LISP

COMPONENT: GVFETCH

PURPOSE :

Get the value of the subtree assoc1ated with the selector
at the top level of the tree being generated

REFINEMENT: extract value with LISP COND

DOMAIN: LISP

NOTE : function GEN.GVFETCH.O defined

COMPONENT: QUOTE

PURPOSE: Put a literal name in an ATN tree
'QUESTION

REFINEMENT: use a LISP quoted atom
ASSERTIONS: ATN trees as LISP_lists
DOMAIN: LISP

COMPONENT: GSTATE

PURPOSE: define a state in the generator network
S1

REFINEMENT: as inline LISP

ASSERTIONS: GEN states as LISP 1n11ne _sequence

The TEMREF Commands

DOMAIN: LISP

NOTE: tactics interrupted by user
NOTE: tactics have failed to find a refinement

User Refinement Interface
REFINE>abort
NOTE: aborting the refinement process

TEMREF>instance
GENERATOR GWOODS
NETWORK

STREE. ..

.END

(Y/N) >X

TEMREF >pp
GENERATOR GWOODS
NETWORK

STREE

.END

TEMREF>noinstance
NOTE: no domain instance selected

TEMREF>refine

NOTE: new domain instance selected automically

COMPONENT: GSTATE

PURPOSE: define a state in the generator network
STREE

REFINEMENT: as inline LISP

ASSERTIONS: GEN states as LISP_inline_sequence
DOMAIN: LISP

COMPONENT: STATES-SEQ _
PURPOSE: |

Specify the ordering of the states in the original description.

REFINEMENT: keep the same ordering in LISP inline
ASSERTIONS: GEN states as LISP_inline_sequence
DOMAIN: LISP

{ List of components continues, but is not shown in this
transcription}

NOTE: refinement replaced a domain
NOTE: new domain instance selected automatically

TFMREF>domain lisp
NOTE: GEN domain being removed

107

108

Using the Refinement Subsystem
TEMREF>instance ’
(SETQ genrslt (NCONC genrslt (LIST item)))
(Y/N) >N
(COND [(.. .)]
[(.-)]) (Y/N) >N
(CR - (MEMB selector (CAR gentree))
(ASSOC selector (CAR gentree))
(GENERR)) (Y/N) >N
(DE GWOODS (gendict gentree) (PROG (genrslt genrstack)
S | _ ‘
(... ...)
exit
(OR)
(..o o)) M) Y
TEMREF>pp

(DE GWOODS (gendict gentree) (PROG (genrslt genrstack)
(SETQ gentree (LIST gentree))
(GO 'STREE)

(NILL ----------)

STREE

(OR (AND T T) (GO alab))

(PUSH genrstack 'rlab)

(PUSH gentree)

(GO SUBJECT)

rlab

(PUSH genrstack rlabl)

(PUSH gentree)

(GO VERB-PHRASE)

rlabl

(GO s1)

alab

(NILL ----------)

(GENERR)

S1

(OR (AND (EQUAL 'QUESTION))
"~ (GO alabl))

(POP gentree)

(GO exit)

alabl

(NILL -~--~------)

(OR (AND (EQUAL 'DECLARE))
(GO alab3l))

(POP gentree)

(GO exit)

alab3 :

(NILL ----------) -

The TEMREF Commands 109

(GENERR)

exit

(OR genrstack (RETURN genrslt))
(GO (POP genrstack))))

TEMREF>gsave’
NOTE: WG.INT saved

{ At this point the transformations shown in the example of
chapter 8 could be applied}

TEMREF>refine

NOTE: file DRACO.RLB accessed from Draco disk area.
NOTE: component library index loaded

NOTE: new domain instance selected automatlcally

{ See the example on chapter 5, where
another subset of these Draco components
is used to build the Component Library DRACO.RLB }

COMPONENT: *APARAMS-SEQ*
PURPOSE: The actual parameters of a Draco function call

(---/)
REFINEMENT: LISP actual parameters

BACKGROUND: The actual parameters are treated
as an execution sequence
DOMAIN: LISP

COMPONENT : *APARAMS'
PURPOSE: The actual parameters of a Draco function call

()

REFINEMENT: LISP actual parameters

BACKGROUND: The actual parameters are treated
as an execution sequence

DOMAIN: LISP

DOMAIN: LISP
NOTE: refinement merged a domain
NOTE: no instance of DRACO domain in locale of refinement

The modules are:
GEN.GOUT.O (item) {}[]
GEN.GVFETCH.O(selector){TEMP}[]

GEN.GTFETCH.O (selector) {gentree} []

DRACO.START.O(){alab;alabo,alabZ,exit,rlab,rlabO}
: : [alab,alabl,alab3,exit,rlab,rlabl]

110

Using the Refinement Subsystem

(Y/N) >Y

COMPONENT: *FPARAMS-SEQ*

PURPOSE: The formal parameters of a Draco functlon definition
(...selector,)

REFINEMENT LISP formal parameters

DOMAIN: LISP

COMPONENT: *FPARAMS*
PURPOSE: The formal parameters of a Draco function definition

() -
REFINEMENT: LISP formal parameters
DOMAIN: LISP

TEMREF>domain lisp
NOTE: DRACO domain being removed

TEMREE>ppR
(DE GOUT (item) (PROG ()
(RETURN (SETQ genrslt (NCONC
genrslt
(LIST

S item))))))
(DE GVFETCH (selector) (PROG (TEMP) :
- (RETURN (COND [(ATOM (SETQ TEMP (OR (MEMB
’ selector
(CAR
gentree))
(ASsoc
selector
(CAR
gentree))
 (GENERR))))]
[(CADR TEVP)1))))
(DE GTFETCH (selector) (PROG (gentree)
(RETURN (OR (MEMB selector (CAR gentree))
(ASSOC selector (CAR gentree))
(GENERR)))))
(DE START () (PROG (alab alabO alab2 exit rlab rlabO)
(RETURN (DE GWOODS (gendict gentree)
(PROG (genrslt genrstack)
(SETQ gentree (LIST gentree))
(GO 'STREE)
STREE Co
(PUSH genrstack rlab)
(PUSH gentree (GTFETCH
. 'SUBJ))
(GO SUBJECT)
rlab

-
' .

The TEMREF Commands

(PUSH genrstack ‘'rlabl)
(PUSH gentree (GTFETCH
'VP))

(OR (EQUAL (GVFETCH 'TYPE)
'QUESTION)
(GO alabl))
(GOUT u?u)
(POP gentree)
(GO exit)
alabl
(OR (EQUAL (GVFETCH 'TYPE)
'DECLARE)
(GO alab3l))
(GOUT "-")
(POP gentree)
(GO exit)
alab3
(GENERR)
exit
(OR genrstack
(RETURN genrslt))
(GO (POP genrstack)))))))

TEMREF>hardcopy wWg
NOTE: WG.DOC created

TEMREF>exit

Do you want to save the changes ? (Y/N) >X
NOTE: WG.INT saved '

DRACO>

111

112

Using the Refinement Subsystem

K}

CHAPTER 10
USING THE TFMREF TACTICS SUBSYSTEM
The TACTICS subsystem's objective is to provide "guidelines" that can be

used during the refinement process to prevent Draco from asking too many

questions.

The TACTICS subsystem is an interpreter which allows the user to define

tactics interactively (DEFINE) or to use an existing tactic (LOAD).

The Tactics subsystem is called on the TFMREF system by the keyword,
TACTICS. By doing this we activate the TACTICS_interpreter. After the
first two '*'s appear on the screen, indicating that the parsing process has

begun, we can use any of the TACTICS commands.

- TEMREE>TACTICS

* %
The TACTICS commands are:

DEFINE - define a tactic
LIST - list the tactics to screen or file

DELETE - delete a tactic

LOAD - load tactics from a file
HELP - this list

EXIT - return to TEMREFE subsystem

More detail on the syntax of these commands may be
found in the Draco manual. Remember, all commands must
be terminated by a semicolon.

**LOAD DEMQ; - where DEMO.TCT is a tactic file -

* . .*{ each * is one line processed}
Parse Completed O errors detected

*EXIT:
TEMREE>

The DEFINE command defines the rules. The format of the command is

DEFINE rulegroup-name.rule-name = rules. The rules with rule-name "*ENTRY*"
113 ‘

114 Using the TEMREF Tactics‘Subsystem
are run as tactics. The rulegroup-name "*CMD*" is a set of rules that may
| ‘be invoked by the Refinement User Interface. In the Define command we can
| determine which field of the component we would like to display. The
% tactics defined by the "*ENTRY*" rule are of the following kind: conditions

~--->action. If the first is not met, the next pair is tried.

The LIST command lists the tactics being used on the screen; it can also

copy to a file.

The DELETE command can delete all tactics, a rulegroup, or just a group.

The LOAD command loads tactics‘stored in some file.

It is possible to put comments inside a tactics. To do this, the message
comments must be inside double quotes (""), with no double quotes

allowed within the enclosing double quotes.

The following is an example of a general set of tactics:

Using TACTICS

DEFINE HEAD.*ENTRY*
" .

’

DEFINE DEMO.*ENTRY* = COMPONENT,PURPOSE,
LOC 4, [ALL,REFINEMENT, |
CONDITIONS, ASSERTIONS,
BACKGROUND,
DOMAIN], [ALL<DIRECTIVE>,USE],
[ALL< FUNCTION INSTANTIATION>,USE FUNCTION],
[ALL< INLINE INSTANTIATION>,USE INLINE];

DEFINE *CMD*.SUMMARY = "Component’ Summary",
COMPONENT, PURPOSE,
IOSPEC,DECISION,
"The component appears in the program as:",
LOC 10,
"The refinements for the component are:",
[ALL,REFINEMENT, CONDITIONS,ASSERTIONS,
BACKGROUND, DIRECTIVE,
INSTANTIATION,ASSERTIONS,
" RESOURCES, ADJUSTMENTS, '
DOMAIN] ;

EXIT

Other examples can be found in James Neighbors' thesis, Software

Construction Using Components, on pages 77-79 and on page 85.

The tactics parser and'prettyprinter are given in Appendices VII and

respectively.

I. A COMPLETE EXTERNAL/INTERNAL LANUAGE DEFINITION

In this appendix the complete external and internal definition for an

‘example langauge called SIMAL is given along with some programs written in

SIMAI,. SIMAL represents a conventional ALGOL-like language. It is hoped

that domain languages will differ greatly from this form.

I.1. External/Internal SIMAL Definition

The foli&wing is the file SIMAL.DEF. If_any errors occur during the
parsing of a SIMAL program, the rule names in the error messages will refer

to this file.

.DEFINE SIMAL
[SIMAL simple Algol-like language for examples]
[James Neighbors -- Last Modified March 11, 1982]

SIMAL = " .PROGRAM"
- .TREE (PGM PGMSEQ
NAME .TREE (AP APSEQ " (" EXP §("," E)CP) ")")
.NODE (PROCCALL #2 #1)
 §<1:?>FNDEF)
".END" ;

“ENDEF = "§" NAME

.TREE (FP FPSEQ " (" NAME (", " NAME) 1"
BLOCK
"g" NODE (ENDEF #3 #2 #1)

STMT = BLOCK /
"IF" BEX "THEN" STMT
("ELSE" STMT .NODE (IFELSE #3 #2 #1) /
.EMPTY ".NODE (IF #2 #1)) /
"WHILE" BEX "DO" STMT .NODE (WHILE #2 #1) /
"REPEAT" STMT "UNTIL" BEX .NODE(REPEAT #2 #1) /
HE-OR" NAME ll._." AEx
("STEP" AEX "TO" AEX "DO" STMT
NODE (FOR #5 #4 #3 #2 #1) /
.EMPTY - "TO" AEX "DO" STMT
- .NODE (FOR1 #4 #3 #2 #1)) /
"RETURN" (EXP .NODE (RETVAL #1) / .EMPTY NODE(RETURN)) /
"Go" "TO" ID .NODE (GOTO *) /
~"(" STMT ")" .NODE (PAREN #1) / ,
SIMALEN /
117

118 - : A complete Language Definition

NAME .
("[" .TREE(SL SLSEQ EXP $("," EXP)) "]"
. .NODE (ASELECT #2 #1)
":=" EXP .NODE (SASSIGN #2 #1) /

".=" EXP .NODE (ASSIGN #2 #1) /
" STMT .NODE (LABEL #2 #1) /
TREE (AP APSEQ ll(ll Exp $(Il 11 EXP) ll)n)
| .NODE (PROCCALL #2 #1)) ;

BLOCK = "[[" ("LOCAL" .TREE(LOC LOCSEQ NAME $("," NAME)) ";" /
.EMPTY .NODE (NOLOC))
.TREE (BLK BLKSEQ
smT $(" " SIIMT)) "]]"
.NODE (BLOCK #2 #1) ;.
NAME = ID .LITERAL ;
EXP = STRING .NODE (STRING *) / BEX ;

BEX1 $("!" BEX1 .NODE (OR #2 #1))

BEX =
BEX1 = BEX2 &("&" BEX2 .NODE (AND #2 #1))

BEX2 = "¢%" BEX3 .NODE (NOT #1) / BEX3 ;

BEX3 = "TRUE" .NODE (TRUE) / "FALSE" .NODE (FALSE) /

AEX §("<=" AEX .NODE (LESSEQ #2 #1) /
">=" AEX .NODE (GTREQ #2 #1) /
"<" AEX .NODE(LESS #2 #1) /
">" AEX .NODE(GTR #2 #1) /
"=" AEX .NODE (EQUAL #2 #1) /
"#" AEX .NODE (NOTEQ #2 #1)) ;

AEX = AEX1 &("+" AEX1 .NODE(ADD #2 #1) /

"-" AEX1 .NODE(SUB #2 #1))
AEX2 $("*" AEX2 .NODE (MPY #2 #1) /
)
)

AEX1 =
| "//" AEX2 .NODE (IDIV #2 #1) /
"/" AEX2 .NODE(DIV #2 #1)) ;
AEX2 = AEX3 § (""" AEX2 .NODE(EXP #2 #1)) ;
AEX3 = "+" AEX4 / "-" AEX4 .NODE (MINUS #1) / AEX4 ;
AEX4 = NUMBER .NODE (NUMBER *) /
SIMALFN /

("(" -'I'REE(AP APSEQ EXP $(nlu EXI))) ") ”
.NODE (ENCALL #2 #1) /
"[" .TREE(SL SLSEQ EXP &("." EXP)) "]"
NODE(SSELECT #2 #1) /
.EMPTY) /
"(" BEX ")" .NODE (PAREN #1) /
BLOCK ;

SIMALEN = "SQRT" "(" EXP ")" .NODE(SQRT #1) /
"INT" " (" EXP ")" .NODE (INT #1) /
"ABS" " (" EXP ")" .NODE (ABS #1) /.
"PRINT" " (" .IREE (PRINT PRSEQ EXP §("." EXP)) ")" /
 "READNUM" ..NODE (READNUM) /

The file SIMAL.DEF

PREFIX

|~
-4
0

"READCHAR" .NODE (READCHAR) /

"READSTRING" .NODE (READSTRING) /

"WRITENUM" " (" EXP ")" .NODE (WRITENUM #1) /
"WRITECHAR" " (" EXP ")" .NODE (WRITECHAR #1) /
"WRITESTRING" " (" EXP ")" .NODE (WRITESTRING #1) ;

: SPACING ;

ID : SPACING .TOKEN ALPHA $<?:10>(ALPHA / DIGIT) .DELTCK ;

STRING :
NUMBER :

EXPNT :
ALPHA :
DIGIT :

SPACING :

.END

SPACING .TOKEN .ANY('") $.ANYBUT('") .ANY('") .DELTOK ;
SPACING .TOKEN §<1:?>DIGIT

(.ANY('.) ($<1:?>DIGIT (EXPNT / .EMPTY) /

.EMPTY) /

EXPNT /

.EMPTY) .DELTOK :
LANY('E) - (.ANY('+!'-) / .EMPTY) $<1:?>DIGIT ;
ANY('A:'Z ! 'a:i'z)
.ANY('0:'9)
§.ANY (3211011319) ;

I1.2. Example SIMAL Programs

10.0.1.

Quadratic Equation

The following is the familiar quadratic equation root solution.

.PROGRAM QUADRATIC

$QUADRATIC
[[LOCAL A,B,C,ROOT1,ROOT2;
LOOP :
PRINT ("QUADRATIC EQUATION SOLVER") ;
PRINT ("INPUT A,B,C PARAMETERS ")
A:=READNUM; -
IF A=O THEN RETURN;
B:=READNUM;
C:=READNUM;
' ROOT1:=(-B+SQRT (B~2-4*A*C))/(2*A);
ROOT2:=(-B-SQRT (B~ 2-4*A*C)) / (2*A) ;
PRINT ("THE ROOTS ARE: ",ROOT1," AND ",ROOT2) ;
GOTO LOOP]]

.END

A complete Language Definition

120

.. EX3

II. THE DEFINITION OF DRACO BNE 1IN DRACO BNf

This appendix presents the file, PARGEN.DEF, which describes the Draco
BNF in Draco BNF and in the internal LISP form that parsers take when they
are constructéd. When PARGEN cites a rule in an error during the
construction of a domain parSer, the rule is from this file. Aléo included
in this appendix is a catalog listing of the transformations (PARSER.TLB)

which are used to optimize parsers (see parser optimization).

II.1. The File PARGEN.DEF

. DEFINE PARSER

[PARGEN Main Parser Generator
James Neighbors -- Last Modified May 7, 1983]

PARSER = ".DEFINE" PARSER1 ".END" .RESOLVE (RULE) ;

PARSER1 = ID .USE(RULE) -
.LIST (PROGN
.NODE (DEFINE-PARSER-FN PARSE
(LAMBDA NIL (PARSER-INITIALIZATION *)))

§ (ST / COMMENT)) :
COMMENT = "[" CMNTCHRS "]" .NODE (NILL *) :

ST = [[ID _DEF (RULE) .LITERAL .MSG(:CR "Rule " * .COL(30))
("=" .LITERAL EX1 .NODE (PARSER-RULE #2 #1) /
m." TEX1 .NODE (PARSER-TOKEN #1))
";" NODE (DEFINE-PARSER-EN #2 (LAMBDA NIL #1))]
ERRST .NODE (NILL)] ;
ERRST : .TOKEN $.ANYBUT(';) .ANY(';) .DELTOK ;

EX1 = .LIST(OR EX15 g("/" EX15)) :
EX2 ("|" EX17 .NODE (PARSER-BACKTRACK #2 #1) / .EMPTY) ;

EX15 =
EX17 = EX2 ("|" EX17 .NODE (PARSER-BACKTRACK #2 #1) / .EMPTY) ;
EX2 = EX3 .LIST(AND $EX3) .NODE(AND #2 (OR #1 (PARSER-ERROR))) :
= ID .USE(RULE) .NODE(*) /
STRING .NODE (PARSER-TEST-STRING *) /
n(n EX1 n)n /

"$l| RPTPR /
, ‘ 121

122 : The Definition of Draco BNF in Draco BNF

" NODE" " (" NLIST ")" .NODE (PARSER-NODE #1) /
" LITERAL" .NODE (PARSER-LITERAL) /
" LITCHAR" .NODE (PARSER-LITCHAR) /
" EMPTY" .NODE(AND T) /
".'I'REE" "(" ID .USE (COMPONENT) LITER.AL
ID .USE (COMPONENT) .LITERAL EX1 ")"
.NODE (PARSER-TREE #3 #2 #1) /
" .CHART" " (" .LIST(PARSER-CHART ‘
$<1:?>(ID .USE (COMPONENT) .LITERAL
ID .USE (COMPONENT) .LITERAL)
EXl) ")" /'
" O"[" EX1 "]" EX1 "]" .NODE (PARSER-ERRORBLOCK #2 #1) /
" DEE" "(" ID ")" .NODE (PARSER-DECLARE-DEF *) /
" USE" "(" ID ")" .NODE (PARSER-DECLARE-USE *) /
" .RESOLVE" " (" ID ")" .NODE (PARSER-DECLARE-RESOLVE *) /
" .RETRACT" " (" ID ")" .NODE (PARSER-DECLARE-RETRACT *) /
/
)
*)

" ASSUME" "(" ID ")" .NODE (PARSER-DECLARE-ASSUME

" CONTEXT-PUSH" " (" ID ")" .NODE (PARSER-DECLARE-PUSH *
" CONTEXT-POP" " (" ID ")" .NODE (PARSER-DECLARE-POP

" [ERROR" .NODE (PARSER-ERROR) /

" FAIL" .NODE (PARSER-FAIL) / -

" .MSG" " (" .LIST(PROGN $MINFO .NODE(AND T)) ")" /
".LIST" "(" ID .LITERAL EX1 ")" .NODE (PARSER-LIST #2 #1) /
" . SEXPN" " (" EX1 ")" .NODE (PARSER-SEXPN #1) /

" EXECUTE" .NODE (PARSER-EXECUTE) ;

/
/

.LIST (NCONC (ID .USE (COMPONENT)
.NODE (PARSER-NODE-NAME *) $NINFO /
.EMPTY $<1:?>NINFO))

NLIST

NINFO = ID .NODE (PARSER-NODE-NAME *) /

NUMBER .NODE (PARSER-NODE-NAME *) /

"4" NODE (PARSER-NODE-STAR) /

"4" NUMBER .NODE (PARSER-NODE-SHARP *) /

"(" NLIST ")" .NODE(LIST #1)
MINFO

STRING .NODE (PRINAC (QUOTE *)) /

e NODE (PRINAC (PARSER-TOKEN-MAKE)) /
" CR" .NODE (TERPRI) /

".COL" " (" NUMBER ")" .NODE(TAB *) ;

TEX1 .LIST(OR TEX2 ("/" TEX2)) ‘:

TEX2

.LIST(AND $TEX3) ;

TEX3 = ID .USE(RULE) .NODE(*) /
"(" TEXI ")" /
u$n RPTTR / ' .
" ANY" ("BUT" " (" CEX1 ")" .NODE (NOT #1) /
EMPTY " (" CEX1)")
.NODE (AND #1 (PARSER-SCANCHR)) /
" EMPTY" .NODE (AND T) /

The File PARGEN.DEF ' 123

" TOKEN" .NODE (PARSER-TOKEN-START) /
" DELTOK" .NODE (PARSER-TOKEN-END) ;

RPTPR = "<" ("2" ":" ("2" ">" EX3 NODE (PARSER-REPEAT #1 NIL NIL) /
7 NUM ">" EX3 .NODE (PARSER-REPEAT #1 #1 NIL)) /
NUM ":" ("?" ">" EX3 .NODE (PARSER-REPEAT #1 NIL #1) /
NUM ">" EX3 .NODE (PARSER-REPEAT #1 #1 #1))) /
EX3 .NODE (PARSER-REPEAT #1 NIL NIL) :
RPTTR = "<" ("2" ":" ("?" ">" TEX3 NODE (PARSER-REPEAT #1 NIL NIL) /
NUM ">" TEX3 .NODE (PARSER-REPEAT #1 #1 NIL)) /
NUM ":" ("?" ">" TEX3 .NODE (PARSER-REPEAT #1 NIL #1) /
NUM ">" TEX3 .NODE(PARSER-REPEAT #1 41 #1))) /
N TEX3 .NODE (PARSER-REPEAT #1 NIL NIL) ;
NUM = NUMBER .LITERAL ;
CEX1 = .LIST(OR CEX2 $("!" CEX2)) :
CEX2 = CEX3 (":" CEX3 .NODE(AND (GE CHR #2) (LE CHR #1)) /
.EMPTY .NODE (EQUAL CHR #1)) ;
CEX3 = NUMBER .LITERAL / "'" .LITCHAR ;
PREFIX : SPACING ;
ID : SPACING .TOKEN ALPHA 8<?:80>(ALPHA / DIGIT / .ANY('_!'-!'?)) .DELTOK ;

STRING : SPACING .ANY('") .TOKEN §.ANYBUT('") .DELTOK .ANY('") ;
NUMBER : SPACING .TOKEN DIGIT $<?:2>DIGIT .DELTOK ;

CMNTCHRS : .TOKEN §. ANYBUT(]) .DELTOK ;

ALPHA : .ANY('A:'Z ! 'a:'z) ;

DIGIT : .ANY('0:'9) ;

SPACING : §.ANY(32!10!13!9) ;

.END

124

The Definition of Draco BNF in Draco BNF

]

)

III. THE DEFINITION OF A PRETTYPRINTER DESCRIPTION

This appendix presents the external and internal description of a

prettYprinter definition (see PPGEN). This description is from the file

PPGEN.DEF. Any error encountered while using PPGEN to construct a

prettyprinter refers to a rule in this file.

III.1. The File PPGEN.DEF

.DEFINE PPSYN

[PPGEN Prettyprinter Generation
James Nelghbors -- Last Modified June 24, 1983]

PPSYN = " PRETTY" "PRINTER" ID

.LIST (PROGN § (PMDEF / COMMENT))
" END" .RESOLVE (COMPONENT) ;

COMMENT = " [" CMNTCHRS "]" .NODE(NILL *)

PMDEF =

LINTOK :

PMDEF1 =

PPOP =

[[ID DEF(COMPONENT) .LITERAL

.MSG(.CR "Rule " * .COL(30)) "="
PMDEF1 ";"
.NODE (DEFINE-PP-MACRO #2 (LAMBDA (E POS)
: (PROG (TPOS)

(SETQ E (CDR E)) -
(SETQ TPOS POS) #1)))]
'LINTOK .NODE(NILL)] :
.TOKEN §.ANYBUT(';) .ANY(';) .DELTOK ;

.LIST (PROGN $PPOP) ;

STRING .NODE (PRINAC (QUOTE *) TPOS) /
NUMBER .NODE (TYO *) /
".COL" "(" NUMBER .NODE(TAB *) ")" /
" SLM" .NODE (TAB TPOS)
(" (" NUMBER ")" .NODE(AND (GT (CHRPOS) *) #1) /
EMPTY) /
" ml!
("(" ("-" NUMBER .NODE (DIFFERENCE POS *) /
"+" NUMBER .NODE (PLUS POS *) /
NUMBER .NODE (PLUS POS *)) M" /
.EMPTY .NODE (CHRPOS)) .NODE (SETQ TPOS #1) /
"4 NUMBER .NODE (PP-PRINT1 (CAR (NTH E *)) TPOS) /

© ".TREEPRINT" "(" ID .LITERAL ","

125

- .END

126 : The Definition of a Prettyprinter
Description

NUMBER .NODE (CAR (NTH E *)) ",*"
PMDEF1 "," PMDEF1 ")"
.NODE (PP-PRINT-TREE (QUOTE #4)#3 (QUOTE #2) (QUOTE #1)
(CONS POS TPOS)) /
" (:I'IARTPRINT" "("
.LIST (PP-PRINT-CHART .NODE (CHRPOS)
$<1:?>(ID .NODE (QUOTE *) wn
© NUMBER .NODE(CAR (NTH E *)) ","
PMDEF1 .NODE (QUOTE #1) "
PMDEF1 .NODE (QUOTE #1) (" EMPTY).
)) "Mt/
" .LISTPRINT" " (" PMDEF1 ")"
.NODE (MAP (FUNCTION (LAMBDA (TP'I'R)
(PP-PRINT1 (CAR TPTR) TPOS)
£) / (AND (CDR TPTR) #1)))
".CI'IARPRINT" "(ll NUMBER !l)ll
.NODE (TYO (OR (INUMP (CAR (NTH E *))) 7)) ;

PREFIX : SPACING ;

ID : SPACING .TOKEN (ALPHA / .ANY('<!'*))
$<?:40> (ALPHA / DIGIT)

(.ANY('>!'*) / _EMPTY)

.DELTOK ; o

STRING : SPACING .ANY('") .TOKEN $.ANYBUT('") .DELTOK .ANY('")

NUMBER : SPACING .TOKEN DIGIT $<?:2>DIGIT .DELTOK ;

CMNTCHRS : .TOKEN &.ANYBUT(']) .DELTOK ;

ALPHA : .ANY('A:'Z ! 'a:'z ! '- ¢t '_ 1 "2} ;

DIGIT : .ANY('0:'9) ; - - :

SPACING : §.ANY(32!10!13!9) ;

IV. AN EXAMPLE PRETTYPRINTER DESCRIPTION

This appendix presents a sample de;cription of a prettyprinter for the
language defined in Appendix I. This description is contained in the file
SIMAL.PPD aﬁd would be given to PPGEN to construct a prettyprinter. The
sample SIMAL programs in Appendix I were printed with the prettyprinter

resulting from this description.

IV.1. A SIMAL Prettyprinter Description

.PRETTYPRINTER SIMAL
[SIMAL Example Language Prettyprinter]
[James Neighbors -- Last Modified March 11, 1982]

- <ZIDOPS> = #1 "<ZIDOPS>" #2 ;

<OIDOPS> = #1 "<OIDOPS>" #2 ;

<OP> = #1 "<OP>" #2 ; -

A.BS = "ABS(" #1 ") "

ADD = #1 Il+" #2 ;

AND = #1 "&" $2 ;

AP = "(" LM .TREEPRINT(APSEQ,1,"."."M") ;
APSEQ = #1 .TREEPRINT(APSEQ,2,".".™") ;
ASELECT = #1 #2 ;

ASSIGN = .SIM #1 ":=" #2 ;

BLK = TREEPRINT(BLKSEQ 1,":"," 11"

BLKSEQ = #1 .TREEPRINT (BLKSEQ,2,";",™ 11"
BLOCK = .SIM "[[" .IM #1 #2 ;

DIV = #1 "/ #2 ;-

EQUAL = #1 "=" $2 ;

Em - #1 "Han #2 ’.

FALSE = "FALSE" ;.

FNCALL = #1 #2 . : : V

'ENDEF = "g" 41 #2 .SLM .LM(2) #3 .SLM "s§" ;
FOR = ,SLM "FOR " .LM #1 ":=" $2 " STEP " #3
’ M TO "™ 44 " DO " .SLM(22) #5 ;

FOR1 = .SIM "FOR " .LM #1 ":=" $2 " TO " #3 " DO " .SLM(22) #4 .
FP = "(" .IM .TREEPRINT (FPSEQ,1,".".")") :
FPSEQ = #1 .TREEPRINT(FPSEQ.2,".".M") :

GOTO = .SLM "GOTO " #1 ;

GTR - #1 l|>" #2 ’.

G'IREQ - #1 ">_|l #2 ; .

IDIV =$#1 "//" #2

IF = ,SILM "IF " #1 .IM " THEN " #2 ;

IFELSE = .SILM "IF " #1 .ILM " THEN " #2 .SLM(22) " ELSE " #3 ;.
INT - HINT(" #l ") !! : ’

127

128

LABEL
LESS
LESSEQ
1.OC
LOCSEQ
MINUS
MPY
NOLOC
NOT
NOTEQ
NUMBER
OR
PAREN
PGM

L T T T | T | O T | [{ I [A F

PGMSEQ
PRINT
PRSEQ
PROCCALL
READCHAR
READNUM

REPEAT
RETURN
RETVAL
SASSIGN
SL
SLSEQ
SQRT
SSELECT
STRING
SUB
TRUE
WHILE
WRITECHAR =
WRITENUM =
WRITESTRING =

.END

#l Il!H #2 '.

READSTRING = "READSTRING" ;

An Example Prettyprinter Description

.LM(-10) .SLM #1 ":" .LM(O) #2 ;
#1 "<" #2 '. .

#1 "<_" #2 :

"LOCAL " TREEPRINT(LOCSEQ 1,",","m"
#1 .TREEPRINT (LOCSEQ, 2, mou "-")

"n_nun #1 ' .

#1 e #2 ,.

l’l%" #1 ;
#1 "#Il #2 '.
#1

" (" #1 ") ”"
.SLM ".PROGRAM " .IM - | |
.TREEPRINT (PGMSEQ, 1, .SLM, .LM(O) .SLM ".END" .SLM) ;
#1 .TREEPRINT (PGMSEQ, 2, .SLM, .SLM " .END" .SLM) ;

.SIM "PRINT(" .LM TREEPRINT(PRSEQ,I,",",")") ;
#1 .TREEPRINT(PRSEQ,2,"," ")") .

.SLM #1 #2 ;

"READCHAR" ;

"READNUM" ;

.SLM "REPEAT " .LM #1 .SIM "UNTIL " #2 ;
.SLM "RETURN" ; :

.SLM "RETURN " .LM #1 ;.

.SIM #1 ":=" #2 ;
"[" LM .TREEPRINT (SLSEQ,1,"," "]") ;
#1 TREEPRINT(SLSEQ 2,"," "]")
HSQRT(" #1 ll)" .)
#1 #2
34 #1 34 ;
#1 "n_n #2 '.
"lIvRUE" ;

.SLM "WHILE " #1 .IM " DO " #2 ;

.SLM "WRITECHAR (" #1 ")" ;

.SLM "WRITENUM(" #1 ")" ;

.SLM "WRITESTRING(" #1 ")" ;

|

\ I
1
»

V. AN EXAMPLE SET OF TRANSFORMATIONS

This appendix presehts a sample set of transformations for a slightly
modified version of SIMAL and its prettypfinter; The language has been
modified to put objects, whicﬁ it knows are constants, into an internal-form
node with the prefix keyword, LCONST. The prettypfinter has been modified
to show these consﬁants in {} brackets and to print all the classés in a

sensible form. Thus {?Y} represents a "match anything known to be

‘constant”. This catalog represents most of the source-to-source program

transformations found in the Irvine Program Transformation Catalogue (T.

Standish, 1976, UC Irvine). The listing is in the standard XFMGEN catalog

format.

V.1l. SIMAL Transformations

5/3/79 19:18:18 SIMAL.TLB
<BOP> = {ASSIGN,EXP,DIV, IDIV,MPY, SUB,ADD,

NOTEQ, EQUAL , GTR,, LESS, GTREQ, LESSEQ, AND, OR}
<CALL> = {FNCALL,PROCCALL}

<DIV> = {DIV, IDIV}
<GE> = {GTR,GTREQ}

<LE> = {LESS,LESSEQ}

<REL> = {NOTEQ, EQUAL,GTR,LESS,GTREQ, LESSEQ}

<SEL> = {ASELECT, SSELECT}
<UoP> = {NOT,MINUS}
<BOP>CC: 12 {?X}<bop>{?Y} => {?X<bop>?Y}
<BOP>EMPX: 12 *EMPTY*<bop>?X => *UNDEFINED*
<BOP>IFELSEX: 4 (IF ?P THEN ?S1 '
ELSE ?S2)<bop>?X => (IF ?P THEN

(?S1) <bop>?X ,
ELSE
(?S2) <bop>?X) * : , :
<BOP>IFX: 4 (IF ?P THEN ?Sl1)<bop>?X => (IF ?P THEN (?S1)<bop>7X)
<BOP>UNX: 12 ?X<bop>*UNDEFINED* => *UNDEFINED*
<BOP>XEMP: 12 ?X<bop>*EMPTY* => *UNDEFINED* :
<BOP>XIF: 3 ?X<bop>(IF ?P THEN ?S1) => (IF ?P THEN ?X<bop>(?5S1))
<BOP>XIFELSE: 3 ?X<bop>(IF ?P THEN ?S1) => (IF ?P THEN :
?X<bop> (?S1)) : , ’
<BOP>XUN: 12 *UNDEFINED<bop>?X => *UNDEFINED*
<DIV>0X: 9 0<div>?X => O :

: : » 129

130 , ’ An Example Set of Transformations

<DIV>AMB: 10 ?A<div>-?B => - (?A<div>?B)
<DIV>MAB: 10 -?A<div>?B => . - (?A<div>?B)
<DIV>MAMB: 12 ' -?7A<div>-?B => ?A<div>?B
<DIV>X0O: 12 ?X<div>0 => *UNDEFINED*.
<DIV>X1: 12 ?X<div>1 => ?X
<DIV>XX: 11 ?X<div>?X = 1 o .
<REL>0S: 10 O<rel>?A-?B =>. ?A<rel>?B
<REL>1D: 9 1l<rel>?A/?B => (IF ?B>0 THEN ?B<rel>?A
ELSE ?A<rel>?B)
<REL>AA: 10 ?A+{?C}<rel>?B+{?C} => ?A<rel>?B
<REL>DD: 9 ?A/{?C}<rel>?B/{?C} > (IF {?C}>0 THEN ?A<rel>?B
: ELSE ?B<rel>?A)
<REL>MM: 9 P?A*{?C}<rel>?B*{?C} => (IF {?C}>0 THEN ?A<rel>?B
‘ ELSE ?B<rel>?A)

<REL>S0O: 10 ?A-?B<rel>0 => ?A<rel>?B
<REL>SS: 10 ?A-{?C}<rel>?B-{?C} => ?A<rel>?B
<UCP>C: 12 <uop>{?X} => {<uop>?X} ' :
<UOP>EMP: 12 <uop>*EMPTY* => *UNDEFINED*
<UOP>IF: 4 <uop>(IF ?P THEN ?S1) => (IF ?P THEN <uop>(?S1))
<UOP>IFELSE: 3 <uop>(IF ?P THEN ?S1 _
ELSE ?52) => (IF ?P THEN <uop>(?S1)
ELSE <uop>(?S2))
<UCP>UN: 12 <uop>*UNDEFINED* => *UNDEFINED*
ADDOX: 12 O+?X => ?2X
ADDAMB: 10 ?A+-?B => ?A-7B
ADDDD: 5 ?A/?B+?C/?D => (7A*7D+’B*7C)/(7B*7D)
ADDDX: 3 ?A/?B+?C => (’A+’C*7B)/7B
ADDMAB: 9 -?A+?B => ?B-?A
ADDMAMB: 12 -?A+-?B => - (?A+?B)
ADDXO: 12 7?X+0 => 7?X
ADDXD: 3 ?A+?B/?C => (?A*?C+?B)/?C
ANDFX: 11 FALSE&?X => FALSE
ANDNOTXX: 11 ANDOO: 11 (?X!ANDTX: 12 TRUE&?X => ?X
ANDXF: 11 ?X&FALSE => FALSE
ANDXNOTX: 11 °?X&ANDXOR: 9 ?X&(?X!?Y) => ?X
ANDXT: 12 ?X&TRUE => ?X
ANDXX: 11 ?2X&?X => ?X L
ANDXY: 3 ?X&?Y => (IF ?X THEN ?Y
- ELSE FALSE)
ASSIGNID: 11 ?2X:=?X => +*EMPTYY
ASSIGNXX: 11 ?2X:=?7Y; .
?X:=?Z => 7?X:=?2
BLOCKBLOCKN: 12 [[LOCAL ?X;
[[?S]]1]] => [[LOCAL ?X;
: ?8])
BLOCKEMP: 12 [[LOCAL ?X; :

. *EWTY*]] => * EWTY*
BLOCKN<CALL>: 12 [[?X(?¥)]] => ?2X(?Y)
BLOCKNASSIGN: 12 [[?X:=?Y]] => (?X:=?Y)
BLOCKNBLOCKN: 12 [[[[?S]1]] => [[?S]]
BLOCKNEMP: 12 [[*EMPTY*]] ~=> *EMPTY*
BLOCKNFOR: 12 [[FOR ?V:=?W STEP ?X TO ?Y DO

v .

 IFELSE<SEL>: 6 IF ?P THEN ?Y[?51]

SIMAL Transformations

?Z]] => (FOR ?V:=?W STEP ?X TO ?Y DO
| o ?2)
BLOCKNIE: 12 [[IF 7P THEN ?S1]] => (IF 7P THEN ?S1)
BLOCKNIFELSE: 12 [[IF ?P THEN ?S1
ELSE ?52]] => (IF 2P THEN ?7S1
. ELSE ?S2)
BLOCKNREPEAT: 12 [[REPEAT ?X
: UNTIL ?Y]] => (REPEAT ?X
, — UNTIL ?Y)
BLOCKNWHILE: 12 = [[WHILE ?X DO ?Y]] => (WHILE ?X DO ?Y)
DIVDD: 5 (?A/?B)/(?C/?D) => (?A*?D)/(?B*?C)
DIVDX: 3 (?A/?B)/?C => ?A/(?B*?C)
DIVXD: 3 ?C/(?A/?B) => (?B*?C)/?A
EQUALMAMB: 12 -?A=-?B => ?A=7?B
EQUALXX: 11 ?X=?X -=> -TRUE
EXPOO: 12 0"0 => *UNDEFINED*
EXP1X: 14 1°?X => 1
EXPAMB: 10 ?A~-?B => (1/?A"?B)
EXPXO: 9 ?X°0 => 1 |
EXPX1: 14 ?X"1 => ?X
EXPX2: 9 7?X"2 => ?X*?X
FNCALL: 12 LOG(O) => *UNDEFINED*
FOREMP: 11 FOR ?W:=?X STEP ?Y TO ?Z DO
~ *EMPTY* => *EMPTY*
FORFUNROLL: 1 FOR ?V:=?W STEP ?X TO ?Y DO
?Z(?V) => [[IF ?W<=?Y THEN 7Z(7V =?W) ;
FOR ?V:=?W+?X STEP ?X TO ?Y DO
- ?2(?V)]1]
FORREDUCE: 5 FOR ?V: =?W STEP ?X TO ?Y DO
7Z(7Vi7Q) => FOR ?V: —7w*7Q STEP '>X*7Q TO - 7Y*7Q

DO
2Z(?V)
FORTOWHILE: 2 FOR ?V:=?W STEP ?X TO ?Y DO
2Z => [[?V:=?W;
WHILE ?V-?Y*SIGN(?X)<=0 DO [[?Z;

PV:=?V+?X]111]

"FORUN: 12 FOR ?V:=?W STEP ?X TO ?Y DO~

- *UNDEFINED* => *UNDEEINED*

FORXX: 11 FOR ?W:=?X STEP ?Y TO ?X DO
?2Z => [[?W:=?X;
- 22]]
GTREQXX: 11 ?X>=?X => TRUE |
GTREQXY: 10 ?X>=?Y => GTRMAMB: 12 -?A>-?B => ?A<?B
GTRXX: 11 ?X>?X => FALSE
GIRXY: 10 ?X>?Y => IFELSE<CALL>: 6 IF ?P THEN ?Y(?S1)
| ELSE ?Y(?S2) => ?Y(IF ?P THEN ?S1

ELSE ?S2)

ELSE ?Y[?S2] => ?Y[IF ?P THEN ?S1
ELSE ?S2]

. IFELSEEMPX: 12 IF ?P THEN *EMPTY*

13

132 , : : _ An Example Set of Transformations

ELSE ?X => IF IFELSEF: 12 IF FALSE THEN ?S1
~ ELSE ?S2 => ?S2
IFELSEIFXIFX: 6 IF ?P THEN IF ?X THEN ?W
- . ELSE IF ?Y THEN ?W => IF IF ?P THEN ?X
ELSE ?Y THEN
W , -
IFELSENOT: 12 IF : ELSE ?S2 => IF ?P THEN ?S2
ELSE ?S1 :
IFELSET: 12 IF TRUE THEN ?S1
| ELSE ?S2 => 7?51.
IFELSEUNX: 10 IF ?P THEN *UNDEFINED*
ELSE ?X => *UNDEFINED*
IFELSEXEMP: 12 IF ?P THEN ?S1
ELSE *EMPTY* => IF ?P THEN ?S1
IFELSEXFT: 12 IF ?X THEN FALSE .
ELSE TRUE => IFELSEXTF: 12 IF ?X THEN TRUE
ELSE FALSE => ?X
IFELSEXUN: 10 IF ?P THEN ?X
FELSE *UNDEFINED* => *UNDEFINED*
IFELSEXX: 11 IF ?P THEN ?S1 |
R ELSE ?S1 => 7?51
IFEMP: 11 IF ?P THEN *EMPTY* => *EMPTY*
IFF: 12 IF FALSE THEN ?S1 => *EMPTY*
IFIF: 11 IF ?X THEN IF ?Y THEN ?S1 => IF ?X&?Y THEN ?S1
IFLESE2IFELSE: 11 IF ?X THEN IF ?Y THEN ?S1
ELSE ?S2
ELSE ?S2 => IF ?X&?Y THEN ?S1
ELSE ?S2
IFLESSEQFOR: 11 IF ?X<=?Y THEN FOR ?W:=?X STEP ?Z TO ?Y DO
?S1 => FOR ?W:=?X STEP ?Z TO
?Y DO
, ‘ ?s1
IFLESSFOR: 11 IF ?X<?Y THEN FOR ?W:=?X STEP ?Z TO ?Y DO
?S1 => FOR ?W:=?X STEP ?Z TO ?Y
DO
- ?S1
IFT: 12 IF TRUE THEN ?S1 => ?S1
IFUN: 10 IF ?P THEN *UNDEFINED* => *UNDEFINED*
LABELIFX: 10 ?X: B .
IF ?P THEN [[?S:
GOTO ?X]] => ?X: .
- | WHILE ?P DO ?S
LESSEQMAMB: 12 -?A<=-?B => ?A>=?B |
LESSEQXX: 11 ?X<=?X => TRUE =
LESSMAMB: 12 -?A<-?B => ?A>?B
LESSXX: 11 ?X<?X => FALSE
MINUSO: 14 -0 => O
MINUSMINUSX: 12 --?X => ?X '
MINUSSUBAMB: 9 - (?A--?B) => (?B-?A)
MPYOX: 11 O*?X => O | '
MPY1X: 12 1*?X => ?X
MPYAMB: 10 ?A*-?B => - (?A*?B)

D .

SIMAL Transformations - | 133

MPYDD: 5 (?A<div>?B)*(?C<div>?D) => . (?A*?C)<div>(?B*?D)
MPYDX: 3 (?A/?B)*?C => (?A*?C)/?B
MPYMAB: 10 -?A*?B => - (?A*?B)
MPYMAMB: 12 -?A*-?B => ?A*?B
MPYXO: 11 ?X*0 =5 0
MPYX1: 12 ?X*1 => ?X ,
MPYXD: 3 ?C*(?A/?B) => (?A*?C)/?B
NOTEQMAMB: 12 -?A#-?B => ?A#?B
NOTEQUAL: 8 NOTEQXX: 11 ~?X#?X => FALSE
NOTEQXY: 10 ?X#?Y => NOTF: 12 NOTGTR: 12 NOTGIREQ: 12 NOTLESS:
8 NOTLESSEQ: 8 NOTNOT: 12 NOTINOTEQ: 12 NOTT: 12 NOTX: 3
ELSE TRUE)
OR<GE>EQ: 9 ?A<ge>?B!?A=?B => ?A>=?B
OR<LE>EQ: 9 ?A<le>?B!?A=?B => ?A<=?B
ORAA: 11 (?X&OREQ<GE>: 9 ?A=?B!?A<ge>?B => ?A>=?B
OREQ<LE>: 9 ?A=?B!?A<le>?B => ?A<=?B
ORFX: 12 FALSE!?X => ?X
ORNOTXX: 11 ORTX: 11 TRUE!?X => TRUE
ORXAND: 9 ?X!(?X&?Y) => ?X
ORXF: 12 ?X!FALSE => ?X
ORXNOTX: 11 ?X!ORXT: 11 ?X!TRUE => TRUE
ORXX: 11 ?X!?X => ?X
ORXY: 3 ?X!?Y => (IF ?X THEN TRUE
ELSE ?Y)
PARCONST: 12 ({?X}) => ({?X}
PAREMP: 12 (*EMPTY*) => *EMPTY*

 PARF: 12 (FALSE) => FALSE

PARPAR: 12 ((?X)) => (?X)
PART: 12 (TRUE) => TRUE -
PARUN:. 12 (*UNDEFINED*) => *UNDEFINED
REPEATEMP: 9 REPEAT *EMPTY*

UNTIL ?P => *EMPTY*
REPEATIFELSE: 1 REPEAT IF ?Q THEN ?R

| ELSE ?S
UNTIL 7P => REPEAT [[WHILE ?Q DO ?R;
?5]]
'UNTIL ?P

REPEATSUN: 10 REPEAT ?S
_ UNTIL *UNDEFINED* => *UNDEFINED*
REPEATUNP: 12 REPEAT *UNDEFINED*
UNTIL ?P => *UNDEFINED*
SEMICAW: 2 ?X:=?Y(?X): S
WHILE 7P (?X) DO [[?Q(?X):;
?X:=?Y(?X)]] => WHILE ?P(?X:=?Y(?X)) DO ?Q(?X)
SEMICBLOCKN: 12 [[?S1]]:
752 => 7?51;

: ?S2
SEMICEMPX: 12 *EMPTY*;
: ;A = ?X
SEMICIFELSEX: 2 IF ?P THEN ?X
ELSE ?Y;

?S1 => IF ?P THEN [[?X;

134 An Example Set of Transformations

?S1]]
ELSE [[?Y:
- ?S1]]
SEMICIFIF: 9 IF ?P THEN ?X; |
IF
SEMICLEMPS: 12 ?X:
EMPTY;
?S => ?X:
SEMICLXIF: 10 ?X:
?S;
IF
?S
UNTIL ?Y

SEMICXEMP: 12 ?X;
EMPTY => ?X
SEMICXIFELSE: 1 ?S1;
~ IF ?P THEN ?X - .
ELSE ?Y => IF ?P THEN [[?S1;
‘ ?X]]
ELSE [[?S1;
?Y]]
SEMICXWHILEX: 6 ?S; -
WHILE
UNTIL ?X°
SUBOX: 12 0-?X => -(?X) - |
SUBDD: 5 ?A/?B-?C/?D => (?A*?D-?B*?C)/(?B*?D)
SUBDX: 3 ?A/?B-?C => (?A-?C*?B)/?B
SUBMAB: 10 -?A-?B => - (?A+?B)
SUBMAMB: 11 -?A-<-?B => ?B-?A
SUBXO: 12 ?X-0 => ?X
SUBXD: 3 ?A-?B/?C => (?A*?C-?B)/?C
SUBXX: 11 7?X-?X => O
WHILEEMP: 9 WHILE ?P DO *EMPTY* => *EMPTY*
WHILEF: 12 WHILE FALSE DO ?S => *EMPTY+
WHILEIFELSE: 1 WHILE ?P DO IF ?Q THEN ?R

?R;

WHILEPUN: 10 WHILE ?P DO *UNDEFINED* => *UNDEFINED*
WHILEUNS: 12 WHILE *UNDEFINED* DO ?S => *UNDEFINED*

ELSE ?Y

REPEAT

_ ELSE ?S => WHILE ?P DO [[WHILE ?Q DO

281]

VI. THE DEFINITION OF A COMPONENT INSERTION FILE
The defiﬁition of a packet of components to be added to a refinement
library is described in this appendix. Errors ehcountered while scanning

the packets in REFGEN refer to the file REFGEN.DEF given below.

VI.1. The File REFGEN.DEF

.DEFINE COMPONENTS
[Component Library Scanner]
[James Neighbors -- Last Modified December 29, 1982]

COMPONENTS = .LIST(COMSET $<1:?>COMPONENT) EOF .RESOLVE (COMPONENT) ;

COMPONENT = "COMPONENT:"
.LIST (COMLIST .
NAME .MSG(.CR "Component " * _COL(30))
.DEF (COMPONENT)
: .NODE (COMPONENT #1) -
(" (" .LIST(CPARAMS CPNAM % ("," CPNAM)) myn oy
.EMPTY .NODE (CPARAMS)) CR
$("PURPOSE:" MLTEXT .NODE (PURPOSE #1) /
"IOSPEC:" MLTEXT .NODE(IOSPEC #1) /
"DECISION:" MLTEXT .NODE (DECISION #1))
$BLINE
.LIST (REFSET $<1:?>REFMNT))
"END" "COMPONENT" $<1:?>BLINE ;

CPNAM = "'" NAME .NODE (CPQUOTE #1) / NAME ;
REFMNT ="REFINEMENT:"
.LIST(REFLIST '
REFNAME .MSG(.CR " Refinement " * ,COL(30)) .

.NODE (REFINEMENT #1) CR
$ ("BACKGROUND: " MLTEXT .NODE (BACKGROUND #1) /
"INSTANTIATION:"
.LIST (INSTANTIATION NAME §("," NAME))
R /
"ASSERTIONS:" ASSERTIONSET /
"CONDITIONS:" CONDITIONSET /
"RESOURCES:" MLTEXT .NODE (RESOURCES #1) /
"ADJUSTMENTS: " MLTEXT .NODE (ADJUSTMENTS #1) /
"GLOBALS:" .LIST(GLOBALS NAME $("," NAME)) CR /
"LABELS:" .LIST(LABELS NAME &("." NAME)) CR)
("CODE:" NAME "." NAME CR
.NODE (PARSE-DOMAIN #2 #1) .EXECUTE LINE
.NODE (CODE #3) .NODE (DOMAIN #2) /
- 135

136 The Definition of a Component Insertion
File
"INTERNAL:" NAME CR
ILIST LINE
.NODE (PARSE-INTERNAL #2 #1) .EXECUTE
.NODE (CODE #3) .NODE (DOMAIN #2) /
"DIRECTIVE:"
("FUNCTION"
("DEFINITION"
.NODE (DIRECTIVE DIRECTIVE-EFN-DEFINE) /
"CALL" .NODE (DIRECTIVE DIRECTIVE-EN-CALL)) /
"DEFER'" .NODE (DIRECTIVE DIRECTIVE-DEFER))
CR))
"END" "REFINEMENT" §<1:?>BLINE ;
CONDITIONSET = .LIST(CONDITIONS CONDITION $(WHITE CONDITION)) ;
ASSERTIONSET = .LIST(ASSERTIONS ASSERTION $ (WHITE ASSERTION)) ;

CONDITION = NAME NAME "as" NAME .NODE (CONDITION #3 #2 #1) CR ;
- ASSERTION = NAME NAME "as" NAME NODE(ASSERTION #3 #2 #1) CR

ILIST = NAME / " (" .SEXPN(NAME $<?: ’>(ILIST/CR)) D
- REFNAME = REFNTOK .LITERAL ;

NAME = NAMETOK .LITERAL ;
MLTEXT = MLTOK .LITERAL :

PREFIX : $.ANY(32!9) ;
WHITE : $<1:?>.ANY(32!9) ;

CR : PREFIX .ANY(13!'10) §.ANY(13!10) :

EOF : .ANY(26) ;

REFNTOK : PREFIX .TOKEN $<1:?> (NAMECHR/.ANY(32)) .DELTOK ;o
NAMETOK : PREFIX .TOKEN #<1:?>NAMECHR .DELTOK ;

NAMECHR : .ANY('A:'Z!'a:'z!'0:'9t'#*t'-1'_) ;

MLTOK : PREFIX .TOKEN LINE 8(. ANY(32'9) LINE) .DELTOK ;

LINE : $.ANY(32:125!9) CR ;
BLINE : §.ANY(32) CR ;

.END

’

VII. THE DEFINITION OF TACTICS

This is the definition of the interpreter for the TACTICS subsyétem. Any
errors in the TACTICS subsYstem refer to the-file TACTICS.DEF, which is
reproduced below. This description is from the file TACTIC.DEF. Any error -
encountered while uSing PPGEN to construct a prettyprinter refers to a rule

in this file.

VII.1. The File TACTIC.DEF

.DEFINE TACTCMD

[Tactics Parser Uses .EXECUTE to be an Interpreter]

[James Neighbors Last Modified -- December 12, 19812]

[NOTE: terrible use of TACTIC-*-KLUGE should be removed!]

TACTCMD = §((TACDEF / TACLIS / TACDEL /
"LOAD" NAME .NODE (TACTIC-LOAD #1) /
"HELP" .NODE (TACTIC-HELP))
".n .
.EXECUTE)
"EXIT" ;

TACDEF = "DEFINE" (NAME ("." NAMEf "=" RULE
' .NODE (TACTIC-DEFINE #3 #2 #1) /
.EMPTY "=" RULE '
.NODE (TACTIC-DEFINE #2 (TACTIC-BLANK-KLUGE) #1))/
.EMPTY "=" RULE «
.NODE (TACTIC-DEFINE (TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE) #1)) ;
"DELETE" (NAME ("." NAME .NODE (TACTIC-DELETE #2 #1) /
.EMPTY _
.NODE (TACTIC-DELETE #1 (TACTIC-BLANK-KLUGE))) /
.EMPTY : ' -
.NODE (TACTIC-DELETE (TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE))) :
"LIST" (NAME ("." NAME (">" NAME .NODE (TACTIC- LIST #3 #2 #1) /
.EMPTY
.NODE (TACTIC-LIST #2 #1 (TACTIC-BLANK- KLUGE)) Y /
.EMPTY
(">|l NAME
.NODE (TACTIC- LIST #2 (TACTIC-BLANK-KLUGE) #1) /
.EMPTY
.NODE (TACTIC-LIST #1 (TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE)))) /

TACDEL

TACLIS

EMPTY (">" NAME
' 137

138 The Definition of Tactics

.NODE (TACTIC-LIST (TACTIC-BLANK-KLUGE)

(TACTIC-BLANK-KLUGE) #1) /
.EMPTY

.NODE (TACTIC-LIST (TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE)))) ;

RULE = .LIST(PROGN RCMD $("," RCMD)) .NODE(QUOTE #1) ;
RCMD = STRING .NODE (TACTIC-MESSAGE #1) /
"COMPONENT" .NODE (TACTIC-RPCFIELD COMPONENT) /
"PURPOSE" .NODE (TACTIC-RPCEIELD PURPOSE) /
"IOSPEC" .NODE (TACTIC-RPCFIELD IOSPEC) /
"DECISION" .NODE (TACTIC-RPCFIELD DECISION) /
"LOC" (NUMBER .NODE (TFMREF-LOC #1) /
.EMPTY .NODE (TEMREF-LOC (TACTIC-BLANK-KLUGE))) /
"USE" ("DEFAULT" (NAME .NODE (REFINE-USE-NUM 1 #1) /
.EMPTY .NODE (REFINE-USE-NUM 1
(TACTIC-BLANK-KLUGE))) /
NUMBER (NAME ~ .NODE (REFINE-USE-NUM #2 #1) /
.EMPTY .NODE (REFINE-USE-NUM #1
(TACTIC-BLANK-KLUGE)))) /
"TRY" ("DEFAULT" (NAME .NODE (REFINE-TRY-NUM 1 #1) /
.EMPTY .NODE (REFINE-TRY-NUM 1
(TACTIC-BLANK-KLUGE))) /
NUMBER (NAME .NODE (REFINE-TRY-NUM #2 #1) /
‘ .EMPTY .NODE (REFINE-TRY-NUM #1
(TACTIC-BLANK-KLUGE)))) /
"[" ("ALL" RPRED "," RCMND .NODE (TACTIC-REFSCAN
(TACTIC-ALL-KLUGE) #2 #1) /
NUMBER RPRED "," RCMND .NODE (TACTIC-REFSCAN #3 #2 #1)) "]" /
NAME .NODE (TACTIC-CALL #1)
RPRED = "<" .LIST(AND SPRED $("&" SPRED)) ">" / .EMPTY .NODE(CR T) ;
RCMND = .LIST(PROGN SCMD & ("." SCMD)) ;
SPRED = REFFLD ("IS" NAME .NODE (EQ #2 #1) / .EMPTY) /
"NO" REFFLD .NODE (NOT #1) /
"AVAILABLE" ("FUNCTION" .NODE (REFINE-FUNCTION-ALREADY?) /
"RESOURCE" .NODE (TACTIC-RRCHECK)) /
NAME "INSTANTIATION" .NODE (TACTIC-INSTANTIATION-AVAILABLE? #1) ;
SCMD = STRING .NODE (TACTIC-MESSAGE #1) /
"REF INEMENT" .NODE (TACTIC-RPRFIELD REFINEMENT) /
"CONDITIONS" .NODE (TACTIC-RPRFIELD CONDITIONS) /
"BACKGROUND" .NODE (TACTIC-RPREFIELD BACKGROUND) /
"DIRECTIVE" .NODE (TACTIC-RPRFIELD DIRECTIVE) /
"INSTANTIATION" .NODE (TACTIC-RPRFIELD INSTANTIATION) /
"ASSERTIONS" .NODE (TACTIC-RPRFIELD ASSERTIONS) /
"RESOURCES" .NODE (TACTIC-RPREIELD RESOURCES) /
"ADJUSTMENTS" .NODE (TACTIC-RPREIELD ADJUSTMENTS) /

"DOMAIN" .NODE (TACTIC-RPRFIELD DOMAIN) /

The File TACTIC.DEF

REEFLD-

NAME =
STRING
NUMBER

PREFIX :
NAMTOK :

STRTCK :
NUMTOK :

.END

"USE" (NAME .NODE (REFINE-USE #1) /
.EMPTY .NODE (REFINE-USE (TACTIC-

"TRY" (NAME .NODE (REFINE-TRY #1) /
.EMPTY .NODE (REFINE-TRY (TACTIC-

= "REFINEMENT" .NODE (TACTIC-RRFIELD
"CONDITIONS" .NODE (TACTIC-RRFIELD
"BACKGROUND" .NODE (TACTIC-RRFIELD
"DIRECTIVE" .NODE (TACTIC-RRFIELD
"INSTANTIATION" .NODE (TACTIC-RRFIELD
"ASSERTIONS" .NODE (TACTIC-RRFIELD

- "RESOURCES" .NODE (TACTIC-RRFIELD
"ADJUSTMENTS" .NODE (TACTIC-RREFIELD
"DOMAIN" .NODE (TACTIC-RRFIELD

NAMTOK .NODE (INTERN (QUOTE *)) ;
STRTOK .LITERAL ;
NUMTOK .LITERAL ;

$.ANY (32!10!13!9)
PREFIX .TOKEN

-
w
O

-BLANK-KLUGE))) /
BLANK- KLUGE))) ;

REFINEMENT) /
CONDITIONS) /
BACKGROUND) /
DIRECTIVE) /.
INSTANTIATION) /
ASSERTIONS) /
RESOURCES) /
ADJUSTMENTS) /
DOMAIN) ;

ANY ('a:'z!'A:'Z!'*) $.ANY('a:'z!'A:'Z!'*1'0:'9) .DELTOK ;

PREFIX .ANY('") .TOKEN $.ANYBUT('")

.DELTOK .ANY('") ;

PREFIX .TOKEN .ANY('O:'9) $<?:5>.ANY('0:'9) .DELTOK ;

The Definition of Tactics

140

VIII. DRACO TERMINAL DEFINITION

Draco can use a terminal's special featufes.if the terminal type is
defined and stored in a file of kind <termtype>.TRM. Therefore, if one
wants to define a new terminal type for Draco, he must include the new

terminal tYpe in the SET command of DRACO_MENU and write a LISP definition

 of the terminal in a file of kind <termtype>.TRM.

As an example, we provide the definition for the ZENITH-HEATH'terminal in

its ANSI configuration.

141

(DE

(DE

(DE

(DE

(DF

(DE

(DE
(DE
(DE
(DE
(DE

(DE

(DF

- Draco Terminal Definition

TERM-CLEAR NIL (TERM-MSG 27. "[2J"))

TERM-CUP (LINE COL) (TERM-MSG 27. "[" LINE ";" COL "H"))

TERM-ERASE-LINE NIL (TERM-MSG 27. "[2K"))

TERM-INIT NIL (TERM-SM 1.))

TERM-INVERSE (S)
(TERM-MSG 27. "[7m")
(EVAL (CONS 'TERM-MSG S))
(TERM-MSG 27. "[Om"))

TERM-MSG (L)

(PROG (S)

LOOP (SETQ S (CAR L))

(COND [(NULL L) (RETURN)]
[(STRINGP S)

(MAPC (EUNCTION OUTCHR) (AEXPLODEC S))]

[(NUMBERP S) (TYO S)]
[(LITATOM S)
(COND [(EQ S T) (TERPRI)]

" [(CONSP (GET S 'VALUE))
(MAPC (FUNCTION OUTCHR)
(AEXPLODEC (EVAL S)))]
[(MAPC (FUNCTION OUTCHR) (AEXPLODEC S))1)]

[(CONSP S)

(COND [(EQ (CAR S) 'E) (EVAL (CADR S))]
[(MAPC (FUNCTION OUTCHR)
(AEXPLODEC (EVAL S)))1)1)

(SETQ L (CDR L))
(GO LOOP)))

TERM-PRCP NIL (TERM-MSG 27. "([u"))
TERM-PSCP NIL (TERM-MSG 27. "[s"))
TERM-RM (M) (TERM-MSG 27. "[>" M "1"))
TERM-SM (M) (TERM-MSG 27. "[>" M "h"))
TERM-STATUS (S)

(TERM-PSCP)

(TERM-CUP 25. O.)

(TERM-ERASE-LINE)

(EVAL (CONS 'TERM-MSG §))

(TERM-PRCP)) -

TERM-TERM NIL (TERM-RM 1.))

TERM-TITLE (S) (TERM-CLEAR) (EVAL (CONS 'TERM-MSG S))) .

143

144

- Draco Terminal Definition

(NOCOMPILE , |

(DEFV TERMENS (TERM-CLEAR TERM-CUP TERM-ERASE-LINE TERM-INIT
TERM-INVERSE TERM-MSG TERM-PRCP TERM-PSCP

TERM-RM TERM-SM TERM-STATUS TERM-TERM TERM-TITLE))

IX. TACTICS PRETTYPRINTER DEFINITION

The definition of the tactics prettyprinter is as follows:

.PRETTYPRINTER TACTICS
[PrettyPrinter for Internal Domain of TACTICS]
[James Neighbors -- Last Modified August 26, 1982]

TACTICS = .LISTPRINT(.SLM) .SLM ;

TACTIC = #2 ;

CMDGRP = .LISTPRINT(.SLM) .SLM 10 13 ;

Cm - "DEFINE " #3 ".ll #l "n = n .IM #2 H'.ll :
PROGN = .LISTPRINT("," .SLM(40)) :
TACTIC-RPCFIELD #1 .

TEMREF -LOC "LOC" .LISTPRINT(" ")

"USE " .LISTPRINT(" ") :
"TRY " .LISTPRINT (" ") :

REFINE-USE-NUM
REFINE-TRY-NUM

REFINE-USE = "USE " .LISTPRINT(" ") ;
REFINE-TRY = "TRY " .LISTPRINT(" ") ;
TACTIC-CALL = $#1 ;

TACTIC-MESSAGE = 34 #1 34 .
TACTIC-BLANK-KLUGE = ;

TACTIC-ALL-KLUGE = "ALL" ;

TACTIC-REFSCAN = "[" .LM #1 #2 ", " #3 "1" ;

AND = ng" LISTBRINT(" & " .SLM(40)) ">" ;

OR = ; ‘

EQ =#1 " IS " #2 ;

TACTIC-RRFIELD = #1 :

NOT = "NO " #1 ;

REFINE-FUNCTION-ALREADY? = "AVAILABLE FUNCTION" ;
TACTIC-RRCHECK = "AVAILABLE RESOURCE" ;

TACTIC-INSTANTIATION-AVAILABLE? = #1 " INSTANTIATIO "
TACTIC- RPRFIELD #1

INTERN = #1 ;
QUOTE = #1 ;
.END

145

146

Tactics Prettyprinter Definition

4444“

- .

X. DRACO ERROR, NOTE, AND SYSERR MESSAGES

There are three basic kinds of messages from Draco: ERR:, NOTE:, and
SYSERR:. An ERR: is an error condition caused by a domain builder or, user
and‘is handled by Draco. A NOTE: is é message given only for the user's

information; no problem or extraordinary event has occurred, but the user's

environment has been modified in some way. For example, a NOTE: is used

during the creation of a file. A SYSERR: is a disasterous error in the
Draco mechanism itself, and is caught by an internal consistency'check
within Draco. The user should pever save anything after a SYSERR: unless

directed that it is all right to do so.

147

INDEX

! 18
(in prettyprinter) 35; 37

(in .node) 21, 22, 25
(in prettyprinter) 35

. 4> (in TEMREF) 73

s 17

8<n:m>A 18
v 18

* 21

* (51gnifies a line processed) 30, 42, 67

* in .MSG in parser 27

OMEGA = 25

... (from TEMREF) 73, 74
.ANY - 18

.ANYBUT 18

.ASSUME in parser 27

".CHARPRINT in prettyprinter 42

.CHART 25 _

.CHART constructor in parser 24

.CHARTPRINT in prettyprinter 39

.COL 37

.COL in .MSG in parser = 27

.CONTEXT-POP in parser 27

.CONTEXT-PUSH in parser 26

.CR in .MSG in parser 27

.DEF (file extension) 30, 67, 117

.DEF in parser 26

.DEFINE 11

.DELTOK 21, 25

.DPP (file extension) 42 -

.EMPTY 17

.ERROR in parser 17

.EXECUTE in parser 28

.FAIL in parser 17

.INT (file extension) 67

.LIST in parser 28

.LISTPRINT in prettyprinter 42

.LITCHAR 25

.LITERAL 21, 25

.IM 35, 37

.MSG in parser 27

.NODE- 21, 22, 25

.PAR (file extension) 30
, 149

.PPD (
.RESOL

file extension) 42, 127
VE in parser 26

.RETRACT in parser 26
.SEXPN in parser 28

.SLM
.TLB (

. TOKEN

.TREE
.TREE

36, 37
file extension) 52
21, 25
25
constructor in parser 23

.TREEPRINT in prettyprinter 39

.USE in parser 26
/ 11, 17
/ precedence 18

18
; 12
<name> 10
<parse-rule> 11, 17, 19, 21, 25, 28
<token-rule> 11, 12, 17, 18, 19, 25, 28
? <name> was not specified (in menu) 5
?Ambiguous Command (in menu) 5
?CLASS 87
?Command Unconfirmed (in menu) 5
?Incomplete Command (in menu) 5
?TRANS 87
?Unknown Command (in menu) 5
Alternation 17, 29
Application code 48, 50, 68, 86
APPLY 86 '
ASCII 12, 18, 37
Assertions 2
Assignment stmt example 21, 39
Backtrack 17
Backtracking 13
BNF 9
Carriage return (in menu) 4
Character class 18
Chart construction in parser 24
Charts prettyprinting 39
Class 34, 47, 48, 49, 51
Component 2
Conditions 2
Consistency in parsers 26
Delete

(in menu) 5
: 150

- .

DOMAIN 71, 72

Domain Analyst 2, 9, 45
Domain Designer 2
Domain Language 2, 9, 33

. Draco 1, 3

Draco BNF 9, 19, 31, 121
DRACO.INI file 6

Encapsulation - 17

End of File (ECF) 18
ERASEPVARS 49

ERR: 147

Error block 17

Error block 'in parsers 15
Error forced in parser 17
Error recovery in parsing 15
ERRORS 147

Escape (in menu) 4

EXAM 3, 71

EXIT 75

External Form 9, 17, 19, 117

Fail a parse rule 17

HARDCOPY 74
HELP S5, 75

INEO 74

Initialization files 6

INSTANCE 71, 72 _

Internal form 19, 20, 117
Internal form constructors 19, 25
Internal tree 19

Iteration 11, 17

Kleene * 11
Kleene + 11

Left recursion (in Draco BNE) 28
Left-associative 22 '

Lhs 48 ‘

Linefeed (in menu) 4

Literal data (in .ncde) 21, 25
LL(1) parsing 14

LOCALE 71, 73

LR (k) parsing 14

Menu control commands 4
Menu interaction 4
META II 9

Metarules 45, 86

151

NOTE: 147
Number (in prettyprinter) 37

PARGEN 28, 67

PARGEN.DEF (Draco BNF def) 121
PARSE 2, 67, 711

Parse rule node limit 20

Parser (LL(1) class produced) 28
Parser error blocks 15

Parser generator 2

Parser optimization 121

Parser text messages 27

Parser, node construction restrictions
PARSER.DEF (Draco BNF def) 31
Parsing error recovery 15
Pattern variable 48

PP 74

PPGEN 33, 125

PPGEN.DEF 34, 125

Precedence (of operators) 22
PREFIX (token rule) 12

Prefix internal form 19; 33, 38, 45, 47, 48

Prefix keyword 19, 35, 47, 68, 87
Prettyprinter 2, 33, 34, 51, 125, 127
Prettyprinter whitespace 36

PVARS 48, 49 '

REF 74

REFGEN 57
Refinement 2, 71, 95
Rhs 48
Right-associative 22
Rubout (in menu) 5

SAVE 75

Sequence 17, 30

Sequence precedence 18

Software component 2, 71

Stack 19, 25

String in .MSG in parser 27
SUFFIX (token rule) & 12

SUGGEST 85

Suggestion of transformation. 68
Syntax 9, 17, 117

Syntax error forced in parser 17
SYSERR: 147

System Specialist 2, 71

TACTICS PRETTYPRINTER 145

Terminal Characteristics 6

TERMINAL DEFINITION 141

TEM 74 _
152

20 -

TEMREF 71, 76

Token buffer 17, 19, 21

Token, errors in 17

TRANS 48, 49

Transform 2, 68, 71, 86
Transformation 2, 45, 71, 85, 129
Transformation (suggestion of) 68
Transformation catalog 51, 129

Transformation insertion file 47, 49

Transformation special markers 47
Tree construction in parser 23
Trees prettyprinting 39
UNLOAD-TRANSFORM 87

XEMGEN 45, 52, 129

[[A]B] 17
{} 10
| 10, 17

| precedence 18

183

Library Use Only

NOvV 21 1985

