
UC Irvine
ICS Technical Reports

Title
Draco 1.3 users manual

Permalink
https://escholarship.org/uc/item/3jd4836r

Authors
Neighbors, James M.
Arango, Guillermo
Leite, Julio C.

Publication Date
1984-10-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jd4836r
https://escholarship.org
http://www.cdlib.org/

LIBRARY

University of California

IRVINE

6^^

Draco 1.3 Users Manual

30 October 1984

Technical Report 230

Department of Information and Computer Science
University of California at Irvine

Irvine, Ca. 92717

pi

Copyright (C) 1984 James M, Neighbors, Guillermo Arango, Julio C. Leite

This work was supported by the National Science Foundation Software
Engineering Section under NSF grants MCS-81-03718/MCS-83-04439 and by the
Air Force Office of Scientific Research.

I

I

Table of Contents

1. An Introduction to the Draco System 1

1.1. The Draco View of Software Production 1
1.2. Running i-he Draco System 3
1.3. Interacting with Draco Menus .4
1.4. Terminal Definition for Draco 6
1.5. Overview of the User Manual 6

2. Describing a Domain Language 9

2.1. The External Form (Syntax) Specification 9
2.1.1. Draco BNF Described in BNF 10
2.1.2. An Example of Draco BNF 11
2.1.3. The PREFIX and SUFFIX Rules 12
2.1.4. Controlling Parser Backtracking 13
2.1.5. Error Recovery During Parsing 15
2.1.6. Elements of External Form Description 17
2.1.7. Recognizing the End of the File 18

2.2. The Complete External/Internal Form Specification 19
2.2.1. External/Internal Form Specification 19
2.2.2. Specifying a Legal Parser 20
2.2.3. A Con^Jlete External/Internal Form Exainple 21
2.2.4. An Example Internal Form 22
2.2.5. Variable Length Structures in Internal Forms 23
2.2.6. Elements of Internal Form Description - 25

2.3. Special Functions in Parsers 26
2.3.1. Checking Consistency in Parsers 26
2.3.2. Notifying the User 27
2.3.3. Non-Standard Parser Constructs 28

2.4. Class of PARGEN Parsers 28
2.5. Using the Draco Parser Generator 30

3. Building a Prettyprinter with PPGEN 33

3.0.1. The Syntax of a Prettyprinter Description 33
3.0.2. An Exanqple of a Prettyprinter Description 34
3.0.3. Output Device Dependent Codes 37
3.0.4. Elements of a Prettyprinter Description 37

3.1. Prettyprinting TOEEs and CHARTs 39
3.2. Special PrettyPrinter Functions 42
3.3. Using the BUILD Subsystem to Create a Prettyprinter 42

4. Building a Transformation Library with XFMGEN 45

4.1. The Transformation Library and Metarules 45
4.1.1. Transformation Metarules 46

4.2. Specifying the Program Transformations 47
4.2.1. The Syntax of a Transformation Insertion File 47
4.2.2. An Exanple of a Transformation Insertion File 48
4.2.3. Elements of a Transformation-Insertion File 49

i

4.2.4. The Application Code of a Transformation 50
4.3. The Catalog of Transformations for a Domain 51
4.4. Using the TRANSFORMATION BUILDER SUBSYSTEM: XFMGEN 52

5. Building a Component Library with REFGEN 57

5.1. The Constituent Parts of a Component 5.7
5.2. The Motivation for Libraries of Conponents 62
5.3. Building a Component Library 63

6. Converting a Program to Internal Form with PARSE 67

6.1. Using the PARSE Subsystem 67
6.2. How Transformations are Suggested in PARSE 68
6.3. Multiple Domains 68

7. Using TFMREF the Program Manipulation Subsystem 71

7.1. The TFMREF Commands Which Set the Context 71
7.1.1. The DOMAIN command 72
7.1.2. The INSTANCE command 72
7.1.3. The LOCALE Command 73

7.2. The Miscellaneous TFMREF Commands 74
7.2.1. The PP Command 74
7.2.2. The INFO Command 74
7.2.3. The HARDCOPY Command 74
7.2.4. The SAVE Command 75
7.2.5. The EXIT Command 75

7.3. A Summary of the TFMREF Commands 75
7.4. An Exanple Session with TFMREF 76

8. Using the Program Transformation Mechanism 85

8.1. The SUGGEST command 85
8.2. The APPLY Command 86
8.3. The TEIANSFORM Command 86
8.4. The ?TEIANS Command 87
8.5. The 7CLASS Command 87
8.6. The UNLOAD-TRANSFORM Command 87
8.7. Example 88

9. Using the TFMREF Refinement Subsystem 95

9.1. The TFMREF Commands Which Work With Refinements 95
9.2. How components are used 95
9.3. The Refinement Mechanism 96
9.4. The TFMREF Command: REFINE 97
9.5. Commands available through the Refinements User Interface 98

9.5.1. The TRY command 98
9.5.2. The USE command 98
9.5.3. The DEFER command 99
9.5.4. The ABORT command 99

ii

9.5.5. The DO connnand 99
9.5.5. The HELP command 99
9.5.7. The INFORMATION command 100
9.5.8. A summary of the REFINEMENTS commands 101

9.5. An example of a session with REFINE 101

10. Using the TFMREF Tactics Subsystem 113

I. A Conplete External/Internal Lanuage Definition 117

1.1. External/Internal SIMAL Definition 117
1.2. Exan^jle SIMAL Programs 119

10.0.1. Quadratic Equation 119

11. The Definition of Draco BNF in Draco BNF 121

II.1. The File PARGEN.DEF 121

III. The Definition of a Prettyprinter Description 125

III.l. The File PPGEN.DEF 125

IV. An Example Prettyprinter Description 127

IV.1. A SIMAL Prettyprinter Description 127

V. An Exanple Set of Transformations 129

V.l. SIMAL Transformations 129

VI. The Definition of a Con^jonent Insertion File 135

VI.1. The File REFGEN.DEF 135

VII. The Definition of Tactics 137

VII.l. The File TACTIC.DEF 137

VIII. Draco Terminal Definition 141

IX. Tactics Prettyprinter Definition 145

X. Draco Error, Note, and Syserr Messages 147

Index 149

iii

List of Figures

Figure 2-1
Figure 4-1
Figure 4-2
Figure 4-3

BNF for Parser Definition

Sample of Library-creation dialogue
New trans formation-insertion file
Adding transformations to an existing library

10

53

53

53

CHAPTER 1

AN INTRODUCTION TO THE DRACO SYSTEM

It has been a coiranon practice to name new computer languages after stars.

Since the system described in this manual is a mechanism which manipulates ,•

special purpose languages, it seems only fitting to name it after a
1

structure of stars--a galaxy. Draco is a dwarf elliptical galaxy in our

local group of galaxies (which is dominated by two large spiral galaxies,
5

the Milky Way and Andromeda) and is situated near the Milky Way (1.2x10

solar masses and 68 kiloparsecs from Earth). Because it is small in size

and close to earth, its name is well-suited to the current system which is a

small prototype.

1.1. The Draco View of Software Production

The Draco system addresses itself to the routine production of many

systems which are similar to each other. The theory behind its operation is
2

described in detail in Neighbors' PhD. Thesis. Three themes dominate the

way Draco operates: the use of special-purpose high-level languages for the

domains or problem areas in which many similar systems are needed; the use

of software components to implement problems stated in these languages in a

flexible and reliable way; and the use of source-to-source program

transformations to tailor the components to their use in a specific context.

The basic steps in the production of a specific system using a

1

Draco is Latin for dragon
2

James M. Neighbors, "Software Construction Using Conponents", Technical
Report 160, University of California, Irvine, 1980.

2 Introduction to the Draco System

Draco-supported, domain-specific, high-level language are as follows:

1. When an analyst with experience in developing many systems in a
certain problem domain decides that the domain is sufficiently
comprehensible, he defines a language which can comfortably and
easily describe other systems in the problem domain. This person
is called the Domain Analyst, and the language described is
called the Domain Language. The Domain Analyst describes the
domain and its internal form with the parser generator part of
the BUILD subsystem of Draco, which is described in Chapter 2.

2. Once the Domain Analyst has described the external and internal
form of the domain, he describes how to print the domain program
fragments clearly and accurately. This is called prettyprinter
generation, and it is done by the Draco BUILD subsystem using the
notations described in Chapter 3.

3. The Domain Analyst must provide sinplifying relations among the
objects and operations of the domain. These are used for
simplification and optimization of programs in the domain. These
simplifications ate accepted in terms of source-to-source program
transformations by the BUILD subsystem which forms them into a
library of transformations. The creation of transformations is
discussed in Chapter 4.

4. Finally, the Domain Analyst must prepare a prose description of
the meaning of the operations and objects in his domain.

5. This prose description is turned over to a Domain Designer. He
specifies components for each object and operation in the domain
which refine the object or operation of the domain into objects
and operations in other domains known to the Draco system. These
conponents are formed into libraries by the Draco subsystem BUILD
from specifications described in Chapter 5. A conponent is a set
of refinements, each capable of inplementing a domain object or
operation under certain stated conditions while making certain
implementation assertions.

6. A new system which can be described in a Domain Language known to
Draco can inherit some analysis, design, and coding from the
Draco library. The statement of the system to be constructed is
cast in a Domain Language. The Domain Language program is then
turned into an internal form by the PARSE subsystem. The use of
the PARSE subsystem is described in Chapter 6. This internal
form is then given to a System Specialist.

7. The System Specialist interacts with the transformation and
refinement subsystem of Draco called TFMREF. The basic operation
in this phase is the selection of an appropriate set of software
components in order to inplement the operations and. objects in
the domain which are used in the problem statement. These

Introduction to the Draco

System
components are specialized by program transformation (described
in Chapter 8) to the problem at hand and then separately refined
(described in Chapter 9) into another (or the same) domain, and
the cycle begins again. The TFMREF subsystem allows the
definition of refinement tactics (described in Chapter 10)
capable of removing the burden of answering low-level questions
from the System Specialist.

8. The process that the System Specialist uses to refine the problem
is, of course, not strictly top-down, but the TFMREF subsystem
keeps a record of the process which makes it look top-down.
After the program is in an executable form, it is printed out by
the System Specialist. If it is not acceptable, the
specification cycle begins again with the existing Domain
Language program.

9. The refinement history of a progrram may be examined by a user of
the EXAMINE subsystem which states what refinements were used in

3

the production of this program. A higher-level description of
all parts of the program to whatever level (up to the level of
the original Domain Language) always exists in the refinement
history. It is hoped that these higher levels of abstraction in
an existing program will be useful in understanding the program
during the maintenance phase of its lifecycle.

The process described briefly above is dealt with in more detail in
4

Neighbors' Thesis which presents an SADT model of the process.

1.2. Running the Draco System

This section describes the loading and execution of the Draco system on

the ICS DEC System 2020 at U.C. Irvine as of August 1, 1983. In all the

exanple transcripts in this manual, the user input is underlined and

terminated with RETURN. Comments are enclosed in •{} brackets.

3

The EXAMINE subsystem and history recording are not operational in
the current system.

4

SADT is a registered trademark of SofTech Inc.

4 Introduction to the Draco Systeir

{we enter at the monitor level on the PDP20}
©DEFINE DRACO: <DRACO> {the Draco disk area}
©DRACO

{screen clears}
Draco 2.0

{some notices and bug messages are printed here}
DracOHELP ALL

{the current legal Draco commands are printed}
Ihe Draco commands are:

BUILD - generate a domain language parser (.DEF->.PAR)
- generate a domain language internal form

prettyprinter (.PPD->.DPP)
- generate a domain transformation library (.TFM->.TLB)
- generate a domain refinement library (.REF->.RLB)

PARSE - parse a program into internal form (?->.INT)
TFMREF - transform and refine a program (.INT->.INT)
SET - set terminal type and other environmental parameters
EXIT - return to the monitor level
LISP - reenter LISP

HELP - this listing

Draco>

The rest of the sections of the manual assume that Draco is loaded and in

execution.

1.3. Interacting with Draco Menus

Draco uses a standard menu interaction which includes command con^jletion
5

and a help facility . The following keys control the menus in Draco:

- RETURN terminates commands and requests execution.

- LINEFEED requests information about the options which exist at the
current point in the menu.

5

We would have liked to have made the Draco menu driver corqjatible with
the standard Tops-20 Exec but in UCI Lisp under the PA1050 simulator we have
input activation only on linefeed, carriage return, and escape. These are
the control keys used by the menu driver.

Introduction to the Draco
System ^

- ESCAPE requests that the menu driver fill in the current choice if
it is unambiguous, and prompt for the next menu item required. If
the current command is still ambiguous, then the terminal will
beep and the cursor will not move. At this point a RETURN will
abort the command because it is ambiguous, and a LINEFEED will
list the acceptable inputs.

Once one of the above activation characters has been given, characters typed

prior to the activating character cannot be deleted. This has the effect of

only activating on the above characters, not on RUBOUT, DELETE, or

BACKSPACE. A command which has been entered incorrectly is usually aborted

with a RETURN. The following error messages are given by the menu driver

when a command is aborted:

- ?Inconplete Command is issued when all the fields required by the
command have not been filled in, and a RETURN was given to
activate the command.

- ?ATnbi giiniis Command is issued when a RETURN was given to activate
the command, and either a sub-command is needed or the
specification of the original command does not contain enough
characters to differentiate between a group of commands. LINEFEED
at the same point will show the possible commands needed to
complete.

- ?Unknown Command is issued when a RETURN was given to activate the
command, and the given command is not one of the possible choices.

- ?CQTTmiand Unconfirmed is issued when all the fields of a command
have been filled in, but the last field was not terminated by a
RETURN. The assumption is that a user does not understand the
command if he prompts for more fields on the last field.

- 2 <fleldname> was not specified is issued when some, but not all
of the required fields of a command have been specified. The
fieldname given is the next field to be entered.

The easiest way to use Draco Menus is with the ESCAPE key after each user

input, so that the proper format will be displayed by the system. Another

way of getting help from the system is to type a space and a LINEFEED after

each user input.

Introduction to the Draco Systeir

DRACO>ti <esc> UILD (DOMAIN NAME) MQ <esc> (DOMAIN PART)
t. <esc> RANSFORMATION LIBRARY

DRACO> build <linefeed>

enter name; domain name

DRACO> build

1.4. Terminal Definition for Draco

Some of the features availaJole in new terminals are used byDraco to

highlight information and interact with the user. Primarily, these

interactions are based around the ANSI terminal standards.

Some flexibility in defining new terminals is described in appendix 8.

Commands from the main menu of Draco (i. e. , commands acceptable at the

DRACO> menu prompt) can be put into a command file entitled DRACO. INI.

This is useful for setting up terminal types and getting updates of the

Draco software.

1.5. Overview of the User Manual

The manual is organized in 10 chapters and 10 appendixes. The chapters

are organized as follows:

- Chapter 1 - Introduction to the Draco approach and general guide
of the system.

- Chapter 2 - Detailed e>^lanation of how to write parse definitions
using Draco, and how to build a parse for a domain language.

- Chapter 3 - Detailed esqjlanation of how to write a prettyprinter
definition and how to build a prettyprinter for a domain language.

- Chapter 4 - Explanations of how to write transformations and how
to build a transformation library for a domain language.

Introduction to the Draco
System

- Chapter 5 - Explanations of how to write components and how to
build a component library.

- Chapter 6 - Explain and give example of how to convert a program
in a domain language to the Draco internal form.

- Chapter 7 - Explain the use and the main commands of the
Transformation and Refinement subsystem of Draco.

- Chapter 8 - Explain how a transformation library should be used to
optimize a given program.

- Chapter 9 - Explain how a System Specialist should use the system
to refine a program written in a domain language into an
executable language. It describes all the necessary commands to
do a refinement.

- Chapter 10 - Explain the Tactics Subsystem and show how to use it.

- Appendix 1 - Gives a complete example of a Domain language (SPL).

- Appendix II - Gives the definition of the Main Parser Generator,
that is, the Draco Parser written in Draco.

- Appendix III - Gives the definition of the Draco prettyprinter
domain.

- Appendix IV - Gives an example of a prettyprinter description
(SPL) .

- Appendix V - Gives an example of transformations.

- Appendix VI - Gives the definition of the Draco Conponent Library
Scanner, that is, the language used in describing conponents.

- Appendix VII - Gives the definition of the interpreter of the
Tactics subsystem.

- Appendix VIII - Shows a example of how to define a terminal
definition.

- Appendix IX - Gives the definition of the Tactics prettyprinter.

- Appendix X - Draco Errors and Messages.

8 Introduction to the Draco System

CHAPTER 2 .

DESCRIBING A DOMAIN LANGUAGE

Once the analysis of a problem domain has been completed, the Domain

Analyst must define a language suitable for describing solutions to

programming problems in the domain. This high-level language should be very

specific to the domain and capable of describing the objects and operations

of the domain in a comfortable way.

In this section we are concerned with how to specify the external form

(syntax) and internal form of a domain language to the Draco subsystem

BUILD. The chapters on transformations and refinements are concerned with

specifying the semantics of the language.

2.1. The External Form (Syntax) Specification

Classically, BNF's have been used to describe the syntax of languages.

Draco carries on this tradition. The Draco BNF is similar to the BNF used
6

in syntax-directed compiling which is the foundation of the META systems.

6

Schorre, D.V., "META II: A Syntax-Oriented Compiler Writing Language", In
Proceedings of the ACM National Conference, pages Dl.3-1 to Dl.3-11, 1964.
Where <character> matches any character and <schar> matches any character
except a double quote ("

Describing a Domain Language

2.1.1. Draco BNF Described in BNF

The Draco BNF is described below in standard BNF format with the

following metasymbols: <name> denotes a rule, {obj} denotes zero or more

occurrences of obj, | denotes alternation, a single word or character with .•

quotes on either, side denotes itself, <character> matches any character, and

<schar> matches any character except a double quote (").

<DracoBNF>: := .DEFINE <identifier> •{<Draco-rule>}' .END
<Draco-rule>::= <parse-rule> ; | <token-rule> ;
<parse-rule>::= <identifier> = <parse-exp>
<parse-e>q5>: := <parse-seq> •(/ <parse-seq>}- |

<parse-seq> •{ | <parse-seq>}
<parse-seq>: := <parse-ele> •{<parse-ele>}'
<parse-ele>::= <identifier> 1 <string> | (<parse-exp>) |

<parse-iteration> | .EMPTY |
[[<parse-e>q»] <parse-exp>]

<parse-iteration>::= $ < <iteration-range> > <parse-ele> |
$ <parse-ele>

<iteration-range>::= <iteration-number> : <iteration-number>
<iteration-number>:;= <number> | ?
<token-rule>

<token-exp>:
<token-seq>:
<token-ele>:

:= <identifier> : <token-e>q»
= <token-seq> { / <token-seq>}
= <token-ele> •{<token-ele>}

:= <identifier> | <char-rule> | (<token-exp>) |
<token-iteration> | .EMPTY

<token-iteration>::= $ < <iteration-range> > <token-ele> |
$ <token-ele>

<char-rule>::= .ANY (<char-exp>) | .ANYBUT (<char-exp>)
<char-exp>: := <char-range> •{ ! <char-range>}
<char-range>::= <char-value> | <char-value> : <char-value>
<char-value>::= <number> | ' <character>
<identifier> : := <alph2J3etic> |

<alphabetic> •C<digit>> {<identifier>}
<number>::= <digit> •(<digit>>
<string>::= " <schar> "
<alphabetic>::= A |B| ... |Z|a|b| ... |z
<digit>::=0|1|...|9

Figure 2-1: BNF for Parser Definition

Where <character> matches any character and <schar> matches any character

except a double quote (").

Describing a Domain Language 11

2.1.2. An Example of Draco BNF

The <token-rule> production specifies how to collect characters into

tokens (lexemes), while the <parse-rule> production specifies how to group

tokens together to parse the external form. The <char-rule> productions

specify what characters to accept within a <token-rule>. The iteration

rules, <parse-iteration> and <tpken-iteration>, are similar to the {}

notation used above, and they specify sequences which may occur zero or more

times (up to an optional limit). The Kleene * and + are a subset of the

available values of iteration.

As an example of the Draco BNF, consider the following description of

simple, parenthesized, arithmetic, ALGOL-like assignment statements;

.DEFINE ASGN

[This is an example parser definition]
[comments are enclosed in square brackets]

ASGN = IDENTIFIER (EXl / STRING) ;
EXl = EX2 $("+" EX2) ;
EX2 = EX3 $r*" EX3) ;
EX3 = EX4 $(""" EX3) ;
EX4 = IDENTIFIER ("(" EXl $("," EXl) ")" / .EMPTY) /

NUMBER / "(" EXl ")" ;

PREFIX : SPACES

IDENTIFIER : SPACES ALPHA $<?:5> (ALPHA / DIGIT) ;
NUMBER : SPACES DIGIT $DIGIT ;
STRING ; SPACES .ANY('") $.ANYBUT('") .ANY("') ;
ALPHA : .ANY('A:'Z ! 'a:'z) ;
DIGIT : .ANY('0:'9) ;
SPACES : $.ANY(32) ;

. END

The .DEFINE tells Draco that this is a domain language description, and that

the name which follows is the name of the first rule to be invoked.

Characters enclosed in double quotes (") are literal strings which are

tested to see if they appear (without double quotes) in the input stream.

12 Describing a Domain Language

The slash (/) denotes alternation similar to the logical bar (|) of the BNF.

An ASGN is started by an IDENTIFIER, which must be followed by the sequence

which is followed either by a sequence described by rule EXl or by a

STRING. A semicolon (;) must follow either sequence.

IDENTIFIER is a <token-rule>, and it scans off individual characters. An

IDENTIFIER is a secjuence of zero or more spaces (32 is the decimal ASCII

representation of a space), followed by an upper or lower case letter of the

alphabet, followed by zero to five letters or digits. A STRING is a

sequence of zero or more spaces, followed by a double quote, followed by the

string characters (any character except a double quote), followed by a

double quote. The following are legal ASGN statements according to the above

Draco BNF:

PHI := (col7 + col5)*FUDGE ;
Person := "Edward the Great" ;
VAL7 := 5+3*6^4 ;
ITS

Zee

APE

= ((A+6)*3)+7+6+5*power ;
= factor*SIN(2*Pi) ;
= FURD(5,FURD(3,B)) ;

2.1.3. The PREFIX and SUFFIX Rules

Two rule names, PREFIX and SUFFIX, are used to shorten the Draco BNF. If

a Draco BNF description contains a PREFIX rule, then this rule is applied

before every test for a literal string (characters enclosed in quotes in the

BNF). Thus,

ASGN = IDENTIFIER ":=" (EXl / STRING) ;
PREFIX : SPACES ;

is the same as

Describing a Domain Language 13

ASGN = IDENTIFIER SPACES (EXl / STRING) SPACES

The SUFFIX rule operates in a similar manner except, if it exists, it is

applied after the test for the literal string has been successful. If the

SUFFIX rule didn't exist in the example above, then the statement

PHI:=(col7+ col5)* FUDGE;

would be legal, while

PHI := (col7 + col5)*FUDGE ;

would not be legal because of the embedded spaces. In general, the PREFIX

and SUFFIX rules are useful in shortening the description of languages

without fixed fields.

2.1.4. Controlling Parser Backtracking

The alternation (/) used in Draco assumes that one of the alternatives

will succeed in matching the input stream. A sequence succeeds in matching

the input stream if all of the objects indicated in the sequence are found

in the input stream (remember the sequence operator is a blank). If the

first object in the sequence is not found, then the sequence operator

indicates a recognition failure. If the first object in the sequence is

found, but some other part of the sequence is not found, then a problem

occurs since the pointer into the input stream has already been advanced

over the first object. The sequence operator indicates that a syntax error

has occurred, but does not report it to the user yet. The alternation

operator (/) passes the syntax error on up to the construct above it.

The backtracking operator (]) traps a syntax error returned by a nested

14 Describing a Domain Language

sequence operator, restores the state of the parser to the point where the

backtracking operator was entered, and tries the next alternative. In

short, a backtracking operator is the same as an alternation operator except

that the state of the parser is saved and restored between the alternatives..

The backtacking operator indicates recognition failure if none of the

alternatives are present in the input stream. The backtracking operator

never results in a syntax error indication. The backtracking operator is

more e>q>ensive in time and space because it saves and restores its state.

One could use only backtracking operators in a parser definition without any

alternation operators, but the resulting parser would be very slow in

execution. The justification for having two similar operators is the

ability to specify a language that is sinqjle LL(1) parseable in a parser

description where LiR(k) parsing must be used.

As an example of where backtracking is needed, consider the following

Draco BNF description:

A = B I "a" "f" "g" ;
g — If^M ^ "a" "f"

The strings "afg" and "afh" are recognized by the grammar, but the string

"afi" would result in a failure of the rule A without advancing the input

pointer. If given an "afi" in the input stream, the B rule would recognize

the "a" and "f" in the first alternative and issue a syntax error to the

backtracking operator in the A rule because the first two elements of the

sequence were present, but the "h" was missing. The other alternative is

not even tried because the first element ("a") was present in the input.

The "afg" is recognized because the B rule returns a syntax error to the

Describing a Domain Language

backtrack in A which restores the parser input pointer to point to the "a"

and then tries its next alternative. We could rewrite the grammar in two

ways: by replacing the alternative in the B rule by a backtrack

A = B 1 "a" "f" "g" ;
B = "a" "f" "h" 1 "a" "f" "i" ;

or by factoring the alternative in the B rule.

A = B 1 "a" "f" "g" ;
B = "a" "f" ("h" / "i") ;

The second option is, of course, faster in execution; but the main issue in

writing parser descriptions is to clarify the grammar.

2.1.5. Error Recovery During Parsing

If the only control constructs we used in parser descriptions were

sequence, alternation, and backtracking, then the error recovery power of

the parsers would be severely limited. Here error recovery means being able

to handle ill-formed statements in the language, report them to the user,

pass over them in the input stream, and continue parsing.

Once a sequence operator reports a syntax error, all alternation

operators will pass on the error; and backtracking operators will trap the

error and try their next alternative. A sinple ill-formed esqsression will

usually cause the entire parse to fail either by backtracking out of the

top-level rule, or by passing a syntax error back from the top-level rule

which will abort the parse.

Some error control could be built in by using the backtracking operator,

but we have decided to introduce a special error-recovery mechanism called

Describing a Domain Language

an error block. The syntax of an error block is as follows;

[[<parse-ele>] <parse-ele>]

The first expression of the block is attempted. If a syntax error results,'

then the state of the parser is restored to the point where the error block

was encountered, an error message is printed indicating the rule which

originated the error and the position in the input stream at the time of the

error. Finally, the second ejqsression is attempted. It is the goal of the

second esq^ression to skip over the ill-formed statement. If the second

expression results in an error then the user is again notified that error

recovery was unsuccessful, and the syntax error is returned as the result of

the error block. The state of the parser is restored to the point where the

error block was encountered. If the first ejqsression in the error block

succeeds or fails, then it is the result of the error block. The error

block only stops syntax errors.

As an example of using an error block, consider the following grammar

which recognizes statements (STMT) followed by a semicolon:

BODY = $[[STMT] STERR]
STERR : .TOKEN $.ANYBUT(';) .DELTOK ;

The error recovery strategy for an ill-formed STMT is to scan all the

characters up a semicolon. The error reporting is already handled by the

error block. If a syntax error occurs inside of the error recovery part of

an error block, then a message is given that the error recovery has failed,

and the syntax error propagates out of the error block. It is inportant for

the parser designer to remember that an error message is printed to the user

Describing a Domain Language ^ '

every time a syntax error occurs. Thus, syntax errors should not be used by

a parser designer as a control strategy. Backtracks should be used in these

instances.

Token rules (indicated by a : rather than a =) never generate a syntax

error and never advance the input pointer on a failure. The token buffer

always contains the token recognized in the input by the last token which

succeeded. The manipulation of the token buffer will be described in a

later section on internal forms.

Sometimes it is useful to be able to explicitly control the issuing of

syntax-error and rule-failure conditions in the parser. This can be done

using the .FAIL and .ERROR constructs. As can be guessed, the .FAIL

construct fails the current parse rule immediately, without regard for any

alternatives, sequences, backtracks, or errorblocks in which it is embedded.

The .ERROR construct raises a syntax error when it is encountered, and it is

dealt with in a manner similar to other syntax errors.

2.1.6. Elements of External Form Description

This section summarizes the external form description mechanisms in the

Draco BNF. In both <parse-rule> and <token-rule>

A B ... sequence - an A followed by a B followed by ...

A|B1... backtrack - A or backtrack B ...

A/B/... alternation - an A or a B or ...

.EMPTY the last element of a alternation states that none of the
alternatives need be taken

[[A]B] error block - try A and B handles errors

(A) encapsulation - treat as one unit

Describing a Domain Language

$A iteration - zero or more instances of A

$<n:m>A iteration - n to m instances of A (? implies any number)

In <token-rule> only

.ANY(A) scan any char described by A

.ANYBUT(A) scan any char not described by A

Inside .ANY or .ANYBUT character class descriptions

'A characters equal to the ASCII value of A (65)

65 characters equal to the ASCII value of 65 (A)

A!B!... characters matching A or B or ...

A:B characters whose ASCII value C is such that A<=C<=B

The precedence of the parser control constructs is as follows:

Eank Operator Syinbol
Highest encapsulation ()

sequence space
backtrack |

Lowest alternation /

2.1.7. Recognizing the End of the File

Some languages do not have e>q3licit end of input markers (such as END

statements), so Draco has a facility enabling domain~language parsers to

recognize the end of an input file. When Draco recognizes the end of the

input file, it places ana control-Z (ASCII 26) in the input stream to be

recognized by the parser. If the parser does not recognize the control-Z

and tries to read further, then an error will occur.

Describing a Domain Language 19

2.2. The Complete External/Internal Form Specification

The Draco system expects the internal representation of a program to be a

tree. Each node in the tree must have an identifying name as the first

entry in the node. This form is called prefix form. As an example, the

fragment 5*A+B+C~7 could be represented internally as

+ ; +

! ! !
ADD . + + . + +

! ! ! ! ! !
ADD . + + B EXP C 7

! ! !

MPY 5 A

This is a legal prefix form since the leftmost entry in each node is a name

(the prefix keyword). Each node has a fixed number of entries. All nodes

with the same prefix keyword have the same number of entries.

These prefix-form trees are built from the bottom up as Draco scans a

program in a domain language. In particular, when a token is recognized in

a <token-rule>, it is stored in a token buffer. It is then the

responsibility of a <parse-rule> to take the token, conibine it into a new

node, and insert it into the growing tree. The growing tree is maintained

as a stack of objects which have not yet been combined into higher nodes.

The prefix form for a domain should have a single root which is left as the

last node on the stack by the first rule invoked.

2.2.1. External/Internal Form Specification

The operators for constructing internal forms are mixed in with the Draco

BNF notation, and each is preceded by a period (.) . The internal-form

construction operators should not be confused with .ANY and.EMPTY which are

20 Describing a Domain Language

part of the external-form specification. Only two rules from the earlier

BNF specification of the syntax need be changed in order to add the

tree-construction operators. The two revised rules.and a new rule are given

below:

<parse-ele>: := <identifier> | <string> | (<parse-ejqD>)
<parse-iteration> | .EMPTY | .LITERAL | .LITCHAR |
.NODE (<identifier> •{<node-ele>)-) |
.TREE (<identifier> <identifier> <parse-exp>) |
.CHART (<identifier> <identifier> <parse-exp>) |

<token-ele>::= <identifier> | <char-rule> | (<token-exp>) |
<token-iteration> | .EMPTY | .TOKEN | .DELTOK

2.2.2. Specifying a Legal Parser

Some restrictions exist as to what a parse rule may add to the stack of

nodes which constructs the internal-form tree.

1. If a parse rule succeeds, it can only put one node in the node
stack. Multiple nodes may be constructed during the parse rule
(constructing subtrees), but when the rule succeeds the net
change in the number of nodes in the node stack can be only one.
This rule makes sure that the internal from returned by a
nonterminal in the syntax (a parse rule) is always a tree with
the single node returned being the root. This concept will be
used later when we discuss describing software components.

2. If a parse rule fails, it may not add any nodes to the node
stack.

Remember, that the parsing goal of Draco is to produce an internal form

which captures all the information in the syntax of the problem domain. The

one parse-rule, one-node restriction we have found guides the parser

designer in capturing the entire domain syntax in internal form.

Describing a Domain Language 21

2.2.3. A Complete External/Internal Form Example

We will redo our assignment-statement example from a previous section,

adding the internal-form construction information;

.DEFINE ASGN

[example with internal form building]

ASGN = IDENTIFIER .LITERAL
(EXl / STRING .LITERAL)

.NODE(ASSIGN #2 #1) ;
EXl = EX2 $("+" EX2 .NODE(ADD #2 #1)) ;
EX2 = EX3 $("*" EX3 .NODE(MPY #2 #1)) ;
EX3 = EX4 EX3 .NODE(EXP #2 #1)) ;
EX4 = IDENTIFIER .LITERAL

("(" APARAMS ")" .NODE(FNCALL #2 #1) /
.EMPTY) /

NUMBER .LITERAL /
" (" EXl ^ •

APARAMS = .TREE(APA^S APSEQ EXP $("," EXP)) ;

PREFIX : SPACES ;
IDENTIFIER : SPACES .TOKEN ALPHA $<?:5> (ALPHA / DIGIT) .DELTOK ;
NUMBER : SPACES .TOKEN DIGIT $DIGIT .DELTOK ;
STRING : SPACES .TOKEN .ANY('") $.ANYBUT('") .ANY('") .DELTOK ;
ALPHA : .ANY('A:'Z ! 'a:'z) ;
DIGIT : .ANY('0:'9) ;
SPACES : $.ANY(32) ;

.END

First of all, notice the .TOKEN and .DELTOK operations which have been

added to the token rules. The .TOKEN states which character should be the

first in the token, and the .DELTOK places the token in the token buffer.

In this case the .TOKEN in the IDENTIFIER rule states that the initial

spaces are not part of the identifier.

The <parse-rule> production forms internal-tree nodes from a stack of

objects. The operator .LITERAL takes the last token put into the token

buffer by a .DELTOK and pushes it on the stack. The operator .NODE creates

a new node by taking objects from the stack (#), the token buffer (*), and

22 Describing a Domain Language

literal data (ADD, MPY etc.) and pushes it on the stack. .NODE(*) forms a

new node from the token buffer only and pushes it on the stack. The

operation .NODE(ADD #2 #1) creates a new node using the literal ADD and the

two topmost elements of the stack. The operation .NODE(MPY #1 #1) forms a .•

new node from the literal MPY and the top two elements of the stack.

WARNING

Note carefully that .NODE(EXP #1 #2) forms a new node from the
top of the stack and the third element of the original stack. The #
operation removes the elements from the stack when they are fetched.

2.2.4. An Example Internal Form

Using our assignment-definition example (see above), the prefix internal

form of the statement

ANS:=GEO(B,2*E)+E*2-C ;

is

. + +

! ! !

ASSIGN ANS +

! ! !

ADD . + + . + +
» ! ! ! ! !

FNCALL GEO .- + EXP E
! I ! ! !

APARAMS . + --+ EXP 2 C
! ! !

APARAM B . + +

! ! !
APARAM *0MEGA*

! ! !
MPY 2 E

Notice that the precedence of the operators is assigned by ordering the

<parse-rule>'s, and that * (multiply) is left-associative while ~

Describing a Domain Language 23

(exponentiation) is right-associative.

2.2.5. Variable Length Structures in Internal Forms

Due to the restriction that all nodes of a certain type have the same

number of subtrees, some mechanism must be developed to allow a variable

number of elements in some cases. For example, not all programs have the

same number of statements in them, so some structure must be developed to

hold a variable number of statements. In Draco this is done by means of

right-leaning trees with header nodes, internal nodes, and a special

termination marker. For example, the set of program statements could be

represented internally as:

I !

STMTS
! i

STMT-SEQ stmtl
! ! !
STMT-SEQ stmt2

! ! !

SIMT-SEQ stmtn *OMEGA*

If we had a parse rule GET-STMT which would build nodes for statements in a

particular language, then the construction of this internal form could be

achieved by the syntax ^

.TREE(STMTS STMT-SEQ $GET-STMT)

The .TREE construct always takes three arguments: the header node name for

the tree, the internal node name for the tree, and an expression which

produces multiple nodes to be linked together in the tree. This

24 Describing a Domain Language

internal-form structure is known and expected by the refinement part of

Draco. It is acceptable to have a tree with no internal nodes indicating a

variable length structure with no elements.

While the .TREE constructor is used for scanning variable-length

structures from "top to bottom" and building a tree, some mechanism must be

defined for scanning sets of variable length structures from "left to

right." An example of such a structure is a table in which we wish to

associate the columns together in a tree rather than the rows, even though

we must scan through the table a row at a time. Consider the problem where

we wish to scan the following table of data:

female Sally
male Dick

female Jane

into the following internal form:

! ! !

SET .
! ! If

SEX .--- NAMES .
Ill I

S-SEQ F .--- N-SEQ Sally .
! ! ! ! ! !

S-SEQ M . N-SEQ Dick .
III ! ! !

S-SEQ F *OMEGA* N-SEQ Jane *OMEGA*

Given the parse rules GET-NAME and GET-SEX which produce the appropriate

nodes, this internal form could be constructed by the fragment

.CHART(SEX S-SEQ NAMES N-SEQ $(GET-SEX GET-NAME)) .NODE(SET #1 #1)

The .CHART construct accepts a variable number of header-nodes and

Describing a Domain Language 25

internal-node pairs followed by an expression to produce nodes. The number

of nodes produced by the expression before it fails must be an even multiple

of the number of node name pairs.

2.2.6. Elements of Internal Form Description

This section summarizes the internal-form mechanisms in the Draco BNF.

In <token-rule>'s only

.TOKEN show the start of the token

.DELTOK put the token into the token buffer

In <group-rule>'s only

.LITERAL push the token buffer on the stack

.NODE() form a new node and push it on the stack. Parentheses may be
used to indicate a structure of nodes to be constructed.

.LITCHAR push the ASCII value of the next character on the stack

.TREE(A B E) evaluate E until fail and build right-leaning tree with A
top node, B internal nodes (possibly none), and *OMEGA*
terminator of the sequence (vertical parsing)

.CHART(A B ... C D E)
evaluate E until fail, then build n number of right-leaning
trees with A,..,C as top nodes and B,..,D as internal nodes,
and *OMEGA* as terminator of all trees (horizontal parsing)

Inside of a .NODE() only

<identifier> literal data <nuinber>
literal data # <nuinber>
pop nth object on stack and use as is

26 Describing a Domain Language

2.3. Special Functions in Parsers

In this section we will discuss three major features available to parser

builders which do not affect the syntax of the language. In particular, we

will discuss data-flow-consistency checking functions, diagnostics to the

user, and nonstandard, internal-form constructors.

2.3.1. Checking Consistency in Parsers

Within a parser for a certain language, it is nice to be able to check

the consistency of the objects given in the user's program. For exanple, if

the language allows function calls, and if a function is called in the

user's program, the parser should ensure that the function is defined later.

Equivalently, if a function is defined then the parser should ensure that

some other part of the program is using it. Within Draco, these operations

are carried out by the following parser constructs:

.DEF(type) The .DEE construct declares that the contents of the token
buffer contain the identifier of an object which is defined
to be of the given type. The type is just a name made up by
the parser builder. FUNCTION would suffice for the example
given above.

.USE (type) The .USE construct declares that the contents of the token
buffer contain the identifier of an object which has been
referenced as the given type.

.RESOLVE(type) The .RESOLVE construct checks to see that all the objects of
the given type which have been defined have been referenced.
It also checks that all the objects of the given type which
have been referenced have been defined. Error messages will
be printed if any discrepancies occur. However, no syntax
error or failure will be issued from the construct.

.RElRACT(type) The .REUIACT construct erases any .USE's or .DEF's for the
given type in the current context.

.CONTEXT-PUSH(type)
The .CONTEXT-PUSH construct saves all .DEF's and .USE's for
the given type on a stack and erases them in the current
context. This is useful for objects with nested scoping

Describing a Domain Language 27

such as labels local to BEGIN-END blocks. Upon entering the
block the labels are pushed, and upon exiting the block the
labels are first resolved, and then popped.

.CONTEXT-POP(type)
The .CONTEXT-POP construct retrieves the definitions for the
type previously saved on the stack. The stack is not the
same as the stack used in constructing trees.

.ASSUME (type) The .ASSUME construct can be used to assume declarations for
objects of the type which have been .USEd and not .DEFed.
Each time the .ASSUME construct is referenced, it will
either result in a fail (which means that there are no more
objects of the type to be assumed), or it will result in
syntax recognition with the identifier of the next object of
the type to be assumed put on the node stack and
automatically DEFed. For exanple, this is useful in the
declaration of local variables in a function. All variables
used in the function, and not declared to be global, could
be assumed to be local without having to have both a local
and a global declaration.

2.3.2. Notifying the User

While the parser is parsing the user's program, it is nice to be able to

tell the user what is going on. For example, it is nice to tell the user

what major part of the program is currently being parsed. This is done with

the .MSG construct. Within the .MSG construct the following items are

acceptable:

"abced" A string to be printed.

. * Print the token buffer contents.

.CR Print a carriage return and linefeed.

.COL(value) Advance the carriage to the given column.

Each time a "crlf" is encountered, markers are printed as the parser

does its work. Most parser messages will need a .CR first.

28 Describing a Domain Language

2.3.3. Non-standard Parser Constructs

The following parser constructs are briefly described in the interest of

completeness, but they should not be used by domain parser builders:

.LIST(name expression)
Forms a variable-width node from all the nodes returned by
the expression. The name gives the node name.

.SEXPN(expression)
Forms a LISP S-e>q5ression from the nodes returned by the
expression.

.EXECUTE This treats the top of the node stack as a LISP expression
and executes it.

Once again - DON'T USE THESE CONSTRUCTS IN A DOMAIN. They are for internal

use only!

2.4. Class of PARGEN Parsers

The PARGEN system produces parsers which scan left-to-right with explicit

backup. The class of languages handled is less powerful than context-free.

Some thought must be given to the ordering and content of the <parse-rule>'s

and <token-rule>'s . Rules which could recur without scanning-off a

character are illegal. The worst case of left recursion is, of course,

illegal and must be removed by the author.

Backtracking rules must be included in the grammar whenever the

complexity of the language to be recognized exceeds the power of an LL(1)

parser. In particular, a set of rules (a grammar) is LL(1) parseable if,

and only if, there is 'a rule of the form:

ARULE = ALPHA / BETA ;

Describing a Domain Language 29

the following conditions hold:

1. For no terminal symbol a do ALPHA and BETA derive strings
beginning with a.

2. At most, one of ALPHA and BETA can derive the empty string. The
current implementation imposes the further constraint that only
the last element of an alternation should directly derive the
empty string with a .EMPTY.

3. If BETA can derive the enpty string through a series of rule
applications, then ALPHA does not derive any strings beginning
with a terminal symbol which is a member of the set of terminal
symbols that can appear immediately to the right of ARULE in some
sentential form.

7

Further information on LL(1) languages is found in Aho, which is the source

of the explanation above.

As an example of fitting the rules into the constraints in^josed by the

parser generator, the rule

RELOP = EXP "<" EXP / EXP "<=" EXP ;

would have to be changed to

RELOP = EXP ("<=" / "<") EXP ;

or the less efficient

RELOP = EXP "<" EXP I EXP "<=" EXP ;

There are two reasons for this change. First, in the original RELOP the

Aho, A.v., Ullman, J.D., "Principle of Compiler Design", Addison-Wesley
Publishing Co., 1977.

30 Describing a Domain Language

first nonterminal of the two alternatives was the same (EXP), so the first

alternative would always be taken if an EXP object appeared in the input

stream. In a sequence/ if the first object is present in the input stream,

then the rest of the sequence must be present, or a syntax error is

generated. Second, the "<=" must be tested for before the otherwise

the "<" might match the first part of a "<=" in the input stream, and the

wrong alternative would be taken.

A larger example of a complete external/internal, domain-language

specification is given in Appendix I along with some example programs in the

language.

2.5. Using the Draco Parser Generator

For the purposes of this example, we assume that the definition of a

language is already prepared in the Draco BNF and in the file LANG.DEE. The

following is an example transcript:

DracQ>BUILD LANG PARSER

{where LANG is the domain name and the file LANG.DEE
is its definition}
{screen clears}
******** {one * signifies a line processed}
Parse Completed O errors dectectedO
{the extension defaults to .PAR}
NOTE

NOTE

NOTE

Draco>

LANG.PAR created
LANG.DEC created

LANG.PPD prototype prettyprinter created

Once the parser has been created, programs in the new language may be parsed

by the Draco subsystem PARSE. If the parse had not completed successfully,

then the system would have stated why. i.e..

I

I

Describing a Domain Language 3:

ERR: Syntax error - rule EX3

STMTS = STMT <scan>%<?:256>STMT {a line from LANG.DEF>
{the <SCAN> marker is highlighted on some terminals and
indicates the position in the input stream}

************** {more lines processed} .
Parse Completed - 1 errors detected

The rule EX3, cited from PARGEN, means the rule EX3 in the file PARGEN.DEF,

which describes the Draco BNF of parsers in Draco BNF. Other possible

errors are discussed in the section on errors (see ERR:). PARGEN.DEF is

reproduced in Appendix II, and it gives the exact syntax of a

domain-language definition.

32 Describing a Domain Language®

I

CHAPTER 3

BUILDING A PRETTYPRINTER WITH PPGEN

After the external and internal forms of a domain language have been

described to Draco with BUILD, Draco must be told how the internal form is -•

to printed out. The prettyprinter is also constructed using the BUILD

subsystem which is described in this chapter. The prettyprinter for a

domain language is used whenever Draco needs to communicate a program

fragment to a user. In particular, the transformation library constructing

subsystem (BUILD), the transformation and refinement subsystem (TFMREF), and

the program examination subsystem (EXAMINE) use the prettyprinter for a

Domain Language.

The basic scheme for building prettyprinters is to describe a printing

form for each node in the prefix internal form of the program. Carriage

positioning may be added to these printing forms.

3.0.1. The Syntax of a Prettyprinter Description

In this section we use the standard BNF notation to describe the simple

syntax of a prettyprinter definition.

<DracoPPdef>

<node-rule>:

<node-item>:

:= .PRETTYPRINTER <identifier> •(<node-rule>} .END
= <identifier> = <node-item> 'C<node-item>> ;
= <string> | <number> | # <nui^er> | .LM |

.COL(<number>) | .SLM | .SLM(<number>) |
<list-scan> | .IjM(<snuniber>)
.TREEPRINT
(<identifier>,<number>,<node-item>,<node-item>) |
. CHARTPRINT
(<identifier>,<number>,<node-item>,<node-item>
{<identifier>,<number>,<node-item>,<node-item>» |

•CHARPRINT (<number>) |
.LISTPRINT (<node-item>)

<snumber>::= + <number> I - <number>

33

Building a Prettyprinter

In the above BNF a <string> is a string of characters contained in double

quotes ("). An <identifier> nay be enclosed in angle brackets (<>), thus

the identifier <FURD> is legal. The identifiers in angle brackets are used

to define a print definition for the classes defined during transformation ,•

library construction (see Chapter 4), If an error occurs during the

definition of a prettyprinter, then the rule cited is not included as part

of the file PPGEN.DEF which defines the syntax of a prettyprinter in Draco

BNF. The current version of PPGEN.DEF is included in Appendix III of this

document.

3.0.2. An Example of a Prettyprinter Description

The following is an example of a prettyprinter for the

assignment-statement example.

Using PPGEN 35

.DEFINE ASGN

[example with internal form building]

ASGN = IDENTIFIER .LITERAL
(EXl / STRING .LITERAL)'

.NODE(ASSIGN'#2 #1) ;
EXl = EX2 $("+" EX2 .NODE(ADD #2 #1)) ;
EX2 = EX3 $("*" EX3 .NODE(MPY #2 #1)) ;
EX3 = EX4 $("-" EX3 .NODE(EXP #2 #1)) ;
EX4 = IDENTIFIER .LITERAL

("(" APARAMS ")" .NODE(FNCALL #2 #1) /
.EMPTY) /

NUMBER .LITERAL /
,,(., j-xi ")" ;

APARAMS = .TREE(APARAMS APSEQ EXP $("," EXP)) ;

PREFIX : SPACES ;
IDENTIFIER ; SPACES .TOKEN ALPHA $<?:5>(ALPHA / DIGIT) .DELTOK ;
NUMBER : SPACES .TOKEN DIGIT $DIGIT .DELTOK ;
STRING : SPACES .TOKEN .ANY('") $.ANYBUT('") .ANY('") .DELTOK ;
ALPHA : .ANY('A:'Z ! •a:'z) ;
DIGIT : .ANY('0:'9) ;
SPACES : $.ANY(32) ;

.END

.PRETTYPRINTER ASC3^ISTMT

ASSIGN = #1 .LM #2 ;
ADD = #1 "+" #2 ;
MPY = #1 #2 ;
FYP = lil """ •

FNCALL = #1 "(" .LM #2 ")" ;
APARAMS = #1 .SLM(60) #2 ;

.END

Notice that there is one line for each possible prefix keyword in the

internal form. The #1 in the above lines refers to the first entry in the

internal-form node after the prefix keyword. The strings in quotes (") are

strings which will be printed verbatim with no spaces on either side.

36 Building a Prettyprinter

The .LM fixes the left margin to the position of the printing carriage at

the time the .LM is encountered. This left margin prevails for the given

rule and all rules called from it. A .LM with an unsigned number fixes the

left margin at the column indicated by the number. A .LM with a signed

number sets the left margin to the sum of the given signed number and the

left margin which prevailed when the prettyprint rule was entered. The .SLM

seeks the left margin set by the last .LM. If the carriage is before the

current left margin, then .SLM will output tabs and spaces to get to the

left margin. If the carriage is past the current left margin, then .SLM

will perform a carriage return before tabbing and spacing over to the left

margin. Remember, if the output of the prettyprinter for a domain is to be

acceptable input for the parser of the domain, then that parser must accept

tabs and spaces in positions where the prettyprinter indicates there will be

whitespace in the prettyprinted output.

A numerical argument given to .SLM as in .SLM(65) will cause the .SLM to

be effective only if the column position of the carriage is greater than the

argument. If, in the example above, a function call has more arguments than

will fit on a line (60 columns), then the arguments which overflow will be

printed under the first argument to the function.

If a number appears by itself in a prettyprinter description, then that

ASCII code is sent to the output. It is legal to send literal,

carriage-control characters to the output because the prettyprinter

understands where the carriage is. However, it is not a very good idea.

Using PPGEN 37

3.0.3. Output Device Dependent Codes

These are currently unimplemented, but they are planned to provide an

abstraction of different output devices for highlighting and cursor control.

The basic information needed by the prettyprinter for these operations is •'

the character sequence to send and the change in screen position resulting

from the code. Some example control codes are given below:

1. normal mode

2. reverse video

3. underlined

4. blinking

5. 16 combinations of the above

3.0.4. Elements of a Prettyprinter Description

This section summarizes the elements which may appear in a prettyprinter

line.

"abed" print a literal string

<number> print the ASCII character

.LM fix left margin at current position

.LM(-<number>) fix left margin at original margin minus the argument

.LM(+<number>) fix left margin at original margin plus the argument, (the
plus sign is optional)

.COL(<number>) move to column number; do crlf; if necessary use tabs and
spaces

.SLM seek left margin (from .LM); do crlf; if necessary use tabs
and spaces

.SLM(<number>) do .SLM if print column is greater than the given column

The printing of ASCII codes does not confuse the line column counter, and

38 Building a Prettyprinter

these may be freely combined with the other directives. It is important to

note that the prettyprinter will output tabs and spaces when it indents. If

the output from the prettyprinter is to be read back into PARSE, then these

characters must be acceptable input.

Since the prettyprinter can only print from the internal form, a

successful prettyprinter relies on an internal form which represents

everything from the external (syntactic) representation.

The internal form of the assignment-statement exanple is deficient

because we cannot create a prettyprinter that can take an internal form and

print it in a form which can be parsed into the original internal form. The

problem with our example is that parentheses are not represented esgalicitly

in the internal form. The parentheses are represented implicitly by the

hierarchy of the operators and the structure of the tree, but precedence

information is available only to the parser, not the prettyprinter. The

precedence for an arbitrary domain language is not fixed. For example, if

we input

ANS := a*(B+C) ;

it would be prettyprinted by our defined prettyprinter as

ANS := a*B+C ;

While the internal representation is still correct, the external

representation is incorrect. Quite a bit of thought must go into what will

be represented in the internal form and how this representation will be

accurately and esthetically printed. To solve our problem we should give

Using PPGEN 39

the parentheses an internal representation by changing the line

"(" EXl ")" ;

in the assignment-statement example

EX4 = IDENTIFIER .LITERAL
("(" APARAMS ")" .NODE(FNCALL #2 #1) /

.EMPTY) /
NUMBER .LITERAL /
"(" EXl ")" ;

to the line

"(" EXl ")" .NODE(PAREN #1) ;

To print this internal form node we must make the following prettyprinter

definition:

PAREN = "(" #1 ")" ;

Now only the parentheses which appeared in the original program will be

printed. It is useful to put a representation of most text level items into

the internal form. This increases the accuracy of the prettyprinting, the

range of possible transformations, and the range of possible refinements.

However, it makes the transformation definitions a bit more complex because

they will be responsible for removing and maintaining the text level forms.

3.1. Prettyprinting TREEs and CHARTS

As mentioned in the previous chapter on parser construction, the parsers

can build two kinds of special forms called TREEs and CHARTS. The

prettyprinters have two special constructs to print these forms as TREEPRINT

40 Building a Prettyprinter

and CHARTPRINT.

The prettyrinting of a right-leaning tree is achieved using TREEPRINT. I

we have the following TREE internal form:

I III
any-node a . b

I I
IT .

IT-SEQ ? .
I I I
IT-SEQ ? *OMEGA*

it could be prettyprinted in the IT prettyprint rule using

. TREEPRINT (IT-SEQ, 1, expressionl, ejq>ression2)

The TREEPRINT construct would then look to see if the first subtree in the

IT node is rooted with an IT-SEQ node. If so, the first subtree of that node

would be prettyprinted followed by the evaluation of ejq^ressionl and the

prettyprinting of its second subtree. If the subtree is enpty (i.e., it

contains an *OMEGA*), then expression2 is evaluated. This recursive scheme
8

is used to print trees of varying length.

The use of TREEPRINT does not relieve the burden of producing

prettyprinter rules for IT-SEQ type nodes. These prettyprinter rules are

used only in printing fragments for transformation and refinement purposes.

8

In fact the scheme is actually iterative to avoid very large levels of
recursion resulting from printing large programs where the statements are in
a tree. This is necessary to avoid blowing the LISP special and regular
pushdown lists.

Using PPGEN 41

The CHARTS which can be created by the parsers are printed using

CHARTPRINT. The use of CHARTPRINT is similar to the use of TREEPRINT. If we

had the following node:

any-node ?. . ?
I I I I

A . B .

III III
A-SEQ a . B-SEQ 1 .

I II I II
A-SEQ b *OMEGA* B-SEQ 2 *OMEGA*

we could use the following definition in the any-node prettyprinter rule to

print a two column chart:

.CHARTPRINT(A-SEQ,2as B-SEQ, 3,

If used in the above chart internal form, it would result in the following

output:

->a as [1]
->b as [2]

The CHARTPRINT directive pulls one element at a time from each of the

right-leaning, internal-form trees and prettyprints theme across the page.

The two ejqsressions associated with each tree are printed before and after

the tree element. If all the trees of a chart are enpty then the chartprint

does no printing.

^2 Building a Prettyprinter

3.2. Special PrettyPrinter Functions

The CHARPRINT directive takes one subtree specification (e.g., #1) and

attempts to treat the selected item as a number. If it is a number, it is

sent as an ASCII code. For example,

.CHARPRINT(2)

applied to the internal form

I I I
any-node 23 65

would print an A since 65 is the ASCII code for an A. This is used where a

domain language contains special quoted characters.

The .LISTPRINT prettyprinter directive is the printing analog of the

.SEXPN and .LIST parsing directives. These are for internal use only and

should not be used in domain languages.

3.3. Using the BUILD Subsystem to Create a Prettyprinter

This section presents an exanple transcript. Comments are in and user

responses are underlined and terminated by a RETURN.

Draco>EUILD LANS PRETTYPRINTER
{file LANG.PPD contains prettyprinter definition}
{screen clears}
Prettyprinter Generator
Rule <rule name> ***...
... {for each rule, each * means that a line has been processed}
Rule <rule name> * *...

Parse Completed 0 Errors Detected
NOTE: LANG.DPP created
{the extension defaults to .DPP}
Draco>

Using PPGEN 43

As in parser generation, an error which gives a rule is printed out if

prettyprinter generation is not completed. In the case of PPGEN, this rule

is contained in the file PPGEN.DEE which is reproduced as Appendix III of

this manual. For other errors see Appendix X on errors. Appendix IV

contains a complete prettyprinter example for the language presented in

Appendix I.

CHAPTER 4

BUILDING A TRANSFORMATION LIBRARY WITH XFMGEN

After the Domain Analyst has settled upon an internal and external

representation of the domain language and has described this to Draco

through PARGEN, the simple relationships between the objects and operations

in his language must be described. These relationships are described as

program transformations on the prefix internal structure of the domain.

The transformations will be used to sinplify program fragments written in

the language. These fragments may come from refinements of other domain

languages into this language, results of transformations on this language,

or the use of PARSE to take in a program in this language.

The transformations usually represent relations which the Domain Analyst
9

regards as "obvious", such as x+0 inplies x. The transformations will be

used to strip the generality from software conponents written in the

language when they are used in a specific problem.

4.1. The Transformation Library and Metarules

The subsystem XFMGEN takes the view that transformations are

incrementally added to a library of transformations for a domain. If a

library does not exist, XFMGEN will create one.

There are two basic reasons for the incremental construction of the

transformation library. First, it is hard to come up with all the useful

9

Draco uses "=>" to denote implication for transformations,

45

46 Building a Transformation Library-

transformations for a domain at once. Second, if automatic metarule

generation (discussed below) is used, it is computationally expensive to

start a library from scratch.

4.1.1. Transformation Metarules

As XFMGEN reads in the transformations, it has the capability to

automatically produce "metarules". Briefly, these metarules give Draco

information about what it can do after it applies a transformation. The

metarules state where it is iinportant to apply which transformations and in

what order.

The metarules are expensive to produce. For every transformation added

to the library, every transformation in the library (including the new one)

must be examined for possible relationships to the one being added. The

examination process is expensive also. Thus, if we have a library of n-1

transformations, the conplexity of adding a new transformation is 0(n),

while the conplexity of reconstructing the whole library is 0(n*n). Since

the library for a domain typically consists of 200-1000 transformations

(sample size of two), the difference between incremental addition to a

library and reconstructing the library is significant.

The specific scheme for automatically generating transformation metarules

is described in Neighbors' Thesis, chapter 3 and appendix II.

Specifying the Program Transformations 47

4.2. Specifying the Program Transformations

Unfortunately, the program transformations must be specified in the

prefix internal form of the domain language. The reason for this is that

some transformations are not syntactically correct, according to the

external definition of the language. Also, it is sometimes useful to input

special markers with a transformation (such as *EMPTY* or *UNDEFINED*) which

will start off other transformations. For example, the transformation

X/0=>*UNDEFINED* prevents the propagation of undefined forms in a language.

Remember, if you insert such markers then the domain prettyprinter must have

a definition for printing them. In addition, all markers which do not have

an associated component must be removed before refinment is attempted, or an

error will occur.

4.2.1. The Syntax of a Transformation Insertion File

In this section we use standard BNF notation to describe the syntax of a

transformation-insertion file which contains a packet of transformations to

be added to a library.

<DracoTIfile>::= {<TIcmnds>}
<TIcmnds>::= <pvardef> |

<classdef> | <transdef> | (ERASEPVARS)
<pvardef>::= (PVARS <identifier> {<identifier>})
<classdef>::= (CLASS < <identifier> > <identifier>

{<identifier>})
<transdef>: := (TRANS <identifier> <nuinber> <lhs> <rhs>)
<rhs>::= <identifier> | <intform>
<lhs>::= <intform>

<intform>::= (<identifier> {<rhs>})
<identifier>::= <idchar> {<idchar>}
<idchar>::= A 1 ...|Z|a| ... \ z \ ! |#|%|fi|*

A <number> is a simple sequence of numerals. Notice that the name of a

class (the first identifier in the list) must be surrounded by angle

48 Building a Transformation Library

brackets (<>). This helps to separate class names from a prefix keyword.

4.2.2. An Example of a Transformation Insertion File

If we refer back to our assignment-statement exanple (see index) with the

internal form descriptions, we have the following transformation-insertion

file.

(PVARS X Y Z)
(CLASS <COMOP> ADD MPY)
(TEIANS ADDXO 12 (ADD X 0) X)
(TRANS MPYXO 11 (MPY X O) O)
(TRANS EXPXO 11 (EXP X O) 1)
(TRANS <COM>XY 5 (<COMOP> X Y) (<COMOP> Y X))
(TRANS PARENPAREN 12 (PAREN (PAREN X)) (PAREN X))
(TRANS LDISTMPYADD 5 (MPY X (PAREN (ADD Y Z)))

(PAREN (ADD (MPY X Y) (MPY X Z))))
(ERASEPVARS)

In the above example the nodes of the internal form are represented as lists

of objects enclosed in parentheses. If a node contains a pointer to another

node, that node is shown inside of the first node. An identifier which is

declared as a pattern variable (PVARS) will match a subtree or a constant.

Thus the X,Y, and Z's in the exanple are all pattern variables.

A class (<COMOP> in the example above) represents a restricted pattern

variable. If the class name appears, only menibers of that class are

matched. The class <COMOP> represents the commutative operators and their

commutativity is stated as transformation <CC»4>XY. A class can only contain

identifiers, but it can appear anywhere in an internal form. The

transformations (TRANS) have a name, application code, left-hand-side (Ihs),

and right-hand-side (rhs). The Ihs of a transformation must be an internal

form (not a sinple identifier); the rhs of a transformation may be an

internal form or an identifier. The application code specifies the type of

Specifying the Program Transformations 49

the transformation, as described in the following sections. The Ihs of a

transformation is the form to be matched; the rhs of a transformation is the

form which will replace it.

The EIEIASEPVARS command sets the list of current pattern variables to

empty. The pattern variables are defined only for the transformations in

the insertion file; they do not have to be the same ones used for

transformations already in the library. The ERASEPYARS command is useful

for concatenating transformation insertion files to recreate a library from

scratch.

Notice that the PAREN form, which we added to the assignment statement

example in the PARGEN section, is cleverly used in the LDISIMPYADD

transformation given above. The Ihs of the transformation assumes that

there is a PAREN between the MPY and the ADD because in no other way could

the tree have been constructed. The rhs is embedded in a PAREN because the

precedence of ADD is less than MPY, and the precedence must be maintained.

The transformation PARENPAREN (and some others) is needed to maintain

required PAREN's. To reiterate, the selection of what to represent in the

internal form, and how to represent it, is a difficult process.

4.2.3. Elements of a Transformation-Insertion File

This section summarizes the commands to XFMGEN which may appear in a

transformation-insertion file.

50 Building a Transformation Library

(CLASS <classname> <identifier>...<identifier>)
This declares a restricted pattern variable named
<classname> which can match any of the identifiers
given. The <classname> may appear anywhere in a
transformation.

(PVARS <identifier>...<identifier>)
This declares all the identifiers as unrestricted

pattern variables. If a pattern variable appears twice
in a pattern then the objects it matches must
be the same.

(TRANS <transname> <application-code> <lhs> <rhs>)
This describes a transformation with name <transname>

and other fields as shown.

(ERASEPVARS)
This erases all current pattern variables but not
classes.

4.2.4. The Application Code of a Transformation

In the above transformations and in Appendix V, the application codes
10

follow the rough guidelines given below ; (EC stands for enabling

conditions.)

100-up Markov algorithm (can enlarge locale)
95-99 Always do this transformation (no EC's)
90-94 Always try this transformation (has EC's)
85-99 Convert to canonical form (no EC's)
80-84 Convert to canonical form (has EC's)
75-79 Reverse canonical form (no EC's)
70-74 Reverse canonical form (has EC's)
60-69 Operator arrangement (no EC's)
50-59 Operator arrangement (has EC's)
40-49 Flow statement arrangement (no EC's)
30-39 Flow statement arrangement (has EC's)
20-29 Program segment arrangement (no EC's)
10-19 Program segment arrangement (has EC's)
00-09 Start a Markov algorithm

These are conpletely arbitrary; you may make up your own codes. The codes

10

We plan to replace nunibers with domain-specific names for these
operations

Specifying the Program Transformations 51

for source-to-source transformations run from 10 to 99; Markov algorithms

use 100-up and O. The Draco system knows nothing about particular

application codes except that odd codes represent transformations with

enabling conditions.

Since the current system does not support checking of enabling

conditions, it stops and asks the user before it applies any transformation

with an odd code. The codes are used in the TFMREF subsystem by the

TEIANSFORM command.

In the future application codes may be used for a best, first-style

lookahead, so better transformations should have higher application codes.

4.3. The Catalog of Transformations for a Domain

When XFMGEN produces a new library, it gives the option for a catalog

listing. The catalog is a listing of all the transformations in

alphabetical order prettyprinted by the domain prettyprinter. To

prettyprint classes they must be defined to the prettyprinter. Our previous

example would require the line

<COMOP> = #1 "<COMOP>" #2 ;

to be added to the prettyprinter for the assignment-statement example in the

section on PPGEN. For our above example, the catalog would have looked

like:

52 Building a Transformation Library

4/6/82 18:00:00 LANG.TLB
<COMOP> = {ADD,MPY}
<COM>XY: 5 ?X<COMOP>?Y => ?Y<COMOP>?X

ADDXO: 12 ?X+0 => ?X

EXPXO: 11 ?X^0 => 1

.LDISTMPYADD: 5 ?X*(?Y+?Z) => (?X*?Y+?X*?Z)
MPYXO: 5 ?X*0 =>0

PARENPAREN: 12 ((?X)) => (?X)

The first line gives the date, time, and name of the file which contains

the library. The pattern variables in each transformation are preceeded by

a question mark (?), These catalog listings are useful references when

working with the TFMREF subsystem. Appendix V presents an exanple catalog

of transformations for the language defined in Appendix I. It is

interesting to note how the special marker *UNDEFINED* is used in

Appendix V, and how the metarules can take advantage of such markers.

4.4. Using the TRANSFORMATION BUILDER SUBSYSTEM: XFMGEN

In this example, we assume that the file PARSER.TFM (see figure below)

contains some transformations to be inserted into the library of the PARSER

domain. We further assume that the PARSER domain currently has no

transformation library.

(PVARS X y 2)
(TEIANS true 95 (compr x x) *true*)
(TEIANS false 97 (uneq x x) * false*)
(TRANS not# 95 (negation (uneq x y)) (con^r x y))
(TRANS not= 95 (negation (conpr x y)) (uneq x y))
(TRANS ifeliml 99 (ifthen *true* x) x)
(TRANS ifelimZ 99 (ifthen *false* x) *eiBpty*)
(TRANS ifelimS 99 (ifelse *true* x y) x)
(TRANS ifelim4 99 (ifelse * false* x y) y)
(ERASEPVARS)

We activate the XFMGEN subsystem through the BUILD command. In the first

session shown below, XFMGEN notes it is creating a new transformation

Using the Draco XFMGEN Subsystem 53

library. It follows a list of the transformations inserted in the library,

and the user is offered a pretty-printed version of the transformation

library. Finally, the transformation library PARSER.TLB is created (see

Figure 4-1).

DRACO> build (DOMAIN NAME) parser (DOMAIN PART) transformation-library

Transformation Library Builder working on PARSER domain
NOTE: creating a new transformation library
true false not# not= ifeliml ifelim2 ifelimS ifelim4
Prettyprinted Transformation Catalogue Listing ? (Y/N) >n
NOTE: PARSER.TLB created

DRACO>

Figure 4-1: Sample of Library-creation dialogue

When new transformations have to be added to the library, the procedure

to follow is similar. Let us assume that at some point in the future the

insertion file PARSER.TFM includes the, following transformations:

(PVARS X y z)
(TEIANS parenthelim 99 (paren (paren x)) (paren x))
(TRANS parenthelim2 98 (stmnt (paren x) stmnt) (stmnt x stmnt))
(TRANS parenthelim3 98 (stmnt (paren x) *OMEGA*) (stmnt x *OMEGA*))
(TRANS stmnteliml 12 (stmnt *enpty* stmnt) stmnt)
(TRANS stmntelim2 12 (stmnt *empty* *OMEGA*) *OMEGA*)
(TEIANS bodyelim 12 (body (stmnt x *OMEGA*)) x)
(TRANS bodyelim2 12 (body (stmnt *empty* *OMEGA*)) *ewpty*)
(ERASEPVARS)

Figure 4-2; New transformation-insertion file

The following dialogue updates PARSER.TLB with the content of the new

transformation-insertion file:

In this second session, XFMGEN, the Transformation Library Builder, notes

that a transformation library (PARSER.TLB) already exists. A prettyprinted

54 Building a Transformation Library

DRACO> build (DOMAIN NAME) parser (DOMAIN PART) transformation library

Transformation Library Builder working on PARSER domain
NOTE: adding to an existing transformation library
parenthelim parenthelim2 parenthelim3 stmnteliml stmntelim2
bodyelim bodyelim2
Prettyprinted Transformation Catalog Listing? (Y/N)>y
NOTE: PARSER.CAT created

NOTE: PARSER.TLB created

Figure 4-3: Adding transformations to an existing library

version of the updated library (PARSER.CAT) is produced as shown below:

Using the Draco XFMGEN Subsystem 55

3/24/84 1:49:2pm PARSER.TLB
bodyelim: 12 ?x => ?x
bodyelim2: 12 *empty- => *empty*
false: 97 ?x # ?x => * false*
ifeliml: 99 if *true*

then

?x

end if ; => ?x
ifelim2; 99 if *false*

then

end if ; => *einpty*
ifelimS: 99 if *true*

then

?x

else

end if ; => ?x
ifelim4: 99 if * false*

then

?x

else

?y
end if ; => ?y

not#: 95 (?x # ?y) not => ?x = ?y
not=: 95 (?x = ?y) not => ?x # ?y
parenthelim: 99 ((?x)) => (?x)
parentheliin2 : 98 (?x) ;

=> ?x;

parenthelimB: 98 (?x);
=> ?x;

stmnteliml: 12 *enpty*;
=> stmnt

stmnteliin2: 12 *empty*;
=>

true: 95 ?x = ?x => *true*

Usually, as the small packets of transformations in insertion files are

added to the transformation library, the user should concatenate these

packets into a file (as shown below) in case the transformation library ever

needs to be generated from scratch.

56 Building a Transformation Library

(PVARS X Y z)
(TEIANS true 95 (compr x x) *true*)
(TRANS false 97 (uneq x x) * false*)
(TRANS not# 95 (negation (uneq x y)) (compr x

(negation (compr x y)) (uneq x
99 (ifthen *true* x) x)
99 (ifthen *false* x) *empty*)

(TRANS
(TRANS
(mANS
(TRANS
(TRANS

not= 95

ifeliml

ifelim2

ifelim3

ifelim4

99 (ifelse *true* x y) x)
99 (ifelse *false* x y) y)

(TRANS parenthelim 99 (paren (paren x)) (paren x))
(TRANS parenthelim2 98 (stmnt (paren x) stmnt) (stmnt x
(TEIANS parenthelim3 98 (stmnt (paren x) *OMEGA*) (stmnt
(TRANS stmnteliml 12 (stmnt *empty* stmnt) stmnt)
(TRANS stinnteliin2 12 (stmnt *empty* *OMEGA*) *OMEGA*)
(TRANS bodyelim 12 (body (stmnt x *Ca^GA*)) x)
(TEIANS bodyelim2 12 (body (stmnt *en5Jty* *C»ffiGA*)) *en5)ty*)
(ERASEPVARS)

y))
y))

stmnt))
X *OMEGA*))

CHAPTER 5

BUILJl-i:, A COMPONENT LIBRARY WITH REFGEN

5.1. The Constituent Parts of a Component

An example component for exponentiation is shown in the figure below.

The component provides the semantics for EXP internal-form nodes for the

language SIMAL, which is not a domain-specific language, but will be used as

such so that the reader will not have to learn a domain-specific language at

this point.

57

58 Building a Component Library

COMPONENT: EXP(A,B)
PURPOSE: exponentiation, raise A to the Bth power
lOSPEC: A a number, B a number / a number
DECISION:The binary shift method is 0(ln2(B)) while

the Taylor expansion is an adjust^le number
of terms. Note the different conditions for

each method.

REFINEMENT

CONDITIONS

BACKGROUND

REFINEMENT

CONDITIONS

BACKGROUND

binary shift method
B an integer cfreater than 0
see Knuth's Art of ... Vol. 2,
pg. 399, Algorithm A

INSTANTIATION: FUNCTION,INLINE
RESOURCES: none

CODE: SIMAL.BLOCK

[[POWER:=B ; NUMBER:=A ; ANSWER:=1 ;
WHILE P0WER>0 DO

[[IF POWER.AND.1 # O
THEN ANSWER :=ANSWER*NUMBER ;

POWER:=P0WER//2 ;
NUMBER :=NUMBER*NUMBER]] ;

RETURN ANSWER]]
END REFINEMENT

Taylor expansion
A greater than 0
see VNR Math Encyclopedia, pg. 490

INSTANTIATION: FUNCTION,INLINE
ASSERTIONS: none

ADJUSTMENTS: TERMS[20] - number of terms,
error is approximately (B*In(A))"TERMS/TERMS!

CODE: SIMAL.BLOCK

[[SUM:=1 ; TOP:=B*LN(A) ; TERM:=1 ;
FOR I:=l TO TERMS DO

[[TERM := (TOP/I)*TERM ;
SUM:=SUM+TERM]] ;

RETURN SUM]]
END REFINEMENT

END COMPONENT

Each component has a name and a list of possible arguments in the

CC^IPONENT field. The name is the prefix keyword of the internal-form nodes

to which the component applies. The list of possible arguments name the

subtrees of the internal form node. If a node has a variable number of

subtrees, a name prefaced by a ">" is used to denote the rest of the

subtrees in the node.

Using REFGEN 59

A prose description of what the component does is given by the PURPOSE

field. If the component takes objects as arguments and/or produces objects,

then the type of these objects in terms of the objects in the domain is

given in the lOSPEC field of the component. The DECISION field presents a

prose description of the possible refinements of the component and the

considerations involved in choosing between the alternatives.

Finally, there is a set of refinements of the component which represent a

possible inplementation of the conponent in terms of the objects and

operations of other domains.

The first REFINEMENT in the set of refinements is the default refinement.

In the absence of any other information, Draco will attempt to use this

refinement first. Each REFINEMENT has a name and a BACKGROUND where more

information about the method may be found. The BACKGROUND is a prose

description of the method the refinement implements and to which it

references.

The CONDITIONS field of a refinement lists conditions which must be true

before the component may be used. There are basically two kinds of

conditions: conditions on the domain objects on which the component operates

and conditions on previously-made implementation decisions. The conditions

on the domain objects are local to the locale where the component will be

used. The conditions on the implementation decisions are global to the

domain instance being refined. The ASSERTIONS field of a refinement makes

assertions about the implementation decisions the component makes if it is

used. The assertions are the opposites of the conditions on implementation

decisions.

Building a Component Library

The RESOURCES field of a refinement states what other components will be

required to perform initialization if the refinement is chosen. The

resource components are program parts which are executed before the

resulting program begins execution (initialization phase), and they create ,•

information resources for the refinements used in the program.

An example use of a resource is a refinement for cosine which

interpolates a table of cosines during execution. The table must, be built

during the initialization phase and the name of the table must be passed to

the interpolation refinement of the component cosine. This is achieved by

building a refinement which interpolates tables and requires a resource

component which builds interpolation tables.

The ADJUSTMENTS field of a refinement states fine tuning settings for a

refinement, the meaning of the adjustment, and a default setting. An

example adjustment term might adjust the accuracy of a refinement or limit

the amount of time spent in calculating in the refinement.

The GLOBAL field lists all names used in the refinement which are not to

be renamed. The primary use of a GLOBAL definition is to define variable

names which are reserved by a domain and cannot be renamed. The SNOBOL

variable &ANCHOR is an example global. GLOBAL definitions should be used

rarely, and are always suspect. They seem to stem from a poor analysis of a

domain. Labels which are defined in the refinement are defined in the

LABELS field of the refinement.

The way a refinement may be inserted into the internal form tree during

refinement is governed by the INSTANTIATION field of the refinement. The

Using REFGEN 61

three modes of instantiation are INLINE, FUNCTION, and PARTIAL. More than

one instantiation may be given for a refinement; the first one listed is the

default instantiation. INLINE instantiation means the refinement is

substituted directly into the internal-form tree. All variables used in the.•

refinement are renamed (including labels) except for those declared global

and the arguments. FUNCTION instantiation substitutes a call for the

component in the internal-form tree and defines a function using the

refinement for the body. A new function is defined only if the same

function from the same domain has not already been defined. PARTIAL

instantiation substitutes a call for the conponent in the internal form tree

with some of the arguments already evaluated in the body of the function

defined. Limitations are placed on the partially evaluated forms allowed.

When a function is defined, the defining domain, conponent name, and a

version number are used to differentiate between functions of the same name

in different domains and FUNCTION and PARTIAL versions of the same function

in the same domain.

The final field of a refinement is either a DIRECTIVE to Draco or the

internal form of a domain. The internal form of a domain may be described

either in a parenthesized tree notation with the INTERNAL:domain directive,

or it may be specified in the external form (domain language) of the domain

with the CODE:domain.nonterminal directive. The CODE directive causes the

parser for the specified domain to be read in and started in order to

recognize the given nonterminal symbol. A DIRECTIVE to Draco is one of the

following alternatives: view the conponent as a function definition by the

user program, view the conponent as a function call, defer from refining

this conponent, or remove the node which invoked this conponent from the

62 Building a Coinponent Library

internal-form tree. The Draco DIRECTIVES are used when a domain language

which allows function definitions, function calls, and such things as

refinements for comments (which remove comments from the program since they

are saved in the refinement history) are defined.

Not all the component and refinement fields are required for each

component definition. Basically, the only recjuired fields are COMPONENT,

REFINEMENT, INSTANTIATION and CODE.

5.2. The Motivation for Libraries of Conponents

Components are placed into libraries in much the same way, and for much

the same reason, that transformations are placed into libraries. The

processing of a single conponent for inclusion in the con^jonent library of a

domain is very expensive. For each refinement in the conponent, the parser

for the domain(s) in which the refinement is written must be loaded to parse

the external form into internal form. Once the code for the refinement is

in internal form, the agendas of the internal form are annotated with

transformations of interest from the transformation library of the target

domain. The transformation suggestions will point out things of interest

when the refinement is used. Thus, Draco supports a component library

construction facility where a group of components may be replaced or added

without disturbing the other con^Jonents in the library.

Using REFGEN 63

5.3. Building a Component Library

The REFGEN subsystem in DRACO supports the construction of libraries of

components. The process is activated by using a variant of the BUILD

command. The components to be inserted in the library are kept in a <domain

name>.REF file. When the building process begins, the Refinement Library (a

<domain name>.RLB file) may not exist, and it is created from scratch. If

the library is not empty, the conponents in the <...>.REF file are

incorporated into it; those that were already there are updated according to

the new definition from the <...>.REF file. Thus, this variant of the BUILD

command is used both for creating and updating the refinement libraries.

To illustrate the dialogue with REFGEN (the Conponent Library Builder),

we will use a set of refinement components of DRACO itself as input:

DRACO.REF. As we already have a Refinement Library for Draco, REFGEN NOTEs

and it provides a list of the components defined. At this point, if no

<domain name>.REF or <domain name>.DEC files are found in the user

directory, REFGEN will flag an error, and the process will be aborted.

REFGEN prints asterisks as it parses each line of the component definitions.

The following figure is a fragment of the input file, DRACO.REF, showing

some of the components that were processed through the dialogue transcribed

above. The next example shows the contents of the relevant fragment of file

DRACO.RLE, the Refinements Library, with the suggested transformations

generated by REFGEN.

64 Building a Component Library

DRACObuild (DOMAIN NAME) draco (DOMAIN PART) component-library

Component Library Builder working on DRACO domain
NOTE: existing component library contains:
♦APARAMS* *APARAMS-SEQ* *FPARAMS* *FPARAMS-SEQ* *LABELS*
LABELS-SEQ *LOCALS* *LOCALS-SEQ* *PARTIALS* *PARTIALS-SEQ*
PROCCALL *PROCDEF* *PROCLIST* *PROCLIST-SEQ* *SEQUENCE*

NOTE: insertion file components replace library conponents

Component *PROCLIST* **
Refinement LISP function list as a read execution sequence

Conponent *PROCLIST-SEQ* **
Refinement LISP function list as a read execution sequence

It it h it It it

Component *PROCDEF * * *
Refinement LISP function definition

etc....

Using REFGEN

COMPONENT:*PROCLIST*(PROCS)
PURPOSE: The list of functions known to Draco
REFINEMENT: LISP function list as a read execution secjuence
INSTANTIATION: INLINE

INTERNAL:LISP

(LISPPGM {{PROCS> })
END REFINEMENT

END COMPONENT

COMPONENT:*PROCLIST-SEQ* (PROCS1,PROCS2)
PURPOSE: The list of functions known to Draco
REFINEMENT: LISP function list as a read execution sequence
INSTANTIATION: INLINE

INTERNAL:LISP

(LISPSEQ {{PROCSl}} {{PR0CS2}})
END REFINEMENT

END COMPONENT

COMPONENT:*PROCDEF *(DOMAIN,NAME,VERSION,BODY,
FPARAMS, LOCALS, PARTIALS, LABELS)

PURPOSE:A Draco function definition

REFINEMENT: LISP function definition

BACKGROUND: WARNING: could cause naming problems!
INSTANTIATION: INLINE

CODE: LISP.SEXPN

{{ (DE {{NAME}} {{FPARAMS}} (PROG {{LOCALS}}
(RETURN {{BODY}}))) }}

END REFINEMENT

END COMPONENT

66 Building a Component Library

(DEFINE-COMPONENT *PROCDEF* (COMPONENT *PROCDEF*)
(CPARAMS DOMAIN NAME VERSION BODY FPARAMS LOCALS PARTIALS LABELS)
(PURPOSE A/ Draco/ function/ definition)
(REFSET (REFLIST (REFINEMENT LISP/ function/ definition) (BACKGROUND

WARNING:/ could/ cause/ naming/ problemsl) (INSTANTIATION INLINE)
(LOCALS DE RETURN) (CODE (*DOMAIN* LISP (*AGENDA* ((50 NILLl))
(SEXPN (*AGENDA* NIL
(SEXPNSEQ (*AGENDA* NIL (LISPNAME DE)) (*AGENDA* NIL (SEXPNSEQ
(*PVAR* NAME) (*AGENDA* NIL (SEXPNSEQ
(*PVAR* FPARAMS) (*AGENDA* NIL (SEXPNSEQ (*AGENDA* NIL (PROG
(*PVAR* LOCALS) (*AGENDA* ((95 CAN02))
(PROGBOD (*AGENDA* ((95 CANOl) (85 PROGSEQNIL PROGSEQT))
(PROGSEQ (*AGENDA* ((50 NILLl)) (SEXPN (*AGENDA* NIL
(SEXPNSEQ (*AGENDA* NIL (LISPNAME RETURN))
(♦AGENDA* NIL (SEXPNSEQ (*PVAR* BODY) *OMEGA*)))))) *OMEGA*))))))
♦OMEGA*)))))))))))) (DOMAIN LISP))))

(DEFINE-COMPONENT *PROCLIST* (COMPONENT *PROCLIST*)
(CPARAMS PROCS) (PURPOSE
The/ list/ of/ functions/ knovm/ to/ Draco//)
(REFSET (REFLIST
(REFINEMENT LISP/ function/ list/ as/ a/ read/ execution/sequence)
(INSTANTIATION INLINE) (LOCALS)
(CODE (*DOMAIN* LISP (*AGENDA* NIL (LISPPGM (*PVAR*PROCS)))))
(DOMAIN LISP))))

(DEFINE-COMPONENT *PROCLIST-SEQ* (COMPONENT *PROCLIST-SEQ*)
(CPARAMS PROCS1 PROCS2)
(PURPOSE The/ list/ of/ functions/ knovm/ to/ Draco//)
(REFSET (REFLIST
(REFINEMENT LISP/ function/ list/ as/ a/ read/ execution/secjuence)
(INSTANTIATION INLINE)
(LOCALS) (CODE (*DOMAIN* LISP (*AGENDA* NIL (LISPSEQ (*PVAR*PR0CS1)
(*PVAR* PR0CS2))))) (DOMAIN LISP))))

CHAPTER 6

CONVERTING A PROGRAM TO INTERNAL FORM WITH PARSE

When a new system which can be described in one of Draco's domain

languages needs to be built, the PARSE subsystem is used to convert the

domain-language program into the internal form that Draco can manipulate.

The PARSE subsystem reads in the parser built by the PARGEN subsystem for

the domain language.

If there are transformations defined for the domain, these

transformations will be attached to the program's internal form. If not,

the message "ERR: transformation library <DOMAIN>.TLB unavaible for

suggestions" will be issued. Even with this message, an internal form will

be created for the program; but this program will not have suggestions for

transformations.

6.1. Using the PARSE Subsystem

The following is an example interaction with the PARSE subsystem. LANG

is the name of the domain, and PR0G.PC3^ is a file which contains a program

written in LANG.

Draco>E <esc> ARSE (DOMAIN NAME) LMS <esc> (SOURCE FILE)
PROG <esc> . PGM

{Draco loads the parser for the domain}
Parsing from LANG from file LANG.PCM
******♦... {one * signifies a line read}
Parse Conpleted 0 errors detected
PROG.INT created
Draco>

The error conditions and error messages are similar to those for PARGEN and

PPGEN,that is, if an error occurred while parsing a rule name, the offending
67

68 Converting a Program to Internal Form

line would be printed. In this case, the offending line would come from

PROG.EXT; and the rule would be contained in the parser definition for the

domain, LANG.DEF.

6.2. How Transformations are Suggested in PARSE

If the transformation library is available for the Domain then some

suggestions of transformations are made in the internal form that PARSE

builds. These transformations are suggested by the prefix keyword at each

node in the tree, and no further matching is done. Thus, any transformation

which could possibly apply is suggested. Many of those suggested will not

apply.

The suggestion mechanism assumes that the TRANSFORM command of the TFMREF

subsystem will be used to weed out any inapplicable transformations very

quickly. The suggested transformations are ordered by their application

codes (see XFMREF).

6.3. Multiple Domains

When writing programs in one Domain we can use statements in other

Domains. To do this we need to signal to the parser that a change of

domains will take place. This is done with the following construct:

{{<DOMAIN-NAME>. <RULE-NAME>{{<statomenents>}}}>

No blanks are allowed between the braces and text.

The rule name can be the main rule of the parser of the inside Domain, or

How Transformations are Suggested in PARSE 69

it can be a specific rule just related to the statement(s) we want to use.

70 Converting a Program to Internal Form

CHAPTER 7

USING TFMREF THE PROGRAM MANIPULATION SUBSYSTEM

The transformation and refinement subsystem of Draco (TFMREF) is used by

a System Specialist to refine a program vn-itten in a domain language into an

executable language. Before the TFMREF system can manipulate a program, it

must be converted into the prefix internal form for the domain by PARSE.

The basic cycle of a System Specialist using TFMREF is to first transform

the program to remove inefficiencies. Then the program is refined by

selecting an appropriate refinement (software component) to implement the

primitives of the domain used in the program. This cycle is repeated again

and again, with the software components introducing meaning and the

transformations stripping the generality out of the software components.

Each time a refinement is made, a record is kept. Thus, the EXAMINE

subsystem can account for the purpose of any line at any level of refinement

in the resulting system.

7.1. The TFMREF Commands Which Set the Context

When working on the refinement of a large and con^lex system in an iterim

stage of development, it is important to bind the context of refinement

considered by the System Specialist. In TFMREF this is achieved with three

mechanisms: DOMAIN, INSTANCE, and LOCALE.

While a program is being refined, it may exist as program fragments in

many domains at once. The different domains are used as modelling domains

for the problem. The first element of context to be bound is the DOMAIN in

which the System Specialist intends to work.
71

72 . Program Manipulation using TFMREF

Once the domain is selected, specifying an INSTANCE of it provides a

second restriction on context.

Finally, provision is made for the System Specialist to specify a

restricted LOCALE within the instance of the selected domain.

All of these narrowings of the context serve to focus both the System

Specialist and TFMREF in examining what can be done. When TFMREF is entered

initially, it requests the file containing the internal form of the program

to be refined, the domain, and the instance. The following sections

describe the commands which restrict the context. The selected context can

be displayed in a shorthand notation using the INFO command.

7.1.1. The DOMAIN command

DCM4AIN <domain name>

The domain command is used to change the domain in which the System

Specialist wishes to work. TFMREF automatically performs a DOMAIN command

upon entry. All parts (prettyprinter, transformations, and refinements) of

the old domain are removed from memory, and the prettyprinter (if one

exists) for the new domain is loaded^ The instance is unselected when a old

domain is removed.

7.1.2. The INSTANCE command

INSTANCE

The INSTANCE command is used to change the instance of the currently

selected domain to some other instance of the domain in the selected

The TFMREF Commands Which Set the Context 73

program. To select the instance, TFMREF scans the selected program looking

for program fragments written in the selected domain. If it finds one, it

prettyprints the fragment to a certain depth using "..." to indicate

supressed detail. It then asks the user if this was the instance he had in •

mind. If so, it selects the instance. If no instance is selected, the

other commands in TFMREF which require an instance will either select an

instance automatically or not function until an instance is selected.

7.1.3. The LOCALE Command

LOCALE [No. of levels]

The LOCALE command restricts the context to a part of the selected

instance by traversing the prefix-tree internal form. If you expect to

apply transformations one at a time, the locale command must be used to set

the location of application. This is a tedious operation since TFMREF must

be able to traverse the internal form of any domain without the System

Specialist having to know the internal form of the domain.

When the locale command is given, the system prints the selected locale.

A negative number (-n) moves up the tree n levels (limited by the instance

root), while a positive number (n) moves down the nth subtree. Error

messages are printed when the number of levels exceed the number of

available sub trees.

The PP command prettyprints the current locale if one has been selected.

74 Program Manipulation using TFMREF

7.2. The Miscellaneous TFMREF Commands

This section presents the commands of the TFMREF subsystem which either

present or save environmental information. These commands are not specific

to locale, transformations, or refinements.

7.2.1. The PP Command

PP

The PP command prettyprints the selected locale completely, without the

shorthand. The output may be safely aborted with a control-0.tt ft

7.2.2. The INFO Command

INFO

The INFO command prints the time, date, program file you are working on,

domain selected, what is in memory (PP=prettyprinter, TFM=transformations,

REF=refinement index), the short version of the instance, and the short

version of the locale.

7.2.3. The HARDCOPY Command

HARDCOPY <filename.ext>

The HARDCOPY command enables the System Specialist to get a disk file of

the prettyprinted version of the entire domain instance. When a program has

been refined from one domain language into an executable language, this

command must be used to get a copy of the resulting program.

The Miscellaneous TFMREF Comniands 7^

7.2.4. The SAVE Command

SAVE

The SAVE command saves the entire prefix internal form, suggested

transformations, and refinement record over the old program file. The name

of the program file is given by the INFO command. Upon EXITing the TFMREF

subsystem, the user is automatically asked if he wants to save the internal

form. This command is included for incremental saves in case a crash wipes

out the entire session.

7.2.5. The EXIT Command

EXIT

The EXIT command exits the TFMREF subsystem, asks if a SAVE should be

done, and then returns to Draco.

7.3. A Summary o f the TFMREF Commands

The TFMREF Subsystem has a HELP command which prints out the following

summary of the TFMREF commands:

76 Program Manipulation using TFMREF

The TFMREF commands are:

DOMAIN - specify a new domain to work with
INSTANCE - specify which instance of the chosen domain to work with
NOINSTANCE- remove any instance selection for autoselection
LOCALE - specify a subpart of the instance to work with
PP - display the locale selected
INFO - print out environment stats •
UNLOAD-TRANSFORM - unload the transformations for the domain
UNLOAD-REFINE - unload the conponents for the domain
REFLRU - set the LRU stack length for no. of con^jonents in mem.
7TRANS - print out a transformation
7CLASS - print out a class
SUGGEST - suggest transformations to apply to the locale
APPLY - apply a transformation to the locale
TEIANSFORM - scan for transformations in the current locale
ANNOTATE - attach transformations in <domain>.TLB to internal form
REFINE - scan for refinements in the current locale

TACTICS - invoke the tactics subsystem

SAVE - save all the work so far

HARDCOPY - prettyprint the instance to a file
EXIT - exit the TFMREF subsystem
HELP - this list

The TFMREF commands for transformation and refinement are described in

Chapters 8 and 9, respectively. Tactics are described in Chapter 10.

7.4. An Exan^jle Session with TFMREF

This section presents a session with TFMREF. In this session concern

should not be with the meaning of the domain language being manipulated

(SIMAL see Appendix I). What is of concern is the way TFMREF commands

interact with the user to manipulate this small, trivial example. In the

transcript, {} denote comments; underlining denotes user responses. All

user responses are terminated with a RETURN.

An Example Session with TFMREF 77

78 Program Manipulation using TFMREF

Draco>TFMREF(PROBLEM FILE) quad
•(extension defaults to .INT}
•{screen clears}

Transformation and Refinement Subsystem
NOTE: file last modified on 2/3/84 6:5:41pm.
The modules are:

DRACO. START.0 ()[]{}
<DL: DOCJX)CUMENT>

(Y/N) > a
TFMREF>Domain (DOMAIN NAME) SIMAI.

•{ALGOL-like lang for examples}
NOTE: DRACO domain being removed
TFMREF>instance

.PROGRAM QUADRATIC •{shorthand printout}
$QUADRATIC
[[LOCAL ...;

• • • /

•••]]
$

.END

(Y/N) >Y •{is this the instance?}

TFMREF>E£ {let's see all of program}
.PROGRAM QUADRATIC
^QUADRATIC
[[LOCAL A,B,C,R00T1,R00T2;

LOOP:

PRINT("QUADRATIC EQUATION SOLVER",CRLF);
PRINT("INPUT A,B,C PARAMETERS ");
A:=READNUM;
IF A=0 THEN RETURN ;
B:=READNUM;
C:=READNUM;
ROOTl: = (-B+SQRT(B-2-4*A*C))/(2*A) ;
ROOT2:= (-B-SQRT(B~2-4*A*C))/(2*A) ;
PRINT("IHE ROOTS ARE: ",R00T1," AND ",R00T2,CRLF);
GOTO LOOP]]
$

.END

TFMREF>LOCALE(NO.OF LEVELS) i {let's restrict the context}
.PROGRAM QUADRATIC
$QUADRATIC
[[...

...]]
$

.END

TFMREF>locale 1

$QUADRATIC
[[LOCAL ...;

An Example Session with TFMREF

...]]

TFMRFF>locale 1

[[LOCAL,A,B,C,ROOTl,R00T2;
LOOP;

]]

TFMRFF>locale 2.

LOOP:
PRINT

PRINT

TFMREF>locale 2
PRINT ("INPUT A,B,C PARAMETERS ") ;
A:=READNUM;

TFMREF>locale 2
A:=READNUM;

IF ... THEN ...;

TFMREF>locale 2
IF A=0 THEN RETURN ;
B:=READNUM;

TFMREF>locale 2
B:=READNUM;
C:=READNUM;

TFMREF>locale 2
C:=READNUM;
ROOTl: = ... ;

TFMREF>locale 2
R00T1:=.../.
R00T2:=...;

{progressively deeper into program}

80

TFMREF>locale i

R00T1: = (. ..)/(•• •)
TFMREF>locale 2

number too large
TFMREF>locale 1

)/(2*A)
TFMREF>locale 1

(-B+SQRT(...))
TFMREF>locale 1

-B+SQRT(...)
TFMREF>locale 2

SQRT
TFMREF>locale 2

number too large
TFMREF> locale 1.

B'2-...*C

TFMREF>locale i
Subsystem

B~2-4*A*C

TFMREF>l2£ai£ 1
B'2

{ok lets look at the " operator}

TFMREF>pp
B"2 {ysis we are really there}

TFMREF>suggest {ask for transformation suggestions}
10 OIDDEF {transformation name and application code}
7 EXPX2 {in application code order}
3 <OP>XIF

2 <OP>IFX

Program Manipulation using TFMREF

{an error - try again}

TFMREF>?trans expx2 {what does e3q3x2 transformation do}
transformations loaded {first get the transformation }

{library}
EXPX2: 7 ?X-2 => ?X*?X {it makes " into *}

TFMREF>?trans OIDDEF

OIDDEF: 10

{what is an OIDDEF}
?X<0ID0PS>1 => ?X {1 identity operators}

TFMREF>?class <OIDOPS> {which operators are 1 identity}
<OIDOPS> = {MPY,EXP> {the set MPY and EXP}

TFMREF>apply expx2 {lets do expx2 here at B''2}

EXPX2: 7 B~2 => B*B (Y/N) >Y {before and after}

TFMREF>locale i {zoom out from where tfm took place}
B*B

TFMREF>locale 1

An Example Session with TFMREF 81

B*B-4*A*C

TFMREF>locale 1
SQRT

TFMREF>locale -100 {get me to the instance root now>
.PROGEIAM QUADRATIC
$QUADRATIC
[[•••

•••]]
$

.END

TFMREF>pp {did the program change?}
.PROGRAM QUADRATIC
$QUADRATIC
[[LOCAL A,B,C,R00T1,R00T2;

LOOP:
PRINT("QUADRATIC EQUATION SOLVER",CRLF) ;

PRINT("INPUT A,B,C PARAMETERS ");
A:=READNUM;

IF A=0 THEN RETURN ;
B:=READNUM;
C:=READNUM;

{we changed this line}
ROOTl;=(-B+SQRT(B*B-4*A*C))/(2*A);
R00T2:=(-B-SQRT(B'2-4*A*C))/(2*A);
PRINT("THE ROOTS ARE: ",ROOTl," AND ",R00T2,CRLF) ;
GOTO LOOP]]
$

.END

TFMREF>T1RANSF0RM (LO CODE) 2 (HI CODE) 12. (APROVAL MODE)ASK
{the easier way to do tfms}
{3 and 12 mean: application codes 3 to 12 and

ask me before doing any transformations.
A 3:12 would not ask me first.

All tfms with enabling conditions will ask anyway.}

EXPX2: 7 B*2 => B*B (Y/N) >Y
{TRANSFORM applies transformations throughout the
currently selected locale}

TFMREF>pp {lets see where the change was made}
.PROGRAM QUADRATIC
$QUADRATIC
[[LOCAL A,B,C,R00T1,R00T2;

LOOP:

PRINT("QUADRATIC EQUATION SOLVER",CRLF);
PRINT("INPUT A,B,C PARAMETERS ");
A:=READNUM;

IF A=0 THEN RETURN ;
B:=READNUM;
C:=READNUM;
R00T1:=(-B+SQRT(B*B-4*A*C))/(2*A);

{this line changed}

82 Program Manipulation using TFMREF

ROOT2; = (-B-SQRT(B*B-4*A*C))/(2*A) ;
PRINT("THE ROOTS ARE: ",R00T1," AND ",R00T2,CRLF);
GOTO LOOP]]
$

.END

TFMREF>info -(what am I doing with what and when}
2/3/84 6:10:50
PROGRAM: QUAD.INT

•{prettyprinter and transforms in memory}
DOMAIN: SIMAL PP TFM

{instance and locale are same}
INSTANCE: .PROGRAM QUADRATIC

$QUADRATIC

$
.END

LOCALE: .PROGRAM QUADRATIC
$QUADRATIC
[[...

...]]
$

.END

TFMREF>unload-transform {remove transformations}

TFMREF>locale 1
.PROGRAM QUADRATIC
$QUADRATIC
[[. . .

...]]
$

.END

TFMREF>locale l
$QUADRATIC
[[LOCAL ...;

• • • /

...]]
$

TFMREF i
[[LOCAL A,B,C,R00T1,R00T2;

LOOP:

• • • /

TFMREF>locale 1
LOCAL A,B,C,R00T1,R00T2;

An Example Session with TFMREF 83

TFMREF>info

5/25/79 23:29:21
PROGEIAM: QUAD. INT

{transformations removed}
DOMAIN: SIMAL PP

{instance and locale different}
INSTANCE: .PROGEIAM QUADRATIC

$QUADRATIC

" $
.END

LOCALE: LOCAL A,B,C,R00T1,R00T2;

TFMRFF>hardcopY {make file of prettyprinted instance}
Output File>QUAD {no default extension}

QUAD created
TFMRFF>exit {get out of TFMREF to Draco}
Do you want to save the changes ? (Y/N) >Y {SAVE check}

QUAD.INT saved
Draco>

84 Program Manipulation using TFMREF

CHAPTER 8

USING IHE PROGRAM TRANSFORMATION MECHANISM

The form and power of the transformations is discussed in the chapter on

the transformation library generator (XFMGEN). The TFMREF subsystem assumes

that the transformation library already exists. The transformation library

is loaded only when it must be in order to save working room in memory.

Everytime the TFMREF system performs a transformation, it prints out the

before and.after versions of the program fragment and, if desired, requests

a user OK. The subsections below present the transformation-related

commands.

8.1. The SUGGEST command

SUGGEST

The SUGGEST command causes the system to examine its internal form of the

current locale and to suggest what transformations it would apply or look

at. The suggest command goes hand-in-hand with the automatic suggestion of

the transformation option of the PARSE subsystem. If the automatic

suggestion option was not taken, then the suggest command would not be able

to suggest any transformations until one is performed manually.

Even if you intend to perform transformations one at a time manually, it

is a good strategy to use the automatic-suggestion-of-transformation option

followed by the TEIANSFORM command discussed below. This strips out all the

transformations which don't really apply (see the discussion of how

transformations are suggested by PARSE).

85

86 Program Transformation Mechanism

8.2. The APPLY Command

APPLY <transformation name>

The APPLY command applies a specified transformation to the current

locale. Remember, by locale we mean only the root of the internal-form tree

described by locale commands. Using APPLY is very tedious, and it is not

recommended. It is included simply because most transformation systems in

the past have used such a command extensively. The TEIANSFORM command

discussed below is the recommended replacement for the APPLY command.

8.3. The TEIANSFORM Command

TRANSFORM [LO CODE]<code> [HI CODE]<code> [APPROVAL MODE]<answer>

The TEIANSFORM command automatically applies transformations within a

certain application code range over the selected locale. It allows the

System Specialist to instruct the system to request his approval of each

transformation (the answers: ASK, NOASK). The transformations are applied

to the locale from the leaves of the internal-form nodes up to the root of

the locale. At each node the transformation with the highest application

code is applied first.

When a transformation is successfully applied, and, if the information in

the metarules specifies transformations on the new program fragment, then

the bottom-up process begins again on the new fragment. It suffices to say

that all the information in the metarules is taken advantage of by

TRANSFORM. After a TRANSFORM, the SUGGEST command will give rules suggested

during the TRANSFORM by the metarules whose application codes were outside

Using the TFMREF commands 87

the range given to TEIANSFORM. The more obscure transformations are usually

suggested by the system in this way.

8.4. The 7TEIANS Command

7TRANS <transformation name>

The 7TRANS command prints out the text of a transformation. It is useful

for examining a transformation suggested by the SUGGEST command. The format

of the transformation is the same ais a catalog listing (see catalog) .

8.5. The 7CLASS Command

7CIiASS <class name>

The 7CLASS command prints out the prefix keywords which match a class.

It is only included because the 7TEIANS command may print out a class name as

part of the transformation, and an initiate of the domain may want to

remember what is included in the class. (See Elements of the Transformation

Insert File in Chapter 4).

8.6. The UNLOAD-TRANSFORM Command

UNLOAD-TRANSFORM

When the transformations are loaded, notice is given to the user. As

mentioned before, the transformations are loaded automatically when

required. However, if the System Specialist decides to perform some

refinements and needs more room in memory, he may remove the transformations

Program Transformation Mechanism

from memory with the UNLOAD-TRANSFORM command. If needed again, they will

be loaded automatically

8.7.. Example

The exan^jle given below shows a fragment of a session in which

transformations are applied. Following the example session a prettyprinted

version of a locale being refined is given. It is included here so that the

reader may compare it with the final code once the transformations have been

applied.

Comments between square brackets are included in the example to improve

the readers' understanding of the session log.

{ The following is a transcription of the original code in the locale,

before the available transformations were applied.}

Using the TFMREF commands 89

TFMREF>PP

(DE GWCXDDS (gendict gentree) (PROG (genrslt genrstack)
(SETQ gentree (LIST gentree))
(GO 'STREE)
(NILL -)
STREE

(OR (AND T T) (GO alab))
(PUSH genrstack 'rlab)
(PUSH gentree)
(GO SUBJECT)
rlab

(PUSH genrstack 'rlabl)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl

(GO SI)
alab

(NILL)
(GENERR)
SI

(OR (AND (EQUAL 'QUESTION))
(GO alabl))

(POP gentree)
(GO exit)
alabl

(NILL)
(OR (AND (EQUAL 'DECLARE))

(GO alab3))
(POP gentree)
(GO exit)
alab3

(NILL)
(GENERR)
exit

(OR genrstack (RETURN genrslt))
(GO (POP genrstack))))

{ The systems specialist wishes to apply all transformations with

application codes in the range 50 : 90 . He also requires the system to ASK

before each transformation is applied.}

TFMREF>TRANSFORM (LO CODE) 50 (HI CODE) 90 (APPROVAL MODE) ASK

{ The transformation library is loaded. If there were no <...>.TLB file

available, an error message would be displayed and the process would be

90 Program Transformation Mechanism

aborted.}

NOTE: transformations loaded

•(In the following lines Draco asks the systems specialist if it should "

apply each transformation. For each transformation Draco gives the

following: <name> : <application code> <lhs> => <rhs>. If the specialist

confirms the transformation (Y), the left-hand-side (Ihs) expression is

substituted by the right-hand-side (rhs) expression at that point in the

locale.}

NILLl: 50' (NILL) => NIL (Y/N) >Y
ANDSEQT: 80 (AND T) => (Y/N) >Y
ANDSEQT: 80 (AND T) => (Y/N) >Y
ANDEMPTY: 80 (AND) => T (Y/N) >Y
ORT: 80 (OR T (GO alab)) => T (Y/N) >Y

{ The following transformation relates fairly large Ihs and rhs

expressions. Look for the "=>" delimiter }

Using the TFMREF commands 91

92 Program Transformation Mechanism

PROGSEQT: 85 T(PUSH genrstack *•..)
(PUSH gentree)
(GO SUBJECT)
rlab

(PUSH genrstack *...)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl

(GO SI)
alab

=> (PUSH genrstack '...)
(PUSH gentree)
(GO SUBJECT)
rlab

(PUSH genrstack '...)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl

(GO SI)
alab

(Y/N) >Y

{ By succesively applying NILLl and PROGSEQNIL, the
(NILL) will be eliminated from the locale }

NILLl: 50 (NILL) => NIL (Y/N) >Y

PROGSEQNIL: 85 NIL => (Y/N) >Y
ANDl: 80 (AND (EQUAL 'QUESTION)) => (EQUAL

'QUESTION) (Y/N) >Y

NILLl: 50 (NILL -) => NIL (Y/N) >Y

ANDl: 80 (AND (EQUAL 'DECLARE)) => (EQUAL

'DECLARE) (Y/N) >Y

NILLl: 50 (NILL -) => NIL (Y/N) >Y

PROGSEQNIL: 85 NIL => (Y/N) >Y

PROGSEQNIL: 85 NIL(OR (EQUAL 'DECLARE)
(GO alab3))

(POP gentree)
(GO exit)
alab3

=> (OR (EQUAL 'DECLARE) (GO alab3))
(POP gentree)
(GO exit)
alab3

(Y/N) >Y

I

I

I

I

Using the TFMREF commands

PROGSEQNIL: 85 NILSTREE

alab

(GENERR)
SI

(OR ...

alabl

(OR .

alab3

(GENERR) => STREE

alab

(GENERR)Si
(OR)

alabl

(OR)

alab3

(GENERR) (Y/N) > Y

{ At this point, the specialist interrogates the
system about the functions available to him.}

TFMREF> {use the <space><linefeed> mechanism to get help}
One of the following:
7CLASS 7TRANS ANNOTATE APPLY DOMAIN EXIT HARDCOPY

HELP INFO INSTANCE LOCALE NOINSTANCE PP

REFINE REFLRU SAVE SUGGEST TACTICS TRANSFORM
UNLOAD-REFINE UNLOAD-TRANSFORM

{ The pretty-printed version of the locale (given below)
shows the new version of the code after the previous
transformations were applied.}

93

94 Program Transformation Mechanism

TFMREF>PP

(DE GWOODS (gendict gentree) (PROG (genrslt genrstack)
(SETQ gentree (LIST gentree))
(GO 'STREE)

STREE

(PUSH genrstack 'rlab)
(PUSH gentree)
(GO SUBJECT)
rlab

(PUSH genrstack 'rlabl)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl

(GO SI)
alab

(GENERR)
SI

(OR (EQUAL 'QUESTION)
(GO alabl))

(POP gentree)
(GO exit)
alabl

(OR (EQUAL 'DECLARE)
(GO alab3))

(POP gentree)
(GO exit)
alab3

(GENERR)
exit

(OR genrstack (RETURN genrslt))
(GO (POP genrstack))))

CHAPTER 9

USING THE TFMREF REFINEMENT SUBSYSTEM

9.1. The TFMREF Coiranands Which Work With Refinements

9.2. How components are used

This section discusses how the fields of a component are used in the

refinement process to choose an implementation for the operation of object

the conponent represents.

First, the lOSPEC conditions on the component should be verified by

examining the internal form or refinement history of the surrounding

internal form of the node to be refined. Restrictions on which legal

internal forms are accepted by the domain language parser might make this

step easier.

Second, a REFINEMENT is chosen, and the refinement CONDITIONS are

checked. If an implementation-decision condition is violated, the

refinement may not be used. Local conditions on the domain objects are

formed into surrounding code for the refinement body. The hope is that

transformations for the domain will be able to remove this surrounding code

by "proving" that the conditions are correct.

Third, the refinement body is instantiated into the internal form

according to the user's wishes for INSTANTIATION and the allowed

instantiations for the refinement. The body is instantiated with minimal

renaming to avoid naming conflicts. If the refinement is instantiated as a

function, and a function already exists, the previously-defined function is
95

95 Using the Refinement Subsystem

used.

Finally, the ASSERTIONS for the refinement are made in the scope of the

domain instance. The assertions are a type of lock-and-key mechanism with

the conditions of other refinements. When two domain instances are merged

into a single instance of the same or another domain, then the assertions

are checked for consistency. This places the overly strong restriction that

all objects in a domain of the same type have the same implementation. More

experience with domains could probably remove this restriction. If the

asserted conditions conflict, then the refinement of the program must be

backed-up.

9.3. The Refinement Mechanism

The refinement mechanism of Draco applies the component library of a

domain to a locale within an instance of the domain in the internal-form

tree for the program being refined. The locale is bounded by a domain

instance which is a part of the internal form tree in the internal form of a

particular domain. Refinements are made in one domain at a time on an

instance of the domain. The locale mechanism is important for refinements

since the "inner loop" of the program should be refined first in order to

choose efficient inplementations. These inplementation decisions will affect

choices outside the inner loop through the assertion and condition

mechanisms of the conponents.

The Draco refinement mechanism applies the conponents to the locale's

internal-form tree by means of application policies similar to

transformation application policies. In general, top-down application is

The TFMREF Commands 57

the best policy for avoiding conflicting conditions which would require a

backup of the refinement.

From the previous dijrcussion about the selection of a refinement for a

component and the user interaction necessary to make a choice, it is evident

that the user needs some mechanism to keep Draco from asking too many

questions. The user needs the ability to specify guidelines for answering

the questions. These guidelines are called "tactics."

The TACTICS subsystem of Draco allows the user to interactively define

tactics which answer refinement cjuestions for the refinement mechanism (see

Chapter 10). The subsystem also allows the user to read and write tactics

from storage. A standard set of tactics is already available. When the

refinement mechanism recjuires a user response, it first applies the tactics

to see if one of them provides an answer.

The refinement user interface could be used for applying refinements one

at a time. This would be very tedious work, as tedious as applying

transformations one at a time. In general, early versions of a high-level,

domain-specific program are refined by the default tactics. These use easy

and uncomplicated default refinements to obtain a first implementation and

to check whether the system implements everything the user desires.

9.4. The TFMREF Command: REFINE

While interacting with TFMREF (the Program Manipulation Subsystem) the

Systems Specialist may use the REFINE comand to invoke the Refinement User

Interface. This is a new set of sub-commands which enables the user to

perform refinements and to apply tactics.

98 Using the Refinement Subsystem

9.5. Commands available through the Refinements User Interface

The following sections describe the Refinement commands that are

accessible through the Refinements User Interface.

9.5.1. The TRY command

TRY [REFINEMENT NUMBER] <ref> [UNDER INSTANTIATION] <inst>

where: <ref> stands for a refinement number

<inst> defines the instantiation mode:

INLINE or FUNCTION.

The TRY command attempts to apply the selected refinement from a refinement

set (using the refinement number), and instantiates it INLINE (inline code,

as in a macro-expansion) or as a FUNCTION. The user is asked about

executing the refinement before it is performed.

9.5.2. The USE command

USE [REFINEMENT NUMBER] <ref> [UNDER INSTANTIATION] <inst>

where: <ref> stands for a refinement number
<inst> defines the instantiation mode: INLINE or

FUNCTION.

The USE command applies a selected refinement from a refinement set

(using the refinement number), and instantiates it INLINE (inline code, as

in a macro-expansion), or as a FUNCTION. The user is not asked about
~/\

executing the refinement or shown the effect of performing it.

The TFMREF Commands 99

9.5.3. The DEFER command

DEFER

•The effect of the DEFER command is similar to that of ABORT, that is, it '

interrupts the refinement process; but in this case it defers back to

control of the *entry* tactics.

9.5.4. The ABORT command

ABORT

The ABORT command aborts the refinement process and transfers control

back to the TFMREF subsystem level. Tactics are halted.

9.5.5. The DO command

DO [TACTICS COMMAND] <tactic *CMD* name>

The DO command produces a search of the tactics list for the given

tactic. If the list is not en^sty, it executes the associated command group.

9.5.6. The HELP command

HELP

The HELP command prints a summary of the commands available through the

Refinements User Interface on the user's terminal. The printed text is read

from the file REFUSR.HLP. Thus, it can be customized, if necessary, by

modifying the file. A transcription of the current help facility is given in

Section 9.5.8 below.

100 Using the Refinement Subsystem

9.5.7. The INFORMATION command

The INFORMATION command enables the System Specialist to acquire

information on Assertions and the use of memory by the system. Thus, there

are two different formats:

- Information on Assertions. The command has the format:

INFORMATION [ABOUT] ASSERTIONS [IN] <domain specification>

where the domain specification can be:

ALL-DOMAINS

CURRENT-DOMAIN

DOMAIN (NAMED) <domain name> (ON) <objects and operations>

In each case the user gets a list of the relevant assertions: in all

domains being used, in the domain of the instance being refined, or in a

specific domain and in relation to specific objects or operations.

- Information about memory usage. The format of the command is:

INFORMATION [ABOUT] MEMORY-USAGE

The System Specialist gets a report of the form:

Free Storage: N Full-word Space: M

where N, M stand for the number of free locations.

The TFMREF Connnands

9.5.8. A summary of the REFINEMENTS commands

A summary of the REFINE subcommands can be obtained through the HELP

command as follows:

REFINE>HELP

The Refinement User Interface Commands are:

TRY <refinement> <instantiation>

attempt to use a refinement - ask before use
USE <refinement> <instantiation>

use a refinement and don't show or ask
DEFER

defer back to control of the *entry* tactics
ABORT

return to the TFMREF subsystem level - stop tactics
DO <tactic *CMD* name>

do a predefined tactic command
HELP

this message

9.6. An exanple of a session with REFINE

This section presents a session with REFINE. In the session don't be

concerned with the meaning of the domain language being manipulated (it is

the same one used in the example of Chapter 8). What is of concern in the

example is the way in which the commands of the Refinements User Interface

interact with the user to manipulate this example. In the transcript, user

responses are underlined and comments included between curly brackets. In

particular, every time { } appears, it means that the output from Draco

is similar for different con^jonents, and it is not transcribed in order to

prevent the exan^le from being excessively long. The transcript follows:

102 Using the Refinement Subsystem

The TFMREF Commands 103

TFMREF>Z
One of the following:
?CLASS PTRANS ANNOTATE APPLY DOMAIN EXIT HAEIDCOPY
HELP INFO INSTANCE LOCALE NOINSTANCE PP
REFINE REFLRU SAVE SUGGEST TACTICS TRANSFORM
UNLOAD-REFINE UNLOAD-TRANSFORM
TFMREF>tactics

*NOTE: file DEMO.TCT accessed from Draco disk area.

Parse Completed O errors detected
**

Parse Completed 0 errors detected
TFMREF>domain pen
NOTE: DRACO domain being removed
TFMREF>instance

GENERATOR GWOODS

NETWORK STREE

STREE...

SI. . .

.END

(Y/N) >Y
TFMREF>PP

GENERATOR GWOODS
NETWORK STREE

STREE SI 1
1
1

1
1 gen
1 gen

SUBJ at SUBJECT

VP at VERB-PHRASE

SI exit 1 TYPE='QUESTION 1 out

exit 1 TYPE='DECLARE 1 out fl It

.END

TFMREF>noinstance

NOTE: no domain instance selected
TFMREF>refihe

NOTE: component library index loaded
NOTE: new domain instance automatically selected

COMPONENT: DNAME

PURPOSE:

Represent the given name as a data item rather than as
a variable representing a value.

STREE

REFINEMENT: quote the name for LISP
DOMAIN: LISP

COMPONENT: COMMENT

Using the Refinement Subsystem

PURPOSE: To represent comments from the ATN domain

REFINEMENT: LISP comment mechanism
BACKGROUND:
This is an in-memory comment, perhaps a comment scanned

off by a LISP read would be better.

DOMAIN: LISP

COMPONENT: NOTEST
PURPOSE: No arctest is performed; thus, the test always succeeds.

REFINEMENT: use a LISP true for the test
DOMAIN: LISP

COMPONENT: NOTEST
PURPOSE: No arctest is performed; thus, the test always succeeds.

REFINEMENT: use a LISP true for the test
DOMAIN: LISP

COMPONENT: TEST-SEQ
PURPOSE:

Try testl; if it succeeds then try test2; otherwise fail the test.

REFINEMENT: use McCarthy LISP AND for test sequence
DOMAIN: LISP

NOTE: tactics interrupted by user
NOTE: tactics have failed to find a refinement

User Refinement Interface
REFINE>da summary
Corponent Summary
COMPONENT: TEST-SEQ
PURPOSE:
Try testl; if it succeeds then try test2; otherwise fail the test.
The conqponent appears in the program as:
The refinements for the component are:
REFINEMENT: use McCarthy LISP AND for test sequence
INSTANTIATION: INLINE
DOMAIN: LISP

REFINE>help

The TFMREF Coimnands 10^

TRY <refinement> <instantiation>
attempt to use a refinement - ask before use

USE <refinement> <instantiation>
use a refinement and don't show or ask

DEFER

defer back to control of the *entry* tactics
ABORT

return to the TFMREF subsystem level - stop tactics
DO <tactic *CMD* name>

do a predefined tactic command
HELP

this message

All of these commands are discussed in more detail in the
Draco user manual.
RFFTNE>information (ABOUT) memory-usage
Free Storage: 40836 Full-Word Space: 6488

REFINE>defer

COMPONENT: TEST

PURPOSE: Try tests for arc
REFINEMENT: use McCarthy LISP AND for test sequence
DOMAIN: LISP

COMPONENT: DNAME
PURPOSE:

Represent the given name as a data item rather than as
a variable representing a value.

SUBJ

REFINEMENT: quote the name for LISP
DOMAIN: LISP

COMPONENT: GTFETCH
PURPOSE:

Get the subtree associated with the selector at the top
level of the tree being generated

REFINEMENT: check tree existance with LISP OR
DOMAIN: LISP

NOTE:function GEN.GTFETCH.0 defined

NOTE: tactics interrupted by user
NOTE: tactics have failed to find a refinement

User Refinement Interface
REFTNE>i n formation (ABOUT) assertions (IN) all-domains
GEN actions as

LISP_in1ine_sequence

106 Using the Refinement Subsystem

(GEN/ACTION-SEQ/execution sequence in a LISP PROG)
GEN arcs as LISP_inline_sec[uence (GEN/GARC/use a LISP COND)
GEN states as LISP_inline_sequence

(GEN/GCALL/simulate the call in LISP)

REFINE>do summary
Component Summary
COMPONENT: GSTATE

PURPOSE: define a state in the generator network

The component appears in the program as:
STREE

The refinements for the conponent are:
REFINEMENT: as inline LISP

ASSERTIONS: GEN states as LISP_inline_sequ.ence
INSTANTIATION: INLINE

ASSERTIONS: GEN states as LISP_inline_sequence
DOMAIN: LISP

REFINE>defer

COMPONENT: DNAME

PURPOSE:

Represent the given name as a data item rather than as
a variable representing a value.

TYPE

REFINEMENT: quote the name for LISP
DOMAIN: LISP

COMPONENT: GVFETCH

PURPOSE:

Get the value of the subtree associated with the selector
at the top level of the tree being generated

REFINEMENT: extract value with LISP COND

DOMAIN: LISP

NOTE:function GEN.GVFETCH.O defined

COMPONENT: QUOTE
PURPOSE: Put a literal name in an ATN tree

'QUESTION
REFINEMENT: use a LISP quoted atom
ASSERTIONS: ATN trees as LISP_lists
DOMAIN: LISP

COMPONENT: GSTATE

PURPOSE: define a state in the generator network
SI

REFINEMENT: as inline LISP

ASSERTIONS: GEN states as LISP_inline_sec[uence

The TFMREF Commands 107

DOMAIN: LISP

NOTE: tactics interrupted by user
NOTE: tactics have failed to find a refinement

User Refinement Interface
REFINE>abort

NOTE: aborting the refinement process

TFMREF>instance

GENERATOR GWOODS

NETWORK

STREE...

.END

(Y/N) >Y

TFMREF>pp
GENERATOR GWOODS

NETWORK

STREE

.END

TFMREF>noinstance

NOTE: no domain instance selected

TFMREF>refine

NOTE: new domain instance selected automically

COMPONENT: GSTATE

PURPOSE: define a state in the generator network
STREE

REFINEMENT: as inline LISP

ASSERTIONS: GEN states as LISP_inline_sequence
DOMAIN: LISP

COMPONENT: STATES-SEQ
PURPOSE: I
Specify the ordering of the states in the original description.
REFINEMENT: keep the same ordering in LISP inline
ASSERTIONS: GEN states as LISP_inline_sequence
DOMAIN: LISP

{ List of components continues, but is not shown in this
transcription}

NOTE: refinement replaced a domain
NOTE: new domain instance selected automatically

}

TFMREF>domain lisp
NOTE: GEN domain being removed

108 Using the Refinement Subsystem

TFMREF>instance

(SETQ genrslt (NCONC genrslt (LIST
(Y/N) >N

(COND [()]
[()]) (Y/N) >Ii

(OR (MEMB selector (CAR gentree))
(ASSOC selector (CAR gentree))
(GENERR)) (Y/N) >M

(DE GWOODS (gendict gentree) (PROG
()
(•)

item)))

(genrslt genrstack)

exit

(OR .
(...

TFMREF>pp
(DE GWOODS

•)
•))) (Y/N)

(gendict gentree) (PROG (genrslt genrstack)
(SETQ gentree (LIST gentree))
(GO 'STREE)
(NILL)
STREE

(OR (AND T T) (GO alab))
(PUSH genrstack 'rlab)
(PUSH gentree)
(GO SUBJECT)
rlab

(PUSH genrstack 'rlabl)
(PUSH gentree)
(GO VERB-PHRASE)
rlabl

(GO SI)
alab

(NILL)
(GENERR)
SI

(OR (AND (EQUAL
(GO alabl))

(POP gentree)
(GO exit)
alabl

(NILL)

(OR (AND (EQUAL
(GO alab3))

(POP gentree)
(GO exit)
alab3

(NILL

•QUESTION))

•DECLARE))

The TFMREF Commands

(GENERR)
exit

(OR genrstack (RETURN genrslt))
(GO (POP genrstack))))

TFMREF>save

NOTE: WG.INT saved

"C At this point the transformations shown in the exanqple of
chapter 8 could be applied}

TFMREF>refine

NOTE

NOTE

NOTE

file DRACO.RLB accessed from Draco disk area.
component library index loaded
new domain instance selected automatically

•C See the exan^sle on chapter 5, where
another subset of these Draco components
is used to build the Component Library DRACO.RLB }

COMPONENT: *APARAMS-SEQ*
PURPOSE: The actual parameters of a Draco function call
{•••>)

REFINEMENT; LISP actual parameters
BACKGROUND: The actual parameters are treated

as an execution sequence
DOMAIN: LISP

COMPONENT: *APARAMS*
PURPOSE: The actual parameters of a Draco function call
0

REFINEMENT: LISP actual parameters
BACKGROUND: The actual parameters are treated

as an execution sec[uence
DOMAIN: LISP

}

DOMAIN: LISP

NOTE: refinement merged a domain
NOTE: no instance of DRACO domain in locale of refinement
The modules are:

GEN.GOUT. O (item) {> []

GEN.GVFETCH.0 (selector) {TEMP} []

GEN.GTFETCH.O(selector){gentree}[]

DRACO.START.0(){a1ab,a1abO,a1ab2,exit,r1ab,r1abO}
[alab,alabl,alabS,exit,rlab,rlabl]

110 Using the Refinement Subsystem

(Y/N) >Y

COMPONENT; *FPARAMS-SEQ*
PURPOSE: The formal parameters of a Draco function definition
(. . .selector,)

REFINEMENT: LISP formal parameters
DOMAIN: LISP

COMPONENT: *FPARAMS*

PURPOSE: The formal parameters of a Draco function definition
0

REFINEMENT: LISP formal parameters
DOMAIN: LISP

TFMREF>domain lisp
NOTE: DRACO domain being removed

TFMREF>pp
(DE GOUT (item) (PROG ()

(RETURN (SETQ genrslt (NCONC
genrslt
(LIST
item))))))

(DE GVFETCH (selector) (PROG (TEMP)
(RETURN (COND [(ATOM (SETQ TEMP (OR (MEMB

selector

(CAR
gentree))

(ASSOC
selector

(CAR
gentree))

(GENERR))))]
[(CADR TEMP)]))))

(DE GTFETCH (selector) (PROG (gentree)
(RETURN (OR (MEMB selector (CAR gentree))

(ASSOC selector (CAR gentree))
(GENERR)))))

(DE START 0 (PROG (alab alabO alab2 exit rlab rlabO)
(RETU^ (DE GWOODS (gendict gentree)

(PROG (genrslt genrstack)
(SETQ gentree (LIST gentree))
(GO 'STREE)
STREE

(PUSH genrstack 'rlab)
(PUSH gentree (GTFETCH

' SUBJ))
(GO SUBJECT)
rlab

The TFMREF Commands 111

(PUSH genrstack 'rlabl)
(PUSH gentree (GTFETCH

•VP))
(GO VERB-PHEIASE)
rlabl

(GO SI)
alab

(GENERR)
SI

(OR (EQUAL (GVFETCH 'TYPE)
•QUESTION)

(GO alabl))
(GOUT ••?'•)
(POP gentree)
(GO exit)
alabl

(OR (EQUAL (GVFETCH 'TYPE)
•DECLARE)

(GO alab3))
(GOUT ".••)
(POP gentree)
(GO exit)
alab3

(GENERR)
exit

(OR genrstack
(RETURN genrslt))

(GO (POP genrstack)^))))

TFMREF>hardcopY Mg
NOTE: WG.DOC created

TFMREF >s2sjLt
Do you want to save the changes ? (Y/N) >X
NOTE: WG.INT saved

DRACO>

112 Using the Refinement Subsystem

C3IAPTER 10

USING THE TFMREF TACTICS SUBSYSTEM

The TACTICS subsystem's objective is to provide "guidelines" that can be

used during the refinement process to prevent Draco from asking too many

questions.

The TACTICS subsystem is an interpreter which allows the user to define

tactics interactively (DEFINE) or to use an existing tactic (LOAD).

The Tactics subsystem is called on the TFMREF system by the keyword,

TACTICS. By doing this we activate the TACTICS interpreter. After the

first two '*'s appear on the screen, indicating that the parsing process has

begun, we can use any of the TACTICS commands.

TFMREF>TACTICS

**HELP;
The TACTICS commands are:

DEFINE - define a tactic
LIST - list the tactics to screen or file
DELETE - delete a tactic
LOAD - load tactics from a file
HELP - this list

EXIT - return to TFMREF subsystem

More detail on the syntax of these commands may be
found in the Draco manual. Remember, all commands must
be terminated by a semicolon,

**LOAD DEMO: - where DEMO.TCT is a tactic file -
...{ each * is one line processed}
Parse Con^leted O errors detected
*FXIT:

TFMREF>

The DEFINE command defines the rules. The format of the command is

DEFINE rulegroup-name.rule-name = rules. The rules with rule-name "*ENTRY*"
113

114 Using the TFMREF Tactics Subsystem

are run as tactics. The rulegroup-name "*CMD*" is a set of rules that may

be invoked by the Refinement User Interface. In the Define command we can

determine which field of the component we would like to display. The

tactics defined by the "*ENTRY*" rule are of the following kind: conditions

>action. If the first is not met, the next pair is tried.

The LIST command lists the tactics being used on the screen; it can also

copy to a file.
>

The DELETE command can delete all tactics, a rulegroup, or just a group.

The LOAD command loads tactics stored in some file.

It is possible to put comments inside a tactics. To do this, the message

comments must be inside double quotes (""), with no double quotes

allowed within the enclosing double quotes.

The following is an example of a general set of tactics:

Using TACTICS 115

DEFINE HEAD.*ENTRY* = "
ft .

DEFINE DEMO.*ENTRY* = COMPONENT,PURPOSE,
LOC 4, [ALL,REFINEMENT,

CONDITIONS,ASSERTIONS,
BACKGROUND,

DOMAIN],[ALL<DIRECTIVE>,USE],
[AT.T.< FUNCTION INSTANTIATION>,USE FUNCTION],
[ALL< INLINE INSTANTIATION>,USE INLINE];

DEFINE *CMD*.SUMMARY = "Component'Summary",
COMPONENT,PURPOSE,
lOSPEC,DECISION,

"The conponent appears in the program as:",
LOC 10,

"The refinements for the component are:",
[ALL,REFINEMENT,CONDITIONS,ASSERTIONS,
BACKGROUND,DIRECTIVE,
INSTANTIATION, ASSERTIONS,
RESOURCES,ADJUSTMENTS,
DOMAIN];

EXIT

Other examples can be found in James Neighbors' thesis. Software

Construction Using Components. on pages 77-79 and on page 85.

The tactics parser and prettyprinter are given in Appendices VII and IX

respectively.

116

I. A COMPLETE EXTERNAL/INTERNAL LANUAGE DEFINITION

In this appendix the complete external and internal definition for an

example langauge called SIMAL is given along with some programs written in

SIMAL. SIMAL represents a conventional ALGOL-like language. It is hoped

that domain languages will differ greatly from this form.

I.l. External/Internal SIMAL Definition

The following is the file SIMAL.DEE. If any errors occur during the

parsing of a SIMAL program, the rule names in the error messages will refer

to this file.

.DEFINE SIMAL

[SIMAL simple Algol-like language for exanples]
[James Neighbors -- Last Modified March 11, 1982]

SIMAL = ".PROGRAM"
.TREE(PGM PGMSEQ

NAME .TREE(AP APSEQ "(" EXP $("," EXP) ")")
.NODEiPROCCALL #2 #1)

$<1:?>FNDEF)
".END" ;

FNDEF = "$" NAME
.TREE(FP FPSEQ " (" NAME $("," NAME) ") ")
BLOCK

"$" .NODE(FNDEF #3 #2 #1) ;

STMT = BLOCK /
"IF" BEX "THEN" STMT

("ELSE" STMT .NODE(IFELSE #3 #2 #1) /
.EMPTY .NODE(IF #2 #1)) /

"WHILE" BEX "DO" STMT .NODE(WHILE #2 #1) /
"REPEAT" STMT "UNTIL" BEX .NODE(REPEAT #2 #1) /
"FOR" NAME ":=" AEX

("STEP" AEX "TO" AEX "DO" STMT
.NODE(FOR #5 #4 #3 #2 #1) /

empty "TO" AEX "DO" STMT
.N0DE(F0R1 #4 #3 #2 #1)) /

"RETURN" (EXP .NODE(RETVAL #1) / .EMPTY .NODE (RETURN)) /
"GO" "TO" ID .NODE(GOTO *) /
"(" STMT ")" .NODE(PAREN #1) /
SIMALFN /

117

A complete Language Definition

NAME

("[" .TREE(SL SLSEQ EXP EXP)) "]"
.NODE(ASELECT #2 #1)

EXP .NODE(SASSIGN #2 #1) /
EXP .NODE(ASSIGN #2 #1) /

STMT .NODE(LABEL #2 #1) /
.TREE(AP APSEQ " (" EXP $("," EXP) ")")

.NODE(PROCCALL #2 #1)) ;

BLOCK = "[[" ("LOCAL" .TREE(LOC LOCSEQ NAME $("," NAME)) ";" /
.EMPTY .NODE(NOLOC))

.TREE(BLK BLKSEQ
STMT $(";" STMT)) "]]"

.NODE(BLOCK #2 #1) ;

NAME = ID .LITERAL ;

EXP = STRING .NODE(STRING *) / BEX ;

BEX = BEXl $("!" BEXl .NODE(OR #2 #1)) ;
BEXl = BEX2 $("(S" BEX2 .NODE (AND #2 #1)) ;
BEX2 = "%" BEX3 .NODE(NOT #1) / BEX3 ;
BEX3 = "TRUE" .NODE(TRUE) / "FALSE" .NODE(FALSE) /

AEX $("<=" AEX .NODE(LESSEQ #2 #1) /
">=" AEX .NODE(GTREQ #2 #1) /
"<" AEX .NODE(LESS #2 #1) /
">" AEX .NODE(GTR #2 #1) /
"=" AEX .NODE(EQUAL #2 #1) /
"#" AEX .NODE(NOTEQ #2 #1)) ;

AEX = AEXl $("+" AEXl .NODE(ADD #2 #1) /
AEXl .NODE(SUB #2 #1)) ;

AEXl = AEX2 $("*" AEX2 .NODE(MPY #2 #1) /
"//" AEX2 .NODE(IDIV #2 #1) /
"/" AEX2 .NODE(DIV #2 #1)) ;

AEX2 = AEX3 $(""" AEX2 .NODE(EXP #2 #1)) ;
AEX3 =,"+" AEX4 / "-" AEX4 .NODE(MINUS #1) / AEX4 ;
AEX4 = NUMBER .NODE(NUMBER *) /

SIMALFN /
NAME ("(" .TREE(AP APSEQ EXP $("," EXP)) ")"

.NODE(FNCALL #2 #1) /
"[" .TREE(SL SLSEQ EXP $("," EXP)) "]"

.NODE(SSELECT #2 #1) /
.EMPTY) /

"(" BEX ")" .NODE(PAREN #1) /
BLOCK ;

SIMALFN = "SQRT" EXP ")" .NODE(SQRT #1) /
"INT" "(" EXP ")" .NODE (INT #1) /
"ABS" "(" EXP ")" .NODE(ABS #1) /
"PRINT" "(" .TREE(PRINT PRSEQ EXP $("," EXP)) ")" /
"READNUM" .NODE(READNUM) /

The file SIMAL.DEF

"READCHAR" .NODE(READCHAR) /
"READSTRING" .NODE (READSTRING) /
"WRITENUM" "(" EXP ")" .NODE(WRITENUM #1) /
"WRITECHAR" "(" EXP ")" .NODE(WRITECHAR #1) /
"WRITESTRING" "(" EXP ")" .NODE(WRITESTRING #1) ;

PREFIX ; SPACING ;
ID : SPACING .TOKEN ALPHA $<?;10>(ALPHA / DIGIT) .DELTOK ;
STRING : SPACING .TOKEN .ANY("') $.ANYBUT("') .ANY('") .DELTOK
NUMBER : SPACING .TOKEN $<1;?>DIGIT

(.ANY('.) ($<1:?>DIGIT (EXPNT / .EMPTY) /
.EMPTY) /

EXPNT /
.EMPTY) .DELTOK

EXPNT

ALPHA

DIGIT

SPACING : $.ANY(32!10!13!9)

.END

1.2. Example SIMAL Programs

10.0.1. Quadratic Equation

The following is the familiar quadratic equation root solution,

.PROGRAM QUADRATIC

$QUADRATIC
[[LOCAL A,B,C,R00T1,R00T2;

LOOP:

PRINT("QUADRATIC EQUATION SOLVER");
PRINTf'INPUT A,B,C PARAMETERS ") ;
A:=READNUM;
IF A=0 THEN RETURN;
B:=READNUM;
C:=READNUM;
ROOTl: = (-B+SQRT(B-2-4*A*C))/(2 *A) ;
R00T2: = (-B-SQRT(B'2-4*A*C))/(2*A) ;
PRINT("THE ROOTS ARE: ",R00T1," AND ",R00T2);
GOTO LOOP]]

$
.END

.ANYCE) (.ANY(' + !*-) / .EMPTY) $<1; ?>DIGIT

.ANY('A:'Z ! 'a:'z) ;

.ANY('0:'9)

120 A complete Language Definition

II. THE DEFINITION OF DRACO BNF IN DRACO BNF

This appendix presents the file, PARGEN.DEF, which describes the Draco

BNF in Draco BNF and in the internal LISP form that parsers take when they

are constructed. When PARGEN cites a rule in an error during the

construction of a domain parser, the rule is from this file. Also included

in this appendix is a catalog listing of the transformations (PARSER.TLB)

which are used to optimize parsers (see parser optimization).

11.1. The File PARGEN.DEF

.DEFINE PARSER

[PARGEN Main Parser Generator
James Neighbors -- Last Modified May 7, 1983]

PARSER = ".DEFINE" PARSERl ".END" .RESOLVE(RULE) ;

PARSERl = ID .USE(RULE)
.L1ST(PR0GN

.NODE(DEFINE-PARSER-FN PARSE
(LAMBDA NIL (PARSER-INITIALIZATION*)))

$(ST / COMMENT)) ;

COMMENT = "[" CMNTCHRS "]" .NODE(NILL *) ;

ST = [[ID .DEF(RULE) .LITERAL .MSG(.CR "Rule " * .COL(30))
("=" .LITERAL EXl .NODE(PARSER-RULE #2 #1) /
":" TEXl .NODE(PARSER-TOKEN #1))

";" .NODE(DEFINE-PARSER-FN #2 (LAMBDA NIL #1))]
ERRST .NODE(NILL)] ;

ERRST : .TOKEN $.ANYBUT(';) .ANY(';) .DELTOK ;

EXl = .LIST(OR EX15 $("/" EX15)) ;

EX15 = EX2 ("1" EX17 .NODE(PARSER-BACKTRACK #2 #1) / .EMPTY) ;
EX17 = EX2 ("I" EX17 .NODE(PARSER-BACKTRACK #2 #1) / .EMPTY) ;

EX2 = EX3 .LIST(AND $EX3) .NODE(AND #2 (OR #1 (PARSER-ERROR))) ;

EX3 = ID .USE(RULE) .NODE(*) /
STRING .NODE(PARSER-TEST-STRING *) /
"(" EXl ")" /
"$" RPTPR /

121

122 The Definition of Draco BNF in Draco BNF

".NODE" "(" NLIST ")" .NODE(PARSER-NODE #1) /
".LITERAL" .NODE(PARSER-LITERAL) /
".LITOHAR" .NODE(PARSER-LITCHAR) /
".EMPTY" .NODE(AND T) /
".TREE" "(" ID .USE(COMPONENT) .LITERAL

ID .USE(COMPONENT) .LITERAL EXl ")"
.NODE(PARSER-TREE #3 #2 #1) /

".CHART" "(" .LIST(PARSER-CHART
$<1:?>(ID .USE(COMPONENT) .LITERAL

ID .USE(COMPONENT) .LITERAL)
EXl) ")" /

"[" "[" EXl "]" EXl "]" .NODE(PARSER-ERRORBLOCK #2 #1) /
".DEE" "(" ID ")" .NODE(PARSER-DECLARE-DEE *) /
".USE" "(" ID ")" .NODE(PARSER-DECLARE-USE *) /
".RESOLVE" "(" ID ")" .NODE(PARSER-DECLARE-RESOLVE *) /
".RETRACT" "(" ID ")" .NODE(PARSER-DECLARE-RETRACT *) /
".ASSUME" "(" ID ")" .NODE(PARSER-DECLARE-ASSUME *) /
".CONTEXT-PUSH" "(" ID ")" .NODE(PARSER-DECLARE-PUSH *) /
".CONTEXT-POP" "(" ID ")" .NODE(PARSER-DECLARE-POP *) /
".ERROR" .NODE(PARSER-ERROR) /
".FAIL" .NODE (PARSER-FAIL) /
".MSG" "(" .LIST(PROGN $MINFO .NODE(AND T)) ")" /
".LIST" "(" ID .LITERAL EXl ")" .NODE(PARSER-LIST #2 #1) /
".SEXPN" "(" EXl ")" .NODE(PARSER-SEXPN #1) /
".EXECUTE" .NODE(PARSER-EXECUTE) ;

NLIST = .LIST(NCONC (ID .USE(COMPONENT)
.NODE(PARSER-NODE-NAME *) $NINFO /

.EMPTY $<1:?>NINFO)) ;

NINFO = ID .NODE(PARSER-NODE-NAME *) /
NUMBER .NODE(PARSER-NODE-NAME *) /
"*" .NODE(PARSER-NODE-STAR) /
"#" NUMBER .NODE(PARSER-NODE-SHARP *) /
"(" NLIST ")" .NODE(LIST #1) ;

MINFO = STRING .NODE(PRINAC (QUOTE *)) /
"*" .NODE(PRINAC (PARSER-TOKEN-MAKE)) /
".CR" .NODE(TERPRI) /
".COL" "(" NUMBER ")" .NODE(TAB *) ;

TEXl = .LIST(OR TEX2 $("/" TEX2)) ;

TEX2 = .LIST(AND $TEX3) ;

TEX3 = ID .USE (RULE) .NODE(*) /
"(" TEXl ")" /
"$" RPTTR /
".ANY" ("BUT" "(" CEXl ")" .NODE(NOT #1) /

.EMPTY "(" CEXl ")")
.NODE(AND #1 (PARSER-SCANCHR)) /

".EMPTY" .NODE(AND T) /

The File PARGEN.DEF 123

".TOKEN" .NODE (PARSER-TOKEN-START) /
".DELTOK" .NODE(PARSER-TOKEN-END) ;

RPTPR = "<" ("?" ("?" ">" EX3 .NODE(PARSER-REPEAT #1 NIL NIL) /
NUM ">" EX3 .NODE(PARSER-REPEAT #1 #1 NIL)) /

M.M 2X3 .NODE (PARSER-REPEAT #1 NIL #1) /

NUM ">" EX3 .NODE(PARSER-REPEAT #1 #1 #1))) /
EX3 .NODE(PARSER-REPEAT #1 NIL NIL) ;

RPTTR = "<" ("?" ":" ("?" ">" TEX3 .NODE(PARSER-REPEAT #1 NIL NIL) /
NUM ">" TEX3 .NODE(PARSER-REPEAT #1 #1 NIL)) /

NUM ":" ("?" ">" TEX3 .NODE(PARSER-REPEAT #1 NIL #1) /
NUM ">" TEX3 .NODE(PARSER-REPEAT #1 #1 #1))) /

TEX3 .NODE(PARSER-REPEAT #1 NIL NIL) ;

NUM = NUMBER .LITERAL ;

CEXl = .LIST (OR CEX2 $("!" CEX2)) ;

CEX2 = CEX3 (":" CEX3 .NODE(AND (GE CHR #2)(LE CHR #1)) /
.EMPTY .NODE (EQUAL CHR #1)) ;

CEX3 = NUMBER .LITERAL / .LITCHAR ;

PREFIX : SPACING ;

ID : SPACING .TOKEN ALPHA $<? :80> (ALPHA / DIGIT / .ANY('_!'-!'?)) .DELTOK ;
STRING : SPACING .ANY('") .TOKEN $.ANYBUT('") .DELTOK .ANY('") ;
NUMBER : SPACING .TOKEN DIGIT $<?:2>DIGIT .DELTOK ;
CMNTCHRS : .TOKEN $.ANYBUT(']) .DELTOK ;
ALPHA : .ANY('A:'Z ! 'a:'z) ;
DIGIT : .ANY('0;'9) ;
SPACING : $.ANY(32!10!13!9) ;

.END

124 The Definition of Draco BNF in Draco BNF

III. THE DEFINITION OF A PRETTYPRINTER DESCRIPTION

This appendix presents the external and internal description of a

prettyprinter definition (see PPGEN). This description is from the file

PPGEN.DEF. Any error encountered while using PPGEN to construct a

prettyprinter refers to a rule in this file.

III.l. The File PPGEN.DEF

.DEFINE PPSYN

[PPGEN Prettyprinter Generation
James Neighbors -- Last Modified June 24, 1983]

PPSYN = ".PRETTY" "PRINTER" ID
.L1ST(PR0GN $(PMDEF / COMMENT))

".END" .RESOLVE(COMPONENT) ;

COMMENT = "[" CMNTCHRS "]" .N0DE(N1LL *) ;

PMDEF = [[ID .DEF(COMPONENT) .LITERAL
.MSG(.CR "Rule " * .COL(30)) "="

PMDEF1 ";"
.NODE(DEFINE-PP-MACRO #2 (LAMBDA (E POS)

(PROG (TPOS)
(SETQ E (CDR E))
(SETQ TPOS POS) #1)))]

LINTOK .NODE(NILL)] ;
LINTOK : . TOKEN $. ANYBUT (';) .ANYC;) .DELTOK;

PMDEFl = .L1ST(PR0GN $PPOP) ;

PPOP = STRING .NODE(PRINAC (QUOTE *) TPOS) /
NUMBER .NODE(TYO *) /
".COL" "(" NUMBER .NODE(TAB *) ")" /
".SLM" .NODE(TAB TPOS)

("(" NUMBER ")" .NODE (AND (GT (CHRPOS) *) #1) /
.EMPTY) /

".LM"
("(" (NUMBER .NODE(DIFFERENCE POS *) /

"+" NUMBER .NODE(PLUS POS *) /
NUMBER .NODE(PLUS POS *)) ")" /

.EMPTY .NODE(CHRPOS)) .NODE(SETQ TPOS #1) /
"#" NUMBER .N0DE(PP-PR1NT1 (CAR (NTH E *)) TPOS) /
".TREEPRINT" "(" ID .LITERAL ","

125

126 The Definition of a Prettyprinter
Description

NUMBER .NODE(CAR (NTH E *)) "
PMDEFl PMDEFl ")"

.NODE(PP-PRINT-TREE (QUOTE #4)#3(QUOTE #2)(QUOTE #1)
(CONS POS TPOS)) /

".CHARTPRINT" " ("
.LIST(PP-PRINT-CHART .NODE(CHRPOS)

$<1:?>(ID .NODE(QUOTE *)
NUMBER .NODE (CAR (NTH E *))
PMDEFl .NODE(QUOTE #1)
PMDEFl .NODE (QUOTE #1) ("/'/.EMPTY)

)) ")" /
".LISTPRINT" "(" PMDEFl ")"

.NODE(MAP (FUNCTION (LAMBDA (TPTR)
(PP-PRINTl (CAR TPTR) TPOS)
(AND (CDR TPTR) #1)))

E) /
".CHARPRINT" "(" NUMBER ")"

.NODE(TYO (OR (INUMP (CAR (NTH E *))) 7)) ;

PREFIX ; SPACING ;
ID : SPACING .TOKEN (ALPHA/ .ANY('<!'*))

$<?:40>(ALPHA / DIGIT)
(.ANY('>!'*) / .EMPTY)

.DELTOK ;
STRING : SPACING .ANY("') .TOKEN $.ANYBUT('") .DELTOK .ANY("') ;
NUMBER : SPACING .TOKEN DIGIT $<?:2>DIGIT .DELTOK ;
CMNTCHRS : .TOKEN $.ANYBUT(']) .DELTOK ;
ALPHA : .ANY('A:'Z ! 'a:'z '?) ;
DIGIT ; .ANY('0:'9) ;
SPACING : $.ANY(32!10!13!9) ;

.END

IV. AN EXAMPLE PRETTYPRINTER DESCRIPTION

This appendix presents a sample description of a prettyprinter for the

language defined in Appendix I. This description is contained in the file

SIMAL.PPD and would be given to PPGEN to construct a prettyprinter. The

sample SIMAL programs in Appendix 1 were printed with the prettyprinter

resulting from this description.

IV.1. A SIMAL Prettyprinter Description

.PRETTYPRINTER SIMAL

[SIMAL Example Language Prettyprinter]
[James Neighbors -- Last Modified March 11, 1982]

<Z1D0PS>

<01D0PS>

<0P>

ABS

ADD

AND

AP

APSEQ
ASELECT

ASSIGN

BLK

BLKSEQ
BLOCK

DIV

EQUAL
EXP

FALSE

FNCALL

FNDEF

FOR

FORl

FP

FPSEQ
GOTO

GTR

GTREQ
IDIV

IF

IFELSE

INT

#1 "<Z1D0PS>" #2 ;
#1 "<01D0PS>" #2 ;
#1 "<0P>" #2 ;
"ABS(" #1 ")" ;

= #1 #2

#1 #2 ;
"(" .LM .TREEPR1NT(APSEQ,1,
#1 .TREEPRINT(APSEQ, 2, ;
#1 #2 ;
.SLM #1 #2 ;
.TREEPRINT(BLKSEQ,1,";","]]") ;
#1 .TREEPRINT(BLKSEQ,2,";","]]") ;
.SLM "[[" .LM #1 #2 ;
#1 V" #2
#1 "=" #2
#1 #2
"FALSE" ;
#1 #2 ;
"$" #l'#2 .SLM .LM(2) #3 .SLM "$" ;
.SLM "FOR " .LM #1 ":=" #2 " STEP " #3

" TO " #4 " DO " .SLM(22) #5 ;
.SLM "FOR " .LM #1 ":=" #2 " TO " #3 " DO " .SLM(22) #4 ;
"(" .LM.TREEPRINT(FPSEQ,!,",",")") ;
#1 .TREEPRINT(FPSEQ,2,",",")") ;
.SLM "GOTO " #1 ;

= #1 #2 ;
#1 ">=" #2 ;
#1 "//" #2 ;
.SLM "IF " #1 .LM " THEN " #2 ;
.SLM "IF " #1 .LM "THEN " #2 .SLM(22) " ELSE " #3 ;
"INT(" #1 ")" ;

127

128

LABEL

LESS

LESSEQ
LOG

LOCSEQ
MINUS

MPY

NOLOC

NOT

NOTEQ
NUMBER

OR

PAREN

PGM

RETURN

RETVAL

SASSIGN = .SLM #1 ":=" #2
SL

SLSEQ
SQRT
SSELECT

STRING

SUB

TRUE

WHILE

.END

An Example Prettyprinter Description

= .LM(-IO) .SLM #1 .LM(0) #2 ;
= #1 #2

= #1 "<=" #2 ;
= "LOCAL " .TREEPRINT(L0CSEQ,1,;
= #1 .TREEPRINT(LOCSEQ, 2/', ;
= #1 ;
= #1 #2 ;

= "%" #1 ;
= #1 "#" #2 ;
= #1 ;
= #1 "!" #2 ;
= "(" #1 ")" ;
= .SLM ".PROGRAM " .LM

.TREEPRINT(PGMSEQ,1,.SLM,.LM(0) .SLM ".END" .SLM) ;
PGMSEQ = #1 .TREEPRINT(PGMSEQ,2,.SLM,.SLM ".END" .SLM) ;
PRINT = .SLM "PRINT(" .LM .TREEPRINT(PRSEQ,1,",",")") ;
PRSEQ = #1 .TREEPRINT(PRSEQ,2,",",")") ;
PROCCALL = .SLM #1 #2 ;
READCHAR = "READCHAR" ;
READNUM = "READNUM" ;
READSTRING = "READSTRING" ;
REPEAT = .SLM "REPEAT " .LM #1 .SLM "UNTIL " #2 ;

= .SLM "RETURN" ;
= .SLM "RETURN " .LM #1 ;

tf .

= "[" .LM .TREEPRINT(SLSEQ,1,",","]")
= #1 .TREEPRINT(SLSEQ,2,",","]") ;
= "SQRT(" #1 ")
= #1 #2 ;
= 34 #1 34 ;
= #1 "-" #2 ;
= "TRUE" ;
= .SLM "WHILE " #1 .LM " DO " #2

WRITECHAR = .SLM "WRITECHAR(" #1 ")" ;
WRITENUM = .SLM "WRITENUM(" #1 ")" ;
WRITESTRING = .SLM "WRITESTRING(" #1 ")" ;

V. AN EXAMPLE SET OF TRANSFORMATIONS

This appendix presents a sample set of transformations for a slightly

modified version of SIMAL and its prettyprinter. The language has been

modified to put objects, which it knows are constants, into an internal-form

node with the prefix keyword, LCONST. The prettyprinter has been modified

to show these constants in {} brackets and to print all the classes in a

sensible form. Thus {TY} represents a "match anything known to be

constant". This catalog represents most of the source-to-source program

transformations found in the Irvine Program Transformation Catalogue (T.

Standish, 1976, UC Irvine). The listing is in the standard XFMGEN catalog

format.

V.l. SIMAL Transformations

5/3/79 19:18:18 SIMAL.TLB
<BOP> = {ASSIGN,EXP,DIV,IDIV,MPY,SUB,ADD,

NOTEQ,EQUAL,GTR,LESS,GTREQ,LESSEQ,AND,OR}
<CALL> = •CFNCALL,PROCCALL>
<DIV> = {DIV,IDIV>
<GE> = {GTR,GTREQ}
<LE> = {LESS,LESSEQ}
<REL> = {NOTEQ,EQUAL,GTR,LESS,GTREQ,LESSEQ}
<SEL> = {ASELECT,SSELECT}
<UOP> = {NOT,MINUS}
<BOP>CC: 12 {?X}<bop>{?Y} => {?X<bop>?Y}
<BOP>EMPX: 12 *EMPTY*<bop>?X => *UNDEFINED*
<BOP>IFELSEX: 4 (IF ?P THEN ?S1

ELSE ?S2)<bop>?X => (IF ?P THEN
(?Sl)<bop>?X

ELSE

(?S2) <bop>?X)
<BOP>IFX: 4 (IF ?P THEN ?S1) <bop>?X => (IF ?P THEN (?S1) <bop>?X)
<BOP>UNX: 12 ?X<bop>*UNDEFINED* => *UNDEFINED*
<BOP>XEMP: 12 ?X<bop>*EMPTY* => *UNDEFINED*
<BOP>XIF: 3 ?X<bop>(IF ?P THEN ?S1) => (IF ?P THEN ?X<bop> (?S1))
<BOP>XIFELSE: 3 ?X<bop>(IF ?P THEN ?S1) => (IF ?P THEN
?X<bop>(?Sl))
<BOP>XUN: 12 *UNDEFINED<bop>?X => *UNDEFINED*
<DIV>OX: 9 0<div>?X =>0

129

130 An Exanple Set of Transformations

<DIV>AMB: 10 ?A<div>-?B => - (?A<div>?B)
<DIV>MAB: 10 -?A<div>?B => -(?A<div>?B)
<DIV>MAMB: 12 -?A<div>-?B => ?A<div>?B

<DIV>XO: 12 ?X<div>0 => *UNDEFINED*.

<DIV>X1: 12 ?X<div>l => ?X

<DIV>XX: 11 ?X<div>?X => 1

<REL>OS: 10 0<rel>?A-?B => ?A<rel>?B

<REL>1D: 9 l<rel>?A/?B => (IF ?B>0 TEIEN ?B<rel>?A
ELSE ?A<rel>?B)

<REL>AA: 10 ?A+{?C}<rel>?B+{?C} => ?A<rel>?B
<REL>DD: 9 ?A/{?C}<rel>?B/{?C} => (IF •C?C}>0 THEN ?A<rel>?B

ELSE ?B<rel>?A)
<REL>MM: 9 ?A*{?C}<rel>?B*{?C> => (IF {?C}>0 THEN ?A<rel>?B

ELSE ?B<rel>?A)
<REL>SO: 10 ?A-?B<rel>0 => ?A<rel>?B

<REL>SS: 10 ?A-{?C}<rel>?B-<?C} => ?A<rel>?B
<UOP>C: 12 <uop>{?X} => {<uop>?X}
<UOP>EMP: 12 <uop>*EMPTY* => *UNDEFINED*
<UOP>IF: 4 <uop>(IF ?P THEN ?S1) => (IF ?P THEN <uop> (?S1))
<UOP>IFELSE: 3 <uop>(IF ?P THEN ?S1

ELSE ?S2) => (IF ?P THEN <uop>(?Sl)
ELSE <uop>(?S2))

<UOP>UN: 12 <uop>*UNDEFINED* => *UNDEFINED*
ADDOX: 12 0+?X => ?X

ADDAMB: 10 ?A+-?B => ?A-?B

ADDDD: 5 ?A/?B+?C/?D => (?A*?D+?B*?C)/(?B*?D)
ADDDX: 3 ?A/?B+?C => (?A+?C*?B)/?B
ADDMAB: 9 -?A+?B => ?B-?A
ADDMAMB: 12 -?A+-?B => - (?A+?B)
ADDXO: 12 ?X+0 => ?X

ADDXD: 3 ?A+?B/?C => (?A*?C+?B)/?C
ANDFX: 11 FALSE(&?X => FALSE

ANDNOTXX: 11 ANDOO: 11 (?X!ANDTX: 12 TRUE&7X => ?X
ANDXF: 11 7X&FALSE => FALSE
ANDXNOTX: 11 7X&ANDX0R: 9 ?X<&(?X!?Y) => ?X
ANDXT

ANDXX

ANDXY

12 7X&TRUE => 7X

11 7X&7X => 7X

3 7X&7Y => (IF 7X THEN 7Y
ELSE FALSE)

ASSIGNID: 11 7X

ASSIGNXX: 11 7X

7X

BLOCKEMP: 12

BLOCKN<CALL>

BLOCKNASSIGN

BLOCKNBLOCKN

:=7X =>

:=7Y;
:=7Z => 7X:=7Z

BLOCKBLOCKN: 12 [[LOCAL 7X;
[[7S]]]] => [[LOCAL 7X;

75]]
[[LOCAL 7X;
♦EMPTY*]] => *EMPTY*

: 12 [[?X(7Y)]] => 7X(7Y)
: 12 [[7X:=7Y]] => (7X:=7Y)
: 12 [[[[?S]]]] => [[7S]]

BLOCKNEMP: 12 [[*EMPTY*]] => *EMPTY*
BLOCKNFOR: 12 [[FOR 7V:=7W STEP 7X TO 7Y DO

♦EMPTY*

SIMAL Transformations 131

?Z]] => (FOR ?V:=?W STEP ?X TO ?Y DO
?Z)

BLOCKNIF: 12 [[IF ?P THEN ?S1]] => (IF ?P THEN ?S1)
BLOCKNIFELSE: 12 [[IF ?P THEN ?S1

ELSE ?S2]] => (IF ?P THEN ?S1
ELSE ?S2)

BLOCKNREPEAT: 12 [[REPEAT ?X
UNTIL ?Y]] => (REPEAT ?X

UNTIL ?Y)
BLOCKNWHILE: 12 [[WHILE ?X DO ?Y]] => (WHILE ?X DO ?Y)
DIVDD: 5 (?A/?B)/(?C/?D) => (?A*?D)/(?B*?C)
DIVDX: 3 (?A/?B)/?C => ?A/(?B*?C)
DIVXD: 3 ?C/(?A/?B) => (?B*?C)/?A
EQUALMAMB: 12 -?A=-?B => ?A=?B
EQUALXX: 11 ?X=?X => -TRUE
EXPOO: 12 0"0 => *UNDEFINED*
EXPIX: 14 1-?X => 1
EXPAMB: 10 ?A'-?B => (1/?A'?B)
EXPXO: 9 ?X"0 => 1

EXPXl: 14 ?X^1 => ?X

EXPX2; 9 ?X"2 => ?X*?X

FNCALL: 12 LOG(O) => *UNDEFINED*
FOREMP; 11 FOR ?W:=?X STEP ?Y TO ?Z DO

♦EMPTY* => *EMPTY*

FORFUNROLL: 1 FOR ?V:=?W STEP ?X TO ?Y DO
?Z(?V) => [[IF ?W<=?Y THEN ?Z(?V:=?W);

FOR ?V;=?W+?X STEP ?X TO ?Y DO
?Z(?V)]]

FORREDUCE: 5 FOR ?V:=?W STEP ?X TO ?Y DO
?Z(?V*?Q) => FOR ?V:=?W*?Q STEP ?X*?Q TO ?Y*?Q

DO

?Z(?V)
FORTOWHILE: 2 FOR ?V:=?W STEP ?X TO ?Y DO

?Z => [[?V:=?W;
WHILE ?V-?Y*SIGN(?X)<=0 DO [[?Z;

?V:=?V+?X]]]]
FORUN: 12 FOR ?V:=?W STEP ?X TO ?Y DO

♦UNDEFINED* => *UNDEFINED*

FORXX: 11 FOR ?W:=?X STEP ?Y TO ?X DO
?Z => [[?W:=?X;

?Z]]
GTREQXX: 11 ?X>=?X => TRUE
GTREQXY: 10 ?X>=?Y => GIRMAMB: 12 -?A>-?B => ?A<?B
GTRXX: 11 ?X>?X => FALSE
GTRXY: 10 ?X>?Y => IFELSE<CALL>: 6 IF ?P mEN ?Y(?S1)

ELSE ?Y(?S2) => ?Y(IF ?P THEN ?S1
ELSE ?S2)

IFELSE<SEL>; 6 IF ?P THEN ?Y[?S1]
ELSE ?Y[?S2] => ?Y[IF ?P THEN ?S1

ELSE ?S2]
IFELSEEMPX; 12 IF ?P THEN *EMPTY*

132 An Example Set of Transformations

ELSE ?X => IF IFELSEF: 12 IF FALSE THEN ?S1
ELSE ?S2 => ?S2

IFELSEIFXIFX: 6 IF ?P THEN IF ?X THEN ?W

ELSE IF ?Y THEN ?W => IF IF ?P THEN ?X

ELSE ?Y THEN
?W

IFELSENOT: 12 IF ELSE ?S2 => IF ?P THEN ?S2
ELSE ?S1

IFELSET: 12 IF TRUE THEN ?S1

ELSE ?S2 => ?S1

IFELSEUNX: 10 IF ?P THEN *UNDEFINED*

ELSE ?X => ^UNDEFINED*

IFELSEXEMP: 12 IF ?P THEN ?S1

ELSE *EMPTY* => IF ?P THEN ?S1
IFELSEXFT: 12 IF ?X THEN FALSE

ELSE TRUE => IFELSEXTF; 12 IF ?X THEN TRUE
ELSE FALSE => ?X

IFELSEXUN: 10 IF ?P THEN ?X

ELSE *UNDEFINED* => *UNDEFINED*
IFELSEXX: 11 IF ?P THEN ?S1

ELSE ?S1 => ?Sl
IFEMP: 11 IF ?P THEN *EMPTY* => *EMPTY*
IFF: 12 IF FALSE THEN ?S1 => *EMPTY*

IFIF: 11 IF ?X THEN IF ?Y THEN ?S1 => IF ?X&?Y THEN ?S1

IFLESE2IFELSE: 11 IF ?X THEN IF ?Y THEN ?S1

ELSE ?S2

ELSE ?S2 => IF ?X&?Y THEN ?S1

ELSE ?S2
IFLESSEQFOR: 11 IF ?X<=?Y THEN FOR ?W:=?X STEP ?Z TO ?Y DO

?S1 => FOR ?W;=?X STEP ?Z TO

?Y DO

?S1

IFLESSFOR: 11 IF ?X<?Y THEN FOR ?W:=?X STEP ?Z TO ?Y DO

?S1 => FOR ?W:=?X STEP ?Z TO ?Y
DO

?S1

IFT: 12 IF TRUE THEN ?S1 => ?S1

IFUN: 10 IF ?P THEN *UNDEFINED* => *UNDEFINED*

LABELIFX: 10 ?X:

IF ?P THEN [[?S;
GOTO ?X]] => ?X:

LESSEQMAMB: 12 -?A<=-?B => ?A>=?B
LESSEQXX: 11 ?X<=?X => TRUE
LESSMAMB: 12 -?A<-?B => ?A>?B

LESSXX: 11 ?X<?X => FALSE
MINUSO: 14 -0 => 0

MINUSMINUSX: 12 --?X => ?X

MINUSSUBAMB: 9 -(?A--?B) => (?B-?A)
MPYOX: 11 0*?X => 0

MPYIX: 12 1*?X => ?X

MPYAMB: 10 ?A*-?B => -(?A*?B)

WHILE ?P DO ?S

SIMAL Transformations 133

MPYDD: 5 (?A<div>?B)*(?C<div>?D) => (?A*?C)<div>(?B*?D)
MPYDX: 3 (?A/?B)*?C => (?A*?C)/?B
MPYMAB: 10 -?A*?B => - (?A*?B)
MPYMAMB: 12 -?A*-?B => ?A*?B
MPYXO: 11 ?X*0 =>0

MPYXl: 12 ?X*1 => ?X

MPYXD: 3 ?C*(?A/?B) => (?A*?C)/?B
NOTEQMAMB: 12 -?A#-?B => ?A#?B
NOTEQUAL: 8 NOTEQXX: 11 ?X#?X => FALSE
NOTEQXY: 10 ?X#?Y => NOTE: 12 NOTGTR: 12 NOTGTREQ: 12 NOTLESS:
8 NOTLESSEQ: 8 NOTNOT; 12 NOTNOTEQ; 12 NOTT: 12 NOTX: 3

ELSE TRUE)
OR<GE>EQ: 9 ?A<ge>?B! ?A=?B => ?A>=?B
OR<LE>EQ: 9 ?A<le>?B! ?A=?B => ?A<=?B
ORAA: 11 (?X&OREQ<GE> : 9 ?A=?B! ?A<ge>?B => ?A>=?B
OREQ<LE>: 9 ?A=?B!?A<le>?B => ?A<=?B
ORFX: 12 FALSE!?X => ?X

ORNOTXX: 11 ORTX: 11 TRUE! ?X => TRUE

ORXAND: 9 ?X!(?X(&?Y) => ?X
ORXF: 12 ?X!FALSE => ?X

ORXNOTX; 11 ?X!ORXT: 11 ?X!TRUE => TRUE
ORXX: 11 ?X!?X => ?X

ORXY: 3 ?X!?Y => (IF ?X THEN TRUE
ELSE ?Y)

PARCONST: 12 ({?X}) => {?X}
PAREMP: 12 (*EMPTY*) => *EMPTY*
PARE: 12 (FALSE) => FALSE
PARPAR: 12 ((?X)) => (?X)
PART: 12 (TRUE) => TRUE
PARUN: 12 (*UNDEFINED*) => *UNDEFINED
REPEATEMP: 9 REPEAT *EMPTY*

UNTIL ?P => *EMPTY*

REPEATIFELSE: 1 REPEAT IF ?Q THEN ?R
ELSE ?S

UNTIL ?P => REPEAT [[WHILE ?Q DO ?R;
?S]]

UNTIL ?P

REPEATSUN: 10 REPEAT ?S
UNTIL *UNDEFINED* => *UNDEFINED*

REPEATUNP: 12 REPEAT *UNDEFINED*
UNTIL ?P => *UNDEFINED*

SEMICAW: 2 ?X:=?Y(?X);
WHILE ?P(?X) DO [[?Q(?X);

?X:=?Y(?X)]] => WHILE ?P(?X:=?Y(?X)) DO ?Q(?X)
SEMICBLOCKN: 12 [[?S1]];

?S2 => ?S1;
?S2

SEMICEMPX: 12 *EMPTY*;
?X => ?X

SEMICIFELSEX: 2 IF ?P THEN ?X

ELSE ?Y;
?S1 => IF ?P THEN [[?X;

134 An Example Set of Transformations

SEMICIFIF: 9 IF ?P THEN ?X;
IF

SEMICLEMPS: 12 ?X:

♦EMPTY*;

?S1]]
ELSE [[?Y;

?S1]]

ELSE ?Y

SEMICLXIF:

?S

?S =>

10 ?X:

?S;
IF

SEMICXEMP: 12 ?X;
♦EMPTY*

SEMICXIFELSE: :

?X:

?S

UNTIL ?Y

REPEAT

=> ?X

?S1;
IF ?P THEN ?X .

ELSE ?Y => IF ?P THEN [[?S1;
?X]]

ELSE [[?S1;
?Y]]

SEMICXWHILEX: 6 ?S;
WHILE

UNTIL ?X

SUBOX: 12 0-?X => -(?X)
SUBDD: 5 ?A/?B-?C/?D => (?A*?D-?B*?C)/(?B*?D)
SUBDX: 3 ?A/?B-?C => (?A-?C*?B)/?B
SUBMAB: 10 -?A-?B => -(?A+?B)
SUBMAMB: 11 -?A^-?B => ?B-?A

SUBXO: 12 ?X-0 => ?X

SUBXD: 3 ?A-?B/?C => (?A*?C-?B)/?C
SUBXX: 11 ?X-?X => O

WHILEEMP: 9 WHILE ?P DO *EMPTY* => *EMPTY*
WHILEF: 12 WHILE FALSE DO ?S => *EMPTY*

WHILEIFELSE: 1 WHILE ?P DO IF ?Q THEN ?R
ELSE ?S => WHILE ?P DO [[WHILE- ?Q DO

?R;
?S]]

WHILEPUN: 10 WHILE ?P DO *UNDEFINED* => *UNDEFINED*

WHILEUNS: 12 WHILE *UNDEFINED* DO ?S => *UNDEFINED*

VI. THE DEFINITION OF A COMPONENT INSERTION FILE

The definition of a packet of components to be added to a refinement

library is described in this appendix. Errors encountered while scanning

the packets in REFGEN refer to the file REFGEN.DEF given below.

VI.1. The File REFGEN.DEF

.DEFINE COMPONENTS

[Component Library Scanner]
[James Neighbors -- Last Modified December 29, 1982]

COMPONENTS = .LIST(COMSET $<1:?>COMPONENT) EOF .RESOLVE(COMPONENT) ;

COMPONENT = "COMPONENT:"
.LIST(COMLIST

NAME .MSG(.CR "Component " * .COL(30))
.DEE(COMPONENT)
.NODE(COMPONENT #1)

("(" .LIST(CPARAMS CPNAM $("," CPNAM)) ")" /
.EMPTY .NODE(CPARAMS)) CR

$("PURPOSE:" MLTEXT .NODE(PURPOSE #1) /
"lOSPEC:" MLTEXT .NODE(IOSPEC #1) /
"DECISION:" MLTEXT .NODE(DECISION #1))

$BLINE
.LIST(REFSET $<1:?>REFMNT))

"END" "COMPONENT" $<1:?>BLINE ;

CPNAM = "•" NAME .NODE(CPQUOTE #1) / NAME ;

REFMNT ="REFINEMENT:"
.LIST(REFLIST

REFNAME .MSG(.CR " Refinement " * .C0L(30))
.NODE(REFINEMENT #1) CR

$("BACKGROUND:" MLTEXT .NODE(BACKGROUND #1) /
"INSTANTIATION:"

.LIST(INSTANTIATION NAME $("," NAME))
CR /

"ASSERTIONS:" ASSERTIONSET /
"CONDITIONS:" CONDITIONSET /
"RESOURCES:" MLTEXT .NODE(RESOURCES #1) /
"ADJUSTMENTS:" MLTEXT .NODE(ADJUSTMENTS #1) /
"GLOBALS:" .LIST(GLOBALS NAME NAME)) CR /
"LABELS:" .LIST(LABELS NAME $("," NAME)) CR)

("CODE:" NAME "." NAME CR
.NODE(PARSE-DOMAIN #2 #1) .EXECUTE LINE
.NODE (CODE #3) .NODE(DOMAIN #2) /

135

136 The Definition of a Component Insertion
File

"INTERNAL:" NAME CR
ILIST LINE

•NODE(PARSE-INTERNAL #2 #1) .EXECUTE
•NODE(CODE #3) .NODE(DOMAIN #2) /

"DIRECTIVE:"
("FUNCTION"

("DEFINITION"
.NODE(DIRECTIVE DIRECTIVE-FN-DEFINE) /

"CALL" .NODE(DIRECTIVE DIRECTIVE-FN-CALL)) /
"DEFER" .NODE(DIRECTIVE DIRECTIVE-DEFER))

CR))
"END" "REFINEMENT" $<1:?>BLINE ;

CONDITIONSET = .LIST(CONDITIONS CONDITION $(WHITE CONDITION)) ;
ASSERTIONSET = .LIST(ASSERTIONS ASSERTION $(WHITE ASSERTION)) ;
CONDITION = NAME NAME "as" NAME .NODE(CONDITION #3 #2 #1) CR ;
ASSERTION = NAME NAME "as" NAME .NODE(ASSERTION #3 #2 #1) CR ;

ILIST = NAME / "(" .SEXPN(NAME $<?:?>(ILIST/CR)) ")" ;
REFNAME = REFNTOK .LITERAL ;
NAME = NAMETOK .LITERAL ;
MLTEXT = MLTOK .LITERAL ;

PREFIX : $.ANY(32!9) ;
WHITE : $<1:?>.ANY(32!9) ;
CR : PREFIX .ANY(13110) $.ANY(13!10) ;
EOF : .ANY(26) ;
REFNTOK : PREFIX .TOKEN $<1:?>(NAMECHR/.ANY(32)) .DELTOK ;
NAMETOK : PREFIX .TOKEN $<1:?>NAMECHR .DELTOK ;
NAMECHR ; .ANY('A:'Z!'a:'z!'O;'9!'*!'-!'_) ;
MLTOK : PREFIX .TOKEN LINE $(.ANY(32!9) LINE) .DELTOK ;
LINE : $.ANY(32:125!9) CR ;
BLINE : $.ANY(32) CR ;

.END

VII. THE DEFINITION OF TACTICS

This is the definition of the interpreter for the TACTICS subsystem. Any

errors in the TACTICS subsystem refer to the file TACTICS.DEF, which is

reproduced below. This description is from the file TACTIC.DEF. Any error-

encountered while using PPGEN to construct a prettyprinter refers to a rule

in this file.

VII.1. The File TACTIC.DEF

.DEFINE TACTCMD

[Taptics Parser Uses .EXECUTE to be an Interpreter]
[James Neighbors Last Modified -- December 12, 19812]
[NOTE: terrible use of TACTIC-*-KLUGE should be removed!]

TACTCMD = $((TACDEF / TACLIS / TACDEL /
"LOAD" NAME .NODE(TACTIC-LOAD #1) /
"HELP" .NODE(TACTIC-HELP))

tl . M

.EXECUTE)
"EXIT" ;

TACDEF = "DEFINE" (NAME ("." NAMEf "=" RULE
.NODE(TACTIC-DEFINE #3 #2 #1) /

.EMPTY "=" RULE
.NODE(TACTIC-DEFINE #2 (TACTIC-BLANK-KLUGE) #1)) /

.EMPTY "=" RULE
.NODE(TACTIC-DEFINE (TACTIC-BLANK-KLUGE)

(TACTIC-BLANK-KLUGE) #1)) ;
TACDEL = "DELETE" (NAME ("." NAME .NODE(TACTIC-DELETE #2 #1) /

.EMPTY
.NODE(TACTIC-DELETE #1 (TACTIC-BLANK-KLUGE))) /

.EMPTY
.NODE(TACTIC-DELETE (TACTIC-BLANK-KLUGE)

(TACTIC-BLANK-KLUGE))) ;
TACLIS = "LIST" (NAME ("." NAME (">" NAME .NODE(TACTIC-LIST #3 #2 #1) /

.EMPTY

.NODE(TACTIC-LIST #2 #1 (TACTIC-BLANK-KLUGE))) /
•EMPTY

(">" NAME
.NODE(TACTIC-LIST #2 (TACTIC-BLANK-KLUGE) #1) /

.EMPTY
.NODE(TACTIC-LIST #1 (TACTIC-BLANK-KLUGE)

(TACTIC-BLANK-KLUGE)))) /
.EMPTY (">" NAME

137

138 The Definition of Tactics

•NODE(TACTIC-LIST (TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE) #1) /

.EMPTY

.NODE(TACTIC-LIST (TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE)
(TACTIC-BLANK-KLUGE)))) ;

RULE

RCMD

.LIST(PROGN RCMD $("/VRCMD)) .NODE (QUOTE #1)

STRING

"COMPONENT

"PURPOSE"
"lOSPEC"
"DECISION"
"LOC"

.NODE(TACTIC-MESSAGE #1) /

.NODE(TACTIC-RPCFIELD COMPONENT) /

.NODE(TACTIC-RPCFIELD PURPOSE) /

.NODE(TACTIC-RPCFIELD lOSPEC) /

.NODE(TACTIC-RPCFIELD DECISION) /
(NUMBER .NODE(TFMREF-LOC #1) /

.EMPTY .NODE(TFMREF-LOC (TACTIC-BLANK-KLUGE))
"USE" ("DEFAULT" (NAME

.EMPTY

.NODE (REFINE-USE-NUM 1 #1) /

.NODE(REFINE-USE-NUM 1
(TACTIC-BLANK-KLUGE))) /
.NODE(REFINE-USE-NUM #2 #1)
.NODE(REFINE-USE-NUM #1
(TACTIC-BLANK-KLUGE)))) /
.NODE(REFINE-TRY-NUM 1 #1)
.NODE(REFINE-TRY-NUM 1
(TACTIC-BLANK-KLUGE))) /
.NODE(REFINE-TRY-NUM #2 #1)
.NODE(REFINE-TRY-NUM #1
(TACTIC-BLANK-KLUGE)))) /

RCMND .NODE(TACTIC-REFSCAN
(TACTIC-ALL-KLUGE) #2 #1) /

NUMBER RPRED "," RCMND .NODE(TACTIC-REFSCAN #3
.NODE(TACTIC-CALL #1) ;

NUMBER

) /

/

"TRY" ("DEFAULT"

(NAME
.EMPTY

(NAME
.EMPTY

(NAME
.EMPTY

/

NUMBER /

"[" ("ALL" RPRED

NAME

#2 #1)) "]" /

RPRED = "<" .LIST(AND SPRED $ ("&" SPRED))
RCMND = .LIST(PROGN SCMD $("," SCMD)) ;

/ .EMPTY .NODE(OR T)

SPRED = REFFLD ("IS" NAME .NODE(EQ #2 #1) / .EMPTY) /
"NO" REFFLD .NODE(NOT #1) /
"AVAILABLE" ("FUNCTION" .NODE(REFINE-FUNCTION-ALREADY?) /

"RESOURCE" .NODE(TACTIC-RRCHECK)) /
NAME "INSTANTIATION" .NODE(TACTIC-INSTANTIATION-AVAILABLE? #1)

SCMD = STRING

"REFINEMENT"
"CONDITIONS"
"BACKGROUND"
"DIRECTIVE"
"INSTANTIATION"
"ASSERTIONS"
"RESOURCES"
"ADJUSTMENTS"
"DOMAIN"

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

.NODE(TACTIC-

MESSAGE #1) /
RPRFIELD REFINEMENT) /
RPRFIELD CONDITIONS) /
RPRFIELD BACKGROUND) /
RPRFIELD DIRECTIVE) /
RPRFIELD INSTANTIATION)
RPRFIELD ASSERTIONS) /
RPRFIELD RESOURCES) /
RPRFIELD ADJUSTMENTS) /
RPRFIELD DOMAIN) /

/

I

The File TACTIC.DEE 139

"USE" (NAME .NODE(REFINE-USE #1) /
.EMPTY .NODE(REFINE-USE (TACTIC-BLANK-KLUGE))) /

"TRY" (NAME .NODE(REFINE-TRY #1) /
.EMPTY .NODE(REFINE-TRY (TACTIC-BLANK-KLUGE))) ;

REFFLD = "REFINEMENT" .NODE(TACTIC-RRFIELD REFINEMENT) /
"CONDITIONS" .NODE(TACTIC-RRFIELD CONDITIONS) /
"BACKGROUND" .NODE(TACTIC-RRFIELD BACKGROUND) /
"DIRECTIVE" .NODE(TACTIC-RRFIELD DIRECTIVE) /.
"INSTANTIATION" .NODE (TACTIC-RRFIELD INSTANTIATION) /
"ASSERTIONS" .NODE (TACTIC-RRFIELD ASSERTIONS) /
"RESOURCES" .NODE(TACTIC-RRFIELD RESOURCES) /
"ADJUSTMENTS" .NODE (TACTIC-RRFIELD ADJUSTMENTS) /
"DOMAIN" .NODE (TACTIC-RRFIELD DOMAIN) ;

NAME = NAMTOK .NODE(INTERN (QUOTE *)) ;
STRING = STRTOK .LITERAL ;

NUMBER = NUMTOK .LITERAL ;

PREFIX : $.ANY(32!10!13!9) ;
NAMTOK ; PREFIX .TOKEN

.ANY('a:'z!'A:'Z!'*) $.ANY('a:'z!'A:'Z!'*!'O:'9) .DELTOK;
SIRTOK : PREFIX .ANYC") .TOKEN $.ANYBUT("') .DELTOK .ANY('") ;
NUMTOK : PREFIX .TOKEN .ANY('0:'9) $<?:5>.ANY('0:'9) .DELTOK ;

.END

140 The Definition of Tactics

I

I

VIII. DRACO TERMINAL DEFINITION

Draco can use a terminal's special features if the terminal type is

defined and stored in a file of kind <termtype>,TRM. Therefore, if one

wants to define a new terminal type for Draco, he must include the new

terminal type in the SET command of DRACO_MENU and write a LISP definition

of the terminal in a file of kind <termtype>.TEIM.

As an example, we provide the definition for the ZENITH-HEATH terminal in

its ANSI configuration.

141

Draco Terminal Definition 143

(DE TERM-CLEAR NIL (TERM-MSG 27. " [2J"))

(DE TERM-CUP (LINE COL) (TERM-MSG 27. "[" LINE COL "H"))

(DE TERM-ERASE-LINE NIL (TERM-MSG 27. " [2K"))

(DE TERM-INIT NIL (TERM-SM 1.))

(DF TERM-INVERSE (S)
(TERM-MSG 27. "[7m")
(EVAL (CONS 'TERM-MSG S))
(TERM-MSG 27. "[Om"))

(DF TERM-MSG (L)
(PROG (S)
LOOP (SETQ S (CAR L))

(COND [(NULL L) (RETURN)]
[(STRINGP S)

(MAPC (FUNCTION OUTCHR) (AEXPLODEC S))]
[(NUMBERP S) (TYO S)]
[(LITATOM S)

(COND [(EQ S T) (TERPRI)]
[(CONSP (GET S 'VALUE))

(MAPC (FUNCTION'OUTCHR)
(AEXPLODEC (EVAL S)))]

[(MAPC (FUNCTION OUTCHR) (AEXPLODEC S))])]
[(CONSP S)

(COND [(EQ (CAR S) 'E) (EVAL (CADR S))]
[(MAPC (FUNCTION OUTCHR)

(AEXPLODEC (EVAL S)))])])
(SETQ L (CDR L))
(GO LOOP)))

(DE TERM-PRCP NIL (TERM-MSG 27. "[u"))

(DE TERM-PSCP NIL (TERM-MSG 27. " [s"))

(DE TERM-RM (M) (TERM-MSG 27. "[>" M "1"))

(DE TERM-SM (M) (TERM-MSG 27. "[>" M "h"))

(DF TERM-STATUS (S)
(TERM-PSCP)
(TERM-CUP 25. 0.)
(TERM-ERASE-LINE)
(EVAL (CONS 'TERM-MSG S))
(TERM-PRCP))

(DE TERM-TERM NIL (TERM-RM 1.))

(DF TERM-TITLE (S) (TERM-CLEAR) (EVAL (CONS 'TERM-MSGS)))

144 Draco Terminal Definiti

(NOCOMPILE
(DEFV TERMFNS (TERM-CLEAR TERM-CUP TERM-ERASE-LINE TERM-INIT

TERM-INVERSE TERM-MSG TERM-PRC? TERM-PSCP
TERM-RM TERM-SM TERM-STATUS TERM-TERM TERM-TITLE))

on

IX. TACTICS PRETTYPRINTER DEFINITION

The definition of the tactics prettyprinter is as follows

.PRETTYPRINTER TACTICS
[PrettyPrinter for Internal Domain of TACTICS]
[James Neighbors -- Last Modified August 26, 1982]

TACTICS = .LISTPRINT(.SLM) .SLM ;
TACTIC = #2 ;
CMDGRP = .LISTPRINT(.SLM) .SLM 10 13 ;
CMD = "DEFINE " #3 #1 " = " -LM #2 ;
PROGN = .LISTPRINTC'," .SLM(40)) ;
TACTIC-RPCFIELD = #1 ;
TFMREF-LOC = "LOC" .LISTPRINT(" ") ;
REFINE-USE-NUM = "USE " .LISTPRINT(" ") ;
REFINE-TRY-NUM = "TRY " .LISTPRINT(" ") ;
REFINE-USE = "USE " .LISTPRINT(" ") ;
REFINE-TRY = "TRY " .LISTPRINT(" ") ;
TACTIC-CALL = #1 ;
TACTIC-MESSAGE = 34 #1 34 ;
TACTIC-BLANK-KLUGE = ;
TACTIC-ALL-KLUGE = "ALL" ;
TACTIC-REFSCAN = "[" .LM #1 #2 #3 "]" ;
AND = "<" .LISTPRINTC & " .SLM(40)) ">" ;
OR = ;

EQ = #1 " IS " #2 ;
TACTIC-RRFIELD = #1 ;

NOT = "NO " #1 ;
REFINE-FUNCTION-ALREADY? = "AVAILABLE FUNCTION" ;
TACTIC-RRCHECK = "AVAILABLE RESOURCE" ;
TACTIC-INSTANTIATION-AVAILABLE? = #1 " INSTANTIATION" ;
TACTIC-RPRFIELD = #1 ;
INTERN = #1 ;
QUOTE = #1 ;

.END

145

146 Tactics Prettyprinter Definition

X. DRACO ERROR, NOTE, AND SYSERR MESSAGES

There are three basic kinds of messages from Draco: ERR:, NOTE:, and

SYSERR:. An ERR: is an error condition caused by a domain builder or, user

and is handled by Draco. A NOTE: is a message given only for the user's

information; no problem or extraordinary event has occurred, but the user's

environment has been modified in some way. For exan^jle, a NOTE: is used

during the creation of a file. A SYSERR: is a disasterous error in the

Draco mechanism itself, and is caught by an internal consistency check

within Draco. The user should never save anything after a SYSERR: unless

directed that it is all right to do so.

147

I

I INDEX

•18

" (in prettyprinter) 35, 37

* (in .node) 21, 22, 25
* (in prettyprinter) 35
#> (in TFMREF) 73

$ 17
$<n;in>A 18

18

* 21

* (signifies a line processed) 30, 42, 67
* in .MSG in parser 27
♦OMEGA* 25

... (from TFMREF) 73, 74

.ANY 18

•ANYBUT 18

.ASSUME in parser 27

.CHARPRINT in prettyprinter 42

.CHART 25

.CHART constructor in parser 24

.CHARTPRINT in prettyprinter 39

.COL 37

.COL in .MSG in parser 27

.CONTEXT-POP in parser 27

.CONTEXT-PUSH in parser 26

.CR in .MSG in parser 27

.DEE (file extension) 30, 67, 117

.DEF in parser 26

.DEFINE 11

.DELTOK 21, 25

.DPP (file extension) 42

.EMPTY 17

.ERROR in parser 17

.EXECUTE in parser 28

.FAIL in parser 17

.INT (file extension) 67

.LIST in parser 28

.LISTPRINT in prettypripter 42

.LITCHAR 25

.LITERAL 21, 25

.LM 35, 37

.MSG in parser 27

.NODE 21, 22, 25

.PAR (file extension) 30
149

•PPD (file extension) 42, 127
•RESOLVE in parser 26
•RETRACT in parser 26
•SEXPN in parser 28
• SLM 36, 37
•TLB (file extension) 52
•TOKEN 21, 25
•TREE 25

•TREE constructor in parser 23
•TREEPRINT in prettyprinter 39
•USE in parser 26

/ 11, 17
/ precedence 18

18

12

<name> 10

<parse-rule> 11, 17, 19, 21, 25, 28
<token-rule> 11, 12, 17, 18, 19, 25, 28

? <naTne> was not specified (in menu) 5
?Ambiguous Command (in menu) 5
7CLASS 87

?Command Unconfirmed (in menu) 5
?Inconqplete Command (in menu) 5
7TRANS 87

7Unknown Command (in menu) 5

Alternation 17, 29
Application code 48, 50, 68, 86
APPLY 86

•ASCII 12, 18, 37
Assertions 2

Assignment stmt example 21, 39

Backtrack 17

Backtracking 13
BNF 9

Carriage return (in menu) 4
Character class 18

Chart construction in parser 24
Charts prettyprinting 39
Class 34, 47, 48, 49, 51
Conponent 2 •
Conditions 2 B
Consistency in parsers 26

Delete (in menu)
150

I

I

I

DOMAIN 71, 72
Domain Analyst 2, 9, 45
Domain Designer 2
Domain Language 2, 9, 33
Draco 1, 3
Draco BNF 9, 19, 31, 121
DRACO.INI file 6

Encapsulation 17
End of File (EOF) 18
ERASEPVARS 49

ERR: 147

Error block 17
Error block in parsers 15
Error forced in parser 17
Error recovery in parsing 15
ERRORS 147

Escape (in menu) 4
EXAM 3, 71
EXIT 75

External Form 9, 17, 19, 117

Fail a parse rule 17

HARDCOPY 74

HELP 5, 75

INFO 74

Initialization files 6
INSTANCE 71, 72
Internal form 19, 20, 117
Internal form constructors 19, 25
Internal tree 19
Iteration 11, 17

Kleene * 11

Kleene + 11

Left recursion (in Draco BNF) 28
Left-associative 22
Lhs 48
Linefeed (in menu) 4
Literal data (in .node) 21, 25
LL(1) parsing 14
LOCALE 71, 73
LR(k) parsing 14

Menu control commands 4
Menu interaction 4

META II 9
Metarules 45, 86

151

NOTE: 147

Number (in prettyprinter) 37

PARGEN 28, 67
PARGEN.DEF (Draco BNF def) 121
PARSE 2. 67, 71
Parse rule node limit 20

Parser (LL(1) class produced) 28
Parser error blocks 15
Parser generator 2
Parser optimization 121
Parser text messages 27
Parser, node construction restrictions 20
PARSER.DEF (Draco BNF def) 31
Parsing error recovery 15
Pattern variable 48

PP 74

PPGEN 33, 125
PPGEN.DEF 34, 125
Precedence (of operators) 22
PREFIX (token rule) 12
Prefix internal form 19, 33, 38, 45, 47, 48
Prefix keyword 19, 35, 47, 68, 87
Prettyprinter 2, 33, 34, 51, 125, 127
Prettyprinter whitespace 36
PVARS 48, 49

REF 74

REFGEN 57

Refinement 2, 71, 95
Rhs 48

Right-associative 22
Rubout (in menu) 5

SAVE 75

Sequence 17, 30
Sequence precedence 18
Software con^jonent 2, 71
Stack 19, 25
String in .MSG in parser 27
SUFFIX (token rule) 12
SUGGEST 85

Suggestion of transformation 68
Syntax 9, 17, 117
Syntax error forced in parser 17
SYSERR: 147
System Specialist 2, 71

TACTICS PRETTYPRINTER 145
Terminal Characteristics 6

TERMINAL DEFINITION 141

TFM 74

152

TFMREF 71, 76
Token buffer 17, 19, 21
Token, errors in 17
TRANS 48, 49
Transform 2, 68, 71, 86
Transformation 2, 45, 71, 85, 129
Transformation (suggestion of) 68
Transformation catalog 51, 129
Transformation insertion file 47, 49
Transformation special markers 47
Tree construction in parser 23
Trees prettyprinting 39

UNLOAD-TRANSFORM 87

XFMGEN 45, 52, 129

[[A]B] 17

{} 10

1 10, 17
I precedence 18

153

S861IZAON

