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SMALL BANDWIDTH ASYMPTOTICS
FOR DENSITY-WEIGHTED
AVERAGE DERIVATIVES

MATIAS D. CATTANEO
University of Michigan

RICHARD K. CRUMP
Federal Reserve Bank of New York

MICHAEL JANSSON
UC Berkeley and CREATES

This paper proposes (apparently) novel standard error formulas for the density-
weighted average derivative estimator of Powell, Stock, and Stoker (Econometrica
57, 1989). Asymptotic validity of the standard errors developed in this paper does
not require the use of higher-order kernels, and the standard errors are “robust” in
the sense that they accommodate (but do not require) bandwidths that are smaller
than those for which conventional standard errors are valid. Moreover, the re-
sults of a Monte Carlo experiment suggest that the finite sample coverage rates of
confidence intervals constructed using the standard errors developed in this paper
coincide (approximately) with the nominal coverage rates across a nontrivial range
of bandwidths.

1. INTRODUCTION

Semiparametric estimators employing nonparametric kernel estimators of un-
known nuisance functions have been proposed for a variety of microeconomet-
ric estimands. Under suitable application-specific regularity conditions, many
such estimators enjoy the properties of

√
n-consistency (where n is the sample

size) and asymptotic normality, the variance of the limiting distribution being
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consistently estimable and invariant with respect to the kernel and bandwidth of
the nonparametric estimator.

Achieving these properties often requires a delicate choice of the kernel and
bandwidth of the nonparametric estimator. A prime example, and the one we
focus on in this paper, is provided by the density-weighted average derivative
estimator of Powell, Stock, and Stoker (1989, henceforth PSS). The validity of
inference procedures based on this estimator and the standard errors proposed by
PSS require that the bandwidth and the order of the kernel be chosen in a way
that meets two distinct requirements. On the one hand, the bias of the estimator
must be negligible relative to its standard deviation, a requirement that can be
met by making the bandwidth “small enough” and the order of the kernel “large
enough.” At the same time, the bandwidth needs to be large enough to ensure that
the estimator is asymptotically linear (i.e., asymptotically equivalent to a sample
average).1

The range of bandwidths that are simultaneously small enough to meet the bias
requirement and large enough to meet the asymptotic linearity requirement is of-
ten quite narrow,2 suggesting that in samples of moderate size the inference pro-
cedures exhibit a certain “nonrobustness” with respect to the bandwidth. Although
the tension between the lower and upper bounds on the bandwidth imposed by the
bias and asymptotic linearity requirements can be eased by increasing the order
of the kernel, estimators employing higher-order kernels are commonly believed
to have poor small-sample properties (e.g., Robinson, 1988, p. 938; Hristache,
Juditsky, and Spokoiny, 2001, p. 597). It would therefore appear to be of interest
to explore alternative ways of achieving “robustness” with respect to the band-
width.

In an attempt to achieve such robustness, this paper explores the consequences
of employing bandwidth sequences that are not large enough for asymptotic lin-
earity to hold (on the part of PSS’s estimator). It turns out that if the assumption on
the bandwidth that implies asymptotic linearity is violated, then PSS’s standard
errors exhibit an upward bias that renders the associated inference procedures
conservative.3 In contrast, we show that valid (nonconservative) inference can be
based on PSS’s estimator provided it is combined with a robust standard error that
accommodates (but does not require) the failure of asymptotic linearity. Specifi-
cally, this paper proposes an apparently novel standard error (matrix) formula for
PSS’s estimator, and we give conditions under which asymptotic standard nor-
mality holds for PSS’s estimator when centered at the truth and standardized by
the robust standard error matrix proposed in this paper.

As do existing procedures, the procedure developed in this paper requires that
the bandwidth be large enough for certain quantities to be asymptotically negli-
gible, but the lower bound in this paper is considerably weaker than the bounds
that have appeared elsewhere in the literature. In addition to (possibly) increas-
ing our confidence in the standard normal approximation upon which inference
procedures are based, the weakening of the lower bound on the bandwidth also
has potentially interesting implications for our ability to control the bias of the
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estimator. Indeed, our results involve a weakening of the lower bound on the or-
der of the kernel that enables us to provide a formal justification for the use of
procedures that avoid the use of higher-order kernels altogether.

To achieve our goals, we first characterize the asymptotic distribution of PSS’s
estimator under conditions on the kernel and the bandwidth that are weaker than
those entertained in the existing literature. Specifically, we show that PSS’s es-
timator is asymptotically normal (with correct centering) across a wide range
of bandwidths, with the rate of convergence and the variance of the limiting
distribution depending on the bandwidth (and, in case of the variance, also the
kernel) in those cases where the bandwidth violates the conditions imposed by
PSS. Although a range of possibilities (indexed by the limiting behavior of the
bandwidth) arise on the part of the asymptotic distribution of the estimator, a
natural unification of the results is available: The estimation error premultiplied
by the inverse of a square root of its variance matrix is asymptotically standard
normal in all of the cases considered.

In addition to having the intuitively appealing feature that it captures (at least
partially) the dependence of the distribution theory on some specifics of the kernel
and the bandwidth, the unification is constructive insofar as it suggests how valid
standard errors can be obtained, and we use it to obtain valid standard errors
in three distinct ways. The first construction is conceptually straightforward and
proceeds by replacing the unknown parameters in an asymptotic expansion of
the variance by consistent analog estimators. A potential disadvantage of this ap-
proach is that a separate bandwidth parameter is needed to ensure consistency
of the analog estimators employed. Our second construction circumvents this
potential problem and exploits the intriguing fact that although PSS’s variance
estimator is inconsistent in general, a simple downward adjustment of this esti-
mator produces standard errors that are valid in all of the cases considered. Finally,
our third construction achieves validity by implementing PSS’s variance estima-
tor with a bandwidth given by a known, constant multiple of the bandwidth used
when constructing the estimator of the parameter of interest.

In an obvious way, our work can be viewed as a continuation of the semi-
nal work by PSS. As suggested by the title, our main contribution is to accom-
modate small values of the bandwidth parameter. Other work closely related to
the present work is Robinson (1995) and Nishiyama and Robinson (2000, 2001,
2005). Our first-order asymptotic analysis is conceptually distinct from (and valid
under weaker assumptions on the bandwidth and the kernel order than) the higher-
order asymptotic theory developed in those papers, but our motivation is similar,
and our proofs are facilitated by the fact that we are able to make heavy use of
some of the technical results obtained in Robinson (1995) and Nishiyama and
Robinsons (2000). Furthermore, and not unexpectedly in view of the fact that
our analysis is based on a characterization of the joint limiting distribution of the
terms in a stochastic expansion of PSS’s estimator, it turns out that the results we
obtain are in qualitative agreement with some of the findings of Nishiyama and
Robinson (2000, 2001, 2005). Finally, the approach taken in this paper is similar
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in spirit to that of Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang
(2002a, 2002b, 2005), a common feature being that the effect of a nonparametric
ingredient is accounted for by considering sequences of tuning parameters cor-
responding to undersmoothing that is sufficiently severe to affect the first-order
asymptotic properties of the statistic of interest.4

The next section lists assumptions and presents our theoretical results. Section 3
reports Monte Carlo evidence, while Section 4 offers concluding remarks. Proofs
of the theoretical results are collected in an Appendix.

2. ASSUMPTIONS AND RESULTS

2.1. Assumptions

Suppose zi = (
yi , x ′

i

)′
(i = 1, . . . ,n) are independent and identically distributed

(i.i.d.) copies of a vector z = (
y, x ′)′ , where y ∈ R is a dependent variable and

x ∈ Rd is a continuous explanatory variable with density f (·) . As pointed out
by PSS, an interesting functional of the regression function g (x) = E(y|x) is its
density-weighted average derivative vector, which is defined as5

θ = E
[

f (x)
∂

∂x
g (x)

]
. (1)

The following assumption, adapted from Nishiyama and Robinsons (2000), en-
sures that θ is well defined and imposes additional regularity conditions that will
facilitate the subsequent development of theoretical results.

Assumption 1.

(a) E
(

y4
)

< ∞.

(b) E [V(y|x) f (x)] > 0 and V [∂e (x)/∂x − y∂ f (x)/∂x] is positive definite,
where e (x) = f (x)g (x) .

(c) f is (Q +1) times differentiable, and f and its first (Q +1) derivatives are
bounded, for some Q ≥ 2.

(d) g is twice differentiable, and e and its first two derivatives are bounded.

(e) v is differentiable, and v f and its first derivative are bounded, where v (x) =
E
(

y2|x) .

(f) lim‖x‖→∞ [ f (x)+|e (x)|] = 0, where ‖·‖ is the Euclidean norm.

Under Assumption 1, it follows from integration by parts that the density-
weighted average derivative vector in (1) admits the representation

θ = −2E

[
y

∂

∂x
f (x)

]
,

PSS’s analog estimator of which is given by

θ̂n = −2n−1
n

∑
i=1

yi
∂

∂x
f̂n,i (xi ) ,
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where f̂n,i (·) is a “leave one out” kernel density estimator defined as

f̂n,i (x) = (n −1)−1
n

∑
j=1
j 
=i

h−d
n K

(
x − xj

hn

)

for some kernel K : Rd → R and some positive (bandwidth) sequence hn .
On the part of the kernel, we make the following assumption.

Assumption 2.

(a) K is even.

(b) K is differentiable, and K and its first derivative are bounded.

(c)
∫
Rd K̇ (u) K̇ (u)′ du is positive definite, where K̇ (u) = ∂K (u)/∂u.

(d) For some P ≥ 2,∫
Rd

|K (u)|
(

1+‖u‖P
)

du +
∫
Rd

∥∥K̇ (u)
∥∥(1+‖u‖2

)
du < ∞

and∫
Rd

ul1
1 · · ·uld

d K (u)du =
{

1, if l1 = ·· · = ld = 0,

0, if (l1, . . . , ld)′ ∈ Zd+ and l1 +·· ·+ ld < P.

When P > 2, Assumption 2 implies that K is a higher-order kernel. The use
of such kernels is standard in the existing literature on density-weighted average
derivatives (e.g., PSS, Powell and Stoker (1996), Robinson (1995), Nishiyama
and Robinson (2000, 2001, 2005), and Newey, Hsieh, and Robins (2004)). Among
other things, this paper addresses the question of whether valid inference on θ can
be based on θ̂n even if P = 2 (e.g., if a Gaussian kernel is employed).

2.2. Distribution Theory

To motivate the question of whether the use of a higher-order kernel can be
avoided, recall (e.g., from Theorem 3.3 of PSS) that if Assumptions 1 and 2 hold
and if nh2min(P,Q)

n → 0 and nhd+2
n → ∞, then

√
n
(
θ̂n − θ

)
→d N (0,�), (2)

where

� = E[L (z) L (z)′
]
, L (z) = 2

[
∂

∂x
e (x)− y

∂

∂x
f (x)− θ

]
.

(Here and elsewhere in the paper, limits are taken as n → ∞ unless otherwise
noted.) In the statement of this result, the conditions nh2P

n → 0 and nhd+2
n → ∞

are minimal in the sense that (2) can fail if one (or both) of the assumptions is (are)
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relaxed.6 Because a necessary condition for existence of a bandwidth sequence hn

compatible with both assumptions is that P > (d +2)/2, it may appear that the
use of a higher-order kernel is unavoidable unless d = 1.

Under Assumptions 1 and 2, the assumptions hn → 0 and nhd+2
n → ∞ imply

that

nV
(
θ̂n

)
= � +o (1) .

Therefore, an alternative statement of PSS’s Theorem 3.3 is the following: If
Assumptions 1 and 2 hold and if nh2min(P,Q)

n → 0 and nhd+2
n → ∞, then

V

(
θ̂n

)−1/2(
θ̂n − θ

)
→d N (0, Id) . (3)

As it turns out, the conditions on hn can be weakened considerably without inval-
idating this convergence result.

THEOREM 1. If Assumptions 1 and 2 hold and if min(nhd+2
n ,1)nh2min(P,Q)

n

→ 0 and n2hd
n → ∞, then (3) is true.

The conditions of this theorem weaken those of PSS in two respects. First, the
condition n2hd

n → ∞ is considerably weaker than the condition nhd+2
n → ∞.

As further explained below, this relaxation of the lower bound on the bandwidth
is possible because our method of proof accommodates cases where θ̂n is not
asymptotically equivalent to its Hájek projection. Second, due to the presence of
the additional term min

(
nhd+2

n ,1
)
, our “bias” condition is weaker than the condi-

tion nh2min(P,Q)
n → 0 of PSS. As usual, we need the bias of the estimator to be of

smaller order of magnitude than the standard deviation. The term min
(
nhd+2

n ,1
)

in the bias condition reflects the fact (further discussed below) that the rate of
convergence of the estimator is slower than

√
n when nhd+2

n → 0.
Partly due to the presence of min

(
nhd+2

n ,1
)

in the bias condition, Theorem 1
accommodates smaller values of P than do the results of PSS.7 Indeed, for any
value of d there exists a bandwidth sequence hn compatible with the assumptions
of Theorem 1 even if P = 2.8 In other words, Theorem 1 suggests that the use
of higher-order kernels can be avoided irrespective of the value of d. As will be
shown below, this positive message remains true also when studentized statistics

are considered (i.e., when V
(
θ̂n

)
is replaced by a suitable estimator in (3)).

As in PSS, the starting point for our analysis is the variable U -statistic
(i.e., U -statistic with an n-dependent kernel) representation of θ̂n ,

θ̂n =
(

n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

U
(
zi , zj ; hn

)
,

U
(
zi , zj ; h

)= −h−(d+1) K̇

(
xi − xj

h

)(
yi − yj

)
.
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The Hoeffding decomposition of θ̂n is

θ̂n = θn + L̄n + W̄n,

where

θn = θ (hn) , L̄n = n−1
n

∑
i=1

L (zi ; hn) ,

W̄n =
(

n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

W
(
zi , zj ; hn

)
,

with

θ (h) = E[U (
zi , zj ; h

)]
, L (zi ; h) = 2

[
E
(
U
(
zi , zj ; h

) |zi
)− θ (h)

]
,

W
(
zi , zj ; h

)= U
(
zi , zj ; h

)− 1

2

[
L (zi ; h)+ L

(
zj ; h

)]− θ (h) .

The projection theorem for variable U -statistics (e.g., Lem. 3.1 of PSS) gives
sufficient conditions for W̄n, the difference between θ̂n and its Hájek projection,
to be asymptotically negligible in the sense that

√
nW̄n →p 0. To handle cases

where this projection theorem provides insufficient technical machinery to estab-
lish asymptotic normality of θ̂n (because

√
nW̄n �p 0), the proof of Theorem 1

obtains a characterization of the joint limiting distribution of L̄n and W̄n . Specif-
ically, it is shown in the Appendix that if Assumptions 1 and 2 hold and if
hn → 0 and n2hd

n → ∞, then

⎛
⎜⎜⎜⎝

√
nL̄n√(

n
2

)
hd+2

n W̄n

⎞
⎟⎟⎟⎠→d N

[(
0
0

)
,

(
� 0
0 �

)]
(4)

where

� = 2E [V(y|x) f (x)]
∫
Rd

K̇ (u) K̇ (u)′ du.

The proof of (4) employs a central limit theorem for sample averages and degen-
erate U -statistics due to Eubank and Wang (1999). To verify the conditions of
this central limit theorem, we impose the lower bound n2hd

n → ∞ on the band-
width sequence and utilize some technical lemmas due to Robinson (1995) and
Nishiyama and Robinsons (2000). Because the condition n2hd

n → ∞ is consider-
ably weaker than the condition nhd+2

n → ∞ needed for the result
√

nW̄n →p 0,
we can accommodate a significantly wider range of bandwidths by basing the
distribution theory on (4) rather than a result that requires

√
nW̄n →p 0. Indeed,

because n2hd+2
n can fail to diverge (and may even vanish) without violating the
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condition n2hd
n → ∞, distribution theory based on (4) even covers certain cases

where W̄n →p 0 fails to hold.
The formulation (3) is by no means without antecedents. Indeed, in his seminal

paper on U -statistics Hoeffding (1948, p. 307) argues that in many applications
it is desirable to standardize a U -statistic by its actual variance (rather than its
asymptotic variance, namely the variance of its Hájek projection). Jing and Wang
(2003, Thm. 1.1) can be used to show that for U -statistics whose kernels do
not vary with the sample size, no asymptotic refinements are achieved by stan-
dardizing by the actual variance. In other words, the one-term Edgeworth expan-
sions for a U -statistic standardized by its actual variance and asymptotic variance,
respectively, coincide. Theorem 1 demonstrates by example that the situation can
be very different for a U -statistic whose kernel does vary with the sample size.9

In view of (4), the situations covered by Theorem 1 can be classified according
to the rate of decay of the bandwidth in the following way. First, if (and only if)
nhd+2

n → ∞, then the first-order asymptotic behavior of θ̂n is dominated by L̄n

and the conventional result (2) holds. Even in this case, the results of Nishiyama
and Robinsons (2000) suggest that formulation (3) can be attractive for certain
(small) values of the bandwidth. Specifically, if the assumptions of Nishiyama
and Robinsons (2000, Thm. 1) hold, and if n3h2(d+2+min(P,Q))

n → 0 and
nh2(d+2)

n → 0, then for any nonzero λ ∈ Rd , the leading term in the Edgeworth

expansion of the distribution of λ′
(
θ̂n − θ

)
/
√

n−1λ′�λ is a variance term that

accounts for the variability of W̄n .10 In other words, the leading term accounts for
the fact that n−1� underestimates the variance of θ̂n . This term can be removed
by incorporating the term 2n−2h−(d+2)

n � into the (approximate) variance of θ̂n .
11

It is shown in the proof of Theorem 1 that

V

(
θ̂n

)
= n−1 [� +o (1)]+

(
n
2

)−1

h−(d+2)
n [�+o (1)] , (5)

so it seems plausible that there are conditions under which an Edgeworth correc-
tion is achieved by the standardization used in (3).

Next, if nhd+2
n → κ ∈ (0,∞) , then neither L̄n nor W̄n dominates the asymp-

totic behavior of θ̂n and the result becomes

√
n
(
θ̂n − θ

)
→d N

(
0,� + 2

κ
�

)
.

Because � and κ depend on the kernel and the bandwidth sequence, respec-
tively, this result demonstrates by example that semiparametric estimators can be√

n-consistent and asymptotically normally distributed without the limiting dis-
tribution being invariant with respect to the nonparametric estimator. This finding
does not contradict Newey (1994, Prop. 1), as θ̂n ceases to be asymptotically
linear when the condition nhd+2

n → ∞ is dropped.12
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Finally, if nhd+2
n → 0, then L̄n is asymptotically negligible, and we have√(

n
2

)
hd+2

n

(
θ̂n − θ

)
→d N (0,�).

Even in this case, θ̂n is asymptotically normally distributed, but the rate of conver-
gence is slower than

√
n. Indeed, if n2hd+2

n �∞, then θ̂n is not even consistent.

Remark 1. The asymptotic efficiency of θ̂n is maximized by employing a band-
width sequence satisfying nhd+2

n → ∞. Indeed, although θ is not covered by the
results of Newey and Stoker (1993) (because the weight function f (·) in (1) is
unknown), by proceeding as in the proof of Newey and Stoker (Thm. 3.1) it can be
shown that if certain regularity conditions hold, then L (·) is the pathwise deriva-
tive of θ. (See also Severini and Tripathi, 2001.) As a result, θ̂n enjoys semipara-
metric efficiency properties if (and only if) nhd+2

n → ∞.

Remark 2. If nhd+2
n converges (in R), then the asymptotic efficiency of θ̂n

depends on the kernel through the functional
∫
Rd K̇ (u) K̇ (u)′ du. The scalar coun-

terpart of this functional arises in the context of estimation of the mode of a prob-
ability density (e.g., Parzen, 1962) and the results of Eddy (1980, Sec. 3) can
be used to construct kernels minimizing

∫
Rd K̇ (u) K̇ (u)′ du (subject to certain

conditions).

2.3. Variance Estimation

From a practical point of view, a shortcoming of statement (3) is that it involves
the matrix V

(
θ̂n
)
, which is unknown. Replacing V

(
θ̂n
)

by an estimator V̂n (say),

we obtain a studentized version of θ̂n , and it is of interest to characterize condi-
tions under which

V̂ −1/2
n

(
θ̂n − θ

)
→d N (0, Id) . (6)

If (2) holds, then so does (6) provided nV̂n is a consistent estimator of �, a re-
quirement that is easily met (e.g., see Thm. 3.4 of PSS). More generally, it follows
from (5) that if the assumptions of Theorem 1 hold and if V̂n satisfies

V̂n = n−1� +
(

n
2

)−1

h−(d+2)
n �+op

(
n−1 +n−2h−(d+2)

n

)
, (7)

then (6) holds.
The requirement (7) can be met in various ways. Perhaps the most natural con-

struction proceeds by first obtaining consistent estimators of � and � and then
combining these in the manner suggested by (7). To that end, the following char-
acterizations of � and � are useful:

� = limh→0E
[
L (zi ; h) L (zi ; h)′

]
(8)
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and

limh→0 hd+2
E

[
W
(
zi , zj ; h

)
W
(
zi , zj ; h

)′]= � (i < j) . (9)

Analog estimators of � and � suggested by these characterizations are given by

�̂n = n−1
n

∑
i=1

L̂n,i L̂ ′
n,i , �̂n = Hd+2

n

(
n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

Ŵn,i j Ŵ ′
n,i j ,

where Hn is a bandwidth sequence and

θ̃n =
(

n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

U
(
zi , zj ; Hn

)
,

L̂n,i = 2

⎡
⎢⎣(n −1)−1

n

∑
j=1
j 
=i

U
(
zi , zj ; Hn

)− θ̃n

⎤
⎥⎦ ,

Ŵn,i j = U
(
zi , zj ; Hn

)− 1

2

(
L̂n,i + L̂n, j

)
− θ̃n .

The preceding definitions involve a bandwidth Hn that may differ from hn . This
generality is not merely spurious, as there are cases where it seems desirable to
let the bandwidths Hn and hn vanish at different rates. For instance, it turns out
that if Assumptions 1 and 2 hold and if Hn → 0 and n2 Hd

n → ∞, then

�̂n →p � (10)

and

n−1�̂n = n−1� +2

(
n
2

)−1

H−(d+2)
n �+op

(
n−1 +n−2 H−(d+2)

n

)
, (11)

so �̂n is a consistent estimator of � only if nH d+2
n → ∞, a condition that is

violated by Hn = hn in many of the cases covered by Theorem 1. The following
result is an immediate consequence of (10) and (11).

THEOREM 2. Suppose the assumptions of Theorem 1 hold.

(a) If Hn → 0 and nH d+2
n → ∞, then (6) holds for

V̂n = n−1�̂n +
(

n
2

)−1

h−(d+2)
n �̂n . (12)

(b) If Hn = hn, then (6) holds for

V̂n = n−1�̂n −
(

n
2

)−1

h−(d+2)
n �̂n . (13)
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(c) If Hn = 21/(d+2)hn, then (6) holds for

V̂n = n−1�̂n . (14)

The theorem gives three distinct recipes for achieving (6) . Of these, the most
attractive would appear to be the constructions in parts (b) and (c), as these do
not require the selection of a separate bandwidth. A possible disadvantage of the
construction in part (b) is that it may fail to deliver a positive (semi-)definite vari-
ance estimator. In the Monte Carlo experiments reported below, this phenomenon
occurred only very rarely, however, so this feature is probably not a cause for
major concern.

Remark 3. When Hn = hn, �̂n is PSS’s estimator of �. It follows from (11)
and Theorem 1 that although (this estimator is inconsistent and) V̂n = n−1�̂n does
not satisfy (7), it does enjoy the property that if the assumptions of Theorem 1 hold
and if nhd+2

n converges (in R), then

V̂ −1/2
n

(
θ̂n − θ

)
→d N (0, Id − J ) ,

where J is some positive definite matrix (the value of which depends on the lim-
iting value of nhd+2

n ). As a consequence, inference based on PSS’s standard error
matrix is asymptotically conservative when nhd+2

n �∞.

Remark 4. The proof of (10) implicitly establishes the consistency of two
additional estimators of �, namely

�̂2,n = Hd+2
n

[(
n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

U
(
zi , zj ; Hn

)
U
(
zi , zj ; Hn

)′ − θ̃n θ̃ ′
n

]
,

and

�̂3,n = Hd+2
n

(
n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

U
(
zi , zj ; Hn

)
U
(
zi , zj ; Hn

)′
.

These are also analog estimators because

� = limh→0 hd+2
V
[
U
(
zi , zj ; h

)]
= limh→0 hd+2

E

[
U
(
zi , zj ; h

)
U
(
zi , zj ; h

)′]
(i < j) ,

where the first equality follows from (8) and (9), while the second equality uses
the fact that limh→0 θ (h) = θ.

Remark 5. Being a variable U -statistic, PSS’s estimator can be represented as
a minimizer of a variable U -process,

θ̂n = argmint

(
n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

Q
(
zi , zj , t ; hn

)
,

Q
(
zi , zj , t ; h

)= ∥∥U
(
zi , zj ; h

)− t
∥∥2

.
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It seems plausible that results analogous to those derived in this paper can be
obtained for other estimators that can be represented as minimizers of variable
U -processes, such as the pairwise difference estimators discussed in Aradillas-
Lopez, Honore, and Powell (2007, pp. 1120–1122). On the other hand, for semi-
parametric two-step estimators of the form studied by Newey and McFadden
(1994, Sec. 8.3), the results of Ichimura and Linton (2005) suggest that linearity
with respect to the first-step kernel estimator is crucial for our results. Research
currently under way has confirmed this suspicion in the case of the kernel-based
weighted average derivative estimators studied by Newey and Stoker (1993).

Remark 6. It would be of interest to develop a higher-order approximation to
the distribution of V̂ −1/2

n
(
θ̂n −θ

)
, especially in the case where nhd+2

n → 0. In this

case θ̂n is asymptotically equivalent to the degenerate U -statistic W̄n, so it seems
plausible that the approach of Fan and Linton (2003) can be used.

3. MONTE CARLO EVIDENCE

We conducted a Monte Carlo experiment to investigate the finite-sample proper-
ties of our procedure and the procedures of PSS and Nishiyama and Robinsons
(2000). Specifically, to assess whether the robustness property of our procedure
holds in small samples, we provide results on the coverage rate of 95% confidence
intervals constructed using a variety of bandwidths.

3.1. Setup

We consider six different models. The models are all of the (single index) form

yi = τ
(

y∗
i

)
, y∗

i = x ′
iβ + εi ,

where τ (·) is a nondecreasing (link) function and εi ∼ N (0,1) is independent
of the bivariate regressor xi = (x1i , x2i )

′ . Three different link functions are con-
sidered, namely τ (y∗) = y∗, τ (y∗) = 1{y∗ > 0} , and τ (y∗) = y∗1{y∗ > 0} ,
where 1(·) is the indicator function. (These specifications correspond to a lin-
ear regression, probit, and Tobit model, respectively.). Two specifications of the
regressors are considered. In both cases, the regressors have mean zero, unit vari-
ance, and are independent. Specifically, x2i ∼N (0,1) throughout, while two dis-
tinct distributions are considered for x1i , namely x1i ∼ N (0,1) and x1i ∼ �,
where � is a normalized chi-square random variable with 4 degrees of freedom
(i.e., � = (

χ2
4 −4

)
/
√

8).13 The latter choice of distribution was included to en-
sure that our results were not unduly influenced by the joint normality of the
regressors. Throughout the experiment we set β = (1,1)′ and concentrate on the
first component of θ = (θ1,θ2)

′ , since the results for the second component were
very similar.

Table 1 summarizes the Monte Carlo models, reports the value of the popu-
lation parameter of interest, and provides the corresponding label of each model
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TABLE 1. Monte carlo models

yi = y∗
i yi = 1{y∗

i > 0
}

yi = y∗
i 1

{
y∗

i > 0
}

x1i ∼N (0,1) Model 1: θ1 = 1
4π Model 3: θ1 = 1

8π3/2 Model 5: θ1 = 1
8π

x1i ∼ � Model 2: θ1 = 1
4
√

2π
Model 4: θ1 = 0.02795 Model 6: θ1 = 0.03906

considered. In Models 4 and 6 a tidy closed-form expression is unavailable for θ1,
and we therefore report a numerical approximation instead. Models 1 through 4
were studied by PSS in their simulation study,14 while Model 5 corresponds to
the one employed in the simulation study of Nishiyama and Robinsons (2000).

We consider two sample sizes, n = 100 and n = 400, and for each case we carry
out S = 10,000 simulations. We report results utilizing a second-order kernel
(P = 2) implemented by a standard Gaussian product kernel, and a higher-order
kernel (P = 4) constructed using a Gaussian density-based multiplicative kernel
as discussed in Nishiyama and Robinsons (2000, pp. 943–944). We also explored
other choices of kernel functions, such as a twiced Gaussian kernel (e.g., Newey
et al., 2004), but the results were qualitatively similar and therefore we omit them
to conserve space.

We consider four competing procedures for inference. First, using the results
of PSS we constructed confidence intervals employing V̂n = n−1�̂n (see the re-
mark at the end of Section 2). Second, following Nishiyama and Robinsons (2000,
p. 958) we computed higher-order corrected (asymmetric) confidence bounds,
which required the estimation of additional correction terms. We estimated these
additional quantities using sample analogues and choices of tuning parameters
as discussed in Nishiyama and Robinsons (2000). Finally, the third and fourth
inference procedures are the ones described in parts (b) and (c) of Theorem 2.
We investigate the relative virtues of each procedure by implementing them for
an array of bandwidths ranging from 0.01 to 1.

3.2. Results

In Figures 1 to 4 we plot the empirical coverage for the competing 95% confi-
dence intervals as a function of the choice of bandwidth for each of the six models.
As discussed previously, we report four inference procedures: PSS’s procedure,
Nishiyama and Robinsons (2000) higher-order corrected procedure, abbrevi-
ated “NR” for simplicity, and the procedures introduced in parts (b) and (c) of
Theorem 2. The latter are denoted by “CCJ1” and “CCJ2”, respectively. To facil-
itate comparison, we plot the results only for a restricted range of bandwidths and
include two additional horizontal lines at 0.90 and at the nominal coverage rate
0.95 for reference.
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FIGURE 1. Coverage rates for 95% confidence intervals; P = 2 and n = 100

Figure 1 reports the simulation results when using a second-order Gaussian
product kernel (P = 2) and n = 100. With this choice of kernel the assumptions
underlying the results of PSS and Nishiyama and Robinsons (2000) are violated,
but we include them in Figure 1 (and in Figure 2 below) to show the effect of the
(nonvanishing) bias on empirical coverage in small samples for both procedures
under a (too-low) kernel order P = 2. Figure 1 shows that for a range of (small)
bandwidths and in all models, CCJ1 and CCJ2 exhibit approximately correct em-
pirical coverage, although CCJ1 tends to deliver a slightly liberal inference proce-
dure for this particular sample size and choice of kernel. Nonetheless, the results
are encouraging in the sense that the coverage rates of our confidence intervals
are close to the nominal coverage rate for a range of (small) bandwidths in a case
where technically there are no alternative procedures to be used. Moreover, even
though CCJ1 has the potential drawback of failing to deliver a positive-definite
matrix V̂n, we note that in this case at most 39 replications (out of 10,000) for
each bandwidth had this problem.

One natural explanation for the observed difference between nominal and em-
pirical coverage is that the sample size is too small for our asymptotic results
to provide a good approximation. Thus, in Figure 2 we report simulation results
when using the same second-order Gaussian product kernel but with a sample
size of n = 400. These coverage rates improved considerably when compared
with those in Figure 1. In particular, now we obtain close-to-correct empirical
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FIGURE 2. Coverage rates for 95% confidence intervals; P = 2 and n = 400

coverage for a range of (small) bandwidths as the theory predicts. The range of
bandwidths for which our procedures work best varies with each model, although
in general we see that the lower bound is nearly always the same (i.e., h > 0.01).
It is interesting to note that while in Figure 1 the smallest bandwidth considered
was in fact “too small” (in the sense that the procedure broke down), in this case
even this very small bandwidth generally exhibits reasonable properties in terms
of empirical coverage. Furthermore, in this case we obtained a positive-definite
matrix V̂n in all replications. These results are very encouraging and suggest that
our procedures work well even for a modest sample size of n = 400. The last
result, coupled with our choice of a commonly used (Gaussian) kernel, suggests
that approximately correct, robust confidence bounds may be constructed using
our procedure in a relatively straightforward way.

Next, we turn to a (technically) valid comparison between our procedures and
those suggested by PSS and NR. Figure 3 reports the simulation results when
using a fourth-order kernel (P = 4) and a sample size of n = 100. When com-
pared to Figure 1, these procedures appear to work better (note the difference in
the range of bandwidths plotted in Figures 1 and 2 relative to Figures 3 and 4).
The range of bandwidths for which our procedures deliver approximately correct
empirical coverage has been extended. This suggests that the use of higher-order
kernels provides more robust results. It is interesting to note that PSS appears
to have only one bandwidth choice that would provide correct coverage, while
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FIGURE 3. Coverage rates for 95% confidence intervals; P = 4 and n = 100

NR is considerably liberal for all bandwidth choices and models considered. Our
confidence intervals are still slightly liberal in this case, although less so than
when using a second-order kernel.

Finally, Figure 4 reports the simulation results for the same choice of (higher-
order) kernel as in Figure 3 but with a sample size of n = 400. As in the case of
Figure 2, this sample size appears to be sufficient to deliver close-to-correct cov-
erage over a range of bandwidths for our procedure. In this case as well, the range
of bandwidth choices for which CCJ1 and CCJ2 work well has been extended.
PSS exhibits very similar behavior to that in Figure 3, while the results for NR
suggest that this sample size and kernel choice is insufficient to achieve correct
coverage.

The Monte Carlo evidence presented in Figures 1 to 4 suggests that our pro-
cedures may be preferred to both PSS and NR, since they justify the use of a
second-order kernel while providing approximately valid inference for an array
of (sufficiently small) bandwidth choices.15 Bandwidth selection methods have
been developed for density-weighted averaged derivatives by Powell and Stoker
(1996) and Nishiyama and Robinsons (2000, 2005).16 Unfortunately, we found
that the population analogue of these three alternative methods did not provide
bandwidth choices compatible with the range of bandwidths that were appro-
priate for our procedure.17 For example, in the case of Model 5, with P = 4
(higher-order kernel) and a sample size of n = 100, the population bandwidth
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FIGURE 4. Coverage rates for 95% confidence intervals; P = 4 and n = 400

values are 0.61, 0.51, and 0.65, for the rule-of-thumb formulas in Powell and
Stoker (1996) and Nishiyama and Robinsons (2000, 2005), respectively. (For
n = 400, the corresponding population bandwidth values are 0.49, 0.40, and 0.52.)
In all cases, these choices of bandwidths appear to be too high for us to recom-
mend them to be used with our procedures. On the other hand, the bandwidth
selection procedures developed in Cattaneo, Crump, and Jansson (2010) were
found in that paper to perform very well and we would recommend those to be
used.

4. CONCLUSION

This paper has proposed (apparently) novel standard error formulas for the
density-weighted average derivative estimator of PSS. Asymptotic validity of the
standard errors developed in this paper does not require the use of higher-order
kernels, and the standard errors are robust in the sense that they accommodate
(but do not require) bandwidths that are smaller than those for which conven-
tional standard errors are valid. Moreover, the results of a Monte Carlo experiment
suggest that the finite sample coverage rates of confidence intervals constructed
using the standard errors developed in this paper coincide (approximately) with
the nominal coverage rates across a nontrivial range of bandwidths, a property not
enjoyed by existing procedures.
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NOTES

1. A lucid discussion, with precise statements of the conditions on the kernel and the bandwidth,
can be found in Section 3 of PSS.

2. An extreme case is the one where the dimension of the explanatory variable exceeds unity and
a nonnegative kernel is employed. In that case, the lower and upper bounds on the bandwidth are
mutually incompatible.

3. As briefly discussed below, violation of the assumption on the bandwidth that implies asymptotic
linearity also has implications for the efficiency properties of PSS’s estimator.

4. In turn, the approach of Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2002a,
2002b, 2005) can be traced back to Neave (1970).

5. The parameter θ is of interest partly because it is proportional to the vector of coefficients in
an index model; that is, θ is proportional to β if g (x) = G

(
x ′β

)
for some function G (·) and some

parameter β (e.g., Stoker, 1986; PSS).

6. On the other hand, the assumption nh2Q
n → 0 is not minimal: If K is a twicing kernel, then

nh8
n → 0 and nhd+2

n → ∞ can suffice even if Q = 2 (e.g., Newey et al., 2004).
7. Similarly, the amount of smoothness (indexed by Q) on the part of the density f of the covariates

that is required by Theorem 1 is relatively mild.
8. If hn ∼ n−α for some α ∈ (min[2/(d +6) ,1/4] ,2/d) , then the assumptions of Theorem 1

hold.
9. An analogous result was obtained by Jammalamadaka and Janson (1986, Thm. 2.1) under a

boundedness condition that is violated here.
10. The assumptions of Nishiyama and Robinsons (2000, Thm. 1) include a Cramér condition on

L (zi ) and the condition nhd+2
n /(logn)9 → ∞, but are otherwise very similar to the assumptions

entertained here.
11. In other words, the “variance” term (involving κ2) does not appear in the Edgeworth expansion

of the distribution of λ′(θ̂n − θ
)

/

√
λ′
(

n−1� +2n−2h−(d+2)
n �

)
λ, as can be seen by inspecting the

proof of Nishiyama and Robinsons (2000, Thm. 1), noting that their κ2 is λ′�λ/λ′�λ in our notation.
12. Being a necessary condition for asymptotic efficiency, asymptotic linearity is an important con-

dition for the results of Newey to hold.
13. We also explored other distributional assumptions for x1i , and in all cases the qualitative results

were the same as those reported here.
14. Note that PSS actually used a normalized chi-square random variable with 3 degrees of freedom

rather than 4. We changed the distributional assumption to avoid violating Assumption 1(c).

15. Being proportional to h−(d+2)
n �̂n , the correction term in V̂n depends explicitly on both the

bandwidth hn and the dimension d of the regressor. As a result, it is conceivable that our procedure
enjoys the additional robustness property of suffering less from the “curse of dimensionality” than
does the procedure of PSS. Preliminary Monte Carlo results (not reported here) are consistent with
this conjecture.

16. Because we consider bandwidth sequences corresponding to larger–than-usual undersmoothing,
the use of bandwidth selection methods that do not deliver undersmoothing (e.g., cross-validation)
cannot be justified using our theory.

17. In particular, using 106 replications, we numerically approximated the population higher-order
bias and variance terms needed to compute the rules of thumb considered.
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APPENDIX: Proofs

Proof of Theorem 1. Suppose Assumptions 1 and 2 hold. If hn → 0, then it follows

from (Robinson, 1995, Lem. 1) that θn = θ + O
(

hmin(P,Q)
n

)
. As a consequence,

V
(
θ̂n
)−1/2

(θn − θ) → 0

if min
(
nhd+2

n ,1
)
nh2min(P,Q)

n → 0 and if (5) holds. To complete the proof, it therefore

suffices to show that if hn → 0 and n2hd
n → ∞, then (4) and (5) hold.

Because

V
(
θ̂n
)= n−1

V
[
L (zi ; hn)

]+(
n
2

)−1
V
[
W
(
zi , zj ; hn

)]
(i < j) ,

the validity of (5) follows from (8) and (9). In turn, (8) holds provided

limh→0E
(
‖L (zi ; h)− L (zi )‖2

)
= 0. (A.1)

Now, (A.1) and (9) are variants of Nishiyama and Robinsons (2000, Lem. 3) and
Nishiyama and Robinsons (2000, Lem. 12), respectively, and can be shown in exactly
the same way.

A further implication of (A.1) is that

√
nL̄n = 1√

n

n

∑
i=1

L (zi )+op (1) .

Therefore, (4) holds if it can be shown that

√
nl̄n +

√(
n
2

)
hd+2

n w̄n →d N
(

0,σ 2 + δ2
)

(A.2)

for any vectors λL ∈ Rd and λW ∈ Rd , where

l̄n = 1

n

n

∑
i=1

l (zi ) , l (zi ) = λ′
L L (zi ) , σ 2 = λ′

L�λL ,

w̄n =
(

n
2

)−1 n−1

∑
i=1

n

∑
j=i+1

wn
(
zi , zj

)
, wn

(
zi , zj

)= λ′
W W

(
zi , zj ; hn

)
,

δ2 = λ′
W �λW .
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Assuming without loss of generality that λL and λW are both nonzero, we establish
(A.2) by employing the theorem of Eubank and Wang (1999). In our notation, conditions
(1.3)–(1.6) of Eubank and Wang are

hd+2
n

(
n
2

)−1
max1≤ j≤n

n

∑
i=1

E

[
wn

(
zi , zj

)2
]

→ 0, (A.3)

[(
n
2

)
hd+2

n

]2
E

[
w̄4

n

]
→ 3δ4, (A.4)

n−2
n

∑
i=1

E

[
l (zi )

4
]

→ 0, (A.5)

(
n
2

)−1
n−1hd+2

n E

⎡
⎣( n

∑
j=2

j−1

∑
i=1

E
[
wn

(
zi , zj

)
l
(
zj
) |z1, . . . zj−1

])2
⎤
⎦→ 0. (A.6)

Because zi ∼ i id, (A.3) is equivalent to

n−1hd+2
n E

[
wn

(
zi , zj

)2
]

→ 0 (i < j) ,

which is satisfied because (9) holds.
Similarly, (A.5) is equivalent to

n−1
E

[
l (zi )

4
]

→ 0,

which holds because E
[
l (zi )

4
]

< ∞ under Assumption 1.

By de Jong (1987, Prop. 3.1), condition (A.4) is satisfied if

n−2h2d+4
n E

[
wn

(
zi , zj

)4
]

→ 0 (i < j) , (A.7)

n−1h2d+4
n E

[
wn

(
zi , zj

)2
wn (zi , zk)2

]
→ 0 (i < j < k) , (A.8)

h2d+4
n E

[
wn

(
zi , zj

)
wn (zi , zk)wn

(
zj , zm

)
wn (zk , zm)

]→ 0 (i < j < k < m),

(A.9)

hd+2
n E

[
wn

(
zi , zj

)2
]

→ δ2 (i < j) . (A.10)

Now, Robinson (1995, Lem. 4) implies that E
[
wn

(
zi , zj

)4
]

= O
(

h−3d−4
n

)
, so (A.7)

holds because n2hd
n → ∞. Also, the fact that zi ∼ i id implies that

E

[
wn

(
zi , zj

)2
wn (zi , zk)2 |zi

]
= E

[
wn

(
zi , zj

)2 |zi

]
E

[
wn (zi , zk)2 |zi

]
= E

[
wn

(
zi , zj

)2 |zi

]2
(i < j < k) ,

so (A.8) holds because

E

[
wn

(
zi , zj

)2
wn (zi , zk)2

]
=E

(
E

[
wn

(
zi , zj

)2 |zi

]2
)

= O
(

h−2d−4
n

)
(i < j < k),
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where the first equality uses the law of iterated expectations and the last equality uses
Robinson (1995, Lem. 5). Similarly,

E
[
wn

(
zi , zj

)
wn (zi , zk)wn

(
zj , zm

)
wn (zk , zm) |zj , zk

]
= E

[
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(
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)
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]
E
[
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(
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)
wn (zk , zm) |zj , zk

]
= E

[
wn

(
zi , zj

)
wn (zi , zk) |zj , zk

]2
(i < j < k < m) ,

so (A.9) follows from the law of iterated expectations and the fact that

E

(
E
[
wn

(
zi , zj

)
wn (zi , zk) |zj , zk

]2
)

= O
(

h−d−4
n

)
(i < j < k)

under our assumptions, the latter being a variant of Nishiyama and Robinsons (2000,
Lem. 6). Finally, (A.10) is a consequence of (9).

Condition (A.6) is equivalent to

hd+2
n V

(
E
[
wn

(
zi , zj

)
l
(
zj
) |zi

])→ 0 (i < j) .

Using the relation

V
(
E
[
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(
zi , zj

)
l
(
zj
) |zi

])= V(E[λ′
W U

(
zi , zj ; hn

)
l
(
zj
) |zi

])
(i < j) ,

change of variables, integration by parts, and simple bounding arguments, it can be shown
that if the assumptions of Theorem 1 hold, then

V
(
E
[
wn

(
zi , zj

)
l
(
zj
) |zi

])= O (1) (i < j) ,

implying in particular that (A.6) is satisfied. n

Proof of Theorem 2. Suppose the assumptions of Theorem 1 hold and suppose Hn → 0
and n2 Hd

n → ∞. It suffices to show that (10) and (11) hold.
To establish (10), it suffices to show that

�̂n = �̂2,n +op (1) = �̂3,n +op (1) = �+op (1) . (A.11)

The last equality in (A.11) holds because � = limh→0 hd+2
E

[
U
(
zi , zj ; h

)
U
(
zi , zj ; h

)′]
(i < j) and because it follows from straightforward moment calculations (utilizing Robin-
son (1995, App. B) and Nishiyama and Robinsons (2000, App. C)) that

E
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(
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)
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(
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)
(i < j).

(Specifically, letting λ ∈ Rd be arbitrary, defining u
(
zi , zj ; Hn

) = λ′U
(
zi , zj ; Hn

)
, and

using the Hoeffding decomposition, we have

V
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)
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∑
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]
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(
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= O
(
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)
,
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where the last equality uses Nishiyama and Robinsons (2000, Lem. 4) and Robinson (1995,
Lem. 4).

Next, the penultimate equality in (A.11) holds because

�̂2,n − �̂3,n = −Hd+2
n θ̃n θ̃ ′

n = op (1) ,

where the last equality uses θ̃n = Op

(
1+n−1/2 +n−1 H−(d+2)/2

n

)
. Finally,

�̂1,n − �̂2,n = �̂
(2)
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(3)
1,n,

where

�̂
(2)
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U
(
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Using the fact that

�̂n = n−1
n

∑
i=1

L̂n,i L̂ ′
n,i = Op

(
1+n−1 H−(d+2)

n

)
,

it is easy to show that �̂
(2)
1,n = Op

(
Hd+2

n +n−1
)

= op (1) . Also, because �̂2,n = Op (1)

and �̂
(2)
1,n = op (1) , it follows from the Cauchy-Schwarz inequality that �̂

(3)
1,n = op (1) .

Therefore, �̂1,n − �̂2,n = op (1) and the validity of the first equality in (A.11) has been
established.

Next, letting
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j 
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(
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)
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and expanding L̂n,i as
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we arrive at the expansion of �̂n,
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where
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To establish (11), it suffices to show that
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, (A.12)

�̂
(2)
n = � +op (1) , (A.13)

�̂
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(
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n

)
( j = 3,4,5,6) . (A.14)

Using the relation

U
(
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)−μ(zi ; Hn) = W
(
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)+ 1

2
L
(
zj ; Hn

)
and straightforward moment calculations (utilizing Robinson (1995, App. B) and
Nishiyama and Robinsons (2000, App. C), as in the proof of (A.11)), it can be shown
that
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and
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where
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The result (A.12) follows from this and the fact that
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where the equality uses (9).
Next, (A.13) holds because
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the equality being a consequence of (A.1).
The condition (A.14) holds for
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Furthermore, (A.14) holds for �̂
(4)
n because straightforward moment calculations (once

again utilizing Robinson (1995, App. B) and Nishiyama and Robinsons (2000, App. C))
can be used to show that
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Finally, because (A.12)–(A.13) hold and because (A.14) holds for �̂
(3)
n , it follows from

the Cauchy-Schwarz inequality that (A.14) holds for �̂
(5)
n and �̂
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n . n




