
UC Irvine
ICS Technical Reports

Title
Fast Huffman code processing

Permalink
https://escholarship.org/uc/item/3jd1c01q

Author
Pajarola, Renato

Publication Date
1999
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jd1c01q
https://escholarship.org
http://www.cdlib.org/


ICS
TECHNICAL REPORT

Fast Huffman Code Processing

Notice: This Material
RenatoPajarola I30 protected

by Copyright Law
UCI-ICS Technical Report No. 99-43 (Tit!6 17 U.S.C.)

Department of Information & Computer Science
University of Califomia, Irvine

October 1999

EXCLUSIVE PROPERTY OF THE
UNIVERSITY OF CALIFORNIA ICS LIBRAR

DO NOT REMOVE FROM PREMISES

Information and Computer Science
University of California, Irvine



Fast Huffman Code Processing Notice: This Material
Renato Pajarola may be protected

Information and Computer Science h\/Pnn\/rlnR+i «
University of Caiifornia, Imne ^ ^OpyOght LSW

(Title 17 U.S.C.)
Keywords algorithms, data structures, data compression, decoding, Huffman codes

1. introduction

Data compression research constantly attracts the interest of many researchers both in theoretical
foundations of computing and in application oriented fields. In the last two decades the fundamentals
of data compression have been laid [3, 6, 9, 10, 15, 16, 17, 22] and efficiently applied to text and
image compression [8, 11,19]. Currently data compression is of increasing interest again because of
the growing amount ofdata processed in applications and transferred over the internet. In particular
compression of geometric data is currently an active research area [4, 12, 20, 21], and it is also
important to perform operations on the compressed data directly - working in the compressed
domain - instead of decompressing prior to any processing [1, 2, 5, 7, 13, 14].

There has been some work on memory efficient and fast construction of Huffman and prefix
codes but only very little on fast and efficient decoding. However, fast decoding and scanning
through compressed data ismore important than code construction and encoding with increasing net
work transmission and disk access speeds. Huffman decoding time cost is linear in the size of the
compressed data stream andbounded by the number of symbols it has to output. However, this cost
estimate does not sufficiently take into account how much time is used to process and decode every
single compressed databit. It willbe quite a difference in speed if every single bit has to be readand
tested compared to processing bytes (8 bits at once). Also if a search in a compressed file involves
identifying the boundary between two symbols atsome location inthe compressed file it is important
to quickly skip through the file - reading bytes - and only consider a few individual bits close to that
boundary.

Our interest in an efficient Huffman decoder is motivated by research in geometry compression
[12], where a fast decompressor is crucial, and by research inpattern matching in compressed files
[13], where it is important to find symbol boundaries at arbitrary positions in the compressed data
stream. The idea of the presented fast Huffman decoding data structure and algorithm is similar to
thecode tables presented in [18]. However, wepresent a much more intuitive approach based onthe
binary code tree itself, and we extend the data structure in such away that it allows to test for symbol
boundaries in constant time. Note that the presented method works for any binary prefix code.

2. Fast Huffman decoding

Huffman coding [6] creates minimal redundancy codes for a given set of symbols and their respec
tive occurrence frequencies. It constructs a binary code tree where each leaf represents a symbol and
the path from the root to the leaf defines the variable length code for that symbol. Decoding is per
formed by starting at the root node ofthe code tree, and recursively traversing the tree according to
the bits from the compressed input data stream, i.e. going to the left child for a0 and going right for
a 1, until you reach a leaf which signals that acertain symbol has been fiilly decoded. Generally this
involves testing every single bit and branching in thetree accordingly.

To speed up decoding performance we want to read and process the data by groups of bits, i.e.
bytes, to eliminate most ofthe testing. For any start-node inthe tree and a given sequence ofbits, the

1





Fast Huffman decoding

resulting end-node from traversing the tree according to these bits is defined uniquely by actually
traversing the tree andrestarting at the root whenever reaching a leaf. For a fixed wordsize of itbits,
atable of size 2^ for every node, not including the leaves, can be used to navigate in the tree, see also
Figure 1. This allows us to jump efficiently from any node to another in the code tree by reading
bytes instead of single bits.

/ 10'A.

od 0,

a)

CO
0}

"D
0
c

1

CO
•*->

CO

words

00 01 10 11

0 3 4 1 2

1 1 2 1 2

2 3 4 1 2

3 3 4 1 2

4 3 4 1 2

b)

FIGURE 1. a) Huffman code tree with some indicated node transitions using a word size of 2 bits for the
codes A=00, B=01 and C=1. b)Thecomplete nodetransitions tablefor all nodes indicating the end-node for
any given combination of start-node and data word. Note that all leaves have the same jumptable as the
root node and can be left out to save storage.

Thepresented fast navigation in thebinary code tree is notsufficient fordecompression, also the
output symbols have to be known for every node transition. In the example of Figure 1, if starting
from node 1 and reading the 2bit-word 01 we end up in node 2, however, we also decoded the sym
bols A and C. This can be captured in a similar table as the node transition table of Figure 1 b),
Figure 2 depicts this outputtable for the sameencoding and binarycode tree.

from node word symbols

0 00 A
0 01 B
0 10 C
0 11 c.c
1 00 A
1 01 A, C
1 10 B
1 11 B, C

FIGURE 2. Table listing the output symbols for every node transition. Note that the leave nodes are identical
to the root node and can be omitted.

The decoding procedure is very simple, see also Algorithm 1. With the given data structures
described above, the decoder can read the compressed data stream by words andupdate the current
position in the binary code tree according to the node transition table. Prior to actually updating the
current node, the output symbols have to beread from the output symbol table. Note that the binary
code tree itself is not used anymore, the node transition table and output table fully specify the
decoding. However, the binary code tree isused to construct the two tables inapreprocessing step as
indicated above. For this, we traverse the tree starting from every node for all possible bit-patterns of
a word, continuing at the root when reaching a leaf, and update the two tables accordingly.



Recovering symbol boundaries

PROCEDURE Decode (in: InputStream; code: CodeTree);
VAR byte: Byte; cur: Node;

BEGIN

cur := code.root;
WHILE NOT in.EOF 0 DO

byte := in.readByte();
code.outputSymbols(cur, byte);
cur := code .nextNode (cur, byte);

END;

END Decode;

ALGORITHM 1. Pseudocode for the fast Huffman decoding algorithm. CodeTree is the data structure with
the transition and symbol output tables.

3. Recovering symbol boundaries

Processing compressed data files by words instead ofbits is not only important for raw decompres
sion speed but also when the task is to quickly skip through the compressed file and stop ata certain
point. In particular, in [13] the problem was to sequentially read the compressed data, without actu
ally decompressing it, and keeping track ofhow many symbols have been encountered. Furthermore,
it was also required to stop at any arbitrary position and know where the last symbol ended in the
compressed bit stream, besides knowing how many symbols have been skipped so far.

Fast processing of the compressed data stream is already outlined in the previous section, what is
leftis to maintain some more information for every node transition to solve the problems mentioned
above. The maximal number of symbols encoded in k bits is k. Therefore, a bit-field of size k is suf
ficient to indicate symbolboundaries of variable lengthcodeswithina word of size k bits. Such a bit
field is needed for every node transition to be able to recover the bit-positions where the last skipped
encoded symbols end in the last word that has been read, see also Figure 3. To comply with the sec
ond requirement, how many symbols have been encoded atacertain position in the compressed data
stream, one more entry for each node transition is sufficient. This entry is actually thenumber of Is
in the previously explained bit-field, representing the number of symbols ending in the last read
word.

from node word endings field #

0 00 [0,1] 1
0 01 [0,1 1
0 10 [1.0 1
0 11 [1.1 2

1 00 [1.01 1

1 01 [1.1 2
1 10 [1.0 1
1 11 [1.1] 2

FIGURE 3. Bit field oftfiird column indicates symbol endings in processed word. Thelastcolumn represents
the number of encoded symbols that ended in the word that has been read.

The following Algorithm 2 shows fast scanning through a compressed file without decompress
ing every symbol, however, with counting the symbols that have been encoded. It also presents a
way to determinein constanttime whetherand where a symbol ended in the last word that has been
read.



Conclusions

PROCEDURE Counting (in: InputStream; code: CodeTree);
VAR count, n, i: Integer; field: BitField; byte: Byte; cur: Node;
BEGIN

cur := code.root;
count := 0;

n : = 0 ;

WHILE NOT condition to stop DO
byte := in.readByte();
INC(n);

count := count + code.numberOfSymbols(cur, byte);
field := code.endingsField(cur, byte);
cur := code.nextNode(cur, byte);

END;

out.print(count, " symbols encoded so far");
i := 8; '
WHILE NOT field[i] DO DEC(i) END;
IF i > 0 THEN

out.print("last symbol at ", (n-l)*8+i, "-th bit in data stream");
ELSE

out.print("no symbol ends in last word");
ENDIF;

END Counting;

ALGORITHM 2. Pseudocode for fast counting and symbol boundary test. The CodeTree data structure is
enhanced with the described endings bit-field and symbol counts foreverynode transition.

4. Conclusions

As large main memory becomes more and more available atreasonable prices, processing speed of
large data sets, i.e. from secondary storage, becomes more important than techniques for memory
efficient internal data structures which are small compared to the available main memory size. The
space needed for the node transition and symbol output tables described in this paper depends on the
word size and the number of different symbols. For example, for bytes and 256 symbols, the node
transition table for every node has 256 entries, and each entry consists of a field for the next node
(one byte) and anarray for the output symbols, often not more than two orthree per transition, which
depends on the shape ofthe binary code tree. Ifon the average using 10 bytes for an entry, including
the symbol array and a pointer to it, the data structure consumes less than 1MB of main memory
(255 *256 * 10 =0.6MB). The additional fields for the symbol endings and the number ofsymbols
encoded in one word would account for another 2 bytes per entry in our example, thus not signifi
cantly enlarging the overall data structure. Note that the tables do not have to be transmitted in case
of a network communication because they can efficiently bereconstructed by sender and receiver if
necessary from thebinary code tree, which requires only 2 bitspernode forencoding it.

Reading the compressed data stream in bytes still requires 0(n) time for n being the size of the
compressed data, however, the constant is reduced; instead of testing 8 bits, only one access to the
node transition table is required. Nevertheless, outputting the encoded symbols still requires 0(k)
time for k symbols. On the other hand, counting the k symbols only takes 0(n) time (with n < k),
since updating the number of symbols for every node transition can be done in constant time. Note
also that the preprocessing cost for constructing the node transition tables is constant with fixed
number of symbols and word size.

The proposed algorithms and data structures could significantly improve the processing speed of
prefix code decompression methods, and in particularly support the development ofreal-time geom
etry decompression, a current issue in graphics, multimedia and intemet based computing. Further-



References

more, also perfomung operations in the compressed data domain, such as pattern matching or
random access, benefits from the proposed methods in this paper.

References

[1] Aimhood Amir and Gary Benson. Efficient two-dimensional compressed matching. In
James A. Storer and John H. Reif, editors, Proc. Data Compression Conference, pages 279-
288. IEEE, 1992.

[2] Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files lie: Pattern matching in Z-
compressed files. In Proc. of the 5th ACM-SIAM Symposium on Discrete Algorithms pages
705-714. ACM, 1994.

[3] John G. Cleary, Radford M. Neal, and Ian H. Witten. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520-540, June 1987.

[4] Michael Deering. Geometry compression. InProceedings SIGGRAPH 95, pages 13-20 ACM
SIGGRAPH, 1995.

[5] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. In Proc. Sym
posium on Theory of Computing, pages 703-712, 1995.

[6] D. A. Huffman. A method for the construction ofminimum redundancy codes. In Proc. Inst.
E/ectr. pages 1098-1101, 1952.

[7] Guy Jacobson. Random access in huffman-coded files. In James A. Storer and John H. Reif,
editors, Proc. Data Compression Conference, pages 368-377. IEEE, 1992.

[8] Weidong Kou. Digital Image Compression: Algorithms and Standards. Kluwer Academic
Publishers, Norwell, Massachusetts, 1995.

[9] Abraham Lempel and Jacob Ziv. Auniversal algorithm for sequential data compression. IEEE
Transactions onInformation Theory, 23(3):337-343, May 1977.

[10] Abraham Lempel and Jacob Ziv. Compression of individual sequences via variable-rate cod
ing. IEEE Transactions on Information Theory, 24(5);530-536, September 1978.

[11] Arun N. Netravali and Barry G. Haskell. Digital Pictures: Representation, Compression and
Standards. Plenum Press, New York and London, second edition, 1995.

[12] Renato Pajarola and Jarek Rossignac. Compressed progressive meshes. Technical Report GIT-
GVU-99-05, GVU Center, Georgia Institute of Technology, 1999.

[13] Renato Pajarola and Peter Widmayer. Pattern matching in compressed raster images. In Third
South American Workshop on String Processing WSP1996, Intemational Informatics Series 4,
pages 228-242. Carleton University Press, 1996.

[14] Renato Pajarola and Peter Widmayer. Spatial indexing into compressed raster images: How to
answer range queries without decompression. In Proc. Int. Workshop on Multi-Media Data
base Management Systems, pages 94-100. IEEE, Computer Society Press, Los Alamitos, Cal
ifornia, 1996.

[15] Jorma Rissanen. A universal data compression system. IEEE Transactions on Information
Theory, 29(5):656-664, September 1983.



References

[16] David Salomon. Data compression: the complete reference. Springer-Verlag, New York,
1998.

[17] Khalid Sayood. Introduction to data compression. Morgan Kaufmann Publishers, San Fran
cisco, California, 1996.

[18] Andrzej Sieminski. Fast decoding of the huffman codes. Information Processing Letters,
26(5):237-241, Januery 1988.

[19] James A. Storer, editor. Image and Text Compression. Kluwer Academic Publishers, Norwell,
Massachusetts, 1992.

[20] Gabriel Taubin and Jarek Rossignac. Geometric compression through topological surgery.
ACM Transactions on Graphics, 17(2):84-115, 1998.

[21] Costa Touma and Craig Gotsman. Triangle Mesh Compression. In Proceedings Graphics
Interface 98, pages 26-34, 1998.

[22] Terry A. Welch. A technique for high-performance data compression. IEEE Computer, pages
8-19, June 1984.




