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Proteome allocation is linked to
transcriptional regulation through a
modularized transcriptome

Arjun Patel1, Dominic McGrosso2, Ying Hefner1, Anaamika Campeau2,
Anand V. Sastry1, Svetlana Maurya2, Kevin Rychel 1, David J. Gonzalez2,3 &
Bernhard O. Palsson 1,4

It has proved challenging to quantitatively relate the proteome to the tran-
scriptome on a per-gene basis. Recent advances in data analytics have enabled
a biologically meaningful modularization of the bacterial transcriptome. We
thus investigate whether matched datasets of transcriptomes and proteomes
frombacteria under diverse conditions can bemodularized in the sameway to
reveal novel relationships between their compositions. We find that; (1) the
modules of the proteome and the transcriptome are comprised of a similar list
of gene products, (2) the modules in the proteome often represent combi-
nations of modules from the transcriptome, (3) known transcriptional and
post-translational regulation is reflected in differences between two sets of
modules, allowing for knowledge-mapping when interpreting module func-
tions, and (4) through statistical modeling, absolute proteome allocation can
be inferred from the transcriptome alone. Quantitative and knowledge-based
relationships can thus be found at the genome-scale between the proteome
and transcriptome in bacteria.

Omics data types and measurement methods emerged in the late
1990s and early 2000s. Transcriptomes were measured using hybri-
dization to DNA arrays, and proteomes were measured using mass
spectrometry. Early attempts to correlate these two omics types were
unsuccessful due to complex post-transcriptional and post-
translational regulation or to various technical challenges with the
measurement technologies1–3. Later, in the mid to late 2010s, several
studies compared the levels of transcripts and protein abundance on a
per-gene basis4–6. Such correlations were achieved for a few transcript-
protein pairs in humans and yeast5,6 but proved to bemore scalable in
Escherichia coli4. These studies suggested that correlations between
the two omics data types are possible on a small scale.

In the late 2010s, a massive number of RNAseq datasets
accumulated for bacterial transcriptomes. This data deluge led to

the application of machine learning methods to decompose the
bacterial transcriptome into regulatory signals7. Of these meth-
ods, independent component analysis (ICA), a source signal
extraction algorithm, was found to modularize the transcriptome
into lists of independently modulated genes, termed iModulons8.
A traditional use case of ICA is illustrated in Fig. 1A, where
recording devices in a noisy room can discern the sources of
noise and their contributions to the measured noise. In a biolo-
gical context, an expression profile of a given sample is analogous
to a microphone, since it is recording combined effects from
transcriptional regulators in a noisy environment (Fig. 1B, Fig. 1C).
When applied to transcriptomic data, the output of ICA was
shown to most successfully match known regulons in a compar-
ison between 42 machine learning methods7. Moreover,
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iModulons could be integrated with known binding sites of
transcriptional regulators, and compared to their associated
regulons (see iModulonDB.org)9.

iModulons from disparate datasets were shown to be similar,
indicating that they represent a fundamental decomposition of the
transcriptional regulatory network into underlying regulatory
signals10. iModulons could be knowledge-enriched, thus yielding a
fundamental understanding of the composition of the transcriptome
and how it changes between conditions11–17. ICA has now been applied
to several organisms across the phylogenetic tree9. This advance led to
discoveries of gene functions18, effects of mutations on protein com-
plex regulation19, and identifying energetic trade-offs across sample
conditions20. Thus, the knowledge-based modularization of the bac-
terial transcriptome has led to major advances in understanding its
systems characteristics.

This knowledge-based decomposition of the transcriptome
naturally leads to the question: can we similarly modularize the pro-
teome? In the present study, we generate and collect proteomic pro-
files for E. coli, modularize this dataset using ICA, and compare the
iModulons in the transcriptome to those found in the proteome. This
comparison leads to a large-scale, mechanistic interpretation of the
relationship between the two omics data types.

Results
Independent component analysis modularized the proteome
We performed ICA on a compendium of proteomics samples (termed
ProteomICA) consisting of 64 proteomes from a previous study21, and
98 new samples representing conditions matching RNAseq samples in
the transcriptomic compendium Precision RNA Expression Compen-
dium for Independent Signal Extraction (PRECISE)22. These samples
contain abundances of 1390 proteins. Since proteomic methods only
capture the highest abundance proteins, this is a much lower number
than the 4257 genes for which RNAseq finds transcripts23. The 98 new
proteomic samples introduced new growth conditions representing
varying stressors, carbon sources, and supplementations. These new
conditions were chosen based on iModulon activities in PRECISE in
order to obtain informative matched omics samples that improved
signal extraction for ProteomICA (Fig. 2A). ProteomICA has 162 high-
quality reproducible proteomes from E. coli.

ProteomICA consists of only high-quality samples with biological
replicates having Pearson correlation coefficients greater than0.90. In
contrast, biological replicates in PRECISE have R2 values greater than
0.95. This difference in reproducibility is in part due to the higher
experimental variation in replicate proteome samples as opposed to
transcriptome samples24,25. This difference can also be seen with the
higher correlation coefficients between randomly chosen PRECISE
samples than between randomly chosen ProteomICA samples (Fig. 2B,
Supplementary Fig. 1). These characteristics, in turn, with higher
technical noise during data generation26, result in the ProteomICA
compendium having a lower overall explained variance from the
independent components and principal components than PRECISE
(Fig. 2C, Supplementary Fig. 2).

The ICAdecompositionof the ProteomICAdatabase resulted in41
proteomic iModulons (piModulons). These piModulons represent the
statistically independent protein expression signals found across all
162 samples (81 unique conditions in duplicate) in the ProteomICA
compendium. These piModulons represent 25% of detected proteins
by count and 22% of the proteome by mass.

The 41 piModulons are classified into different categories
(Fig. 2D). We find that 25 of the 41 piModulons correspond to known
regulators with well-documented biological functions. Additionally,
there are two piModulons that represent a specific biological function
without an associated regulator. These two biological piModulons, in
conjunction with the 25 regulatory piModulons, explain 46% of the

overall explained variance in ProteomICA (Fig. 2D, E). Eight of the
remaining 41 piModulons are considered technical and are single gene
iModulons, whereas six of the remaining 41 are uncharacterized with
no clear function. These final 14 piModulons represent 9% of the
overall explained variance in ProteomICA. Thus, taken together, the 41
piModulons explain 55% of the variation in ProteomICA.

Since ICA is a blind source separation algorithm that deconvolutes
mixed signals27, it performs better if the signal strengths vary notably
between samples8,10. We see a higher coefficient of variation (CV) in
mass fractions of individual proteins found to be in a piModulon
(Fig. 2F) versus those that arenot in a piModulon (Fig. 2G). Proteins not
in a piModulon account for 78% of the total proteome, with 72% being
considered invariant, with CVs less than 1 (n = 891 proteins). In con-
trast, proteins in a piModulon account for 22% of the proteome with
only 47% being considered invariant (n = 163 proteins).

Within the invariant non-piModulon proteins, we see the most
abundant protein translation elongation factor, TufA28, and outer
membrane proteins OmpF and OmpA. On the other hand, MetE,
coding for homocysteine transmethylase, is a very large protein that
catalyzes the final step of methionine biosynthesis in the absence of
cobalamin29, is found in a piModulon due to methionine supple-
mentation conditions that vary its activity. The overall distribution of
protein mass fractions is slightly higher for piModulon proteins
(median = 0.000198) than proteins not in a piModulon
(median = 0.000155).

iModulons are annotated to biologically meaningful functions
The iModulons of the transcriptome have annotated biological
functions and most have transcriptional regulators associated with
them (iModulonDB.org). The main method for determining the
regulatory role of transcriptomic iModulons (tiModulons) is to use
the corresponding established regulon in conjunction with the
highly weighted genes (in a column of thematrixM) to see if there is
a significant overlap8,9. The same approach was used here in the
analysis of ProteomICA (Fig. 2H, I). However, due to the small
number of samples in ProteomICA compared to PRECISE (162 pro-
teomes vs 1035 transcriptomes, respectively) and fewer proteins
than transcripts being identified (1390 proteins vs 4257 genes),
fewer signals are decipherable from the proteomic data. As a result,
some piModulons represent a combination of more than one
tiModulon.

We illustrate the comparison of the two types of iModulons using
two specific examples (Fig. 2H, I). The MetJ piModulon overlaps with
the MetJ regulon, and the LeuO/Lrp piModulon overlaps with the Lrp
or LeuO regulons. In these two examples, the LeuO/Lrp piModulon
consists of the union of the Leucine and Lrp regulons, and the metE
gene is enriched in both the MetJ and LeuO/Lrp piModulons. The
corresponding columns in the iModulon matrix, M, contain the
weightings for each gene in an iModulon.

The activities for each piModulon are found in the corresponding
rows of thematrixA. The elements of this row can be used to plot a bar
chart that shows the relative activity of the piModulon under a given
condition. This bar chart is referred to as the activity spectrum for the
piModulon (Fig. 2J, K). The activity spectrum for the MetJ piModulon
shows that it exhibits low activity in samples with methionine (5mM)
supplementation and LB media, and high activity during low tem-
peratures and adaptive laboratory evolution (ALE) under temperature
stress (Temp ALE). The high activities at low temperatures are due to
the first step of methionine biosynthesis, homoserine
o-succinyltransferases (MetA), being more stable at lower
temperatures30. The LeuO/Lrp piModulon also has low activity in
samples with leucine (5mM) supplementation and LB media, but also
with methionine (5mM) supplementation due to the additional metE
enrichment. The latter’s signal is not as strong due to a lower gene
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weight ofmetE in the piModulon, and thus, does not see as negative an
activity compared to the leucine and LB samples.

Thus, ProteomICA can be decomposed into piModulons
using ICA. If there is a corresponding compendium of matched
transcriptomic samples available, then the iModulons computed
from both can be related to one another (see the following
section).

iModulons in the proteome mirror those in the transcriptome
The correlation between iModulon gene weights enables the com-
parison of the weighted gene content and allows us to match corre-
sponding piModulons and tiModulons computed from PRECISE and
ProteomICA (Fig. 3A). We computed Pearson correlation coefficients
between gene weights for all pairs of piModulons and tiModulons.
pi- and tiModulons are only considered matched if the resulting
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Fig. 1 | Independent component analysis (ICA) extracts individual signals and
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tured by each microphone. B The transcriptional regulatory network is analogous
to the noisy room, and expression data for genes is analogous to themicrophones.
In this case, ICA is able to recover the transcriptional regulators and their activity
that contributes to each gene expression. C Matrix decomposition representation

of the iModulonCase in panel (B). ThematrixX is yourmeasuredmixed signal data
(e.g., RNAseq or proteomics). The matrix M contains gene weights for all genes.
iModulon membership is determined by thresholding the gene weights for all
genes in the column. Genes that lie outside the threshold are considered in the
iModulon and regulated by the transcription factor noted in panel (B). The matrix
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correlations are above a threshold of 0.25 (Supplementary Table 1).
This value is set low due to the non-uniformity of the gene-weight
distributions for iModulons with similar functions across organisms or
omics data types.Matches were alsomanually checked. A total of 17 of
the 25 regulatory piModulons match with a tiModulon, in addition to
both biological piModulons have amatching tiModulon. Asmentioned
before, some piModulons are combinations of more than one tiMo-
dulon. For most of these cases, the piModulon matched with every
tiModulon within the combination. For example, the FliA/FlhDC
piModulon matched with the FliA and FlhDC-2 tiModulons.

Upon sorting all iModulons within each compendium by their
explained variance and comparing the genes, it becomes evident that
there is a very strong correspondence between the iModulon’s
explained variance between the two omics data types (Fig. 3B). Of the

20 total matches between the datasets, 10 piModulons match to 15
tiModulons that are ranked in the top 25 for both, out of 41 total
piModulons and 201 total tiModulons. The 10 piModulons explain 32%
of the variability in ProteomICA, while the 15 matched tiModulons
explain 26% of the variability in PRECISE. These values are quite similar
even with the significant differences in the total number of iModulons
obtained from each omic data type. Additionally, the explained
variability captured by the two compendia (ProteomICA and PRECISE)
is 55% vs 83%, respectively. Thus, the piModulons detect the stronger
signals, but cannot detect the more silent signals that the tiModu-
lons can.

Matched iModulonpairs can bedescribedbasedon the recall they
have of each other’s gene sets (Fig. 3C). Recall for eachmatched pair of
iModulon can be calculated using the ratio of the number of genes in
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both iModulons (‘Both Genes’) to the number of genes in the piMo-
dulon or tiModulon (piModulon Recall and tiModulon Recall, respec-
tively). Larger iModulons mostly fall in the high recall green quadrant,
whereas smaller iModulons predominantly fall in the light blue low
recall quadrant (Fig. 3C). Regulon recall for tiModulons with larger
regulons is typically poor12,13, but that is not observed here, indicating
strong correspondence between matched iModulons.

The iModulon matrix M and the activity matrix A can also be
compared for each matched pairs of iModulons. A differential
iModulon membership plot (DiMM) compares the gene weights
(column of M) for matched iModulons between PRECISE and Proteo-
mICA (Fig. 3D, E). Genes enriched in both iModulons are highlighted in

red, and ICA is able to identify the same genes in both compendia
regardless of gene weight sign. A differential iModulon activity plot
(DiMA) compares the activities for condition-matched samples in
PRECISE and ProteomICA (Fig. 3F, G). Correlations between the two
activities are calculated with differentially activated samples high-
lighted in red. Correlations range from strong to weak depending on
the number of differentially activated samples and are explored more
in the following section.

We thusfind that there is good correspondencebetweenmatched
piModulons and tiModulons, with the former often representing
combinations of the latter. The gene composition of matched pi- and
tiModulons is congruent, and so are their condition-dependent
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Fig. 3 | Proteomic iModulons (piModulons) exhibit similar gene lists and
activity levels as transcriptomic iModulons (tiModulons). A A schematic of
correlations between the independent components within the transcriptomic
compendium (PRECISE) and the proteomics compendium (ProteomICA). Colors
indicate the dataset, while the shapes indicate the enrichment category. The shade
of the links is determined by the similarity of the two independent components
(Pearson correlation) that match between the two datasets. B Ranked bar plots of
the explained variances for each iModulon within both datasets. Matches between
the top-ranked iModulons are shown with rainbow connections. Lumped piMo-
dulons that match to multiple tiModulons have multiple connections of the same
color. C Scatter plot of the piModulon recall and tiModulon recall for all matches
between the two datasets. ‘tiModulon Genes’ are genes enriched in the

transcriptomic iModulon. ‘piModulon Genes’ are genes enriched in the proteomic
iModulon. ‘Both Genes’ is the intersection of the tiModulon and piModulon genes.
The size of the point is determined by the number of ‘Both Genes’D, E Differential
iModulon Membership (DiMM) plots that compare the gene weights for the mat-
ched piModulons and tiModulons for MetJ and LeuO/Lrp, respectively. The sig-
nificance threshold (gray) shows which genes are enriched in each iModulon. Red
genes are enriched in both iModulons. F, G Differential iModulon Activity (DiMA)
plots that compare the activities for the matched piModulon and tiModulons for
MetJ and LeuO/Lrp, respectively. Activities are considered differentially activated
for samples that lie outside the significance threshold (gray). Differentially acti-
vated samples are highlighted in red. Source data are provided as the Source
Data file.
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activities. This correspondence of modularization of the tran-
scriptome and proteome enables deeper analysis.

Matched iModulons reflect established regulatory mechanisms
The ti- and piModulons can be compared in terms of the gene weights
(i.e., composition of the signal) and their activity levels (i.e., signal
strengths), see Fig. 3D–G. Plotting the differential iModulon activities
(DiMA plots) of all pairs of matched ti- and piModulons reveals three
distinct groups; pairs that are (1) transcriptome-dominant (signalmore
active in the tiModulon than the piModulon), (2) proteome-dominant,
and (3) neutral. These differences can be interpreted in light of known
transcriptional and translational regulation that, in some cases, is
condition-specific, but in many cases are broad and well established.
All DiMAplots can be found in Supplementary Fig. 3.Wedescribe a few
cases in detail. The following reviews also provide full descriptions for
each type of regulatorymechanism in case readersmay not be familiar
with them31–33.

Higher tiModulon activities indicate transcriptional attenuation,
riboswitches, or transcript stability that lead to relatively higher RNA
than protein: When tiModulon activities are higher than that of the
matched piModulon, the iModulon has a stronger signal in the tran-
scriptome and is said to be transcriptome-dominant. This character-
istic can be attributed to transcriptional attenuation, riboswitches that
inhibit translation, or stability due to structural reorganization.

LeuO/Lrp (Fig. 4A): The LeuO/Lrp iModulon contains the leu-
LABCD operon, which consists of leucine synthesis genes. The operon
is known to be regulated by ribosome-mediated attenuation in the
presence of charged leucine tRNAs34. Thus, we observe this mechan-
ism as a transcriptome-dominant iModulon: in rich media or leucine-
supplemented minimal media, the expressed RNA is not translated,
leading to an upregulation of the tiModulon relative to the piModulon.
We also observed the iModulon becoming proteome-dominant in the
case of arginine supplementation, which may indicate competitive
repression by arginine of the dual regulator Lrp and its associated
operons.

SgrR/Thiamine diphosphate (Fig. 4B): Thiamine diphosphate
(TPP) can act as a ligand that binds to a riboswitch that inhibits the
translation of the thiMD and thiCEFSGH operons35,36. Most samples in
rich LB media are differentially active towards their respective tiMo-
dulon activities, probably due to thiamine-induced premature tran-
scriptional termination. Additionally, samples grown on galactose,
pyruvate, and fumarate have higher overall pi- and tiModulon activities
due to increased demand for the thiamine cofactor in essential reac-
tions pyruvate dehydrogenase complex and 2-oxoglutarate (2-keto-
glutarate) dehydrogenase complex.

Cold Shock Response (Fig. 4C): At temperatures below 37 °C, the
cspA mRNA undergoes temperature-dependent structural
reorganization37. This structural change is likely due to the stabilization
of an otherwise thermodynamically unstable folding intermediate. At
low temperatures, the structure is also less susceptible to
degradation38. Samples at 30 °C are differentially active and tran-
scriptome-dominant, while samples at 42 °C have no activity due to
mRNA instability at high temperatures.

Higher piModulon activities indicate translation activation, pro-
tein product autoregulation, or riboswitches that lead to relatively
higher protein than RNA: When piModulon activities are higher than
that of the matched tiModulon, the iModulon has a stronger signal in
the proteomeand is said to be proteome-dominant. This characteristic
can be attributed to riboswitches that promote translation, protein
products autoregulating transcription, or transcript inhibition due to
other proteins.

RpoS+ppGpp (Fig. 4D): RpoS, the major stress-related sigma fac-
tor, and guanosine 3,5-bispyrophosphate (ppGpp), an important alar-
mone, both act as master regulators for a wide range of genes
including those involved in oxidative stress, temperature shock, acid

stress, starvation, and osmotic stress39. Both regulators integrate sev-
eral stress signals, and ppGpp helps stabilize RpoS, leading to complex
transcriptional regulation39. In addition, ppGpp was recently found to
directly activate the translation of some genes40. Thus, we observe a
proteome-dominant expression pattern for this iModulon in several
samples. Samples fromALE are also known to have lowRpoS activities,
which is replicated here with both pi- and tiModulon activities8.

MetJ (Fig. 4E): MetJ regulates methionine synthesis genes at the
transcriptional level in response to methionine and related
molecules41. As expected, both the tiModulon and the piModulon are
therefore downregulated in LB media and with methionine supple-
mentation. One member of this iModulon, MetA (homoserine o-suc-
cinyltransferase, the first step of methionine biosynthesis), is
inherently unstable under stressful conditions and high
temperatures30. Thus, it is regulated by temperature-dependent
proteolysis42. Interestingly, conditions which make the protein more
stable, such as low temperatures and heat-tolerant strains with metA
mutations (Temp ALE), are proteome-dominant for this iModulon.
This observation likely reflects the increased stability of the MetJ-
regulated proteins in those conditions.

Fnr/Spermidine (Fig. 4F): Spermidine is a known small molecule
that binds to a riboswitch that facilitates the translation of the
oppABCDF operon43. Like the other polyamines, putrescine, and sper-
mine, it stimulates the assembly of 30S ribosomal subunits, increasing
general protein synthesis up to 2-fold44. Here, we see more samples
with higher piModulon activities than tiModulon activities due to this
increase.

ti- andpiModulons that contain their regulator show similar signal
strengths in the transcriptome or proteome: When tiModulon activ-
ities are similar to that of the matched piModulon, the ti- and pi-
iModulons have similar strengths in the transcriptome and proteome
and is said to be neutral. This can be illustrated by looking at the Cra,
NagC, GalS iModulons (Fig. 4G–I). The DNA-binding transcriptional
dual regulator Cra is a member of both the Cra ti- and piModulon. The
GlcNaC tiModulon contains its transcriptional regulator NagC, as well
as the Galactose tiModulon which contains GalS. It’s an uncommon
phenomena for an iModulon to contain its own regulator because
regulators typically don’t exhibit linear relationships with the genes
they regulate due to the complexity of theTRN. If an iModulon exhibits
unique characteristics, such as temporal dynamics, the regulatory
function is split intomultiple iModulons in which case one will contain
the regulator and the others won’t (e.g., Phosphate-1,2; FlhDC-1,2,3;
NtrC-1,2,3; Fnr-1,2,3)9,22. When the regulator is in an iModulon of a
single function that didn’t split, it indicates that there aren’t any
complex regulatory interactions since the iModulon activity is corre-
latedwith its regulator’s expression. In the case of Cra, NagC, andGalS,
this leads to an overall neutral relationship between the proteome and
transcriptome as seen here.

Previous studies have clearly shown that tiModulons can be
knowledge-enriched by mapping known transcription factor binding
sites in promoters of genes found in a tiModulon9. The results pre-
sented in this section take knowledge enrichment a step further.
Namely, various molecular mechanisms are reflected in the relative
activity levels of pi- and tiModulons. Thus, the ability of ICA to detect
these regulatory mechanisms enables us to knowledge-enrich the
relationships between iModulons. When piModulon and tiModulon
activities are not well-correlated, they indicate post-transcriptional
regulatory events. Many such events have been previously character-
ized in the literature, as described in this section.

tiModulon activities allow prediction of proteome allocation
Revealing the relationships between tiModulons and piModulons
opens up the possibility of predicting the composition of the pro-
teome straight from RNAseq data. Such predictions would be advan-
tageous since the composition of the transcriptome can be measured
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cheaper, faster, and with higher precision and accuracy than the
composition of the proteome.

We thus sought to find quantitative relationships between RNA-
seq data and proteome allocation. Three types of relationships (linear,
exponential, broken line, Fig. 5A) were identified by plotting tiModu-
lon activities against themass fractionof the proteomeallocated to the
genes represented by the tiModulon. tiModulon activities that are
linearly correlated with their proteome allocation indicate proteome-
optimized sectors (i.e., amino acid biosynthesis). tiModulon activities
that are exponentially correlated with their proteome allocation indi-
cate proteome-optimized, yet expensive sectors (i.e., stress-related
responses). Finally, tiModulon activities that fit a broken line indicate a

thresholding response due to phenomena like bet-hedging (e.g., cen-
tral carbon metabolism)45–50.

tiModulon activities that represent strong correlations with their
proteome allocation account for 565 genes, 243 of which are covered
by ProteomICA (Fig. 5B). tiModulon activities are considered to have a
strong correlation with proteome allocation if the adjusted R2 of the
regression fitting after leave-one-out cross-validation is above 0.3
(Fig. 5C). The adjusted R2 0.3 cutoff was selected as a corrected
threshold to usebetween the threefitting types, as it is equivalent to an
R2 of 0.7 for linear regression in this dataset. These 243 genes account
for, on average, 26% of the proteome in the compendia, with a CV of
0.19 (Fig. 5D). All of the scatter plots and regressions for tiModulons
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Fig. 4 | Comparing piModulon and tiModulon activities for matched samples
reveal condition-specific regulatorymechanisms.Differential iModulon Activity
(DiMA) plots for some matched iModulons between the two datasets. Plots are
categorized by the observed result due to regulatory mechanisms, such as ribos-
witches, transcriptional attenuation, temperature-dependent transcript structural
reorganization, and protein product autoregulation. A–C iModulons that are
transcriptome-dominant (signalmore active in the tiModulon than the piModulon)
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highlighted in red. G–I iModulons that are neutral are highlighted in green. Activ-
ities are considered differentially activated for samples that lie outside the sig-
nificance threshold (dashed line). Legends for eachplot are placed below each plot.
LB: Lysogeny Broth, Leu: Leucine Supplement, Arg: Arginine Supplement, Gal:
Galactose Carbon Source, Pyr: Pyruvate Carbon Source, Fum: Fumerate Carbon
Source, Diff: Differentially Activated, Temp: Temperature, Met: Methionine Sup-
plement. n = 57 conditions. Source data are provided as the Source Data file.
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yavg ). Final model adjusted R2 values are scattered on top of

the boxplotswith blackdiamonds. iModulons are organized/colored by theirfitting
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minima,maxima,medians, andpercentiles canbe found inSourceData.DTreemap
of theproteome allocationusing the tiModulon regression results. tiModulonswith
strong correlations are in blue, while those withweak correlations are in red. Genes
that are not in a tiModulon andwhoseproteinhas a CV ≤ 1, are invariant and labeled
in gray. Genes that are not in any tiModulon nor proteome invariant are labeled in
green. Source data are provided as the Source Data file.
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with strong correlations can be found in Supplementary Fig. 4. tiMo-
dulon activities that represent weak correlations with their proteome
allocation account for 1205 genes, 375 of which are covered by Pro-
teomICA (Fig. 5B). These genes account for, on average, 33% of the
proteome in the compendia, with a CV of 0.12 (Fig. 5D). Proteome
invariant genes that are not in a tiModulon account for 30% of the
proteome (CV =0.11), and genes that arenot in a tiModulon but are not
invariant account for 10% of the proteome (CV= 0.23).

We also wanted to ensure that these results and methods were
robust, so we did additional analysis on our regression methods with
holdout splitting percentages ranging from 10% to 30% in 5% incre-
ments on top of leave-one-out cross-validation (Supplementary Fig. 5,
Supplementary Fig. 6).

Being able to infer absolute proteome allocation from the tran-
scriptome alone, regardless of condition, requires generalizable sta-
tistical models with large adjusted R2 values. Normalized cross-
validation error for each regression is not statistically significant
between strongly and weakly correlated tiModulons, yet the adjusted
R2 values differ quite substantially due to outliers in both datasets that
cause large errors. While these weaker regressions cannot be used for
generalization, unlike the stronger regressions, some can still be used
to estimate the proteome allocated for the specific conditions that do
not fall in outlier conditions. For example, the translation tiModulon
has one of the weakest correlations but accounts for 11% of the pro-
teome, but due to a small number of outliers is categorized as weak
(Supplementary Fig. 7). Removal of the outlier conditions would
categorize the tiModulon as strong and enable inference of proteome
allocation.

Taken together, these results show that ICA decomposition of the
transcriptome enables inference for 56% of the proteome allocation
for general cases (gray and blue sectors, Fig. 5D), with up to an addi-
tional 33% being inferrable for specific conditions (red sector, Fig. 5D).
These relationships include the effects of post-transcriptional regula-
tion and should represent practical ways of estimating howdifferential
regulation of gene expression affects the proteome composition.
These results provide a strong impetus for generating larger pro-
teomic datasets to generate stronger and broader correlations
between the datasets and proteome allocation.

Discussion
Recent advances in big data analytics have enabled the knowledge-
enriched modularization of the transcriptome for various microbial
species8,11–17. Here we investigated if matched datasets of tran-
scriptomes and proteomes could be modularized in the same way to
reveal novel relationships between their compositions. Using ICA
analysis of matched datasets we found that; (1) the modules of the
proteome and the transcriptomeare comprised of a similar list of gene
products, (2) the modules in the proteome often represent combina-
tions of modules from the transcriptome, (3) known transcriptional
and post-translational regulation is reflected in differences between
two sets of modules, allowing for knowledge-mapping when inter-
preting module functions, and (4) through statistical modeling, abso-
lute proteome allocation can be inferred from the
transcriptome alone.

Modularizing the proteomevia ICAdecomposition has resulted in
biologically meaningful groups of independently modulated genes,
termed proteomic iModulons, or piModulons. They are similar to
previous studies that have successfullymodularized the transcriptome
for various organisms using ICA9. We show that the piModulons have a
similar gene composition as transcriptomic iModulons or tiModulons.
While the proteomics compendium used, ProteomICA is newer and
has five times fewer samples than the transcriptomics compendium
used, PRECISE22, the former produces detectable signals in just under
five times the number of independent modules computed from the
latter. This result suggests that if we expand and improve the quality of

ProteomICA, perhaps with the inclusion of additional post-
translational modifications in search parameters, we may be able to
achieve a higher fidelity understanding of the regulation of proteome
allocation.

Due to this size limitation, a number of identified piModulons
from ProteomICA represent combinations of tiModulons. While this
may seem problematic at first, a similar phenomenon is visible when
decomposing the transcriptome at lower dimensionalities51, and it has
been shown that iModulons tend to split as more conditions are
added, enabling ICA to identifymore signals in the datasets8. It is quite
promising to see that a number of these combined modules in the
proteome represent the highest explained variance in the compendia
of both data types. PRECISE has a total of 201 tiModulons that explain
83% of the variance in the dataset, while ProteomICA has a total of 41
piModulons that explain 55%of the variance in the dataset, but the top-
ranked iModulons that are matched between both represent 26% and
32% of the variance, respectively. Note that ICA-derived explanations
are based on knowledge, or mechanisms, in contrast to the explana-
tion of statistical variation that is obtained using principal component
analysis (PCA).

The congruence of the gene compositions of matched ti- and
piModulons led to the comparisons of their activity levels. Such
comparison enabled further knowledge enrichment of the matched
sets of iModulons over and above their individual annotation with
regulatory knowledge. The comparison allowed the attribution of a
number of established transcriptional and post-translational reg-
ulatorymechanisms.Regulatoryphenomena, suchas riboswitches and
attenuation, are easily identifiable when comparing matched iModu-
lons of the corresponding regulatory component. Thus, interoperable
data analytics at the genome-scale can capture an increasing number
of established regulatory mechanisms through detailed molecular
biology studies.

We also showed that it is possible to utilize transcriptomic data-
sets to infer proteome allocation. Previously, this was only achievable
on aper-genebasis, butmodularization via ICAhas scaled up the scope
to sets of genes enabling inference of proteome re-allocation4–6.
Transcriptomic samples can be measured cheaper, faster, and with
higher precision and accuracy than proteomics samples. The fact that
we can demonstrate a correlation between tiModulon activity levels
and proteome allocation with this method in its infancy, provides a
strong impetus to explore how broadly we can achieve this correlation
which requires the generationof largermatched sets of transcriptomic
and proteomic datasets. As we generate more matched sets, our
regressionmodels will become increasinglymore robust sincewe only
currently have 57 matched conditions for regression. In its current
form, we train the regression models on all data points using leave-
one-out cross-validation due to our dataset size limitation. However,
the inclusion of additional holdouts (Supplementary Fig. 5, Supple-
mentary Fig. 6) doesn’t significantly deteriorate the proteome alloca-
tion prediction capacity and in fact, further supports the robustness of
our initial models. More data will enable more rigorous validation
testing of these regression models in follow-up studies.

Furthermore, enabling the prediction of proteome re-allocation
between conditions using transcriptomics can further bridge the gap
between observable physiological states and molecular profiling
methods. Genome-scale computational models that compute pro-
teome allocation can nowbe parameterized better and thus be used to
build quantitative relationships between the regulation of gene
expression and physiological functions and fitness52,53.

Taken together, we have shown that ICA can modularize the
transcriptome and proteome in a consistent manner. The iModulons
are knowledge-enriched and thus interpretable based on the funda-
mentals of cell and molecular biology. This achievement enables the
meaningful interoperability of two key omics data types, leading to
quantitative and knowledge-based relationships at the genome-scale
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between the proteome and transcriptome. This capability, in turn,
gives us a deep understanding of the systems biology of bacteria,
which leads to interpreting their adaptation and changes to environ-
mental stimuli. Thus, distal and proximal causation can be studied at a
new scale to more deeply understand organism fitness and survival
strategies.

Methods
Proteomic sample preparation
Frozen cell pellets were resuspended in lysis buffer (75mM NaCl
(Sigma–Aldrich), 3% sodium dodecyl sulfate (Fisher Scientific), 1mM
sodium fluoride (VWR International, LLC), 1mM β-glycerophosphate
(Sigma–Aldrich), 1mM sodium orthovanadate, 10mM sodium pyr-
ophosphate (VWR International, LLC), 1mM phenylmethylsulphonyl
fluoride (Fisher Scientific), 50mMHEPES (Fisher Scientific) pH 8.5, and
1× complete EDTA-free protease inhibitor mixture). Samples were
vortexed and sonicated (Qsonica, Q500 equipped with a 1.6-mm
microtip) at 20% amplitude for three cycles of 2 s of sonication fol-
lowed by 2 s of rest, with a total sonication time of 12 s.

Total protein abundance was determined using a bicinchoninic
acid Protein Assay Kit (Pierce) as recommended by the manufacturer.
Six micrograms of protein were aliquoted for each sample. Sample
volume was brought up to 20μL in a solution of 4M Urea and 50mM
HEPES, pH = 8.5. Proteins were reduced and alkylated with 5mM
dithiothreitol (DTT) for 30minutes at 56 °C and 15mM iodoacetamide
(IAA) at room temperature in the dark for 20min. The reaction was
quenched with the addition of 5mM DTT for 15min at room tem-
perature in the dark. Proteinswereprecipitated by adding 5 uL of 100%
trichloroacetic acid on ice for 10min, then centrifuged at 16,000× g
for 5min at 4 °C. The supernatant was removed, and pellets were
washed gently in 50 uL of ice-cold acetone. The wash was repeated
twice, and the pellets were dried on a heating block at 56 °C. Pellets
were resuspended in 1M Urea and 50mM HEPES, pH 8.5. The UPS2
Standard (Sigma) was reconstituted as follows: 20μL of 4M Urea and
50mM HEPES, pH 8.5 was added to the stock tube and vortexed and
sonicated for 5min each. Reduction and alkylation were performed as
described above. The standard was then diluted in 50mM HEPES, pH
8.5 such that the final concentration of urea was 1M. Then 0.88μg of
the standardwas spiked into each experimental sample. Samples were
then digested first with 6.6μg of LysC at room temperature overnight
followed with 1.65 ug sequencing grade trypsin (Promega) for 6 hours
at 47 °C. Digestion was terminated with the addition of 3.3μL 10%
trifluoroacetic acid (TFA) and was brought to a final volume of 300 uL
with 0.1% TFA. Samples were centrifuged at 16,000 × g for 5min and
desalted with in-house-packed Stage-Tips21,54. Samples were then dried
in a speedvac, and stored at −80 °C until LC–MS/MS.

LC–MS/MS
Samples were resuspended to 1μg/μL in 5% acetonitrile (ACN) and 5%
formic acid (FA), vortexed, and sonicated. Samples were analyzed on
an Orbitrap Fusion Mass Spectrometer with in-line Easy NanoLC
(Thermo) in technical triplicate. Samples were run on an increasing
gradient from 6 to 25% ACN+0.125% FA for 75min, then 100% ACN+
0.125% FA for 10min. Onemicrogramof each sample was loaded onto
a 35 cm length in-house−pulled and −packed glass capillary column (ID
100μm, OD 360μm) heated to 60 °C. The column was triple packed
first with C4 resin (5μm, 0.5 cm, Sepax), then C18 resin (3μm, 0.5 cm,
Sepax), and finally C18 resin (1.8μm, 29 cm, Sepax). Electrospray
ionization was achieved through application of 2000V to a stainless-
steel T-junction connecting the sample, waste, and column. The mass
spectrometer was run in positive polarity mode with MS1 scans per-
formed in the orbitrap (375m/z to 1500m/z, 120,000 resolution, AGC
set to 5 × 105, ion injection time of 100ms maximum, dynamic exclu-
sion set to 30 s duration). Top N was used for fragment ion isolation,
with N set to 10. A decision tree was used to isolate ions with a charge

state of two between 375m/z and 1500m/z, and ions with charge
states of 3–6 were isolated between 600m/z and 1500m/z. Precursor
ions were fragmented using fixed collision-induced dissociation and
fragment ions were detected in the linear ion trap in profile mode.
Target AGC was set to 1 × 104.

Technical triplicate spectral data was searched against custom
reference proteomes of the respective strains (see above) with the
UPS2 database appended using Proteome Discoverer 2.5 (Thermo).
Spectral matching and an in-silico decoy database were performed
using the SEQUEST algorithm55. Precursor ion mass tolerance was set
to 50 PPM, and fragment ion tolerance was set to 0.6 Daltons. Trypsin
and LysCwere specified as digesting enzymes with amaximummissed
cleavage of two sites allowed. Peptide length was set between 6 and
144 amino acids. Dynamic modifications included the oxidation of
methionine (+15.995Da), and static modifications included carbami-
domethylation of cysteines (+57.021Da). A false discovery rate of 1%
was applied during spectral searches.

Proteome abundance estimations
The protein abundance estimation steps used on the new dataset are
the same used on the previous PXD01534421. The top3 metrics were
calculated for each protein as the average of the three highest peptide
areas5,56. Linear regression was used to calibrate the top3 metric with
the UPS2 standard according to the following model:

log10 Að Þ=a+b log10ðtop3Þ

Where A is the amount of loaded protein A and top3 is the average of
the three highest peptide areas. In order to obtain abundance relative
to cell dry weight, we used the following formula:

Ci = γ
AiP
j Aj

Where the numerator of the ratio, Ai, is the abundance of the ith
protein, and the denominator is the sum of abundances for all j pro-
teins. We use a constant ratio γ = 13.94 umol*gDW−1 57.

Compiling ProteomICA and data imputation
Upon estimating protein abundances, proteins with <50% coverage
within the dataset were removed. Of the remaining proteins, samples
with no abundances were replaced with the minimum global protein
abundance. Datasets were then converted tomass fractions or protein
concentrations and concatenated to compile the proteomics com-
pendia. Similar to how the final transcriptomics expression compen-
dium is log-transformed log2(TPM+ 1), thefinal proteomics expression
compendium is scaled by a million and also log-transformed similarly
log2(PPM+ 1)8. Biological replicates with R2 < 0.9 were removed to
reduce technical noise. Individual datasets were then centered using a
common reference condition between all datasets to reduce batch
effects.

Independent component analysis
ICA was run following the PyModulon workflow. ICA is implemented
using the optICA extension of the popular algorithm FastICA. The
script can be found (https://github.com/SBRG/iModulonMiner/tree/
main/4_optICA). The output of the algorithm are two matrices,M and
A, given an input matrix X. In our case, the matrix X is our curated
proteomics compendium. The matrixM contains robust independent
components, and thematrixA contains their corresponding activities.

Computing independent components and their enrichments
After running ICA and obtaining the resulting matrix decomposition,
the PRECISE1K workflow (https://github.com/SBRG/precise1k)22 is
used to choose the optimal dimensionality of the resulting ICA runs
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and associate regulator enrichments to iModulons. After automation,
enriched iModulons are checked for their associated regulators and
uncharacterized iModulons are manually curated using a variety of
annotation tools such as COG and GO terms.

Comparing iModulons between PRECISE and ProteomICA
The PyModulon python package (https://github.com/SBRG/
pymodulon)8 was used for the DiMM, and DiMA, and explained var-
iance plotting functions. The PyModulon package also enables com-
parison between organisms via the compare_ica function, which was
utilized to correlate the iModulons between PRECISE and ProteomICA.
The compare_ica function uses only the overlap of the two gene sets to
calculate correlations, and has a default threshold of 0.25 which was
not changed. The ICA workflow was run on a subset of PRECISE that
contained only the 1390 genes covered by proteomics and 137 mat-
ched samples (57 conditions without replicates), centered using the
same common reference condition as ProteomICA. Population sam-
ples were not included in the matched dataset, only clones. The
resulting decomposition was used for DiMM, DiMA, and recall plots.

Regression and cross-validation for proteome allocation
Only matched samples that are present in both PRECISE and Proteo-
mICA were used for this analysis. Uncharacterized, Genomic, and
Technical tiModulons were ignored. For each tiModulon, tiModulon
activity was plotted against its associated proteome mass fraction.
Replicates were averaged for both iModulon activity and proteome
allocation. Leave-one-out cross-validation was performed with three
different fits, linear, exponential, and broken line. The model with the
lowest mean average error was selected as the best fitting method for
that tiModulon. To analyze the robustness of the models and results,
data was split into train and test groups, with the test group ranging
from 10% to 30% in increments of 5%. Leave-one-out cross-validation
was conducted on the training set, with the final model parameters
evaluated against the test set.

Calculating proteome allocated to groups of tiModulons
Proteome allocation to groups of tiModulons was calculated sequen-
tially to avoidmultiple iModulon genememberships. First, tiModulons
with strong correlations were sorted in descending order by model
performance. tiModulon gene lists were extracted and used to calcu-
late the mean and CV for mass fractions across the compendia. After
which, the genes were removed from the total gene list (1390 genes in
the proteome coverage) and could no longer be used for another
tiModulon. tiModulons with weak correlations were calculated in a
similar fashion after iterating through all the tiModulons with strong
correlations. Lastly, proteome invariant genes and then ‘Other’ were
calculated straight from the remaining gene list since there could no
longer be overlap.

Statistics and reproducibility
No statistical method was used to predetermine size. Two samples
were excluded from analysis due to not meeting the biological repli-
cated threshold (see Compiling ProteomICA and data imputation
section). The experiments were not randomized. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All MS-based proteomics raw files for newly run samples are available
on the ProteomeXchange Consortium with the dataset identifier
PXD039558. All previously used proteomics data can be found under

the identifier PXD015344. Their protein mass fractions are available in
Supplementary Data 1. ProteomICA decomposition matrices, iModu-
lon, and sample table are available in SupplementaryData 2. PRECISE1k
subset decompositionmatrices are available in Supplementary Data 3.
A matched sample table is available in Supplementary Data 4. The full
PRECISE1k decomposition matrices are available at https://github.
com/SBRG/precise1k. Raw RNA-seq data used in PRECISE1k have been
deposited at GEO and are publicly available. Accession numbers are
listed in the metadata file located in the GitHub repository at the path:
data/precise1k/metadata_qc.csv. Source data are provided with
this paper.

Code availability
Code for our Independent Component Analysis pipeline can be found
on GitHub (https://github.com/SBRG/iModulonMiner, https://github.
com/SBRG/precise1k). Code for all iModulon analysis can also be
found on GitHub (https://github.com/SBRG/pymodulon).
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