
UC Irvine
UC Irvine Previously Published Works

Title
Streamed Graph Drawing and the File Maintenance Problem

Permalink
https://escholarship.org/uc/item/3jb503n3

Authors
Goodrich, Michael T
Pszona, Paweł

Publication Date
2013

DOI
10.1007/978-3-319-03841-4_23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jb503n3
https://escholarship.org
http://www.cdlib.org/

Streamed Graph Drawing and
the File Maintenance Problem

Michael T. Goodrich and Pawe l Pszona

Dept. of Computer Science, University of California, Irvine

Abstract. In streamed graph drawing, a planar graph, G, is given in-
crementally as a data stream and a straight-line drawing of G must be
updated after each new edge is released. To preserve the mental map,
changes to the drawing should be minimized after each update, and Bin-
ucci et al. show that exponential area is necessary and sufficient for a
number of streamed graph drawings for trees if edges are not allowed
to move at all. We show that a number of streamed graph drawings
can, in fact, be done with polynomial area, including planar streamed
graph drawings of trees, tree-maps, and outerplanar graphs, if we al-
low for a small number of coordinate movements after each update.
Our algorithms involve an interesting connection to a classic algorith-
mic problem—the file maintenance problem—and we also give new algo-
rithms for this problem in a framework where bulk memory moves are
allowed.

1 Introduction

In the streamed graph drawing framework, which was introduced by Bin-
ucci et al. [4,3], a graph, G, is incrementally presented as a data stream
of its vertices and edges, and a drawing of G must be updated after each
new edge is released. So as to preserve the mental map [6,8] of the draw-
ing, this framework also requires that changes to the drawing of G should
be minimized after each update. Indeed, to achieve this goal, Binucci et
al. took the extreme position of requiring that once an edge is drawn no
changes can be made to that edge. They showed that, under this restric-
tion, exponential area is necessary and sufficient for planar drawings of
trees under various orderings for how the vertices and edges of the trees
are presented.

In light of recent results regarding the mental map [1], however, we
now know that moving a small number of vertices or edges in a drawing of
a graph does not significantly affect readability in a negative way. There-
fore, in this paper, we choose to relax the requirement that there are no
changes to the drawing of the graph after an update and instead allow
a small number of coordinate movements after each such update. In this

ar
X

iv
:1

30
8.

67
11

v1
 [

cs
.D

S]
 3

0
A

ug
 2

01
3

paper, we study planar streamed graph drawing schemes for trees, tree-
maps, and outerplanar graphs, showing that polynomial area is achievable
for such streamed graph drawings if small changes to the drawings are
allowed after each update. Our results are based primarily on an interest-
ing connection between streamed graph drawing and a classic algorithmic
problem, the file maintenance problem.

In the file maintenance problem [11], we wish to maintain an ordered
set, S, of n elements, such that each element, x in S, is assigned a unique
integer label, L(x), in the range [0, N], where x comes before y if and only
if L(x) < L(y). In the classic version of this problem, N is restricted to be
O(n), with the motivation that the integer labels are addresses or pseudo-
addresses for memory locations where the elements of S are stored1. If N
is only restricted to be polynomial in n, then this is known as the online
list labeling problem [2,5]. In either case, the set, S, can be updated by
issuing a command, insertAfter(x, y), where y is to be inserted to be
immediately after x ∈ S in the ordering, or insertBefore(x, y), where y is
to be inserted to be immediately before x ∈ S in the ordering. The goal
is to minimize the number of elements in S needing to be relabeled as a
result of such an update.

Previous Related Results. For the file maintenance problem, Willard [11]
gave a rather complicated solution that achieves O(log2 n) relabelings in
the worst case after each insertion, and this result was later simplified by
Bender et al. [2]. For the online list labeling problem, Dietz and Sleator [5]
give an algorithm that achieves O(log n) amortized relabelings per inser-
tion, and O(log2 n) in the worst-case, using an O(n2) tag range. Their so-
lution was simplified by Bender et al. [2] with the same bounds. Recently,
Kopelowitz [7] has given an algorithm that achieves O(log n) worst-case
relabelings after each insertion, using a polynomial bound for N .

For streamed tree drawings, as we mentioned above, Binucci et al. [4,3]
show that exponential area is required for planar drawings of trees, de-
pending on the order in which vertices and edges are introduced (e.g,
BFS, DFS, etc.).

Our Results. For the context of this paper, we focus on planar drawings
of graphs, so we consider a drawing to consist essentially of a set of non-
crossing line segments. For traditional drawings of trees and outerplanar

1 For instance, in the EDT text editor developed for the DEC PDP-11 series of mini-
computers, each line was assigned a pseudo line number, 1.0000, 2.0000, and so on,
and if a new line was to be introduced between two existing lines, x and y, it was
given as a default label the average of the labels of x and y as its label.

graphs, the endpoints of the segments correspond to vertices and the
segments represent edges. In tree-map drawings, each vertex v of a tree T
is represented by a rectangle,R, such that the children of v are represented
by rectangles inside R that share portions of at least two sides of R.
Thus, in a tree-map drawing, the line segments correspond to the sides
of rectangles.

We present new streamed graph drawing algorithms for general trees,
tree-maps, and outerplanar graphs that keep the area of the drawing to be
of polynomial size and allow new edges to arrive in any order, provided the
graph is connected at all times. After each update to a graph is given, we
allow a small number of, say, a polylogarithmic number of the endpoints of
the segments in the drawing to move to accommodate the representation
of the new edge. We alternatively consider these to be movements of either
individual endpoints or sets of at most B endpoints, for a parameter B,
provided that each set of such endpoints is contained in a given convex
region, R, and all the endpoints in this region are translated by the same
vector. We call such operations the bulk moves.

All of our methods are based on our showing interesting connections
between the streamed graph drawing problems we study and the file main-
tenance problem. In addition to utilizing existing algorithms for the file
maintenance problem in our graph drawing schemes, we also give a new
algorithm for this classic problem in a framework where bulk memory
moves are allowed, and we show how this solution can also be applied to
streamed graph drawing.

2 Building Blocks

The ordered streaming model. We start with the description of the
model under which we operate. At each time t ≥ 1, a new edge, e, of a
graph, G, arrives and has to be incorporated immediately into a draw-
ing of G, using line segments whose endpoints are placed at grid points
with integer coordinates. Since we are focused on planar drawings in this
paper, together with the edge, e, we also get the information of its rela-
tive position among the neighbors of e’s endpoints (i.e., for every vertex
we know the clockwise order of its neighbors and e’s placement in this
order). At all times, the current graph, G, is connected, and the edges
never disappear (infinite persistence).

Incidentally, the streaming model of Binucci et al. [4] is slightly dif-
ferent, in that edges arrive without the order information in their model.
Under that model, they have given an Ω(2

n
8) area lower bound for bi-

nary tree drawing and an Ω(n(d − 1)n) lower bound for drawing trees
with maximum degree d > 2. These bounds stand when the algorithm is
not allowed to move any vertex. However, they only apply to a very re-
stricted class of algorithms, namely predefined-location algorithms, which
are non-adaptive algorithms whose behavior does not depend on the or-
der in which the edges arrive or the previously drawn edges. Also, as
noted above, Binucci et al. do not allow for vertices to move once they
are placed. As we show in the following theorem, even with the added
information regarding the relative placement of an edge among its neigh-
bors incident on the same vertex, if we don’t allow for vertex moves, we
must allow for exponential area.

Theorem 1. Under the ordered streaming model without vertex moves,
any tree drawing algorithm requires Ω(2n/2) area in the worst case.

Proof. We start with a single node r (root) placed in an empty grid and
imagine it surrounded by an 2 × 2 bounding square (see Fig. 1). After
adding at most 5 edges from the root (ordering doesn’t matter), there
has to be one side m of the bounding square that is pierced by two edges,
e and f . Assume w.l.o.g. that m is the upper side of the bounding square.
e and f form an (infinite) wedge W , and their points of intersection with
m specify s, a sub-interval of m. Abusing the notation so that s denotes
the length of s, we have s ≤ 2.

We keep adding new edges from the root inside (shrinking) W . Adding
new edge inside W (enforced by specifying edge ordering) divides W into
two wedges, W1 and W2. For the next iteration we select the one with the
smaller interval s. Thus, after adding n+ 1 edges from the root, s ≤ 1/2n

in the current wedge.
Now let us limit W with a lowest possible horizontal line L such that

there are two grid points inside W that lie on L. There are two triangles
cut out from W – one (red) by the bounding square, the other (blue) by
L. They are similar, so A/S = a/s. Then

A =
aS

s
≥ 2naS ≥ 2n,

as a ≥ 1 and S ≥ 1.
Now look at the large (blue) triangle. By definition, it can contain at

most A grid points (at most one for each y-coordinate; distance of r from
L is ≤ A). Placing of logA ≈ n additional edges allows us to obtain a
sub-wedge with no grid points inside the blue triangle (by always picking
the sub-wedge that contains less grid points). Now every new edge has

to be placed at distance at least A from the root as there are no more
available grid points left inside the triangle. Clearly, the area needed for
the drawing is now also at least A ≥ 2n. Since our tree has 2n edges, we
get an Ω(2n/2) area lower bound for drawing a tree of n edges. ut

r

a

s

A

SL

Fig. 1. Illustration of the proof of Theorem 1

File maintenance with bulk moves. Here we consider the file main-
tenance problem and the online list labeling problem variants where we
allow for bulk moves2 of an interval of B labels, for some parameter B.
We have already mentioned the known results for the file maintenance
problem, where the only type of relabelings that are allowed are for indi-
vidual elements, in which O(log2 n) worst-case relabelings suffice for each
update when N is O(n) [2,11] and O(log n) suffice in the worst-case when
N is a polynomial in n [7].

Bulk moves allow us to improve on these bounds. We have achieved
several tradeoffs between the operation count and the size of B. Of course,

2 Note that bulk moves are also motivated for the original file maintenance problem
if we define the complexity of a solution in terms of the number of commands that
are sent to a DMA controller for bulk memory-to-memory moves.

if B is n, then achieving constant number of operations is easy, since we
can maintain the n elements to have the indices 1 to n, and with each
insertion, at some rank i, we simply move the elements currently from i
to n up by one, as a single bulk move. Theorem 2 summarizes the rest of
our results.

Theorem 2. We can achieve the following bounds:

1. O(1) worst-case relabeling bulk moves suffice for the file maintenance
problem if B = n1/2.

2. O(1) worst-case relabeling bulk moves suffice for the online list main-
tenance problem if B = log n.

3. O(log n) worst-case relabeling bulk moves suffice for the file mainte-
nance problem if B = log n.

Proof.

1. This is accomplished in an amortized way by partitioning the array
into n1/2 chunks of size at most 2n1/2. Whenever a chunk, i, grows
to have size n1/2, we move all the chunks to the right of i by one
chunk (using O(n1/2) bulk moves). Then we split the chunk i in two,
keeping half the items in chunk i and moving half to chunk i + 1.
These moves are charged to the previous n1/2/2 insertions in chunk
i. Turning this bound into a worst-case bound is then done using
standard de-amortization techniques.

2. This is accomplished by slightly modifying a two-level structure of
Kopelowitz [7]. Kopelowitz used the top level of this structure to
maintain order of sublists of size O(log n) each. Order within each
sublist was maintained using standard file maintenance problem so-
lutions. Our modification is that each sublist is now represented as
a small subarray of size O(log n) and operations on the top level of
Kopelowitz’s structure are simulated using bulk moves on a big array
containing all concatenated subarrays.

3. This is accomplished by using the method of Bender et al. [2] and
noting that each insertion in their scheme uses a process where each
substep involves moving a contiguous subarray of size O(log n) using
O(log n) individual moves. Each such move can alternatively be done
using O(1) bulk moves of subarrays of size log n.

3 Streamed Graph Drawing of Trees

In this section, we present several algorithms for upward grid drawings
of trees in the ordered streaming model. The algorithms are designed to

accommodate different types of vertex moves allowed. For example, by a
bulk move, we mean a move that translates all segment endpoints that
belong to a given convex region, R, by the same vector. This corresponds
to the observation [12] that moving a small number of elements in the
same direction is easy to follow and does not interfere with the ability to
understand the structure of the drawing (as long as there are no intersec-
tions).

(a) (b)

Fig. 2. Illustrating an insertion for our tree-drawing scheme: (a) determining relative
position for the new (dashed, red) edge; (b) tree after edge insert and related vertex
moves.

Let G be a tree that is revealed one edge at a time, keeping the graph
connected. Algorithm 1 selects one endpoint of the first edge, r, puts it
at position (0, 0), and produces an upward straight-line grid drawing of
G, level-by-level, with each edge from parent to child pointed downwards.
(If a new edge is ever revealed for the current root, we simply recalibrate
what we are calling position (0, 0) without changing the position of the
vertices already drawn.) For the kth level, Lk, with nk nodes, we place
nodes in positions (0,−k) through (N ,−k) in the order of their parents
(to avoid intersections), where N ≥ nk. When a new edge is added, we
locate the position (row and position in the row) of the new node and
insert the new node after its predecessor (or before its successor), shifting
other nodes on this level as needed to make room for the new node. (See
Fig. 2.) The details are as shown in Algorithm 1.

Input: e = (a, b), the edge to be added; b is the new vertex
1: k ← b’s distance from r
2: determine c, b’s predecessor (or successor) in level Lk

3: perform Lk.insertAfter(c, b) (or Lk.insertBefore(c, b)), giving b integer label L(b)
4: move vertices whose labels have changed in the previous step
5: place b at (L(b),−k) and draw e

Algorithm 1: Generic insertion algorithm for upward straight-line grid
streamed tree drawing.

Drawing the tree in this fashion ensures there are no intersections
(edges connect only vertices in two neighboring levels), even as the vertices
are shifted (relative order of vertices stays the same). In addition, there
are at most O(n) levels, and at most O(n) nodes per level.

Theorem 3. Depending on the implementation for the insertBefore and
insertAfter methods, Algorithm 1 maintains a straight-line upward grid
drawing of a tree in the ordered streaming model to have the following
possible performance bounds:

1. O(n2) area and O(1) vertex moves per insertion if bulk moves of size
n1/2 are allowed.

2. O(n2) area and O(log n) vertex moves per insertion if bulk moves of
size log n are allowed.

3. O(n2) area and O(log2 n) vertex moves per insertion if bulk moves are
not allowed.

4. polynomial area and O(1) vertex moves per insertion if bulk moves of
size log n are allowed.

5. polynomial area and O(log n) vertex moves per insertion if bulk moves
are not allowed.

Proof. The claimed bounds follow immediately from Theorem 2. ut

Note that Ω(n2) area is necessary in the worst case for an upward
straight-line grid drawing of a tree if siblings are always placed on the
same level.

4 Streamed Graph Drawing of Tree-Maps

A tree-map, M , is a visualization technique introduced by Shneider-
man [9], which draws a rooted tree, T , as a collection of nested rectangles.
The root, r, of T is associated with a rectangle, R, and if r has k children,
then R is partitioned into k sub-rectangles using line segments parallel

to one of the coordinate axes (say, the x-axis), with each such rectangle
associated with one of the children of r. Then, each child rectangle is re-
cursively partitioned using line segments parallel to the other coordinate
axis (say, the y-axis). (See Fig. 3.)

a

b c d

e
f

g h

a

b c d e

f g

h

Fig. 3. A tree-map and its associated tree.

We assume in this case that a tree, G, is released one edge at a time,
as in the previous section. We assume inductively that we have a tree-
map drawn for G, with a global set, X, of all x-coordinates maintained
for the rectangle boundaries and a global set, Y , of all y-coordinates
maintained for the rectangle boundaries. When an edge, e, of a rectangle
has to be moved, the largest segment containing e is moved accordingly.
Our insertion method is shown in Algorithm 2 (for brevity, the case when
a vertex has no predecessors among its siblings is omitted).

Input: e = (a, b), the edge to be added; b is a new child vertex
1: Let R be the rectangle for a, and let z be the primary axis for R (w.l.o.g., z = x)
2: if b has no siblings then
3: Rb ← R (and give it primary axis orthogonal to z)
4: else if then
5: else
6: determine c, b’s predecessor sibling (w.l.o.g.), and let Rc be c’s rectangle
7: perform X.insertAfter(Rc.xmax, b), giving b integer label L(b)
8: move segment endpoints whose labels have changed in the previous step
9: Rb ← the rectangle in R with left boundary Rc.xmax and right boundary L(b)

10: end if

Algorithm 2: Generic insertion algorithm for streamed tree-map draw-
ing.

Theorem 4. Depending on the implementation for the insertBefore and
insertAfter methods, Algorithm 2 maintains a tree-map drawing of a tree
in the ordered streaming model to have the following possible performance
bounds:

1. O(n2) area and O(1) x- and y-coordinate moves per insertion if bulk
moves of size n1/2 are allowed.

2. O(n2) area and O(log n) x- and y-coordinate moves per insertion if
bulk moves of size log n are allowed.

3. O(n2) area and O(log2 n) x- and y-coordinate moves per insertion if
bulk moves are not allowed.

4. polynomial area and O(1) x- and y-coordinate moves per insertion if
bulk moves of size log n are allowed.

5. polynomial area and O(log n) x- and y-coordinate moves per insertion
if bulk moves are not allowed.

Proof. The claimed bounds follow immediately Theorem 2. ut

We leave as an exercise how a similar approach could be used for
streamed grid straight-line drawings of binary trees, where the y-coordinate
of a node depends on its depth and its x-coordinate depends on its inorder
rank.

5 Streamed Graph Drawing of Outerplanar Graphs

a

b

c d

e

f

g

h

G

a

b

c

d

e

f

g

h

Fig. 4. An outerplanar graph, G, and its circular drawing.

Our algorithm for drawing outerplanar graphs in the streaming model
is based on a well-known fact about outerplanar graphs, namely that any
outerplanar graph may be drawn with straight-line edges and without
intersections in such a way that the vertices are placed on a circle [10].
(See Fig. 4.)

As previously, we assume that each new edge comes with the informa-
tion about its relative placement among its endpoints’ incident edges. In
other words, for each vertex, we know the clockwise order of its incident
edges. Fig. 5 shows a situation when this information alone is not enough,
however.

a

b

c

d

Fig. 5. Situation where information about order of edges around vertex is insufficient.
Initially, there are vertices a, b, c and edges (a, b), (b, c). When a new edge (a, c) is
added, it can be drawn in two ways (solid green or dashed red) – ordering of edges
does not specify which one to choose. When edge (b, d) arrives (with edge order (a, d, c)
around b), if the dashed red edge location was selected, there is no way to move the
vertices without intersections to produce an outerplanar drawing.

Nevertheless, this type of problem can only happen when the new
edge connects two vertices of degree 1 as shown below.

Lemma 1. If at least one of the newly connected vertices has degree > 1,
the information about relative order of incident edges suffice.

Proof. Consider the situation shown in Fig. 6. (p, q) is the new edge (p
has degree at least 2). The graph is connected, and the path between p
and q is shown. The initial direction of the edge (bold part) is determined
by the ordering of edges around p. Then the edge can either go around
r (shown in dashed red) or not (solid green). Obviously, the dashed red
edge location is invalid, as it would surround r with a face, violating the
requirement that each vertex belongs to the outer plane. Therefore, there
is only one possibility for correctly drawing the edge. ut

It follows that when the new edge connects two vertices of degree 1,
additional information (such as relative order of the vertices on the outer
face) is necessary.

· · ·

r

p

s

q

Fig. 6. Of the two possibilities of drawing new edge (p, q), only solid green is valid.

We present our streamed drawing algorithm for an outerplanar graph,
G, in terms of placing vertices of G on a circle. We will later derive an
algorithm for drawing G using grid points. We show in Algorithm 3 how
to handle adding a new edge to the graph.

Invariant: vertices are placed on the circle in the same order as they appear on the
outer face of the drawing

Input: outerplanar drawing of graph G on a circle; e = (p, q) – edge to be added
1: if q is a new vertex then
2: place q on the circle according to ordering that includes e
3: else
4: add a virtual arc e′ connecting p and q according to the specification of e s.t. e′

does not intersect any existing edge
5: calculate order O of vertices on the outer plane (taking e′ into account)
6: move vertices into place on the circle according to O
7: end if
8: draw e

Algorithm 3: Adding new edge to outerplanar drawing of graph G

As mentioned previously, maintaining the invariant guarantees pla-
narity of the drawing. We now show that vertices can move into place
without causing any intersections in the process.

Lemma 2. Moving a vertex v inside the circle along a trajectory that
does not intersect any edge non-incident to v does not introduce any in-
tersections and maintains the order of edges around v.

Proof. Consider the drawing with edges incident to v removed (marked
with dashed lines in Fig. 7). The face to which v belongs (limited by edges
and circle boundary) is the area where v can move. Because it is convex,
as v moves, its incident edges never intersect the boundaries of the area

(other than at their incident vertices), and the relative order of the edges
stays the same. ut

v

Fig. 7. Vertex v can move in the (convex) white area without causing intersections or
edge order changes.

Lemma 3. A vertex, v, that moves into its new position can do so with-
out crossing any edges.

Proof. Consider the face (in the sense of Lemma 2 and Fig. 7) of the
drawing that v belongs to. The drawing is still outerplanar after adding
the virtual arc (which is not necessarily straight-line), and therefore at
least part of the circle, C ′, that forms this face’s border still belongs to
the outer face of the drawing (see vertex c in Fig. 8). By Lemma 2, v
can move to C ′ without crossing any edges. When there are more vertices
whose destination is the same part of the circle, C ′′, (vertices d, e and f
in Fig. 8), they must form a path with inner vertices all having degree 2.
After adding the new edge, their order on the circle (and hence on C ′′) is
the reverse of their current order, so their (straight-line) trajectories do
not cross. Since they form a path, edges between them will not intersect
as they move into place. ut

Corollary 1. Algorithm 3 maintains an outerplanar drawing of a graph
G as new edges are added to it.

Extending Algorithm 3 to placing nodes on a grid is straightforward.
Instead of a circle, we operate on a set of grid points in convex position
that are approximately circular. We apply one of the algorithms for the
file maintenance problem or the online list labeling problem for main-
taining order of vertices in this set. When such an algorithm would move

a

b

c

d

5|66|5

g

h

i

1|1

2|2

3|9

4|7

ef

7|3

8|4

9|8

Fig. 8. Adding edge (a, g). Virtual arc is drawn in green dots. Part of the circle that
lies in the outer plane and is reachable from c is shown in bold red. Numbers above
vertices denote the order of vertex before and after the edge is added, respectively.
Dashed lines are the trajectories of the vertices that need to move to maintain the
invariant.

vertex v, we first check if there is an unused grid point between new neigh-
bors of v on the circle. If so, we simply move the vertex to that point.
Otherwise, we “reserve” the destination for v by inserting a stub vertex
in the correct place (between new neighbors of v) on the circle. The list
labeling algorithm will move vertices around the circle (without changing
order on the circle, so it will not cause any intersections) to make room
for this stub. Afterwards, we move v into its reserved position.

Lemma 4. Vertex v is moved in line 6 of Algorithm 3 at most deg(v)−1
times.

Proof. A vertex v is moved when the new edge forms a shortcut that
bypasses v on the outer face. v can appear at most deg(v) times on the
outer face, so after deg(v)−1 moves, there will be only one valid position
for v on the outer face, so it cannot be bypassed anymore. (See Fig. 9.)

ut

Theorem 5. The grid-based version of Algorithm 3 maintains an outer-
planar drawing of a graph G and has the following update performances:
uses O(log n) amortized moves per vertex, and

1. O(n3) area and O(log2 n) vertex moves per edge insertion.
2. polynomial area and O(log n) vertex moves per edge insertion.

In addition, each of the above complexity bounds applies in an amortized
sense per vertex in the drawing.

v

Fig. 9. Vertex v has degree 3. After two shortcuts (solid green lines) around v have
been added, adding a third (dashed red line) would completely surround v, violating
outerplanarity. Arrows show direction of edges on the outer plane.

Proof. By Corollary 1, we know that the algorithm maintains an outer-
planar drawing of G. For the area bounds, the file maintenance algorithms
requires O(n) available integer tags (in this case, points in convex posi-
tion) to handle n elements. Since m grid points in (strict) convex position
require O(m3) area, the streamed drawing algorithm therefore uses O(n3)
area in such cases. Likewise, it uses polynomial area when using a solution
to the online list labeling problem.

With respect to the claim about amortized performance, by Lemma 4,
each vertex v is moved by Algorithm 3 at most deg(v)−1 times. Each such
move requires at most one insertion into the list for the file maintenance or
list maintenance algorithm. This means that there are at most O(n) such
insertions (sum of degrees of all vertices in an outerplanar graph is O(n)).
For O(n) insertions, the performance for each of the file maintenance or
list maintenance algorithms therefore become an amortized number of
moves per vertex made by our algorithm. ut

Note that in this application we cannot immediately apply our results
for bulk moves, unless we restrict our attention to possible vertex points
that are uniformly distributed on a circle and moves that involve rotations
of intervals of points around this circle.

6 Conclusion

In this paper, we provide a revised approach to streamed graph drawing
based on utilizing solutions to the file maintenance problem, either on a
level-by-level basis (for level drawings of trees), a cross-product basis (for
tree-maps), or a circular/convex-position basis (for outerplanar graphs).
For future work, it would be interesting to find other applications of this
problem in streamed or dynamic graph drawing applications.

Acknowledgements

We would like to thank Alex Nicolau and Alex Veidenbaum for helpful
discussions regarding the file maintenance problem. This work was sup-
ported in part by the NSF, under grants 1011840 and 1228639.

References

1. D. Archambault and H. C. Purchase. Mental map preservation helps user orienta-
tion in dynamic graphs. In W. Didimo and M. Patrignani, editors, Graph Drawing,
volume 7704 of LNCS, pages 475–486. Springer, 2013.

2. M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two sim-
plified algorithms for maintaining order in a list. In R. H. Möhring and R. Raman,
editors, ESA, volume 2461 of LNCS, pages 152–164. Springer, 2002.

3. C. Binucci, U. Brandes, G. D. Battista, W. Didimo, M. Gaertler, P. Palladino,
M. Patrignani, A. Symvonis, and K. Zweig. Drawing trees in a streaming model.
Information Processing Letters, 112(11):418–422, 2012.

4. C. Binucci, U. Brandes, G. Di Battista, W. Didimo, M. Gaertler, P. Palladino,
M. Patrignani, A. Symvonis, and K. A. Zweig. Drawing trees in a streaming
model. In D. Eppstein and E. R. Gansner, editors, Graph Drawing, volume 5849
of LNCS, pages 292–303. Springer, 2009.

5. P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In 19th
ACM Symp. on Theory of Computing (STOC), pages 365–372, 1987.

6. P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a
diagram. Proceedings of Compugraphics, pages 24–33, 1991.

7. T. Kopelowitz. On-line indexing for general alphabets via predecessor queries on
subsets of an ordered list. In FOCS, pages 283–292. IEEE Computer Society, 2012.

8. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. Journal of Visual Languages & Computing, 6(2):183–210, 1995.

9. B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph., 11(1):92–99, Jan. 1992.

10. R. Tamassia. Handbook of Graph Drawing and Visualization (Discrete Mathematics
and Its Applications). Chapman & Hall/CRC, 2007.

11. D. E. Willard. Good worst-case algorithms for inserting and deleting records in
dense sequential files. In ACM SIGMOD, pages 251–260, 1986.

12. S. Yantis. Multielement visual tracking: Attention and perceptual organization.
Cognitive psychology, 24(3):295–340, 1992.

	Streamed Graph Drawing and the File Maintenance Problem

