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Abstract

The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and 

February 2016. Two targets served as the framework to test community docking and scoring 

methods: (i) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), 

and (ii) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted 

in two stages, with the first stage testing pose predictions and the capacity to rank compounds by 

affinity with minimal structural data; and the second stage testing methods for ranking compounds 

with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge 

provided small groups of chemically similar HSP90 compounds amenable to alchemical 

calculations of relative binding free energy. Unlike previous blinded Challenges, we did not 

provide cognate receptors or receptors prepared with hydrogens and likewise did not require a 
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specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom 

to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows 

that tested not only core docking and scoring technologies, but also methods for addressing water-

mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of 

protein structures for use in docking calculations. Nearly 40 participating groups submitted over 

350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the 

organization of the challenge components, summarizes the results across all submitted predictions, 

and considers broad conclusions that may be drawn from this collaborative community endeavor.

Keywords

D3R; docking; FEP; alchemical methods; ligand ranking; water mediated ligand interaction

1 Introduction

The Drug Design Data Resource (D3R; www.drugdesigndata.org), aims to motivate the 

development of improved computational methods by offering pharmaceutical-related high 

quality datasets as benchmarks and blinded community challenges. In this article we 

describe the composition of the datasets, the challenge preparation, and motivation for the 

challenge provided, and an overview of participant results of the first community-wide D3R 

Grand Challenge, conducted between September 15, 2015 and February 1, 2016. Grand 
Challenge 2015 had high participation and the approaches to solving this protein-ligand pose 

and affinity ranking problem-set were varied. This overview is supplemented in detail by a 

number of participant authored articles in this special issue.

Development of accurate automated protein-ligand docking and scoring methods promises a 

high social impact by reducing the time, expense, and environmental costs of extensive 

chemistry campaigns in drug discovery. However, this high potential is matched by the high 

barriers to developing such methods. Design goals include the abilities to recapitulate 

experimentally observed ligand-protein poses with root-mean-square deviations (RMSD) ≤ 

2.0Å, and to accurately rank affinities for ligands bound to any receptor. At least three types 

of affinity ranking problems are commonly addressed: ranking of diverse compounds to 

classify them as binders or non-binders of a given protein (virtual screening); ranking of 

congeneric series of active compounds that bind a single protein; and ranking of the 

affinities of a single ligand against various proteins, particularly within a protein family. A 

number of community challenges in recent years have tested the performance of these 

algorithms, identifying successes and illuminating areas for improvement [1–4].

D3R’s Grand Challenge 2015 presented the community with two datasets from drug 

discovery programs at two different companies, Abbvie (formerly Abbott) and Genentech, 

Inc. The first sub-challenge focuses on the human heat shock protein 90 (HSP90), which 

regulates proteostasis in normal cells and the stabilization of many oncoproteins in tumor 

cells [5, 6]. Over the past fifteen years, discovery of small molecule inhibitors of the HSP90 

ATP-binding domain has led to over 20 anticancer agents that are currently in clinical trials 

[6]. The second sub-challenge focused on the human mitogen-activated protein kinase 
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kinase kinase kinase 4 (MAP4K4), a signaling Ser/Thr kinase that is involved in pathways 

regulating various pathological processes, including inflammation and cancer, and is 

therefore an investigational drug target for a range of diseases [7].

The HSP90 dataset is based on data contributed by Abbvie and was enhanced by our 

predecessor the Community Structure-Affinity Resource (CSAR www.csardock.org), which 

added 17 new compounds and related assay and structural data. This dataset exemplifies 

many of the features of an ideal docking challenge dataset representative of a drug discovery 

program. The dataset consists of three different chemical series of ~ 60 compounds each, 

which cover an affinity range of four orders of magnitude. Participants were provided with 

examples of chemically similar compounds that do not inhibit the target, as well as a set of 

co-crystal structures representative of the binding modes each chemical series. This 

challenge provided participants with the opportunity to test workflows that go beyond the 

docking algorithms and scoring methodologies and to find ways to incorporate the extensive 

knowledge base that exists for this target, including over 200 crystal structures in the Protein 

Data Bank (PDB; www.pdb.org) with various bound ligands, binding modes and 

conformational examples for most prevalent conformations of the binding pocket’s ATP-lid 

[8]. The distribution of affinities and the number of compounds provided in this dataset also 

afforded the opportunity to define subsets of chemically similar compounds designed to test 

alchemical methods [9] of computing relative binding free energies.

The second dataset is based on the protein MAP4K4, and was contributed by Genentech. 

This dataset contained 30 crystal structures with resolution limits better than 2.5 Å, and 

inhibition/binding data for 18 compounds spanning four orders of magnitude, in many cases 

confirmed by multiple assay methods. This dataset differs from HSP90 in that it has a high 

number of unrelated diverse compounds and only a third of the compounds fall into a 

congeneric series. Moreover, there was a paucity of co-crystal structures publicly available at 

the time of the Challenge launch; only eight ligand-bound (non-ATP) structures were extant 

in the PDB [7, 10–12]. Thus most of the compounds in the dataset were unrelated to 

available MAP4K4 crystal structures and provided an opportunity to test docking programs’ 

cross-docking ability. In MAP4K4, as in the HSP90 dataset, binding site flexibility adds to 

the difficulty of pose prediction, as the kinase P-loop can adopt both a closed and open 

conformation [13], and in some cases, has residues unresolved in crystal structures due to its 

flexibility [13].

Unlike previous blinded challenges, we chose to present these subchallenges without 

providing cognate receptors or receptors prepared with hydrogens, and likewise did not 

require a specified crystal structure to be used for pose or affinity prediction in Stage 1. 

Given this freedom to test a large number of crystal structures, especially for HSP90, many 

participants tested a number of workflows that went beyond a docking program’s sampling 

and scoring capabilities, and instead strove to incorporate target knowledge in an automated 

manner. This also allowed for expanding the challenge test beyond cognate ligand – receptor 

docking (known to be successful for the majority of docking algorithms) and challenge the 

community to test methods for the ability to handle water-mediated ligand-protein 

interactions, binding pocket flexibility, close chemotype (chemical series or similarity) 

docking and cross-docking. In the case of HSP90, care was taken to provide crystal structure 
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examples of the binding mode for each of the three chemotypes, allowing for a similarity 

and cross-docking challenge. The MAP4K4 pose prediction challenge had an additional 

level of difficulty, in that there were no examples for binding modes for many of the 

compounds; on the other hand, MAP4K4 was, arguably, simpler in the sense that correctly 

treating water-mediated protein-ligand interactions was less critical than for HSP90.

2 Materials and Methods

2.1 Composition and Construction of Challenge Datasets

2.1.1 Raw Datasets

2.1.1.1 Heat Shock Protein 90: The HSP90 dataset used for this challenge is based on a 

large collection of enzyme inhibition data contributed by Abbvie Pharmaceuticals to CSAR, 

D3R’s predecessor which further developed the dataset by adding new compounds and 

binding data. The Abbvie dataset contains a set of small molecules with their IC50 values 

for binding to the protein’s N-terminal ATP-binding domain, measured with a time-resolved 

fluorescence energy transfer (TR-FRET) assay [14]. The dataset was expanded to a total of 

180 with an additional set of 17 ligands, which were designed by the CSAR team, 

synthesized by WuXi AppTech and assayed by the same TR-FRET method. Some of the 

compounds were analyzed further by isothermal titration calorimetry and the OctetRed 

method [15], and had their pKas and solubilities measured. Although these additional data 

were not used herein, they are informative regarding the measurement uncertainties and are 

provided on our website (doi:10.15782/D6159W). Table S1 (SI-Dataset) provides the names, 

structures, and IC50 values for all compounds used in the present challenge. These 

compounds may be classified into three chemical series: aryl-benzimidazolones [16], 

pyrimidin-2-amines [14], and benzophenone-like compounds. Each series includes 

approximately 11 compounds for which binding was undetectable by the TR-FRET assay, 

corresponding to an IC50 greater than ~50μM (H.A. Carlson, personal communication). 

IC50 values ranged from 5.2 nM to >50μM. The CSAR team also obtained co-crystal 

structures using exactly the same truncated form of the protein used in the binding assays 

with eight of the ligands, as listed in Table S1 (SI-Dataset). Resolution limits for the 

resulting co-crystal structures range from 1.60 – 1.95 Å, and the crystallization methods and 

conditions can be found in www.RCSB.org. Some of the AbbVie compounds were further 

characterized by other assays as part of the CSAR effort, as detailed in the SI 

(HSP90_Materials&Methods; HSP90_Experimental_Data).

2.1.1.2 Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4: The MAP4K4 

dataset used here was contributed by Genentech, Inc., and comprises 30 crystal structures of 

the enzyme’s catalytic domain bound to 30 chemically varied ligands, together with IC50 

values, measured by an ATP consumption assay [7] for 18 of the 30 compounds, and Ki 

values for 14 of the compounds determined by a Surface Plasmon Resonance (SPR)-based 

fragment screen[17], as summarized in Table S2 (SI-Dataset). The IC50 values ranged from 

0.0031 to 10 μM. Additional assay results for a partial list of the compounds are available at 

the D3R website, doi:10.15782/D6WC7Z, providing some estimates of uncertainties.
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2.1.2 Analysis and Refinement of HSP90 and MAP4K4 Datasets—Crystal 

structure coordinates were interrogated for quality of ligand and side chain occupancy 

around the binding pocket guided by both visual inspection of 2m|Fo|-D|Fc| difference 

Fourier syntheses generated using the MOE software package [18] and data quality 

estimates found in the wwPDB Validation Report (www.rcsb.org/validation/validation-

reports; [19]) for each co-crystal structure. The most important criterion was the clarity of 

the difference electron density feature corresponding to each ligand, as shown in Tables S1 

and S2 (SI-Dataset). The 2m|Fo|-D|Fc| maps contoured at 1.0σ clearly indicate the existence 

of the ligand in each co-crystal complex. For ligands of the HSP90 data set, the real space 

correlation coefficient (RSCC) ranges from 0.92 to 0.99 and the real space Rfactor (RSR) 

ranges from 0.05 to 0.1, leading to very low Zscores (RSRZ), ranging from −0.93 to 0.02, 

much lower than the cutoff value (ZRSR=2.0) for poor electron density; RSCC and RSR 

values generated by wwPDB DCC program [20]. For the ligands of the MAP4K4 data set, 

RSCC ranges from 0.89 to 0.98, RSR from 0.09 to 0.27, and RSRZ from 0.88 to 1.24 which 

are more diverse than the HSP90 cocrystal structures yet well below the cutoff for poor 

quality. Additional information is provided (see supplemental information: 

SI_Crystallographic_data_HSP90 and MAP4K4). The MAP4K4 crystal structure for ligand 

MAP32 was re-refined after the close of the challenge, to make the tautomeric state of the 

ligand pyrazole moiety more consistent with the observed hydrogen bonds the ligand makes 

between kinase protein backbone in the hinge region; this modification also required a 180-

degree rotation of the pyrazole-phenyl bond. The RMSD values reported in this paper were 

evaluated against this new MAP32 model and differ somewhat from those previously 

distributed to challenge participants.

We also looked for possible consequences of crystal packing on ligand poses, as these might 

undermine the validity of these poses as references for pose predictions. The MAP4K4 

crystal structures contain two protein copies per asymmetric unit, with only one copy 

containing bound ligand. Here, the bound ligands made interactions to only one polypeptide 

chain, so all 30 co-crystal structures were suitable for the challenge. However, the structure 

of HSP90 with ligand HSP90_44 (4YKT) was disqualified, because the bound ligand 

directly contacts a second molecule of HSP90, raising the likelihood of a significant 

perturbation of the pose, relative to what would exist in solution (SI-Figures, Figure S1). 

Additionally, two initially blinded HSP90 co-crystal structures were provided to participants 

as docking targets (see below), leaving five of the original eight pose-prediction challenges 

for this target.

2.2 Challenge Procedures

2.2.1 Posing the Challenge—For both the HSP90 and the MAP4K4 datasets, the 

challenge was held in two stages, as previously done by CSAR [4]. In Stage 1, participants 

could predict the poses of the ligands for which blinded crystal structures were available and 

also predict the rankings of all ligand binding affinities, or the binding free energies. 

Immediately after Stage 1 closed, all of the available co-crystal structures were released to 

the participants, and Stage 2 provided a second chance to predict or rank affinities, now with 

the presumed advantage of full access to all structural data.
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Participants were provided with SMILES strings of the ligands to be docked, the pH at 

which the binding assays were performed, and the crystallization buffer conditions. Protein-

ligand crystal structures were also provided, each of suitable quality for docking studies 

(overall resolution <2.5Å), and exemplifying relevant ligand binding modes, water-mediated 

interactions, and protein conformations, when available. The provided co-crystal structures 

were all translationally and rotationally aligned to a single reference structure within each 

dataset. These alignments were based on the coordinates of the α-carbon backbone atoms 

and emphasized secondary structure elements (α-helices and β-sheets) [18]. As mentioned 

above, the structures were provided to participants at the Challenge outset or as “Answers” 

after completion of Stage 1. Participant instructions permitted docking of ligands into other 

structures available in the PDB, and encouraged full utilization of information available in 

the scientific literature. The provided structures were chosen through in house docking and 

analysis of the active sites for both targets. For the HSP90 challenge, two crystal structures 

from the blinded dataset were provided at the outset of the challenge to exemplify new 

chemotype/water-mediated binding modes not found in the public domain. Where multiple 

crystal structures could have been selected, we chose to provide the structure refined using 

the highest resolution data. All challenge data were provided via the D3R website.

For pose predictions, participants were invited to submit up to five poses for each ligand, 

with one marked as their top-ranked pose. For affinities, participants were asked to submit a 

ranked list of all ligands for each protein target. In addition, three small (4, 5 and 10 ligands) 

sets of HSP90 ligands (Table 1) were identified as sufficiently similar to be amenable to 

explicit solvent alchemical free energy calculations [21], and were thus proposed as targets 

for this relatively computationally intensive approach.

For HSP90, Stage 1 opened Sep 15, 2015 and closed Nov 20, 2015; Stage 2 started several 

days after the close of Stage 1 and ended Feb 02, 2016. For MAP4K4, Stage 1 ran from Oct 

16, 2015 to Dec 16, 2015; Stage 2 also started soon after and ran until Feb 02, 2016. Pose 

prediction answers for Stage 1 were released at the end of the Stage. As noted above, all 

available co-crystal structures were released immediately after the close of Stage 1 so they 

could be used in a second round of affinity predictions. No limit was placed on the number 

of predictions a participant could submit for each component of the challenge. Participants 

were provided the option of remaining anonymous and were able to change their choice in 

this regard until the experimental results were released.

2.2.2 Submission and Validation of Predictions—Participants were required to 

provide their predictions in defined formats, in order to enable automated processing of their 

submissions. Each ligand pose was submitted in the form of a legacy PDB format file, 

containing both ligand and protein coordinates, and a REMARK line with an energy or score 

for the pose. Although participants were free to dock the ligands into the protein structure(s) 

of their choice, the coordinates were required to be superimposed on those provided (above). 

Affinity rankings and free energy predictions were submitted in the form of comma-

separated-value (CSV) files, with one ligand per line. Each submission was also required to 

include a protocol file, containing an informal name for the procedure used to predict the 

poses and/or affinities, the name(s) of the main software packages used, the values of key 

parameters, and a brief, plain-text description of the method. Detailed instructions, examples 
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of correctly formatted submissions, and fillable template files, were provided to participants 

via the D3R website.

In order to participate in the challenge, a user or group was required to create a D3R login 

and then register for the challenge. Upon registration, the participants could access all 

available files to date, and upload predictions during open submission windows. 

Immediately after being uploaded by the participant, each new submission file was 

automatically scanned for a set of possible formatting and technical problems, and the 

submitter was immediately notified of any apparent problems. If no problems were detected 

at this stage, the submission was accepted and assigned a Submission ID. Each registered 

participant could then view his or her set of completed submissions, on a D3R page specific 

to the D3R login. Further validation checks of each prediction file took place subsequent to 

initial submission and assignment of the Submission ID. For example, a pose prediction was 

considered invalid if the PDB file contained the wrong ligand or if there were multiple 

copies of a ligand in one PDB file. Submitters were notified of any apparent problems at this 

stage and allowed to correct their submissions if they could do so before the close of the 

submission window.

Some submissions for the affinity ranking components of the challenges did not include 

predictions for all 180 ligands in the case of HSP90 or all 18 ligands in the case of 

MAP4K4. Those containing predictions for only two ligands were not analyzed. In the case 

of HSP90, some submissions contained rankings for only the six ligands in the pose-

prediction part of this challenge; for these, the results were analyzed and provided to the 

submitters but were excluded from the analysis in this report.

2.3 Evaluation of Predictions

2.3.1 Evaluation of Ligand Poses—The accuracy of each predicted ligand pose was 

evaluated in terms of the root-mean-square deviation (RMSD) of the prediction relative to 

the crystallographic pose. Because submitters were instructed to provide coordinates aligned 

with the structures provided as references, the structures were not adjusted in order to 

compute the RMSD values. However, we used the maximum common substructure 

functionality of the OEChem Python toolkit [22] to correct for possible renumbering of 

ligand atoms and for ligand symmetries, as previously described [23]. Although participants 

were free to treat the protein as flexible, we did not evaluate the accuracy of the protein 

conformation, or of water molecules, in the pose predictions. As noted above, participants 

were invited to submit up to five poses per ligand, with one of the five identified as top 

ranked. We computed the RMSD values of all poses in each submission, and reported 

statistics on both the top ranked pose, and, separately, the best (lowest RMSD) pose among 

the five. The results for HSP90 and MAP4K4 were analyzed and are presented separately, 

rather than merging results by methodology, partly because it was impossible to be sure 

which methods (if any) were identical from one target to the other; and partly because, as 

detailed below, target-specific issues other than the docking and scoring method itself proved 

to be important determinants of docking accuracy.
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2.3.2 Evaluation of Affinity Rankings—Predicted affinity rankings were evaluated in 

terms of the Kendall’s tau and Spearman’s rho rank correlation coefficients. Both range from 

1 to −1, where 1 indicates a perfect ranking and −1 represents a perfectly reversed ranking. 

The Results section reports Kendall’s tau and Spearman’s rho for the predictions as 

submitted (i.e., without resampling), along with uncertainties from the following resampling 

procedure. The uncertainty in each correlation coefficient was assessed over 10,000 rounds 

of bootstrap resampling with replacement, where, in each round, the experimental IC50 data 

were randomly modified based on the experimental uncertainties and reranked accordingly. 

The modified IC50 values were generated by converting each IC50 into a free energy, ΔG = 

−RTln (IC50), (T=300K), adding a random offset δG drawn from a Gaussian distribution of 

mean zero and standard deviation RTln(Ierr), and then converting back to an IC50 as IC50′ 
= e−(ΔG+δG)/RT. The value of Ierr was set to 3 for HSP90 based on published estimation of 

assay accuracy at Abbvie [24] and comparison of assay data for 17 compounds where the 

TR-FRET assay and ITC Kd values had a median difference of 2.09-fold and average of 

3.47 (see D3R website). The value of Ierr for MAP4K4 was set at 2 based on evaluation of 

assay results for 15 compounds measured in the same assay at two different locations and 

the two different assays all have median differences less that 2-fold (see D3R website).

Some submission files included multiple variants of the same method. In order to simplify 

reporting, we report only the highest score from each such submission; the names of the 

methods for such submissions have number of prediction sets in the method name 

(parenthesis), in Tables S4–S7. The numbers of rankings before and after these mergers are 

reported in Table 1.

Eight compounds (HSP90_35, 61, 94, 95, 116, 123, 127 and 170) have chiral centers and the 

affinities were reported as pertaining to racemic mixtures. Recalculation of all Kendall’s tau 

statistics without these compounds led to minimum, mean and maximum changes in this 

statistic of −0.02, 0.01 and 0.04. This did not change the trends and the reported results 

include these compounds.

Two simple null models [25] were set up as trivial performance baselines and evaluated in 

the same manner as the submitted predictions. The null models are “Mwt”, in which the 

affinities were ranked by molecular weight; and clogP [26] in which affinities were ranked 

based on the octanol-water partition coefficient computationally calculated by CDD Vault 

[27].

2.3.3 Evaluation of Free Energy Predictions—Participants were invited to submit 

predictions of relative binding free energies for three small sets of chemically similar HSP90 

ligands. Only IC50 measurements are available for these compounds. Although IC50s can 

approach dissociation constants, our application of the Cheng-Prusoff equation [28] for the 

HSP90 TR-FRET assay conditions suggest the relationship of Kd to IC50 is ~ 1:3 to 1:5 

([Geldanamycin] = 0.8μM, 3 hour incubation and Kd ~ 20 – 50nM). However, a constant 

ratio of this sort will not perturb relative binding free energies, so the relative energies can be 

compared with experiment. Because each set includes compounds with similar affinities 

(Table 1), even small errors in the computed free energies can lead to reranking of the 

ligands. Ranking metrics like Kendall’s tau may therefore be overly sensitive to 
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quantitatively small errors and thus be uninformative. Therefore, although Kendall’s tau is 

reported for these special sets, we focus more on the quantitative accuracy of the results, 

using the centered root mean square error (RMSEc) of the calculated binding free energy 

differences versus those from experiment [29, 30]:

(1)

Here N is the number of ligands in each set (4, 5 and 10), and ΔΔGcalc and ΔΔGexpt are the 

submitted and experimental binding free energies of ligand i relative to one arbitrarily 

selected ligand, here termed ligand 0. The advantage of the RMSEc over other statistics that 

might be used to characterize the accuracy of computed relative binding free energies is that 

it does not depend on which ligand is selected as the reference ligand.

The free energy component of the HSP90 challenge centered on three small sets of 

chemically similar compounds. However, some free energy submissions included all 180 

compounds for HSP90 or all 18 compounds for MAP4K4. Only one of these submissions 

used the explicit solvent free energy methods that were envisioned for the free energy 

challenge, and this submission was subsequently withdrawn by the participant. The 

remaining all-ligand free energy submissions were merged into and analyzed with the 

ranking submissions. Note, however, that a number of methods other than explicit solvent 

free energy simulations were applied to the small free energy sets, and these are included in 

the comparison of free energy methods.

3 Results

A total of 38 participants uploaded a total of 355 submissions that passed validation tests 

(above). Note that 11 out of these 355 submissions did not include the method names and 

protocols used and are not included in this paper. The numbers of valid submissions for the 

seven components of the challenge are listed in Table 2. The methods used ranged from 

knowledge-based to physics-based, and include both automated and manual methods. The 

methods are summarized in Tables S3 – S9 (SI-Methods), and further details may be found 

in papers from the participants, most or all of which are published in the same special issue 

as the present overview article. The following subsections analyze the performance of these 

methods for ligand pose prediction and the assessment of ligand binding potency.

3.1 Pose Predictions

3.1.1 HSP90 Pose Predictions

3.1.1.1 Overview of Prediction Accuracy: The results for 39 sets of HSP90 pose 

predictions submitted for all five ligands along with method details are summarized in 

Figure 1, in terms of RMSD statistics for each submission (Table S3, SI-Methods) over the 
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five ligand structures, with variances in the RMSDs across ligands are illustrated in terms of 

boxes and whiskers. This presentation, though perhaps not needed for such small datasets, 

facilitates comparison with analogous graphs for the larger MAP4K4 study. The methods are 

ordered along the horizontal axis by the median RMSD of the submissions’ top ranked poses 

(rank 1). The left-hand panel provides statistics for these rank 1 poses, while the right-hand 

panel shows results for the lowest RMSD poses across up to five poses submitted for each 

ligand (best of top 5). The median RMSDs of the rank 1 poses range from 0.3 to 6.6 Å, and 

the corresponding range for the best of top 5 poses is essentially the same. However, the 

rank 1 poses were the best of the five 56% of the time, which is better than the expected 

fraction of 20% if the ranking were entirely random.

3.1.1.2 Correlation of Performance with Docking Software and Method: Half of the 

submissions provided rank 1 poses with median RMSD < 2Å, and thus met a reasonable and 

common criterion of success. However, it is not immediately obvious that the success of 

these submissions can be attributed to the choice of docking software, as they used a range 

of tools (rDOCK, AutoDock Vina or a variant thereof, Gold, and Surflex) as well as some 

combinations (Gold-PlantsPLP-rDock, RosettaLigand-Omega-ROCS, Surflex-Grim and 

Glide-Prime-Desmond-Qsite). Additionally, submissions using similar or the same software 

packages yielded differing levels of accuracy; for example, methods using AutoDock Vina 

and Glide are scattered through the ranking. It is suggestive that four of the most successful 

11 methods mention visual inspection of computationally generated poses, while apparently 

none of the 28 less successful methods included human intervention.

The RosettaLigand submissions provide an informative illustration of the complexities that 

arise in interpreting the present results. For method 4, the median RMSD of the rank 1 poses 

is only 0.5 Å; for method 25, this statistic is considerably worse, at 3.3 Å. Neither method 

used docking as conventionally interpreted; instead, both generated multiple ligand 

conformations and used superposition software to find an optimal overlay on the pose of a 

similar ligand with an available co-crystal structure, and RosettaLigand scores were 

determined for the resulting poses. In method 4, ligand conformations were generated with 

the program Omega [31], and the programs PoPSS [32, 33] and ROCS [34] were used for 

the overlay. In method 25, MOE and the in-house unpublished BioChemicalLibrary (BCL) 

tool were used.

3.1.1.3 Correlation of Pose Prediction with Protein Conformation and Binding Site 
Water Molecules: Further examination of the results suggests that docking success is 

influenced by the choice of protein structure and the treatment of binding site water 

molecules, perhaps more so than by the choice of docking software. All the HSP90 ligands 

fall into three chemical classes: benzimidazolone (ligand HSP90_40); aminopyrimidine 

(ligands HSP90_73 and HSP90_179); and benzophenone-like (ligands HSP90_164 and 

HSP90_175), and the protein crystal structures provided for this challenge included at least 

one determined with a ligand from each chemical series: 4YKR for benzimidazolone, 2JJC 

and 2XDX for aminopyrimidine, and 4YKY for benzophenone-like. However, the 

correspondence of protein structure to ligand class was not revealed, and participants were 

also free to dock these ligands into other HSP90 structures drawn from the PDB. We 
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conjectured that predictions in which a ligand was docked into a structure solved with 

another ligand of the same congeneric series (“similarity docking”) might be more accurate 

that predictions in which a ligand was docked into a structure determined with an entirely 

different ligand (“cross-docking”). This conjecture is borne out for all three ligand classes, 

most clearly for the benzimidazolone and benzophenone-like classes (Figure 2). Note that 

each bar corresponds to 11–28 different docking submissions, providing a reasonable 

sampling of each approach.

In the above plot, “similarity” refers to the listed chemical series chemotypes, rather than to 

overall Tanimoto similarity. Chemotype similarity can assist in selection of crystal structures 

with similar chemical series that provides a side chain (and water) template for binding 

mode within a chemical series but not necessarily the best binding pocket conformation, 

particularly where there is binding site flexibility. Participants that defined similarity more 

generally across the entire ligand could select structures that accommodate the need for a 

more open ATP lid structure, Figure 3. Examination of the two aminopyrimidine ligand co-

crystal structures (Figure 3) reveals ligand HSP90_73 binds to an open conformation 

(yellow), while ligand HSP90_179 binds to a closed conformation (purple), and that the 

nitro group of HSP90_73 would have a steric clash with the closed form.

For the benzophenone-like chemotype, similarity could assist with binding mode prediction 

(Figure 4), but participants had more difficulty predicting the pose of HSP90_175 (median 

RMSD 5.7 Å) versus ligand HSP90_164 (median RMSD 1.8 Å). We find that the protein 

structures used by the participants influence accuracy in different ways for these compounds, 

despite having similar binding modes (Figure 5). Both experimental co-crystal structures 

have the same closed conformation of the protein, and the most notable difference is a water-

mediated interaction for ligand HSP90_175 (absent for HSP90_164), although the water 

position is identical in both cases (Figure 4). One might therefore expect omitting the water 

molecule during docking for ligand HSP90_175 to be a problem, but not necessarily for 

HSP90_164. (Note that one of the protein structures provided for the docking exercise, 

4YKY, was determined with a ligand of this chemotype and has the appropriate closed 

conformation and the conserved waters present.) Indeed, as shown in Figure 5, predictions 

for ligand HSP90_175 that used a closed conformation and included the water molecule had 

the best results, while docking without the water molecule led to high median RMSDs, 

regardless of loop conformation. (None of the participants used an open conformation 

structure with the water molecule present.) However, the presence or absence of the water 

molecule mattered less for ligand HSP90_164 (Figure 5): with or without the water 

molecule, using the correct conformation (closed) of the receptor resulted in low median 

RMSDs, and a high median RMSD was observed only when incorrect conformation (open) 

was used in the absence of the bound water, perhaps by restricting the sampling space for the 

possible binding modes. It is remarkable that many of the most successful workflows used 

superposition of “similar” ligands and avoided the sampling of large binding site spaces.

3.1.2 MAP4K4 Pose Predictions

3.2.2.1 Overview of Prediction Accuracy: The results for the 30 sets of MAP4K4 pose 

predictions are summarized in Figure 6, which shows RMSD statistics for each submission 
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(Table S3) over the 30 ligand structures, with variances across ligands expressed in terms of 

boxes and whiskers. Overall, these predictions are considerably less accurate than those for 

HSP90 (Figure 1). Only one out of 30 submissions has a median RMSD below 2.0 Å for 

rank 1 poses, compared to 20 out of 39 for HSP90. Furthermore, for MAP4K4, the median 

RMSDs for rank 1 poses range from 1.6 to 8.8 Å, while the range for HSP90 is 0.3–6.6 Å. 

Nonetheless, it is encouraging that the rank 1 pose is the best of the five submitted poses for 

52% of the submissions, much more often than the 20% which would be expected if the 

rankings were random (as seen in the HSP90 challenge).

The MAP4K4 pose prediction challenge was anticipated to be more challenging than HSP90 

for a number of reasons. With respect to cross-docking, there were far fewer relevant co-

crystal structures available in the PDB (eight versus > 200 for human HSP90). Available 

MAP4K4 co-crystal structures exemplified limited diversity in bound ligand chemotypes 

and the range of chemotypes in the dataset was highly diverse. Another factor noted by a 

number of participants was the potential for a large binding site size, depending on the 

conformation of the glycine-rich P-loop [13].

3.1.2.2 Correlation of Performance with Docking Software and Method: For MAP4K4, 

the only submission with a median RMSD less than 2.0 Å for the rank 1 poses used Method 

1, named Glide SP-Qsite. Two additional submissions achieved a median RMSD less than 

2.0 Å for the best of top 5 poses; these used Method 4 and 6, Vina and RosettaLigand-

Omega-PoPPs-ROCS respectively. As noted above, method 6 is not a true docking method, 

but instead is based on superposition of the ligand to be docked on the pose of a ligand with 

an available co-crystal structure. These three approaches were among the more accurate ones 

used for HSP90. However, much as observed for HSP90, the other RosettaLigand methods, 

which here used docking rather than another overlay method, were not as predictive. In fact, 

just as for HSP90, submissions based on a given piece of software could provide widely 

ranging performances, depending on the details of how the software was used. Thus, 

methods based on Glide, RosettaLigand and AutoDock Vina appears throughout the rank list 

of methods (Table S4). For a discussion of methods that appear to provide relatively accurate 

performance across both datasets, see Section 3.1.2.3, below.

3.1.2.3 Role of the Protein Conformation Used for Pose Prediction: For HSP90, 

“similarity docking”, in which each ligand was docked into a protein structure solved with 

another ligand of same or similar chemotype, tended to be more predictive than true cross-

docking into a less-related protein structure, as noted above. This strategy was less 

successful across the diverse range of chemotypes presented in the MAP4K4 dataset. Four 

submissions (4, 10, 13 and 22) that used ligand similarity-based structures for selection of 

the protein target had median RMSDs of 2.7, 4.6, 5.0 and 6.5 Å respectively, when all 

compounds were considered. However, ten compounds (one third of the dataset; compounds 

3, 14–16, 18, 19, 21, 22, 25, & 27) have the closely related aminopyrimidine/

aminoquinazoline chemotypes of published structures [7]. When the evaluation is limited to 

these compounds the median RMSD values for these four submissions are 1.6, 2.7, 2.6 and 

6.1 Å, respectively. Inspections of pose prediction on a per compound basis (SI figures, 

Figure S2) illustrates that nine of the 15 compounds with the lowest medians are in this 
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aminopyrimidine/aminoquinazoline class. Notably, one of the better performing 

methodologies expanded the number of crystal structures by considering chemotype 

similarity to closely related kinases with more diverse sets of bound ligands (Table S3, 

protocol 4).

Compounds that had no similarity to common chemotypes known to bind the kinase hinge 

region presented a significant pose prediction challenge, namely the 3 benzoxepins (MAP12, 

MAP13 and MAP17 gold colored in Figure S2). These cases were challenging for two 

reasons. They have a difficult-to-predict 7-membered ring conformation, and they lack 

obvious kinase hinge binding hydrogen bond donors and acceptors. Moreover, MAP17 

presents a particularly difficult case as it does not have any direct hydrogen bonding to the 

pocket and its interaction with the kinase hinge backbone is water-mediated.

Interestingly, the level of difficulty in these pose predictions does not appear to correlate 

with potentially relevant ligand properties, such as molecular weight, presence of tautomers, 

or number of rotatable bonds; with features of the protein structures used for docking, such 

as the conformation of the P-loop (open versus closed) or the crystal structure resolution; or 

with the ligand-protein binding affinity.

3.1.3 Performance of Methods across Both HSP90 and MAP4K4—Certain well 

defined methods were applied to both the HSP90 and MAP4K4 pose prediction challenges, 

allowing us to assess their predictive ability across targets. We focused on the more 

predictive 20% of submissions for each target, which corresponds to the top ranked eight for 

HSP90 and five for MAP4K4. The methods in common between both lists are DockBench, 

which appears second on both lists, and which, as part of its procedure, analyzes which of a 

number of docking methods best works for given targets and in this case selected Gold, 

PlantsPLP and rDock; Surflex-GRIM, which appears third in both lists; and RosettaLigand-

Omega-ROCS, which appears fourth in both lists, and, as noted above, is a ligand-overlay 

method rather than a full-docking method. As noted above, the best performing methods for 

pose prediction were less associated with a single docking algorithm than with a “similarity-

docking” approach.

3.2 Predictions of Ligand Binding Potency

This section examines the reliability of potency predictions in terms of the ability to 

correctly rank-order the full sets of HSP90 and MAP4K4 ligands, and free-energy-based 

methods to rank order a subset of HSP90 ligands.

3.2.1 Affinity Rankings

3.2.1.1 Overall Evaluations: Participants were asked to predict the ranking of affinities for 

180 HSP 90 ligands and 18 MAP4K4 ligands. This challenge component was run in two 

stages. During Stage 1, none of the co-crystal structures of these ligands with their 

respective targets were available to the participants. In Stage 2, participants had a second 

opportunity to rank-order all of the ligands by affinity, this time with knowledge of all of the 

co-crystal structures available (i.e., five structures for the HSP90 ligands and all 18 for the 

MAP4K4 ligands). The results, summarized in Figure 7 and Figure 8, focus on the Kendall’s 
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tau statistic, with error bars indicating one standard deviation in the bootstrapping analysis 

(see Methods). The Spearman’s rho results added little information (Figures S3 and S4).

Almost all of the submitted rankings correlate positively with the experimental ranking 

(Figure 7 and Figure 8), with mean and median tau values of 0.15 and 0.17, respectively, for 

HSP90, and 0.18 and 0.24, respectively, for MAP4K4. These results are statistically 

meaningful, given that the standard deviation of the tau values provided by resampling (see 

Methods) are all in the range 0.046–0.057 (mean 0.052), and indicate that a range of current 

methods have predictive value for ranking ligand affinities. On the other hand, the 

correlations are not particularly high, with maximum values of about 0.32 for HSP90 and 

0.48 for MAP4K4. For comparison, an ideal computational method that yields results in 

exact agreement with the experimental IC50s, would have Kendall’s tau values of 0.76±0.02 

and 0.80±0.07, for HSP90 and MAP4K4, respectively, after boostrap resampling accounting 

for the experimental uncertainties. Another baseline reference for the predictions is provided 

by the null models; ranking by molecular weight and clog P. These yield positive 

correlations with experiment, but neither null model is particularly accurate, as their tau 

values fall near or below the median of the predictions. In addition, whereas molecular 

weight did better than clog P for HSP90, clog P did better for MAP4K4, and neither did well 

for both systems (Figure 7 and Figure 8).

Perhaps surprisingly, information about ligand poses did not lead to more accurate affinity 

rankings. Thus, the rankings are about equally accurate for HSP90 and MAP4K4 in Stage 1, 

even though pose predictions for the former tended to be more accurate. Moreover, access to 

the known crystallographic poses in Stage 2 did not improve the ranking results over Stage 

1, even for MAP4K4, where co-crystal structures were provided for all 18 ligands to be 

ranked. Also notable is that purely ligand-based methods (green bars in Figure 7 and Figure 

8), which do not use information about the protein structure, were not clearly distinguishable 

from the structure-based methods, as they exhibited a wide range of performance, from near 

the best in HSP90 Stage 1 to the worst in MAP4K4 Stage 2.

In order to identify submissions that gave above average performances, we consider the 

uncertainties in the values of tau. For HSP90 Stage 1, the mean value of tau is 0.159, and the 

standard deviations of all the tau values are in the range 0.046 – 0.057, so we use the mean, 

0.052 for all. The standard deviation of the difference between two tau values then obtained 

by adding the two standard deviations in quadrature, and one may add the result to the mean 

of tau to find that a tau of 0.306 is a convincing two standard deviations above the mean. 

Method 1 (vina-smina(7), tau 0.32) and Method 2 (rdock(2), tau 0.31) meet this criterion, 

and Method 3 (qsar(4), tau 0.28) is close. Applying the same criterion to HSP90 Stage 2 

yields only Method 1 (vina-smina(7), with tau of 0.32. For both stages of MAP4K4, the 

uncertainties in tau are much larger (means of 0.19) because the number of data points is 10-

fold smaller. Applying the same criterion as for HSP90 yields only one prediction at least 

two standard deviations above the median, Method 1 (PLANTS + Pyplif_subset-Vina) in 

Stage 1. Unfortunately, this method does not appear to have been applied to Stage 2 or to 

HSP90, so no consistency check is available.
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The vina-smina (7) submission that did well in the HSP90 rankings included seven variant 

sub-methods, and we have focused here on only the top performing variant. Encouragingly, 

it is the same variant that did best for both stages of HSP90, and this also yielded tau values 

of 0.29 and 0.29 for Stages 1 and 2 of MAP4K4, which are above the means. The method 

involved generating ligand conformers with the program Omega [31] aligning conformers to 

the most similar co-crystal ligands in the PDB, minimizing the aligned conformers in the co-

crystal binding site, and recording the highest docking score obtained.

3.2.1.2 HSP90 Affinity Rankings by Chemotype: We considered whether it was easier to 

rank the affinities of a series of compounds with a common chemical scaffold, as opposed to 

a heterogeneous set. The 180 HSP90 ligands were classified into three chemotype (CT) 

groupings by CSAR: benzimidazolone (CT1, 61 compounds, IC50 0.0052 to 42 μM), 

aminopyrimidine (CT2, 62 compounds, IC50 0.016 to 50 μM), and benzophenone (CT3, 57 

compounds, IC50 0.01 – 50 μM). The rankings of the benzimidazolones (CT1) (Figure 9, 

top) are clearly better than the rankings of the full set of HSP90 ligands (Figure 7), as the 

highest tau values are about 0.51, rather than 0.32. On the other hand, the aminopyrimidine 

rankings (Figure 9, middle) are only marginally better (maximum tau about 0.38) than those 

for the full set, while those for the benzophenones (Figure 9, bottom) are somewhat worse 

(maximum tau about 0.22). These subset results, when compared with the “ideal” mean tau 

values of 0.77, 0.74 and 0.71, based on bootstrap resampling for the respective compound 

series, suggest that it was significantly easier to rank compounds in the benzimidazolone 

series, and harder to rank the benzophenones. The fact that the benzophenones are 

particularly problematic may have to do with their having lower molecular weights or 

generally weak affinities, relative to the other series. Also we note that this chemical series 

has more chemotype diversity than the others (see SI-Datasets).

3.2.2 Free Energy Predictions—In order to facilitate participation of research groups 

wishing to use this Grand Challenge to evaluate computationally intensive “alchemical” [21] 

methods of predicting differences in binding free energy, we included a challenge 

component in which three sets of chemically similar HSP90 ligands were put forward as 

targets for relative binding free energy predictions. Free energy Sets 1, 2 and 3 respectively 

comprise 5, 4 and 10 ligands and the binding free energies within each set span 2.6, 3.8 and 

2.1 kcal/mol. Eleven predictions (Table S8) were submitted for free energy Sets 1 and 2, and 

ten were submitted for Set 3. Of these, three predictions in fact used alchemical free energy 

methods with explicit solvent, while the rest use methods based on analysis of small 

numbers of local energy minima generated by docking, with free energy estimates based on 

scoring functions, force fields with implicit solvent, and electronic structure calculations 

with implicit solvent. Two of the three predictions, Methods 5 and 11, used the same 

computational protocol; however, Method 5 was submitted at Stage 1 and omitted Set 3, 

while Method 11 was submitted at Stage 2 and include not only Sets 1 and 2 but also 9 of 

the 10 compounds in Set 3. Figure 10 and Table S8 summarize the results and methods in 

terms of RMSEc and Kendall’s tau; the Method IDs are ordered in terms of the average 

RMSEc across all three Sets, so that Method 1 has the lowest mean error and Method 11 the 

highest.
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A number of methods provide errors (RMSEc) across the sets of roughly 1–2 kcal/mol 

(Figure 10, top row; Table 9). Most of the more accurate results come from methods based 

on docking (Figure 10, blue bars). Thus, Methods 1–3, which seem closely related to each 

other, as well as Methods 4 and 10, used scoring functions related to AutoDock and 

AutoDock Vina, while Method 8 is force-field based. The alchemical free energy methods 

(Figure 10, red bars) perform no better than the simpler docking-based methods, and perhaps 

somewhat worse in the case of Set 1. It is worth noting that the three sets of alchemical 

predictions are of similar accuracy: the bootstrap analysis suggests an expected accuracy 

range of about 1.0 – 3.3 kcal/mol. Finally, Method 7, which used electronic structure 

calculations instead of a scoring function or force field, yields particularly high errors of 3.4 

kcal/mol (Set 2) to 9.7 kcal/mol (Set 3).

The Kendall tau statistics (Figure 10, lower row; Table 9) are associated with large error 

bars, presumably due in large part to the fact that each ligand set includes only a few 

compounds, and some of these compounds have quite similar affinities, which makes 

ranking difficult. Nonetheless, some of the predictions appear to yield fairly robustly 

reversed rankings, notably the alchemical methods and Method 9 for Set 1, and Methods 4 

and 10 for Set 2.

4 Discussion

The D3R Grand Challenge 2015 attracted international participation and allowed a range of 

computational methods to be evaluated for prospective prediction of ligand-protein poses, 

ranking of ligands by affinity for a targeted protein, and prediction of relative binding free 

energies. The challenge was entirely open, in the sense that participants could use any and 

all existing information on the HSP90 and MAP4K4 systems, such as existing co-crystal 

structures in the PDB and affinity data available in articles and databases. In particular, for 

the pose-prediction component, participants could dock the ligands into HSP90 and 

MAP4K4 structures of their own choosing, rather than using structures provided specifically 

for this purpose, and affinity rankings could use structure-based and/or ligand-based 

methods.

Pose predictions for HSP90 were somewhat successful, as multiple submissions had median 

RMSD values well below 2.0 Å. MAP4K4 proved to be much more challenging, as few 

methods met this criterion. The higher success rates for HSP90 may indicate that it is an 

intrinsically easier system to model, but may also stem from the far greater number of 

HSP90 co-crystal structures in the PDB, which participants could use in various ways to 

enhance their methods. In fact, for HSP90, we observed a trend – though not a rule – that 

pose predictions were more accurate if they docked each ligand into a structure that had 

been determined with a ligand of the same chemical class. For some ligands it was also 

important to explicitly include certain crystallographic water molecules. A similar trend is 

observed for MAP4K4 for the ten compounds belonging to the chemical class(es) where co-

crystal structures were publicly available; thus, participants did notably better at predicting 

poses for the aminopyrimidine/6-quinazolone class than the other diverse chemotypes in the 

dataset.
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A closely related finding is that a given docking program could yield either high or low 

accuracy, depending upon extrinsic factors such as which protein structure was used for the 

docking, how protein structures were prepared, and other aspects of the protocol. This 

finding indicates that successful prediction of ligand-protein poses relies not only on the 
docking program, but also on other steps in the overall protocol, or workflow, which may 
include a docking program as a central component but also contains key preparatory or 
procedural steps. For example, some of the better performing methods in this challenge 

started by identifying an available co-crystal structure solved with a ligand similar to the one 

whose pose was to be predicted. Given such a well-chosen structure, a number of docking 

programs could then provide an accurate pose, if not as the top rank, certainly in the top five 

poses. One may draw an analogy to the case of comparative protein structure modeling, 

where accuracy hinges not only on the modeling technology used, but also on the 

availability of protein structures with similar sequences and on the quality of the method 

used for sequence alignment [35]. It also appears that multiple docking programs effectively 

sample relevant poses, as the better performing methods used various docking algorithms, a 

result supported by the success of cognate docking [2]. This analysis also supports the utility 

of integrated docking workflows, such as OpenEye’s POSIT [36] which systematically 

include knowledge-based steps to improve cross-docking.

The challenge of ranking ligands by affinity proved more difficult, consistent with other 

recent studies [37]. Although it is encouraging that nearly all predicted rankings yielded 

positive correlations with experiment, even the best predictions remain far from ideal. Of 

greater concern was the fact that prediction accuracy did not improve on going from Stage 1 

to Stage 2. Thus, much of the ranking error must be attributed to the scoring or energy 
functions in use, not pose prediction. This holds particularly in the case of MAP4K4, where 

participants in Stage 2 knew the crystallographic poses of all 18 ligands whose affinities 

were to be ranked. One way to seek improved scoring accuracy is to use more detailed 

calculations, such as alchemical free energy simulations [21] which have recently provided 

encouraging results in protein-ligand modeling [38, 39]. The free energy component of 

Grand Challenge 2015 accordingly included three small sets of chemically similar ligands 

amenable to such calculations. However, these more rigorous methods did not yield 
improved accuracy, when compared with the results of several simple scoring functions that 
also were applied to these small free energy sets.

We also note that some of the challenge in ranking may be associated with the dataset itself. 

For example, several HSP90 inhibitors have time dependent binding kinetics [40]. If some of 

the HSP90 compounds in this dataset also have time-dependent apparent IC50 values, the 

reported IC50s could have erroneous relative values, particularly if the kinetics vary across 

compounds. Another consideration is the relative solubilities of the compounds tested. A 

small set (30) of the 280 compounds were tested by CSAR for solubility and three were 

noted to have poor solubility, rendering them unmeasurable for some of the assays (e.g. 

ITC). While these three of the thirty HSP90 compounds were noted to have solubility issues 

by our CSAR colleagues, we did not have equivalent information across the dataset and we 

therefore treated the error estimation equivalently across the HSP90 compounds. This may 

or may not accurately reflect the error in the affinity measurements.
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One limitation of the present study is that the modest size of the datasets, combined with the 

large number of scenarios that can arise in protein-ligand modeling, renders the results 
anecdotal in nature. Nonetheless, some of the broad conclusions appear sound and make 

intuitive sense, and future D3R challenges will allow these issues to be probed further and in 

more contexts. Moreover, the forthcoming Continuous Evaluation of Ligand Pose 

Predictions (CELPP: drugdesigndata.org/about/celpp) challenge will enable participants to 

set up and continuously evaluate their own docking servers, by using weekly pre-release data 

from the PDB to drive a ongoing series of blinded pose-prediction challenges. We estimate 

this channel will enable ~50 new pose-prediction challenges each week. A second limitation 

of this study is that a number of prominent research groups and companies that develop 

widely-used modeling tools elected not to participate. This may reduce the likelihood that 

the results will lead to near-term improvements in available software. Increased participation 

by software developers would be welcome in future challenges, and it is perhaps worth 

noting in this regard that submissions may be made anonymously, as detailed on the D3R 

website.

Finally, the present results highlight promising directions for future development. First, there 

appears to be considerable potential for creation of automated software and workflows that 

go beyond pure docking and scoring by automatically collecting and effectively using 

available information, such as crystal structures and affinity data, to generate enhanced pose 

predictions and affinity rankings. Work in this direction may ultimately benefit from 

integration of key data sources, such as the PDB, ChEMBL [41], BindingDB [42], and 

PubChem [43], to facilitate identification and collection of needed data in suitable formats. 

At the same time, even when prior data are available and well utilized, there is clearly also a 

need for improved physical models, given the difficulty of affinity calculations, even when 
ligand poses are known, and even when detailed simulation methods are employed. We 

anticipate that future developments along these and other lines will lead to continual 

improvement in performance on this series of blinded prediction challenges, and ultimately 

in the power of CADD tools to speed the design of new medications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HSP90 RMSD box plots of rank 1 and best of top 5 poses for all submitted-methods. The 

methods are ordered by the median RMSD. The mean is shown by the circles, the connect 

line is for the median, the box is for the interquartile range (IQR) with the whiskers 

indicating 1.5X IQR. Table S3 (SI-Methods) has the names of the Submitted Methods and a 

summary of the protocols. Each Submitted Method’s box plot contains 5 data points.
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Figure 2. 
HSP90 box plot distributions for the rank 1 pose, color coded by chemical series and 

organized by receptor-ligand PDB selection type, “similarity” or “cross-docking”. The mean 

is shown by the circles with a plus sign, the median by the filled circle, the box is for the 

interquartile range (IQR) with the whiskers indicating 1.5X IQR. The outliers are indicated 

by asterisks above the whiskers. The box plots contain 12, 27, 24, 15, 11, and 28 data points, 

respectively.
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Figure 3. 
Binding site conformations of of HSP90 (a), with ligands 73 (grey) and 179 (cyan) in the 

experimental co-crystal structures. The open conformation with ligand 73 is shown in yellow 

while 179’s closed conformation is shown in purple, with the positioning of Thr109 

depicted. (b) Chemical structures of the two ligands: 4YKW (HSP90_73) and 4YKU 

(HSP90_179), respectively.
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Figure 4. 
(a) Ligands 164 (grey) and 175 (cyan) in the experimental co-crystal structures. (b) Their 2D 

structures; 4YKX (HSP90_164) and 4YKZ (HSP90_175), respectively.
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Figure 5. 
HSP90 box plot of RMSD distributions for rank 1 poses of ligands HSP90_175 and 

HSP90_164, separated according to the conformation of the protein structure used and 

whether the crucial water was present or absent in the docked structure. (An open 

conformation and the water-present structure was not tested for ligand HSP90_175.) The 

means are shown by circles with a plus sign, the medians by the filled circles, the boxes are 

for the interquartile ranges (IQR), and the whiskers indicat 1.5 × IQR. The respective box 

plots contain 6, 21 and 13 predictions for ligand 175; and 8, 17, 2, 12 predictions for ligand 

164.
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Figure 6. 
MAP4K4 RMSD box plots of rank 1 and best of top 5 poses for all submitted-methods. 

Means are shown by circles, the connecting line is for the medians, the box is for the 

interquartile range (IQR), and the whiskers indicate 1.5 × IQR. Outliers are indicated by 

asterisks above the bars. Table S4 (SI-Methods) has the names of the Submitted Methods 

and a summary of the protocols. Each Submitted Method’s box plot contains 30 data points.
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Figure 7. 
HSP90 Kendall Tau correlation coefficient scores between the predicted scores and 

experimental binding affinities. Green bars are for ligand-based scoring methods, and 

unfilled bars are for null models. The method names corresponding to the Method IDs are in 

Tables S5 and S6 (SI-Methods). The error bars are 1σ confidence intervals based on 10,000 

bootstrap samples.
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Figure 8. 
MAP4K4 Kendall Tau correlation coefficient scores between the predicted scores and 

experimental binding affinities. The green bars are for ligand-based scoring methods, and 

unfilled bars are for null models. The names corresponding to the Submitted Method’s 

number are in Tables S7 and S8 (SI - Methods). The error bars are 1σ confidence intervals 

based on 10,000 bootstrap samples. They are fairly large for the MAP4K4 dataset due to a 

relatively big experimental uncertainty.
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Figure 9. 
HSP90 Kendall Tau correlation coefficient scores between the predicted scores and 

experimental binding affinities, separated by the three chemotypes. The names 

corresponding to the Submitted Methods number are in Table S5. The error bars are 1σ 
confidence intervals based on 10,000 bootstrap samples.
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Figure 10. 
RMSEc (top row) and Kendall’s tau (bottom row) for the three free energy prediction sets. 

Methods using explicit solvent alchemical free energy simulations (5, 6 and 11) are shown in 

red. The X-axis labels are the Method IDs from Table S9, and are in order of increasing 

average RMSEc across all three sets. Error bars indicate 1σ ranges based on 10,000 

bootstrap samples.
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Table 1

The IDs and potencies of the HSP90 ligand sets in the free energy sets. Section 2.3.2 discusses the 

uncertainties in these data.

ID IC50 μM

SET 1 = 5 ligands

hsp90_80 1.91

hsp90_81 0.206

hsp90_82 11.6

hsp90_83 15.0

hsp90_84 5.85

SET 2 = 4 ligands

hsp90_100 50.0

hsp90_101 0.192

hsp90_105 0.123

hsp90_106 0.0874

SET 3 = 10 ligands

hsp90_10 4.89

hsp90_11 0.215

hsp90_15 6.75

hsp90_19 6.59

hsp90_21 0.193

hsp90_23 3.08

hsp90_26 0.0205

hsp90_28 0.276

hsp90_34 6.14

hsp90_61 >50.0
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Table 2

Number of validated submissions, Nsubmit, received for each component of D3R Grand Challenge 2015. The 

numbers in parentheses for the affinity rankings are the numbers of “merged” submissions, as explained in 

Section 2.3.2.

Challenge Component Nsubmit

HSP90 Pose Predictions 47

MAP4K4 Pose Predictions 33

HSP90 Stage 1 Affinity Ranking 75 (41)

MAP4K4 Stage 1 Affinity Ranking 77 (40)

HSP90 Stage 2 Affinity Ranking 59 (30)

MAP4K4 Stage 2 Affinity Ranking 46 (26)

HSP90 Small Set Free Energies 18
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