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Abstract

There is a growing focus on sustainable energy sources and storage systems. The
challenge with such emerging systems is their need to be warrantied for around
15 years with just a year of early testing. This requires accurate data extrapola-
tion and estimation of the failure distribution. Physics-based approaches can be
overwhelmed by the complexity of degradation, and pure data-driven approaches
are inherently unable to extrapolate beyond the testing data. Here, we propose
a framework for a hybrid approach for technology-agnostic customizations of a
Gaussian process for stochastic and domain-knowledge-informed failure distribu-
tion predictions. We equip the Gaussian process with customized non-stationary
kernels, heteroscedastic noise models, and prior mean functions to allow for accu-
rate extrapolation with high accuracy. Furthermore, we minimize testing time
with a novel experiment-stopping criterion, which can significantly reduce the
required data. Our framework could revolutionize energy-storage testing, enabling
the rapid development of new technologies.
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1 Introduction

As the climate warms at an accelerating rate, there has been a global shift from fossil
fuels to more sustainable energy sources, such as solar and wind. While these renew-
able sources hold immense potential, their intermittent nature leads to fluctuations in
energy generation, impeding their seamless integration into the energy grid [1]. Energy
storage systems have emerged as indispensable solutions to store and release energy as
needed. Because utilities will require warranties of perhaps more than approximately
15 years, it is essential to quantify the durability of newly developed energy storage
technologies quickly and statistically.

Much research was done to predict the performance of energy storage systems
over their lifetimes using physics-based modeling techniques and pure data-driven
approaches [2, 3, 4]. While testing to failure under conventional operating conditions
is another option, this would be prohibitively expensive and unrealistic for advanc-
ing new technologies. The physics-based approach uses models such as equivalent
circuits [5, 6, 7], electrochemical [8, 9, 10], and empirical aging models [11, 12, 13]
that rely on domain knowledge and expertise in battery degradation processes. Data-
driven approaches use machine learning models such as Long Short-Term Memory
Networks [14, 15, 16], Deep Neural Networks (DNN) [17, 18, 19, 20], and Gaussian
processes (GP) [4, 21, 22, 3] that rely solely on a large amount of experimental data
to predict battery failure [23, 24, 25, 26, 27, 28].

The above-referenced recent work predicted the expected failure date without pro-
viding information about the failure probability distribution. Quantifying failure
distributions, which inherently encompasses the expected failures, is essential for estab-
lishing a warranty and evaluating second-life possibilities [29] since warranty costs
depend on outliers that fail much earlier than the expected life. Battery degradation
may vary significantly among nominally identical commercial batteries, even when
operated under similar conditions [30, 31, 29, 32, 33, 34]. Therefore, it is crucial not
only to quantify the average degradation path but also to estimate variability. Fur-
thermore, this must be done efficiently to minimize the number of batteries tested to
failure. Using the estimated variability, the probability of cells failing at each cycle
number is computed to generate the failure distribution as a function of the cycle
number. With this distribution, one can identify at what cycle number some fraction,
for instance, the first 5%, of batteries are expected to fail, thus estimating the batter-
ies’ reliability. We aim to create a framework to predict battery failure distributions
early, allowing us to evaluate whether a 20-year warranty is commercially feasible
while requiring no more than one year of testing. This objective requires at least two
building blocks: first, the demonstration of a valid accelerated testing protocol [35, 36]
such that significant degradation occurs during the first year of testing [37]; and sec-
ond, the ability to quickly assess the failure distribution for a given technology using
those testing data. In this paper, we tackle the second issue.
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One way to extrapolate and accurately estimate battery failure distributions is
to implement machine learning tools, such as GP modeling. The GP is the most
widely adopted class of stochastic processes and offers a robust and versatile frame-
work for stochastic function approximation through Gaussian process regression.
GPs have recently received attention from the battery community for failure predic-
tion [4, 21, 24, 29]. The advantages of using GPs over other machine learning models
include not requiring dense data — a large number of data points compared to the
domain size — to give accurate predictions. In addition, they use Bayesian statistical
methods to offer a robust approach to precisely quantify both aleatoric uncertainty,
linked to inherent data variability, and epistemic uncertainty, associated with the lack
of training data at prediction points. GPs are characterized by a normal prior prob-
ability distribution over latent function (the underlying, data-generating, unknown
model) values, whose properties are controlled by the GP’s covariance function (the
kernel), the prior mean function, and the noise in the data. Domain experts can design
all three functions to make GPs domain-knowledge aware.

The kernel, the prior mean, and the noise functions encode information about the
predictions of the underlying latent function. The kernel function serves as the covari-
ance operator and, therefore, quantifies the relationship between the data points and
controls epistemic uncertainty quantification. In the vast majority of studies, the
covariance is computed using stationary kernels, e.g., the Matérn kernel class, which
depend only on the distance between the points in the input domain [38, 39]. The prior
mean function encodes the users’ prior knowledge and expectation of the general trend
of the data before observing them. In most applications, the prior mean function is set
to zero or a constant across the input domain. The noise model allows for quantifying
variability, therefore, aleatoric uncertainty in the data and is usually assumed to be
normally, independently, and identically distributed (i.i.d.) — also known as constant
or homoscedastic — around the latent function values.

These standard GPs — stationary kernels, constant prior mean, and constant noise
— can accurately predict the latent function values and the uncertainties in the prox-
imity of existing data points, but lack domain-knowledge awareness and extrapolation
capabilities. This limits the use of GPs for lifetime prediction of new battery tech-
nologies, especially when predicting degradation at operating conditions that have not
been tested. Extrapolation capabilities can be provided to the GP by formulating flex-
ible, unbiased, and physics-adhering prior mean functions. Moreover, since GPs get
their uncertainty quantification capability from the kernel functions and noise mod-
els, using stationary kernels and i.i.d. noise is not generally advisable when accurate
uncertainty quantification is required [40], which is the case for the predictions of fail-
ure distributions and decision-making regarding when an experimental campaign can
be concluded — ideally early after only a handful of tested batteries.

Researchers prioritizing precise predictions of the latent function and its uncertain-
ties while implementing standard GPs may conduct extensive experimentation across
numerous batteries without a clear criterion for when to stop experiments on one bat-
tery and start experiments on another. This approach becomes particularly critical
in scenarios lacking domain-knowledge awareness, limited extrapolation capabilities,
and challenges in accurately quantifying uncertainties. Often, this extensive exper-
imentation occurs without assessing whether additional testing provides useful new
information. Generally, more data results in better predictions; however, the more
data we collect, the more redundant information we acquired. Presently, researchers

3



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

typically rely on intuition or resource depletion to decide when to stop experiments.
This generally results in inefficiencies and inaccurate predictions.

In this work, we aim to tackle domain awareness, extrapolation capability, accurate
uncertainty quantification, and early stopping by incorporating domain knowledge into
a GP model to identify the minimum necessary testing effort while achieving accurate
predictions. Fortunately, one of the main advantages of GPs is their customizability.
This customization includes advanced GP modeling with extended capabilities that
account for domain knowledge by carefully choosing the prior mean, kernel, and noise
functions. For instance, the battery literature indicates that battery degradation often
occurs in two steps: a slow degradation rate followed by a knee and a faster degradation
rate [30, 31, 41, 28]. Here, we demonstrate that a prior mean function that can model
this (or any other) behavior significantly improves the extrapolation capabilities of the
GP. Moreover, we show that using non-stationary kernels based on DNNs may allow
for an accurate epistemic uncertainty estimation by warping the input domain. The
battery literature also shows significant variability in the battery degradation paths
that increases with cycling [23, 42]. We show that a flexible noise function can model
this increase, significantly improving the aleatoric uncertainty estimation and allowing
for an accurate prediction of the failure probability distribution of batteries. Finally,
we propose a metric based on distribution entropy [43] to identify a stopping criterion
for battery testing. Fig. 1 shows a general overview of the proposed framework and
how it is tailored to batteries. This work is only the first step toward rapid validation of
storage technology, where the aim is to predict cycling behavior; future work will build
on the proposed methodology and add learning from cycling data of other batteries
or technologies. We consider other novel approaches that have been used to estimate
lifetimes in the Discussion section below.

The remainder of this paper is organized as follows. In Section 2, we explain our GP
customizations step-by-step and demonstrate their effects using representative exam-
ples. We also discuss a novel experiment-stopping criterion driven by the Gaussian
process posterior distribution. In Section 3, we apply the framework to two experi-
mental battery datasets published in the literature. In Section 4, we discuss the results
of our work and conclude.

2 Methods

We propose various extensions of the standard GP framework (equation 1) to provide
it with properties desirable to model and analyze battery-testing data. The goal is to
equip the GP with domain knowledge to approximate better the battery degradation
latent function and quantity uncertainty. We also propose a novel stopping criterion
for cycling experiments. Extending the GP’s capabilities consists of defining three
main building blocks. (1) A prior mean function that follows the expert-expected
trend of the energy or capacity as a function of the cycle number while keeping it as
unconstrained and, therefore, unbiased as possible. (2) A noise model tailored to the
variability trends expected in the experimental data. (3) A kernel function that can
reliably approximate uncertainties; generally, this means the kernel should be non-
stationary [44]. In what follows, we discuss preliminaries, some machine learning terms
used in this paper, the choice of each of the three functions, and the proposed stopping
criterion in detail.
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Fig. 1 Incorporating domain knowledge improves the GP’s extrapolation and uncertainty quantifi-
cation capabilities. (a) The different components of a GP model, where a prior normal distribution
N (µ(xi;θ), k(xi, xj ;θ)) is defined over latent function values f , and a likelihood N (f ,V(θ)), with
V(θ) = σ2

n(xi;θ) being a diagonal matrix and σ2
n the i.i.d. noise variance, over collected data y.

Both are used via Bayes’ theorem to calculate the posterior probability density function over f∗ as
a function of the hyperparameters θ. (b) Drawn synthetic data from which a subset is selected to
fit multiple variations of GP models. (c) A standard GP model — constant prior mean, noise, and
a stationary kernel — poorly fits early battery data (dark blue) and does not allow extrapolation
toward unseen regions (light blue). Tailoring a GP improves its predictions, where the log marginal
likelihood, log(p(y|θ)), increases when (d) the prior mean is defined as a 2-element piecewise linear
function, shown in the inset, (e) the noise model is defined as a power-law, shown in the inset, and
(f) a non-stationary deep kernel model is used as the covariance function — its space-warping ability
is demonstrated in the inset. 5
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2.1 Preliminaries

We employ GP modeling with various extensions to approximate a Quantity of Interest
(QoI), battery energy or charge capacity, as a function of the cycle number x ∈ X ⊂ R.
We assume an unknown data-generating latent function f(x) and noisy function eval-
uations y(x) = f(x) + ϵ(x). We employ a GP to find a probabilistic representation of
the latent function. In this section, we use synthetic data constructed based on the
simulated testing of 25 identical batteries over 1000 cycles (see Fig. 2(a)) to illustrate
our approach’s approximation and uncertainty quantification capabilities. More specif-
ically, fixed prior mean and noise models — referred to as the ground truth mean and
noise in Fig. 2(a,b) — are chosen, then data are drawn from them using a multivariate
normal sampling approach. The dataset exhibits the characteristic decreasing trend in
battery energy with cycling. Batteries are assumed to have similar initial energy lev-
els with minimal variability. This variability increases with cycling, aligning with the
patterns observed in the literature [45, 30]. Although we consider this data in the con-
text of battery degradation, it is important to note that our GP modeling approach
is not limited to this specific application. It can be seamlessly customized to analyze
and predict different QoIs with respect to any input variable of interest.

2.2 A Bird’s Eye Perspective on Gaussian Processes

Gaussian processes are general-purpose function approximators that allow one to esti-
mate a predicted function value and its uncertainty at an unobserved point in a
multidimensional input space X based on observations at a set of given data points.
Data are defined in this scope as a set of input-output pairs D = {xi, yi} ∀i ∈
{1, 2, 3...}. The GP’s basic principle is simple: Every known (observed) and unknown
(of interest) function value (an underlying model) is thought of as a random variable.
This could be any performance measure (QoI, e.g., discharge capacity) of a battery
as a function of the battery cycle number. Then, a normal joint probability den-
sity function is defined over a finite set of function values. Basic statistical methods
(marginalization and conditioning) let us calculate probability density functions for
the model function value at unknown locations. To define a joint probability den-
sity p(f , f∗) over known (f) and unknown (f∗) function values, a way to approximate
covariances between the observed and unobserved function values is needed. This is
called the kernel trick. A kernel is a function of two input locations k(xi, xj ;θ) with
some added properties (symmetry and positive semi-definiteness) that returns a scalar
representing the estimated covariance between the function values at xi and xj . The
most widely used stationary kernel is the squared exponential (SE) kernel [38]. A GP
model with a constant prior mean µ, SE kernel function kSE , and a normal i.i.d. noise
ϵ is defined as

y(x) = f(x) + ϵ(x), (1a)

f = f(xi), y = y(xi) ∀i ∈ {1, 2, 3, ...}
f ∼ GP(µ(xi;θ) = c1, kSE(xi, xj ;θ)), (1b)

kSE(xi, xj ;θ) = σ2
s exp

[
− ||xi − xj ||2

2l2
]
, (1c)

ϵ(x,θ) ∼ N (0, σ2
n(x,θ) = c2) (1d)

⇒ y ∼ N (f , diag(σ2
n(xi,θ))) (1e)
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Through this framework, we allow the prior mean, noise, and kernel functions to
be exchangeable and to depend on arbitrary hyperparameters θ, endowing the GP
with the capability to be customized for extra flexibility and domain awareness. This
paper is focused on taking advantage of this extra flexibility to optimally predict
failure distributions. For standard GPs, the hyperparameters θ = {c1, σ2

s , l, c2} result
from constant prior mean and noise functions and a stationary kernel. The GP’s
hyperparameters are trained either via maximum log marginal likelihood estimation
(MLE) — by solving argmaxθ p(y|θ), where y = yi, ∀i ∈ {1, 2, 3, ...} — or by using
Markov Chain Monte Carlo sampling [44]. After learning the values of θ, we condition
the marginalized prior on observed data y via Bayes’ theorem to estimate the posterior
distribution p(f∗|y,θ) = N (µp,κp), where µp and κp are the posterior mean and
covariance, respectively, which constitute the GP predictions.

2.3 The Prior Mean Function

Domain (expert) knowledge is integrated into GPs by tailoring the prior mean function
µ : X → R to better fit the data trend and allow for a reliable extrapolation beyond
the tested domain. The literature shows that a battery’s energy or charge capacity
(QoIs) generally degrades with cycling [1, 30]. The degradation rate may increase with
cycling due to the onset of additional battery failure mechanisms. To include such
knowledge in the GP model without constraining it to any particular shape, choosing
a function that can describe this increased degradation rate is crucial. At the same
time, the function needs the flexibility to correct the expert experimenter if needed,
thereby enhancing the model, especially in cases where incorrect assumptions have
been implemented, or to revert to a non-informative function if supported by data.

The power-law is one obvious candidate for a prior mean function that can model this
trend. Such a prior mean can be written as

µ(x;θ) = axp + b, (2)

where x is the cycle number. This prior mean function depends on the hyperparameters
{a, p, b} ⊂ θ. The slope a, which would be typically negative to show a decreasing
trend, quantifies the model’s degradation rate, the power p controls the non-linearity
of the function, and the intercept b indicates the initial battery QoI before cycling. An
example showing the use of the power-law function for the developed synthetic data
after obtaining the values of the hyperparameters via MLE is shown in Fig. 2(a).

The literature shows that the onset of a new failure mechanism during cycling can
cause a change in the rate of degradation and results in what is known as a “knee”
— which means a point where the degradation curve is non-differentiable [46, 47, 48].
Several failure mechanisms could cause a “knee” in the degradation curve during
cycling. These include lithium plating [49], electrolyte depletion [50], loss of active
material [51], and mechanical deformation [52]. Researchers are often interested in
identifying the cycle number at which this knee occurs. Unfortunately, the power-law
model in equation 2 does not contain such a function. However, it can be generalized
to the 2-element piecewise polynomial function

µ(x;θ) =

{
a1x

p1 + b1 if x ≤ x0,

a2x
p2 + b2 if x > x0,

(3a)
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Fig. 2 GP customization performed to extend its capabilities to extrapolate and quantify uncertainty
accurately. (a) The performance of the three prior mean functions compared to the ground truth
mean function used to sample the synthetic data. (b) The performance of the three noise functions
compared to the ground truth noise function. (c) The architecture of the DNN that transforms the
original input space X to the latent space X ∗ as shown in (d).

b2 = a1x
p1

0 − a2x
p2

0 + b1, (3b)

with hyperparameters {x0, a1, p1, b1, a2, p2}, and b2 is computed by equation 3b to
ensure that the two pieces of the function meet. The hyperparameter x0 represents
the location of the knee and indicates the onset of the second failure mechanism.
Similar to the power-law above, the slopes a1 and a2 quantify the rate of degradation
of each of the corresponding elements, the powers p1 and p2 control the linearity of
the two elements, and b1 indicate the initial QoI when x = 0. The values of p1 and p2
can be chosen such that the function becomes linear across the domain if either the
experimenter believes that the failure mechanisms cause a steady battery degradation
or such a decline results from the data as the most likely scenario. It is fundamental
to the methodology to add the expert’s knowledge in ways that allow the algorithm to
ignore it if necessary to avoid bias. Fig. 2(a) shows an example of using the 2-element
piecewise linear function.

Generally, multiple failure mechanisms can occur during battery life, and the mean
function has to be sufficiently flexible to model that. To account for multiple failures,
the user can generalize the 2-element function to an n-element piecewise polynomial
function and allow the GP model to identify the number of failures most likely to occur.
This is accomplished by checking the location of the knees resulting from the training.
If these knees are within the domain, the GP predicts multiple failures will likely
occur during cycling. Equation 4 demonstrates the transformation of the 2-element
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piecewise polynomial function into a 3-element piecewise polynomial function,

µ(x;θ) =


a1x

p1 + b1 if x ≤ x0,

a2x
p2 + b2 if x0 < x ≤ x1,

a3x
p3 + b3 if x > x1,

(4a)

b2 = a1x
p1

0 − a2x
p2

0 + b1, (4b)

b3 = a2x
p2

1 − a3x
p3

1 + b2, (4c)

with hyperparameters {x0, x1, a1, p1, b1, a2, p2, a3, p3}, and {b2, b3} are calculated using
equation 4b-c. Fig. 2(a) shows an example of using this prior mean function. Similarly,
the prior mean can be easily generalized to an n-element piecewise polynomial function.

2.4 The Noise Model

The noise function σ2
n : X → R quantifies the heteroscedastic aleatoric uncertainty

in the QoI without having access to observed measurement variability [53]. In this
context, distinguishing between two types of data variation is crucial: reducible mea-
surement errors and inherent uncontrollable processes within batteries. For instance,
when conducting experiments with different apparatuses, maintaining constant con-
ditions can introduce data variation that inaccurately reflects battery degradation.
In contrast, using the same apparatus under constant conditions highlights measure-
ment variation attributed to uncontrollable events within batteries, such as the onset
variation of second failure mechanisms. This variation more accurately represents bat-
tery degradation variation [22]. Here, we are interested in the latter. The core idea is
to interpret those variations as measurement noise and to quantify it. In addition to
improving uncertainty quantification, choosing a good noise model also improves the
GP predictions, as it is a main ingredient in the MLE that allows performing Bayesian
inference. Through the noise model, we focus on quantifying the aleatoric uncertainty
with the least data possible to calculate the probability of failure distributions for war-
ranty purposes. For this, it is crucial to integrate domain knowledge. For the synthetic
example in this section, the literature shows that battery energy variability increases
with cycling [30, 45]. To a large extent, this increase is due to the knee occurring at
different cycles for different cells.

The linear function can capture a steady increase in variability and, therefore, predict
a steady increase in aleatoric uncertainty. This noise function can be written as

σ2
n(x;θ) = mx+ n, (5)

with hyperparameters {m,n}, that control the quantification of uncertainty in the
predictions. Fig. 2(b) shows the trained linear noise function on the synthetic data
compared to the actual variability of the data. However, as Fig. 2(b) shows, and the
literature concludes, the variability in the battery energy (or capacity) may increase
at a varying rate [29, 45]. It often starts with a slow increase at low cycle numbers, but
the rate increases significantly when getting closer to the predicted knee. The linear
function cannot model this varying rate of increase.
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The exponential function allows for modeling the variability at an increasing rate and
can be written as

σ2
n(x;θ) = m exp(x) + n, (6)

with hyperparameters {m,n}. Fig. 2(b) also shows the trained exponential function.
One potential limitation of this function is that it may be difficult to control the cur-
vature of the function while ensuring that the y-intercept stays positive. The trained
exponential function in Fig. 2(b) shows a negative y-intercept with an overestima-
tion of the noise throughout the input domain. Having negative noise values leads to
instabilities in the GP predictions, as the noise can never be negative. The power-
law function can be used to help mitigate the issue of negative noise. This function,
written as

σ2
n(x;θ) = mxp + n, (7)

has the same trend as the exponential function, i.e., increasing at different rates based
on the cycle number. The benefit of using this function is that its hyperparameters
{m, p, n} make it more flexible in controlling the rate of increase, the shape of the
function, and the y-intercept. Fig. 2(b) also shows the trained power-law function on
the data variability of the running example in this section.

2.5 The Kernel Function

The covariance function, or kernel, denoted as k : X × X → R, is arguably the most
important building block of a GP, and carefully choosing it is crucial for accurate
prediction and epistemic uncertainty quantification. Accurate uncertainties (epistemic
and aleatoric) are also crucial to defining valid experiment-stopping criteria. Generally,
two classes of kernel functions exist: stationary kernels that depend only on the dis-
tance between points and non-stationary kernels that depend explicitly on the point’s
location in the input domain.

The vast majority of studies using GPs employ stationary kernels [38]. For most
stationary kernels, the relationship is simple: the closer the data points, the more cor-
related they are. Therefore, for this class of kernels, the farther the prediction point
from the tested points, the more uncertain the predictions become, which, while cor-
rect, is not the only aspect of data that should control uncertainty. We use the SE
kernel presented in equation 1c and repeated here

kSE(xi, xj ;θ) = σ2
s exp

[
− ||xi − xj ||2

2l2
]
. (8)

Equation 8 is controlled by two constant scalar hyperparameters, σ2
s (the signal vari-

ance) and l (the length scale), whose values can be inferred from the data by MLE,
and applied to the whole input domain X . Additionally, and since equation 8 is a
function of the Euclidean distance, i.e., the norm, || · ||2, between the points in the
input domain, it makes the kernel stationary. Stationary kernels are widely used in
the machine learning community for their straightforward specification and the lim-
ited number of associated hyperparameters, simplifying the training. However, their
dependence on only the distance between the points makes them prone to poor pre-
diction performance and inaccurate uncertainty quantification, and as a result, poor
quantification of the failure probability density function [40, 44].

Non-stationary kernels have emerged as a solution to improve predictions and uncer-
tainty quantification, where they depend on the location of the points, not just the
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distance between each other, i.e., k(xi, xj) ̸= k(|xi − xj |). This gives them flexibility
and greater expressiveness in covariance calculations. However, this increased flexi-
bility comes at higher costs, diminishing their popularity. Among other challenges,
proving the positive semi-definite characteristic of a newly formulated non-stationary
kernel is difficult. Additionally, these kernels are generally associated with significantly
more hyperparameters to be estimated. This imposes a lower bound on the size of the
datasets to which these kernels can be applied, along with increased computational
requirements. Fortunately, significant work has been done to develop nonstation-
ary kernels for GPs [54, 55, 56]. Among others, three methods were developed:
Parametric non-stationarity, deep GPs, and deep kernels. In the first method, non-
stationarity is generally accounted for in the signal variance via the form k(xi, xj) =∑N

d=1 gd(xi)gd(xj)kstat(|xi − xj |), where gd(x) is any parametric function over the
input domain, N a positive integer, and kstat any stationary kernel. This principle has
been extended to parametric length scales. In deep GPs, non-stationarity is achieved
by stacking stationary GPs in multiple layers such that the output of one GP is
the input of the other, similar to a DNN structure. Herein, we implement the third
method, deep kernels, that uses DNN in the kernel [57, 58]. In such an approach, a
DNN function ϕ is used to warp the input space X non-linearly to a latent space X ∗,
with a potentially different number of dimensions. Then, a stationary kernel, here the
SE, calculates the covariance between the points in the latent space associated with
those of interest in the input domain. The deep kernel we implement is defined as

k(xi, xj ;θ) = σ2
s exp

[
− ||ϕ(xi)− ϕ(xj)||2

2l2
]
. (9)

This DNN, ϕ, comprises two hidden layers with five nodes per layer, with each node
employing the rectified linear unit (ReLU) activation function. The DNN takes ele-
ments of the one-dimensional input space X and outputs elements of a one-dimensional
warped space X ∗. Fig. 2(c) shows the architecture of the DNN used here. Using this
DNN introduces a set of 46 additional hyperparameters. Fig. 2(d) shows the transfor-
mation of X to X ∗ using the set of synthetic data developed for this section. For more
details about non-stationary kernels, interested readers are referred to [44].

2.6 Early-Stopping Criteria for Experimentation

After integrating domain knowledge into the GP model to minimize the number of
experiments required, it is important to develop a stopping criterion that determines
when further testing of a certain battery is no longer valuable. The aim is to identify,
as early as possible, when a certain battery does not provide additional information
about the failure probability. This minimizes the required testing resources while not
risking the quality of the predictions.

Researchers often lack a reliable stopping criterion for their testing. Experiments
typically conclude based on the experimenter’s intuition or resource depletion. This
approach leads to inefficiencies in the experimental process outcome. Premature
stopping of experiments results in inaccurate predictions, consequently affecting the
accuracy of the estimated battery failure distribution. On the other hand, scientists
may prolong their testing beyond what is required without checking the effect of
additional testing on the improvement of the predictions until resources are exhausted.
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To further improve our early failure prediction framework, we develop a stopping
criterion to identify when additional testing of a certain battery no longer provides
sufficient new information to warrant continued experimentation. To achieve this, we
compare the predictions of two different GP models: GP Model 1, which uses all the
collected data until that point in time to make its predictions, and GP Model 2,
which only uses the data of the current battery to make its predictions using the same
trained hyperparameters of Model 1. If the predictions of Model 2 differ sufficiently
from those of Model 1, this battery is expected to provide additional information that
GP Model 1 does not have. Therefore, one would continue testing this battery. If the
predictions from Model 2 do not vary significantly from those of Model 1, then it is
expected that the current battery does not provide useful information that improves
the predictions of Model 1. In this case, stopping the testing of the current battery
and starting another would be more beneficial.

Distribution entropy provides the basis for a statistical metric to measure the amount
of expected change in the GP predictions when new information is added [43].
More specifically, we compare the relative entropy of the posterior GP distributions
p(f∗|y,θ) = N (µp,κp) — the predicted distributions — over the same grid in the
input domain x ∈ X with n data points from both Models 1 and 2. This relative
entropy is defined by the Kullback-Leibler (KL) divergence [59] between the two mod-
els and is considered the expected information gain from the battery being tested. To
illustrate this description, consider two datasets, D1 and D2, such that D2 ⊂ D1 and
a set of hyperparameters θ. The KL divergence between the posterior distributions of
Models 1 and 2 is defined as

KL
(
p(f∗2 |y2,θ) ∥ p(f∗1 |y1,θ)

)
=

1

2

(
tr(κp

−1
1 κp2) + (µp1 − µp2)

⊤κp
−1
1 (µp1 − µp2)− n+ log

|κp1|
|κp2|

)
.

(10a)

When the value of the KL divergence falls below a predetermined threshold, we con-
clude testing for the current battery. The threshold is computed as a fraction of the
average gain — relative entropy, or KL divergence — calculated from previous exper-
iments. To ensure a meaningful comparison between Models 1 and 2 and assuming
no prior experiments were performed, the implementation of the stopping criterion
begins when at least two batteries have been fully tested.

To showcase the performance of this stopping criterion, we apply it to the synthetic
data with different fraction levels. Fig. 3(a) shows the expected information gain, rep-
resented by the blue markers, as a function of the number of experiments assuming
batteries are successively tested to failure. It also marks which experiments correspond
to which batteries, with the vertical dotted lines separating the data from successive
batteries. The results imply that the expected information gain within each battery
generally decreases with testing, signifying that testing some batteries becomes less
informative past a certain point, for instance, batteries 7, 11, 13, and 14. Other batter-
ies remain informative until failure, for instance, batteries 4, 8, 9, and 10. It is beneficial
to continue testing those batteries until they fail. We use a fraction of the average of
previous information gained to differentiate between informative and non-informative
batteries. The green and black dashed lines in Fig. 3(a) correspond to one-tenth and
half of the average gain, respectively. When the expected information gain drops below
the dashed lines, it is recommended to stop testing the corresponding battery.
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Fig. 3 Performance of the stopping criteria. (a) The expected information gain from each experiment
of each battery is shown by the blue markers. The green and black dashed lines show the stopping
threshold when using 0.1 and 0.5 of the average previous information gain, respectively. (b) Mean
and its standard error of the number of experiments of 30 different permutations of batteries when
the stopping criterion is implemented with different fraction levels of the threshold. (c) Similarly, the
mean and its standard error of estimation error of the cycle number at which 5% of batteries fail as
computed from failure probability. The zero fraction level corresponds to the No Stopping case.

We further studied the performance of the stopping criterion by considering various
threshold fraction levels. We sequentially tested the 25 synthetic batteries, employing
30 sequence permutations. A battery is stopped when it reaches 1000 cycles — given
by the available synthetic data for each battery — or its expected information gain
falls below the threshold. For a visual reference, Fig. 3(a) represents one sequence per-
mutation, and when the blue markers — the expected information gain — of a specific
battery drop below the dashed line, testing of that battery is stopped. Fig. 3(b) shows
the mean and its standard error of the 30 permutations of the number of experiments
performed for each threshold fraction level, plotted as a percentage. Similarly, Fig. 3(c)
shows the mean and its standard error of the inaccuracy in estimating the cycle num-
ber at which 5% of batteries fail calculated from the failure probability distribution as
a function of the fraction levels. The zero fraction level refers to the case when the stop-
ping criterion is not used, and therefore, 100% of the experiments are performed with
0% error in estimating the correct cycle number for 5% failure. The results show that
as we increase the fraction level, fewer experiments are performed, and higher estima-
tion error is incurred, as the probability of failure becomes less accurately quantified.
As expected, there is a trade-off between the number of experiments performed and
the estimation error, and based on the users’ preference, one can choose what fraction
level to use while doing their experiments. Fig. 3(b,c) demonstrates that the stopping
criteria can save more than 50% of experiments while incurring less than 10% error.
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3 Application to Experimental Data

Now that the GP model is tailored for our synthetic battery data, we show its effec-
tiveness on experimental data. We use two sets of battery data found in the literature.
The first dataset comprises 20 nominally identical pouch cells cycled similarly and
retrieved from Harris et al. [45]. In this dataset, we are interested in fitting the bat-
tery energy as a function of the cycle number. (Although capacity fade is generally
used in the field, this parameter ignores voltage fade, without which battery degrada-
tion cannot be properly evaluated.) The second dataset comprises 48 cells also cycled
similarly and retrieved from Baumhöfer et al. [30]. For this dataset, we are interested
in fitting the battery capacity as a function of the cycle number. (The energy data
is not available to us.) Using those two datasets, we show that our approach is not
only applicable to different datasets but also agnostic to the type of QoI (energy or
capacity) used to quantify battery degradation. Both datasets are for lithium batter-
ies with capacity degradation trends similar to the synthetic data used to tailor the
GP model in the previous Section. Other types of batteries might have other capacity
degradation trends, and the GP model may need to be modified to account for it.

3.1 Experimental Dataset 1

The GP model is tailored and trained to fit the experimental data from [45] to
predict failure probability distributions and demonstrate the performance of the pro-
posed stopping criterion. In our fitting process, we simulate real-world experiments,
assuming that we use four concurrent channels. We collect data sequentially during
cycling and update our GP model every 12 cycles, with each update considered a GP
modeling step. Each step includes training the hyperparameters via MLE and predict-
ing the posterior distribution across the input domain. To evaluate the performance
of our stopping criterion, we run the complete simulation twice, with and without
implementing the stopping criterion.

We incorporate domain knowledge to tailor our GP model for battery experimental
data. We assume there are only two failure mechanisms, the first evident from the
initial cycles, while the second becomes visible at the knee. We choose the 2-element
piecewise polynomial function, equation 3, to model the GP prior mean. We also
assume that the rate of energy degradation is constant before and after the knee. This
results in a 2-element piecewise linear function with p1 = p2 = 1. For the noise model,
we choose the power-law model, equation 7, to estimate the uncertainty. To account
for non-stationarity and accurately estimate the probability of failure distribution, we
use the deep kernel, equation 9.

Fig. 4 shows the GP fitting progression with implementing the stopping criterion.
The blue markers represent the data points, the red line represents the GP predicted
mean, and the gray region represents the uncertainty of the prediction. Fig. 4(a-c)
shows the fitting of the data of the first set of four batteries at Step 5 (60 cycles),
step 30 (360 cycles), and Step 50 (600 cycles). Starting with data within the first
60 cycles, Fig. 4(a) shows how the model accurately fits those data points in that
region and follows the same path well beyond the 60 cycles mark until it hits the
knee. At that point, the model randomly chooses the second slope, as our data does
not provide any information about the slope beyond the knee, and therefore, any
value is equally probable. This shows that with only a few data points, the GP model
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learned that batteries degrade with cycling and that degradation will likely continue
beyond the tested region. However, the GP compensates for its inaccurate second slope
estimation by increasing its uncertainty bounds to show that the prediction may not
be accurate beyond the knee. With the addition of new data points, Fig. 4(b), the
posterior mean further follows these points and keeps fitting the data well as before,
but now with a better understanding of how the degradation curve continues beyond
the currently available experimental results. The posterior uncertainty also adapts to
the data, accounting for the heteroscedastic variability as a function of cycle number.
The bounds of the gray region increase with data variability. Comparing Fig. 4(b)
and (c), with the latter representing the GP fit after finishing the first set of four
batteries with 600 cycles, it can be seen that even though they were only at cycle 360,
the GP predictions of the degradation were accurate. After completing the tests of
these four batteries, four new batteries were tested. Fig. 4(d) shows the results after
adding the data of those new batteries, where the predictions become slightly more
accurate, and the uncertainty increases to account for the added variability in the data,
as appropriate. This is also seen in Fig. 4(e) after adding the data for the third set
of batteries. However, adding the third set of batteries does not significantly change
the predictions. This is also seen in Fig. 4(f), which contains the data for all twenty
batteries. This demonstrates that the testing should have been stopped earlier. These
new data points did not add any information. We note that the failure probability
density function is generated by cutting the gray-shaded region horizontally at the
chosen failure point, as seen in Fig. 4(f) at 80% of the initial energy. The failure
distribution is computed based on the GP model’s normal probability density function
values corresponding to the 80% failure level at each cycle number. We note that the
progression in Fig. 4 depends on the order of the tested batteries. The results might
differ during the initial steps if another sequence was used.

Applying the stopping criterion saves testing resources while keeping an accurate esti-
mation of the failure probability. We repeat the earlier experiments with the same
experimental setup with the proposed stopping criterion. We terminate battery testing
when the expected information gain drops below half the average previous information
gain. Fig. 5 compares the GP fits with and without applying the stopping criterion.
Fig. 5(a) replicates Fig. 4(f). Fig. 5(b) shows the GP fit, the experimental data used
when implementing the stopping criterion, and the corresponding failure probability.
To better compare the failure probabilities, (c) plots the two failure distributions with
and without the stopping criterion and the region at which 5% of batteries fail. Com-
paring both fits, it is evident that applying the stopping criterion significantly lowered
the number of experiments while accurately predicting the failure distribution. As
evident in Fig. 5(b), the batteries not expected to improve the GP predictions were
stopped early on. Only the informative batteries were tested until failure. The results
indicate that around 70% of the experiments were eliminated while incurring less than
3% error when estimating the cycle number until 5% of batteries fail.

3.2 Experimental Dataset 2

To showcase the framework’s agnosticism to the battery data type, we perform the
same analysis for the data by Baumhöfer et al. [30]. The available data from [30] is the
batteries’ discharge capacity as they are cycled. In our fitting process, we also assume
four channels running concurrently. We collect data sequentially during cycling and
update our GP model every 150 cycles, with each update considered as a GP modeling
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Fig. 4 GP model fitting progression, with the mean shown in the red line and uncertainty in the
gray region, with the availability of the experimental data that is shown in the blue markers. Sets of
four batteries are tested simultaneously, and data is collected sequentially at different steps. (a) Step
5, (b) Step 30, and (c) Step 50 represent the fitting for the first set of four batteries. (d) Step 100, (e)
Step 150, and (f) Step 250 show the addition of the completed tests for the second, third, and fifth
sets of batteries, respectively.

step. This process repeats 200 times to test all 48 batteries. Since the data here exhibit
similar trends as earlier, we use the exact GP tailoring.

Fig. 6 shows the GP fitting sequence of the data as it is being collected. The blue
markers represent the collected discharge data, the red line represents the posterior
mean, and the gray region represents the uncertainty. Fig. 6(a-c) shows the progression
as the first four batteries are added at (a) step 5 (800 cycles), (b) step 10 (1600
cycles), and (c) step 15 (2000 cycles). Similar to the results in Section 3.1, tailoring the
GP model and incorporating domain knowledge provides a good prediction accuracy
of the discharge curve as a function of cycles even before the cycling of these first
four batteries ended at step 15. However, with these four batteries, the uncertainty is
not accurately quantified as it increases significantly in Fig. 6(d-e) after completing
the testing of 8 and 24 batteries at steps 30 and 100, respectively. This increase in
uncertainty results from more variability in the experimental data. Fig. 6(f) shows
the results of all 48 batteries with the failure probability assuming battery failure
occurs at 80% of initial discharge capacity, where there is minimal improvement in the
predictions compared to Fig. 6(e). This shows that beyond the 24 batteries, additional
data did not provide sufficiently extra information to the model, encouraging the use
of the proposed stopping criterion.
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Fig. 5 Comparing the GP models and the failure probabilities when (a) the stopping criterion is not
implemented — duplicating Fig. 4(f)–, and (b) when it is implemented. The blue markers represent
the data used to train the GP model represented by the red line and gray region, corresponding to the
posterior mean and covariance. To compare the failure probabilities, (c) plots the two distributions
with and without the stopping criterion. The results show a significant decrease in the number of
experiments (70% decrease) while keeping accurate predictions (< 3% error).

Applying the stopping criterion, with the same fraction as before, to the dataset by
Baumhöfer et al. [30] showed significant experimental resource savings while keep-
ing accurate predictions. Fig. 7 compares the GP fits with and without applying the
stopping criterion. Fig. 7(a) replicates Fig. 6(f). Fig. 7(b) shows the GP fit and the
experimental data when implementing the stopping criterion, along with the corre-
sponding failure probability. To better compare the failure probabilities, Fig. 7(c) plots
the two failure distributions with and without the stopping criterion and the region
at which 5% of batteries fail. The results show that applying the stopping criterion
resulted in 70% fewer experiments while incurring less than 5% error when estimat-
ing the cycle number until 5% of batteries fail. This also shows the effectiveness of
our modeling and proposed stopping criterion in efficiently quantifying the failure
probability accurately while being agnostic to the type of battery data used.

4 Discussion and Conclusions

Efficient early prediction of failure distributions for energy storage systems is crucial for
utilities. Considerable research has been done to predict the expected life of batteries
early on. However, even a perfect prediction for the expected life provides no insight
into the failure distribution, which means that the predictions provide no information
on how to price a warranty or estimate viability for a second life. In this work, we
developed a framework based on GP modeling that integrates domain knowledge of
the expected degradation and variation in the performance with cycling to allow for
accurate extrapolation and quantification of failure distributions. We also developed a
stopping criterion to avoid testing uninformative batteries, where an explicit trade-off
between experimental efficiency and accuracy is found. This allows for the accurate
early estimation of failure distributions with minimal testing.

We discussed in Section 2 how the performance of batteries can degrade with cycling
at an increasing rate as more failure mechanisms occur. We integrated this knowledge
into the GP model by customizing the prior mean function with a 2-element piece-
wise linear function, which flexibly models this degradation pattern. Comparing the
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Fig. 6 GP model fitting progression, with the mean shown in the red line and uncertainty in the
gray region, and the corresponding experimental data at each step shown in the blue markers. Sets
of four batteries are tested simultaneously, and data is collected sequentially at different steps. (a)
Step 5, (b) Step 10, and (c) Step 15 represent the fitting for the first set of four batteries. (d) Step
30, (e) Step 100, and (f) Step 200 show the addition of the completed tests for the second, sixth, and
twelfth sets of batteries, respectively.

performance of the standard model — constant prior mean — with the present model
showed significant improvement in the extrapolation capabilities as shown in the com-
parison of Fig. 1(c) and (d). Using this prior mean function to fit the experimental data
sequentially also showed that even before finishing the testing of the first set of bat-
teries, we had an accurate estimation of the expected performance degradation of the
batteries. However, expected performance is not useful for setting warranties, which
utilities would require to use new storage technologies. So, we tailored the noise func-
tion of the GP model to account for data variability as subject-domain-experts predict
it to be. When comparing multiple functions, we chose the power-law function due to
its flexibility and accuracy in fitting the data variability. Introducing this function as
the noise function significantly enhanced the variability predictions as illustrated in
Fig. 1(d) and (e). This is also demonstrated in the fits of the experimental data, where
an accurate estimation of the posterior covariance was made early on. We continued
improving our predictions by introducing a DNN non-stationary kernel function as
shown in Fig. 1(e) and (f). The improvements due to non-stationary kernels depend
largely on the data characteristics. We only saw slight improvements in our predic-
tions because our dataset had little non-stationarity. However, we argue that using
this DNN kernel was beneficial as it accounted for the slight non-stationarity in the
data and improved the predictions. Using this kernel was also beneficial because it is
a reference for interested readers to implement it for their applications.
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Fig. 7 Comparing the GP models and the failure probabilities when (a) the stopping criterion
is not implemented — this is the same as Fig. 6(f)–, and (b) when it is implemented. The blue
markers represent the data used to train the GP model represented by the red line and gray region,
corresponding to the posterior mean and covariance. To compare the failure probabilities, (c) plots
the two distributions with and without the stopping criterion. The results show a significant decrease
in the number of experiments while keeping accurate predictions.

Tailoring the GP model to our application does not prevent it from being agnos-
tic to the type of data used. As seen in Section 3, we used the same GP model to
fit battery energy and discharge capacity as a function of cycle number. These two
measures are different, but they have the same trend in terms of degradation and vari-
ability. We tailored our GP model to account for degradation and variability while
keeping a flexible GP model, as we did not specify the values of the hyperparame-
ters of the prior mean, noise, and the DNN kernel function. We allowed the model to
learn these hyperparameters based on the data. This does not mean that our model
will work for all applications. The GP model will likely need to be modified for other
applications where the shape of the QoI and the variability are different. However,
we showed how, intuitively, domain knowledge can be integrated to improve the GP
model. Previous work considered modifying the GP model using physics-based degra-
dation models [28, 60, 61]. However, these models are usually developed to model a
specific failure mechanism [62]. We argue that using these in the GP model would bias
the predictions according to the failure mechanism of the physics-based model used
in the GPR. Here, we aim to develop an agnostic framework that can accurately pre-
dict failure distributions regardless of the underlying failure mechanism in the data
and free the GP predictions from any possible bias. This is achieved using the general
trend models discussed in Section 2.

To decrease the number of experiments, developing a stopping criterion for when addi-
tional battery testing is not informative was crucial. We based our stopping criterion
on the expected information gain and showed its performance with different thresh-
olds. The performance was quantified in terms of the number of experiments and errors
in estimating the cycle number until 5% of batteries fail, which might be a warranty
criterion. Applying the stopping criterion on the real-world experimental data showed
up to 70% decrease in the number of experiments with less than 3% estimation error.
These significant savings are also due to our use of the modified GP model, as it
allowed us to predict, early on, accurate posterior mean and covariance with the least
amount of data. Many more data points would have been needed if the GP model had
not been modified.
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Recent work considered efficient prediction and optimization of battery failure. For
example, Attia et al. [63] developed a framework to predict battery life and optimize
battery charging protocols using features from the first 100 cycles, following the work
of Severson et al. [42]. In this approach, Severson et al. [42] and Attia et al. [63]
focused on the average degradation of batteries and did not consider the variability
in battery degradation when using the same charging protocols. They also did not
quantify the failure probability for each charging protocol. In our work, we can quantify
the variability of battery degradation and estimate the failure distribution.

Jiang et al. [31] extended the work of Attia et al. [63] to be one of the earliest to
estimate battery failure distributions. Their approach required data from multiple
charging protocols and their distributions, along with early testing data from a new
protocol, to predict the distribution of this new protocol. Although our approach can
learn the failure distribution of batteries of different charging protocols by intuitively
extending the model to multiple input dimensions, it does not require data from other
protocols, only data from the considered protocol. Additionally, their approach can
only estimate a discrete failure distribution with the number of levels chosen a priori
based on an assumed distribution family. Our approach does not have these con-
straints, as it estimates a continuous failure distribution without being restricted to a
specific distribution family.

The work presented here is just one step toward fast validation of energy storage
systems, and more work is needed. Here, we consider that degradation depends only on
cycling. However, previous research showed that several other parameters could affect
degradation, such as temperature, depth of discharge, and charging and discharging
rates [64, 65]. Future work must generalize the framework developed here to account
for multiple parameters simultaneously. In addition, efficient frameworks are needed
to quantify the durability of batteries when these parameters are considered. Since
battery tests are resource-intensive, testing all possible combinations of parameters
would be prohibitively expensive. Moreover, the current framework will need to be
compared to other approaches in terms of prediction accuracy and speed.

In conclusion, accurately predicting long-duration energy systems’ failure probabilities
is crucial for their integration into the grid to fight global warming. Utilities require
the failure probabilities distributions as they are interested in estimating warranties.
Although much work has been done on estimating the expected degradation of battery
performance using either physics-based modeling or data-driven approaches, it does
not help estimate the failure probabilities. Here, we integrated both approaches to
estimate these failure probabilities early on with the minimum number of experiments.
The key outcomes of this work are:

• An agnostic framework that integrates domain knowledge with a data-driven GP
modeling

• A framework that has accurate extrapolation and uncertainty quantification
• Accurate predictions of failure probabilities with minimum testing
• A stopping criterion based on expected information gain that significantly saves on
resources while keeping accurate predictions
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and Georges Oppenheim. Chained gaussian processes to estimate battery health
degradation with uncertainties. Journal of Energy Storage, 67:107443, 2023.

[23] Zicheng Fei, Fangfang Yang, Kwok-Leung Tsui, Lishuai Li, and Zijun Zhang.
Early prediction of battery lifetime via a machine learning based framework.
Energy, 225:120205, 2021.

22



1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

[24] Xiaoyu Li, Changgui Yuan, and Zhenpo Wang. Multi-time-scale framework for
prognostic health condition of lithium battery using modified gaussian process
regression and nonlinear regression. Journal of Power Sources, 467:228358, 2020.

[25] Zhiyuan Wei, Changying Liu, Xiaowen Sun, Yiduo Li, and Haiyan Lu. Two-phase
early prediction method for remaining useful life of lithium-ion batteries based
on a neural network and gaussian process regression. Frontiers in Energy, pages
1–16, 2023.

[26] Sean Buchanan and Curran Crawford. Probabilistic lithium-ion battery state-
of-health prediction using convolutional neural networks and gaussian process
regression. Journal of Energy Storage, 76:109799, 2024.

[27] Kailong Liu, Yi Li, Xiaosong Hu, Mattin Lucu, and Widanalage Dhammika
Widanage. Gaussian process regression with automatic relevance determination
kernel for calendar aging prediction of lithium-ion batteries. IEEE Transactions
on Industrial Informatics, 16(6):3767–3777, 2019.

[28] Robert R Richardson, Michael A Osborne, and David A Howey. Gaussian process
regression for forecasting battery state of health. Journal of Power Sources,
357:209–219, 2017.

[29] Stephen J Harris and Marcus M Noack. Statistical and machine learning-based
durability-testing strategies for energy storage. Joule, 7(5):920–934, 2023.
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