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Obsidian Source Distribution 
and Prehistoric Settlement Patterns 
at Mono Lake, Eastern California

RYAN T. BRADY
Albion Environmental, Inc., 1414 Soquel Avenue, Suite 205, Santa Cruz, CA. 95062

Hunter-gatherer settlement studies often use toolstone diversity to measure the degree to which mobility was regular, 
expansive, or localized. The results of a 10 km.2 probabilistic survey investigating prehistoric wetland use at Mono Lake 
demonstrate a pattern that is counter-intuitive to preconceived notions. Diachronic change in landscape use is investigated 
with a combination of obsidian sourcing and hydration analyses. Rather than conforming to a linear distance-decay 
model, source distributions appear to reflect differential patch-choice among lakeside habitats. Comparisons with 
environmental and paleoenvironmental data underscore changes in the use of wetland habitats and highlight the utility 
of surface survey and obsidian data for understanding past settlement-subsistence patterns.

Obsidian sourcing and hydration studies 
have a long history of use to support arguments 

for differences in past hunter-gatherer mobility, social 
organization, and trade relations in the Inyo-Mono 
region of eastern California (Basgall 1989; Basgall and 
Delacorte 2003; Basgall and McGuire 1988; Basgall 
et al. 2003; Bouey and Basgall 1984; Delacorte 1999; 
Gilreath and Hildebrandt 1997; Hull 2002; King et al. 
2001; Singer and Ericson 1977; Zeanah and Leigh 2002). 
Obsidian hydration data may be used as another line 
of evidence to test presumptions about chronology. 
Moreover, in localities with well-documented obsidian 
sources, the study of toolstone distributions can be used 
to identify patterns of mobility and social interaction for 
people in the past (Basgall 1989; Bouey and Basgall 1984; 
Eerkens et al. 2007, 2008a; Hughes 1986; Jones et al. 2003; 
McGuire 2002; Smith 2010).

The distribution of obsidian toolstone is frequently 
used to study patterns of lithic conveyance, which is often 
viewed as a rough indicator of mobility range (Basgall 
1989; Hughes 1986; Jones et al. 2003; McGuire 2002; Smith 
2007, 2010 — but see Close 2000). Used in conjunction 
with technological analyses, source provenance studies 
can illustrate patterns of tool manufacture and toolstone 
conservation that reflect mobility decisions (Beck 2008) 
and toolstone availability (Andrefsky 1991:131, 1994a). 
The type of mobility practiced, whether residential or 

logistical (cf. Binford 1980; Kelly 1992), can complicate 
interpretations as populations may be less residentially 
mobile, but still retain access to distant lithic resources 
through logistical movement. Likewise, trade and 
exchange may also affect the distribution of lithic raw 
materials (Davis 1961; Ericson 1981; Whitaker et al. 
2008), though its relative importance likely fluctuated 
throughout prehistory. 

In general, a lithic distance-decay model is argued 
to be applicable to understanding toolstone source 
distributions (Giambastiani 2004; Jones et al. 2003). 
The model has two assumptions. The first is that the 
prevalence of a given source decreases as distance to 
the raw material source increases (Brantingham 2006). 
With greater distance there is an increase in the number 
of finished tools relative to the amount of unmodified 
flakes and simple tools (Andrefsky 1994a; Kuhn 1991; 
Ricklis and Cox 1993), or items such as cores are more 
intensively used (Kuhn 1995). A second implication is 
that flake and tool size will decrease with distance to the 
source (Eerkens et al. 2008a; Newman 1994; Ricklis and 
Cox 1993, but see Close 1999). 

Intrinsic characteristics of a toolstone may make 
one source particularly more attractive than another 
(Andrefsky 1994b; Elston 1992; Wilson 2007) and are 
suggested to account for certain spatio-temporal changes 
in obsidian source profiles in central-eastern California 
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(Basgall 1989:116; Bettinger 1981:54; Eerkens et al. 
2008a:676; Stevens 2005). The presence or absence of 
locally available stone material will also affect patterns 
of stone tool use and conservation (Andrefsky 1994a; 
Bamforth 1986, 1991; Torrence 1989). 

Situations where distance-decay model expectations 
are not met may be better explained through differences 
in settlement and mobility organization (Eerkens et 
al. 2008a; Henry 1992; Hildebrandt and McGuire 2002; 
McGuire and Hildebrandt 2005; Milliken 1998) or social 
interaction (McGuire 2002; Whitaker et al. 2008). The 
distance-decay model should be expected to fail at times 
due to the complexities of past hunter-gatherer mobility 
(Kelly 1983, 1992, 1995) and toolstone acquisition 
strategies (Beck et al. 2002; Binford 1979; Gilreath and 
Hildebrandt 1997; Halford 2008). In many ways, failures 
of the model are more instructive than successes. 

The distance-decay model applied to the present 
context is relatively simple in that it posits that material 
from the nearest obsidian source will comprise the 
greatest amount of the assemblage, while other, more 
distant obsidian sources will be represented in decreased 
quantities (cf. Eerkens et al. 2010; Fredrickson 1989). Of 
course, rather than strict linear direction, stone material 
prevalence may also be affected by other factors, such 
as the mode of procurement (direct, embedded [sensu 
Binford 1979], or indirect [Whitaker et al. 2008]), 
direction of travel (King et al. 2001), and encounter rate 
with additional sources of toolstone (Ingbar 1994). 

A second issue pertinent to the present study relates 
to the use of wetland habitats in the Great Basin. The role 
of wetlands within the subsistence-settlement patterns of 
Great Basin hunter-gatherers has been a topic of debate 
and study for several decades (Bettinger 1993; Hemphill 
and Larson 1999; Janetski and Madsen 1990; Kelly 2001; 
Madsen 1982, 2002, 2007; Zeanah 2004; Zeanah et al. 
1995). The basic argument is whether wetlands were 
optimal habitats for hunter-gatherers to exploit and were 
unsurpassed by other dry land desert scrub or upland 
zones (Heizer 1967; Heizer and Napton 1970), or whether 
the fluctuating characteristics of Great Basin wetlands 
would have made them important areas only at times of 
higher productivity (Kelly 1985; Thomas 1985). Research 
and discourse has led to the conclusion that, at times, 
wetlands were in fact important habitats and that people 
could reside near them for long periods of time (Kelly 

2001; Zeanah 2004); however, the importance that they 
had within a regional system might vary relative to the 
productivity of other areas such as uplands (Cannon 
et al. 1990; Delacorte 2002; Madsen 2002, 2007), and in 
relation to the overall subsistence-settlement strategy 
practiced by people at the time.

The present study uses data collected during the 
Mono Lake Wetland Survey (MLWS), a probabilistic 
survey designed to investigate prehistoric hunter-gatherer 
land use relative to wetland habitats in the Mono Lake 
basin of eastern California (Brady 2007). In particular, 
the manner in which mobility is reflected in spatial and 
temporal patterns of toolstone dispersion is examined. 
Moving beyond simple raw material distributions, the 
study further identifies divergent settlement strategies 
practiced in different lakeshore wetland habitats.

ENVIRONMENTAL CONTEXT

Adjacent to and east of the Sierra Nevada Mountains, 
the Mono Basin is an ideal place to apply obsidian 
source provenance and hydration studies to help in 
understanding regional settlement and mobility patterns 
(Fig. 1). The basin itself is a relatively discrete depression 
covering over 650 km.2 (Stine 1987:14). Located in the 
central-western area, Mono Lake is a large saline body 
of water that provides wetland habitats bordering its 
shoreline. The wetlands support a range of economically 
important plant and animal species. Due to resources 
available there, the wetlands presumably served as key 
resource patches for hunter-gatherers throughout the 
Holocene (Brady 2007). 

Unique hydrological and geographic factors have 
created wetland habitats which can be distinguished 
through vegetation distributions, slope gradient, type of 
freshwater inflow, as well as soil alkalinity and leaching 
capabilities (Jones and Stokes Associates 1993; Stine 
1993). For the present study, the wetlands were grouped 
into three classes: freshwater, brackish, and remaining. 
The freshwater habitats contain the greatest diversity and 
density of vegetation relative to the saline areas (Brady 
2007:Table 2.1). The saline habitat is more restricted to 
halophytic vegetation, whereas the freshwater habitat 
contains a greater variety of plants that includes grasses, 
forbs, and fewer xerophytic plants. Vegetation surveys 
identify more barren land in the saline wetlands and 
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denser flora in the freshwater ones (National Academy 
of Sciences 1987). Similarly, the mammalian fauna found 
in the three wetland habitats is richer in the freshwater 
and least so in the saline habitats (Brady 2007:Table 2.2). 
Brackish wetlands are intermediary to the other two 
in both instances. Species richness is viewed as a rough 
indicator of environmental productivity. Due to greater 
potential foraging returns, it was assumed that areas with 
increased richness and density of plants and animals would 
hold greater importance for hunter-gatherers undertaking 
foraging activities in the basin (Madsen 1982:212).

Prehistoric fluctuations of Mono Lake’s shoreline 
have been reported by Stine (1987, 1990) for the last ca. 
4,000 years and farther back into the Pleistocene by 
others (Benson et al. 1990; Lajoie 1968; Russell 1889) 
(Fig. 2). Prior to water diversion that began in the early 
1900’s, the lake fluctuations occurred in direct response 
to environmental conditions, such as variations in water 
inflow and rates of evapotranspiration (Stine 1987, 1990; 

Vorster 1985). Past lake fluctuations surely affected 
Mono Lake’s near-shore wetland habitats (JSA 1993; 
Stine 1993), along with potential foraging opportunities. 

The geographic distribution of wetland flora and 
fauna changes as the lake experiences transgressions or 
recessions (cf. Raymond and Parks 1990:Fig. 4). Each 
wetland class reacts differently over time as a result of 
differences in hydrology and geomorphology (Brady 
2007; Cohen 2003; Stine  1993). The freshwater wetland 
migrates more readily with changes in lake elevation due 
to physical characteristics. By contrast, the saline habitat 
remains as exposed playa for longer periods during a 
lakeshore recession; however, emergent marshes form 
along the shoreline during lake transgressions or times 
of stability. Like the freshwater wetlands, the brackish 
wetlands will more easily track changes in lake elevation. 
Clearly, the paleoenvironmental record is important 
in understanding temporal changes in hunter-gatherer 
wetland use.
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III

II

II

II
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Figure 1.  Mono Lake Wetland Survey (MLWS) study area with wetlands and surveyed quadrats.
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OBSIDIAN STUDIES

Six geochemically distinct sources of obsidian are more 
widely dispersed in and around the basin. Source location, 
depicted with a 20 km. radius, illustrates differences 
between proximal and distant sources relative to the 
study area (Fig. 3). The most local source, Mono Craters 
(MC) (Sieh and Bursik 1986; Wood 1977), is often 
considered to be of poor quality when compared with 
other obsidian sources such as Bodie Hills (BH) or Casa 
Diablo (CD). This is based on MC’s rather restricted 
spatial distribution within regional archaeological sites, 
being found within the Mono Basin (Arkush 1995; 
Bettinger 1981; Carpenter 2001; Wickstrom and Jackson 
1993), but not as commonly in more outlying areas 
where other obsidian sources predominate (Basgall 1983; 
Fredrickson 1991; Goldberg et al. 1990; Rosenthal 2011). 
It has also been posited that artifact quality obsidian was 

not present until more recent times (Hull 2002; King et 
al. 2011:211).

The remaining five obsidian sources are more 
commonly represented in regional archaeological 
deposits, are prevalent in near-source contexts, and yet 
are less represented at greater distances. This pattern 
of linear decay has been identified at multiple quarry-
related and other contexts in the Inyo-Mono region 
(Basgall 1983, 1984, 1998; Bieling 1992; Fredrickson 1991; 
Giambastiani 1998, 2004; Gilreath 2001; Gilreath and 
Hildebrandt 1997; Goldberg et al. 1990; Halford 1998; 
Jackson 1985; King et al. 2001; Overly 2002, 2004; Ramos 
2008; Richman and Basgall 1998). 

In the Mono Basin, Richman and Basgall (1998) 
found a linear distance-decay model to be applicable. 
Based on XRF-sourced samples collected during surface 
survey, sites in the southern basin were recognized 

Figure 2.  Past Shoreline Elevation Changes at Mono Lake (a. after Benson et al. 1990; b. after Stine 1987).
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to more frequently contain Mono Glass Mountain 
(MGM) obsidian, followed by CD and MC. In the north, 
BH obsidian was more common, with MC being of 
secondary importance.

General patterns of source material distribution 
have been identified from an atemporal framework, 
yet when attention turns to obsidian hydration data, 
there also appear to be temporal changes in the use of 
particular obsidian sources. At the Lee Vining Creek 
site in the southwestern Mono Basin, Bettinger (1981) 
identified two components that demonstrate differences 
in source use. The lower component (>50 cm.), dated to 
the middle Archaic (2,950 –1,250 B.P.), is predominantly 
composed of CD obsidian. The upper, late Archaic 
component (1,250 B.P. – contact [100 B.P.]) has a greater 
frequency of MC/MGM obsidian. A similar shift in 
the prevalence of CD and MC is identified from dated 
components in Yosemite, immediately west of Mono 
Basin (Hull 2002)

These studies show that CD obsidian, representing 
a distant obsidian source, is more common during earlier 
times. It follows that a greater presence of extra-local 
rather than local obsidian suggests more expansive 
travel and stone transport among the consumers. In 
late prehistoric times, people appear to have practiced 
more constrained mobility, relying instead on local MC 
obsidian to fulfill toolstone provisioning requirements. 
Similar changes in source prevalence have been noted at 
other sites in the southwestern Mono Basin (Carpenter 
2001; Gilreath 1996; McGuire 1994; Wickstrom and 
Jackson 1993).1

Gilreath (2001), investigating this pattern, compiled 
hydration values for CD, BH, and MC/MGM from 
sites in the Mono Basin (Fig. 4). In alignment with 
earlier propositions, the histograms show a greater use 
of extra-local sources (CD, BH) in the middle Archaic 
(3,500 –1,350 B.P.), with an increased use of MC/MGM 
obsidian in more recent times, as shown by smaller 
micron values.

Further support for a temporal change in source 
use is found at CA-MNO-891 in the southwestern 
Mono Basin (Carpenter 2001). XRF-sourced obsidian 
attributable to the middle Archaic component 
(3,500 –1,350 B.P.) had the greatest quantity of CD (n=19; 
46%) and other extra-local sources, while only 9% (n=4) 
was attributed to MC. In contrast, the late Archaic (post 

1,350 B.P.) loci contained an overwhelming majority 
of MC obsidian (n =15; 75%). Additional evidence for 
a shift in obsidian source use through time is found at 
CA-MNO-2122 in the southeastern Mono Basin, where 
73.3% (n =11) of XRF-sourced debitage from post-850 
B.P contexts is attributable to MC (Arkush 1995). No 
MC material was identified in the five sourced specimens 
from earlier contexts (CD = 2, Mt. Hicks [MH]= 3).
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Mono Basin sites (adapted from Carpenter et al. 2001:Fig. 29).
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Applying these data to the prehistoric use of Mono 
Lake’s wetlands, one may develop expectations about 
source distributions around the lake along with changes 
in source prevalence through time. Predictions are 
that BH would be predominant in the northwest, MH 
in the northeast, and CD in the south during earlier 
time periods. Hydration measurements with smaller 
values should be more commonly found on Mono 
Craters obsidian, with larger bands on more extra-local 
sources.2 

METHODS

Surface Survey 

To obtain information about how the wetlands were 
used in the past, the three habitats described above 
were randomly sampled using a distributional survey of 
forty 500 x 500 m. quadrats covering 10 km.2, comprising 
8.7% of the 115 km.2 study area (Fig. 1). The number of 
quadrats surveyed in each habitat was weighted to the 
relative presence of each wetland class within the study 
area. All flaked stone tools encountered on transect were 
collected, and ground stone artifacts were field recorded. 
Debitage, while noted during the general survey, was 
only collected in the debitage collection unit for each 
quadrat.3

Obsidian Source Determinations

Previous efforts at visually segregating Mono Basin 
sources have proved problematic due to the overlapping 
of certain visual characteristics (cf. Bettinger et al. 1984; 
Carpenter 2001; Wickstrom and Jackson 1993). As a result, 
low accuracy is reported for earlier visual sourcing efforts 
in the basin (Gilreath 2001:80 – 81). With this in mind, the 
visual sourcing program was based on attributes derived 
from the study of geochemically source-determined 
artifacts from curated archaeological collections. Visual 
ascriptions were tested by submitting two rounds of 
samples, totaling 80 specimens, for XRF analysis. The 
first test of 50 specimens produced unsatisfactory results 
(57%) and instigated a reassessment of the criteria for 
segregating each material type. The second test (n = 30), 
using modified criteria that accounted for greater 
variability of MC visual characteristics, achieved a 90% 
accuracy rate, arguing for the accuracy of the remaining 
visual calls (Brady 2007:112 –118).

In addition to using raw counts and percentages, 
toolstone source diversity was expressed using the 
complement of Simpson’s index (1-D). This index is 
viewed as a good measure of diversity because it is not as 
affected by sample size as others (Magurran 2004:115). D 
is calculated as:

D =∑ (ni [
ni–1])N[N–1]

In the calculation, ni= total number of items for each 
toolstone type, N= total number of items for all toolstone 
types. Values for D range between 0 and 1. With the 
complement of D, values closer to 0 represent low 
diversity, while those trending toward 1 represent infinite 
diversity. Additional measures are source richness (s) and 
evenness (E) (Magurran 2004).4

Obsidian Hydration Analysis

Each of the 214 collected obsidian artifacts was subjected               
to obsidian hydration analysis, yielding 256 hydration 
rims. Several variables have been identified that affect the 
hydration rate of a given obsidian source, including (but 
not limited to) the geochemical composition, relative 
humidity, intrinsic water content, and air temperature 
(Friedman and Long 1976; Friedman and Smith 1960; 
Friedman et al. 1997; Hull 2001; Rogers 2007, 2008, 2010; 
Stevens 2005; Stevenson et al. 1993, 1998; Tremaine 1993). 
Due to the fact that individual sources are known to 
hydrate at different rates, previously developed source-
specific rates were implemented for the present effort 
(Table 1).

Based on empirical tests, correcting for effective 
hydration temperature (EHT) provides adequate 
results when comparing obsidian samples from different 
environmental contexts (Basgall 1990; Hull 2001; Rogers 
2007; Stevens 2005). The hydration rates used in the 
present study were formulated in different environmental 
contexts; therefore, it is important to calculate an 
EHT correction so that each rate may be applied to 
Mono Basin hydration measurements. The EHT was 
calculated following the method proposed by Rogers 
(2007)5, which includes multiple variables to characterize 
each temperature regime, and which has been shown 
to provide reasonable results when compared with 
other chronometric information (Eerkens et al. 2008b; 
Farquhar et al. 2011).
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Using this method, the EHT across the study area 
varies no more than 0.06 °C, and is therefore essentially 
the same. Temperature data used to calculate the EHT 
comes from weather stations at Mono Lake, Cal. and 
Bishop, Cal. (Western Regional Climate Center 2008). 
The EHT for the Mono Basin is 11.81 °C. at Mono Lake 
and is the same for MC, since that is where the rate 
formulation was made (Onken 1991). The Truman-Queen 
(TQ) EHT is 17.2 °C., and is based on temperature data 
from Bishop, Cal,. since the TQ rate was developed in the 
nearby Volcanic Tablelands (Basgall and Giambastiani 
1995). The EHT for CD in Long Valley is 16.6 °C., based 
on elevation corrected temperature data from Bishop. 
This value is also used for MGM, BH, and MH, as the 
sources are from higher elevations fringing the Mono 
Basin, and age estimates use the CD rate (or a variant 
of it).  

Due to uncertainties regarding the accuracy of 
year-specific calculations from hydration data, converted 
hydration measurements were grouped into temporal 
units commonly applied to the Owens Valley, located to 
the south (Basgall et al. 2003; Delacorte 1999; Zeanah 
and Leigh 2002) (Table 1). This includes terminal 

Pleistocene/early Holocene (TP/EH), pre-Newberry 
(PN), Newberry (NW), Haiwee (HW), and Marana 
(MR) periods. Unexpectedly over one quarter of the 
readings corresponded to the PN and TP/EH time 
periods. To better recognize changes in land use through 
time, the NW and PN periods were split into six separate 
groups (two and four respectively). The categories show 
that extra-local sources are present in both early and late 
contexts.

Since the temporal components represent age ranges 
between 500 and 6,000 years, hydration counts per 
component were corrected to account for the variable 
time spans represented. The correction was made by 
using a simple proportion of the count of hydration 
measurements per component, multiplied by 6,000 
and divided by the component time span. In this way, 
the numbers were weighted for the length of each 
component time span (cf. Hockett 2005, Laylander 2002). 
The corrected obsidian hydration data was analyzed 
using a chi-square test followed by a calculation of 
adjusted residuals.

When using contingency tables, after a significant 
chi-square value is recognized, adjusted residuals provide 

Table 1

TEMPORAL UNITS AND HYDRATION MEASUREMENT RANGES*

	 Hydration Rate

	 Casa Diablo	M ono Craters	M ono Glass Mtn.	 Truman-Queen 
Temporal Units	 yBP=129.656x1.826	 yBP=1000(x2/14.7)	 yBP=129.656(0.8x)1.826	 yBP=82.74x2.06

Marana 
(100–650 B.P.)	 0.9–2.5μ	 1.2–3.1μ	 1.1–3.0μ	 1.1–2.7μ

Haiwee 
(650–1,350 B.P.)	 2.6–3.6μ	 3.2–4.5μ	 3.1–4.5μ	 2.8–3.8μ

Newberry I 
(1,350–2,275 B.P.)	 3.7– 4.7μ	 4.6–5.7μ	 4.6–6.0μ	 3.9–5.0μ

Newberry II 
(2,275–3,200 B.P.)	 4.8–5.7μ	 5.8–6.8μ	 6.1–7.2μ	 5.1–5.9μ

Pre-Newberry I 
(3,200–4,000 B.P.)	 5.8–6.5μ	 6.9–7.6μ	 7.3–8.2μ	 6.0–6.5μ

Pre-Newberry II 
(4,000–5,000 B.P.)	 6.6–7.4μ	 7.7–8.5μ	 8.3–9.2μ	 6.6–7.3μ

Pre-Newberry III 
(5,000–6,000 B.P.)	 7.4–8.1μ	 8.6–9.3μ	 9.3–10.2μ	 7.4–8.0μ

Pre-Newberry IV 
(6,000–7,500 B.P.)	 8.2–9.2μ	 9.4–10.5μ	 10.3–11.5μ	 8.1–8.9μ

Terminal Pleistocene/Early Holocene 
(7,500–13,500 B.P.)	 9.2–12.2μ	 10.6–13.5μ	 11.6–15.2μ	 9.0–11.4μ

*Temperature corrected. Rates derived from: Hall and Jackson 1989 (CD; also used for BH and MH); Onken 1991 (MC); Overly 2003 (MGM); Basgall and Giambastiani 1995 (TQ).
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a statistical means to identify cells that are responsible 
for the significant value (Everitt 1992:46). Adjusted 
residuals are calculated as:

dij = eij / √ [ (1 – ni. / N) (1–  n.j / N)]

where N = total number of observations in the table; ni. = 
sum of the row total for the cell in question; n.j = sum 
of the column total for the cell in question; and eij = the 
expected frequency for a given cell. The expected 
frequency eij is calculated as:

eij = (nij  – Eij)/√ Eij

where nij = the number in a given cell and Eij = ni.n.j /N. 
Significant values exceed 1.96 and illustrate instances 
where the phenomenon measured is significantly 
contributing (>1.96) or not contributing (<1.96) to the 
pattern being measured. Adjusted residuals have been 
successfully applied to regional archaeological data in 
order to identify changes in prehistoric settlement and 
technological organization (Basgall 2007; Basgall and 
Giambastiani 1995; Bettinger 1989, 1999; Rosenthal et al. 
2011).

RESULTS

Surface Survey 

General tool classes recovered within each quadrat were 
somewhat evenly distributed across the wetland areas 
(Table 2), with each wetland habitat containing quadrats 
with only debitage, debitage and expedient flake tools, 
as well as debitage along with flaked and ground stone 
tools. The greatest tool density was encountered in 
the freshwater habitat (19.3/km.2), while the saline 

habitat contained the least (6.3/km.2), and brackish 
habitats fell in between (10.1/km.2). One pattern of 
artifact distribution that was noted is that bifaces were 
over-represented in the saline wetlands. In addition, 
projectile points, handstones, and millingstones were 
significant constituents in the northern half of the basin, 
while projectile points were absent in the southern half, 
including the freshwater habitats (Brady 2009). The 
freshwater wetlands also contained the only bedrock 
mortars encountered in the study area, suggesting a 
certain emphasis on plant processing.

Toolstone Material Distributions

Stone materials represented in the Mono Lake wetlands 
show variability by artifact class as well as across wetland 
habitat. Table 3 illustrates the notable lack of MC among 
projectile points, yet the source supplied the majority of 
flake tools, cores, and debitage. Though overwhelmingly 
weighted toward MC obsidian, the latter class also 
exhibits the greatest amount of stone material variability. 
This indicates that curated tools, such as projectile points 
and bifaces, were most often fabricated on extra-local 
stone and were transported to the wetlands in finished 
form. By contrast, local material was more often used 
to fulfill needs related to flake production and use, as 
shown by the high percentage of MC among flake tools, 
debitage, and cores.

Segregated by wetland class, stone material is 
differentially distributed across the habitats (Table 4). 
Support for differences in toolstone diversity across 
the three habitats is illustrated with the complement of 
Simpson’s Index. The values show a dramatic difference 
in source diversity between the freshwater (0.03), 

Table 2

QUADRAT TOOL CONSTITUENTS

Wetland Class	E mpty	 DEB only	 GST only	 DEB & FTL	 DEB & FTL	 DEB & GST	 DEB, FST & GST	 TOTAL

Freshwater	 —	 2	 —	 2	 —	 1	 1	   6 
		  (33%)		  (33%)		  (17%)	 (17%)
Brackish	 2	 2	 —	 1	 2	 2	 6	 15 
	 (13%)	 (13%)		  (7%)	 (13%)	 (13%)	 (40%)
Saline	 —	 11	 1	 2	 —	 2	 3	 19 
		  (58%)	 (5%)	 (11%)		  (11%)	 (16%)
Total	 2	 15	 1	 5	 2	 5	 10	 40 
	 (5%)	 (38%)	 (3%)	 (13%)	 (5%)	 (13%)	 (25%)

Note: Number is count of quadrats containing each tool class group; DEB = debitage; GST= ground stone tool; FTL= flake tool (expedient); FST= flaked stone tool (formed).
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brackish (0.41), and saline (0.59) wetlands. The similarity 
between the brackish and saline wetlands is at odds with 
the environmental characterization.

Similar patterns of source distribution are identified 
through source richness and evenness values across the 
three habitat types. Richness values (s) for toolstone 
material are 2 (freshwater), 7 (brackish), and 8 (saline), 
recognizing the greater number of sources/materials 
present in the brackish and saline habitats. Evenness 
measurements pose a slightly different order, with source 
variability becoming more uneven from the freshwater 

(E = 0.52), saline (E = 0.30), and brackish (E = 0.24) 
habitats. Low evenness values in the brackish habitat are 
affected by the higher incidence of MC obsidian relative 
to the other sources, while the saline habitat has slightly 
less MC and relatively greater amounts of the remaining 
sources/materials. Although a Mann-Whitney U test 
fails to demonstrate significant differences between the 
samples with p < 0.05, source diversity is made apparent 
by other means.

Considering toolstone diversity as an indicator of 
past mobility range, it appears that the saline habitat 

Table 3

TOOLSTONE SOURCE BY ARTIFACT CLASS

Tool Class	 CD	M C	 BH	M H	M GM	 TQ	 CCS	 BAS	 TOTAL

Projectile Point	 1	 —	 3	 1	 1	 1	 —	 —	    7 
	 (14%)		  (14%)	 (14%)	 (14%)	 (14%)	
Biface	 3	 2	 2	 2	 1	 —	 —	 —	  10 
	 (30%)	 (20%)	 (20%)	 (20%)	 (20%)
Flake Tool	 2	 25	 2	 6	 —	 1	 4	 —	  40 
	 (5%)	 (63%)	 (5%)	 (15%)		  (3%)	 (10%)	
Core	 —	 6	 —	 —	 —	 —	 —	 —	    6 
		  (100%)	
Debitage	 2	 144	 3	 3	 2	 1	 4	 2	 161 
	 (1%)	 (89%)	 (2%)	 (2%)	 (1%)	 (1%)	 (2%)	 (1%)
Total	 8	 177	 10	 12	 4	 3	 8	 2	 224 
	 (4%)	 (79%)	 (5%)	 (5%)	 (2%)	 (1%)	 (4%)	 (1%)

CD = Casa Diablo; MC = Mono Craters; BH = Bodie Hills; MH = Mt. Hicks; MGM = Mono Glass Mountain; TQ = Truman-Queen; CCS = cryptocrystalline silicate; BAS = basalt.

Table 4

TOOLSTONE SOURCE BY WETLAND CLASS

Wetland Class	 CD	M C	 BH	M H	M GM	 TQ	 CCS	 BAS	 TOTAL

Freshwater 
  Tools	 —	 16	 —	 —	 —	 —	 —	 —	  16	
		  (100%) 
  Debitage	 —	 50	 —	 —	 —	 1	 —	 —	  51 
		  (98%)				    (2%)
Brackish 
  Tools	 3	 7	 5	 6	 —	 1	 1	 —	  23 
  	 (13%)	 (30%)	 (22%)	 (26%)		  (4%)	 (4%) 
  Debitage	 —	 53	 1	 1	 —	 —	 —	 1	  56 
		  (95%)	 (2%)	 (2%)				    (2%)
Saline 
  Tools	 3	 4	 2	 3	 2	 1	 3	 —	  18 
	 (17%)	 (22%)	 (11%)	 (17%)	 (11%)	 (6%)	 (17%) 
  Debitage	 2	 41	 2	 2	 2	 —	 4	 1	  54 
	 (4%)	 (76%)	 (4%)	 (4%)	 (4%)		  (7%)	 (2%)
Total	 8	 177	 10	 12	 4	 3	 8	 2	 224 
	 (4%)	 (79%)	 (5%)	 (5%)	 (2%)	 (1%)	 (4%)	 (1%)

CD = Casa Diablo; MC = Mono Craters; BH = Bodie Hills; MH = Mt. Hicks; MGM = Mono Glass Mountain; TQ = Truman-Queen; CCS = cryptocrystalline silicate; BAS = basalt.
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represents a more wide-ranging settlement pattern, 
whereas the overwhelming emphasis on local obsidian 
found in the freshwater region indicates a more localized 
occupation. Source diversity in the brackish wetlands is 
more similar to that of the saline habitat, and toolstone 
deposition reflects more varied or wide-ranging 
settlement strategies.

The dispersion of stone material shows some 
correspondence with what is expected in a linear 
distance-decay model (Table 4). The predominance of 
MC in the freshwater habitat is expected in the linear 
model, though its continued high presence in brackish 
and saline habitats is less expected, especially when 
considering patterns previously identified in the Mono 
Basin (Arkush 1995; Bettinger 1981; Carpenter 2001; 
Richman and Basgall 1998). 

Separating tools and debitage, the percentage of 
tools by toolstone variety supports expectations of the 
linear model in the brackish habitat, with northern 
sources (BH and MH) showing the greatest presence 
after MC. The saline region presents greater divergence 
from expectations. The greater frequencies of CD and 
cryptocrystalline silicate (CCS) suggest, along with the 
higher diversity index, more wide-ranging land use when 
people were initially exploiting the saline wetlands.

OBSIDIAN HYDRATION ANALYSIS

MC hydration measurements from each wetland 
habitat are presented as histograms in Figure 5. Raw 
counts show the saline wetland to be more intensively 
used in early times, at around seven microns (ca. 3,300 
B.P.) and older, while the freshwater region sees greatest 
use in more recent times. The brackish wetlands exhibit 
more continuous use from the early part of the sequence, 
but with a decrease in use in more recent times. T-tests 
comparing MC micron values across the three wetland 
habitats identify significant differences between the three 
samples (Freshwater-Brackish, t = –2.69, d.f. 162, p<0.01; 
Freshwater-Saline, t = –6.03, d.f. 160, p<0.001; Brackish-
Saline, t =–3.30, d.f. 138, p<0.001).

Local versus Extra-local Obsidian Use

In considering the distribution of component-grouped 
hydration measurements, a first order of analysis is to 
compare the prevalence of MC to non-MC obsidian in 

the sample over time. Adjusted residuals illustrate that 
for time corrected values, it is apparent that non-MC 
obsidian is significantly overrepresented before 6,000 
years ago (PN-IV), with MC becoming prominent more 
recently (Table 5). There is a weaker, fluctuating presence 
of local and extra-local sources between PN-III and NW-
II times; however, non-MC obsidian is again significantly 
overrepresented in NW-I. Meeting expectations, the two 
most recent prehistoric periods are the only times that 
MC is significantly overrepresented relative to non-MC 
obsidians. The spike in non-MC obsidian during NW-I is 
also notable and deserves further discussion.

Two possible factors may account for the increased 
presence of non-MC obsidians during NW-I times: (1) 
increased artifact scavenging from older archaeological 
deposits; or (2) an expanded mobility range during the 
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Figure 5.  Histograms of Mono Craters obsidian 
hydration measurements from the MLWS.
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time interval. The first proposition could account for an 
increased presence of non-local sources during the NW-I 
interval. Mono Lake underwent a lakeshore recession 
during this time period, making wetland productivity 
similar to what it was in PN-III and earlier times. This 
would have provided foragers access to obsidian tools 
and debitage associated with earlier archaeological 
deposits. Raw material scavenging is sometimes identified 
in items with multiple hydration bands. Evidence of 
stone material scavenging from older archaeological 
deposits has been identified in other Inyo-Mono contexts 
(though typically post-Newberry). In these contexts, 
raw material profiles often mirror those identified from 
earlier deposits (Basgall and Giambastiani 1995; Basgall 
and McGuire 1988; Delacorte 1999:256 – 258; Delacorte et 
al. 1995; Gilreath 1995:251, but see Eerkens et al. 2008a).  

Late Newberry (NW-I) non-MC samples are from 
quadrats with more extensive earlier hydration values, 
along with greater source diversity.6 Interestingly, the 
incidence of artifacts with multiple hydration bands 
accounts for 22% (n =14) of the hydration measurements 
dating to this era, compared with only 16% (n = 32) 
for the remaining sample, which lends support to the 
idea that scavenging may have been somewhat more 
prevalent during this time. However, only 14% (n = 2) 
of the NW-I artifacts with multiple hydration bands are 
from non-MC obsidian, suggesting that the increased 

prevalence of non-MC obsidian at this time may be due 
to other factors, such as a more expansive mobility range.

A rise in logistical mobility leading up to NW-I 
times has been documented in the western Great Basin 
(Basgall and McGuire 1988; Basgall et al. 2003; Delacorte 
1997, 1999; Delacorte et al. 1995; King et al. 2001; Zeanah 
and Leigh 2002), and more generally across much of 
western North America (Hildebrandt and McGuire 
2002; McGuire and Hildebrandt 2005). This behavior 
would bring people into contact with a greater range of 
environments, and possibly stone material sources. 

There is some debate as to why this change in 
settlement organization occurred; whether it was related 
to the sexual division of labor and differential foraging 
goals relative to environmental productivity (i.e., 
increased importance of women’s foraging activities) 
(Zeanah 2004), or occurred as a result of heightened 
large game acquisition by logistically-organized hunting 
parties for prestige-related benefits (Hildebrandt and 
McGuire 2002; McGuire and Hildebrandt 2005). One 
important difference between the two views involves 
the question of whether the residential base camps from 
which the logistical parties traveled were sedentary/
semi-sedentary villages (King et al. 2001; McGuire and 
Hildebrandt 2005:705), or were seasonally (winter) 
occupied localities (Basgall and McGuire 1988; Basgall et 
al. 2003:357; Zeanah and Leigh 2002:654 – 658).

Table 5

MC VS. NON-MC OBSIDIAN BY TEMPORAL COMPONENT*

	M R	 HW	 NW-I	 NW-II	 PN-I	 PN-II	 PN-III	 PN-IV	 TP/EH

COUNT 
  MC	   42	   40	  52	  28	  28	 13	   7	 0	 1	
  Non MC	    5	    5	  13	   4	    5	   3	   2	 2	 6
  Total	   47	   45	  65	  32	   33	 16	   9	 2	 7 
							       X2 = 35.79, df = 8; p < 0.001

CORRECTED 
  MC	 458	 343	 337	 182	 210	 78	 42	 0	 1	
  Non MC	   55	   43	  84	  26	  38	 18	 12	 8	 6
  Total	 513	 386	 421	 208	 248	 96	 54	 8	 7 
							       X2 = 97.38, df = 8; p < 0.001

RESIDUAL 
  MC	 3.13	 2.34	 –3.26	 1.05	 –0.18	 –1.07	 –1.52	 –6.76	 –5.26 
  Non MC	 –3.13	 –2.34	 3.26	 –1.05	 0.18	 1.07	 1.52	 6.76	 5.26

*Temperature adjusted. MR = Marana (Historic [100] – 650 B.P); HW= Haiwee (650 –1,350 B.P.); NW-I = Newberry I (1,35014 – 2,275 B.P.); NW-II = Newberry II (2,275 – 3,200 B.P.); 
PN-I = pre‑Newberry I (3,200 – 4,000 B.P.); PN-II = pre-Newberry II (4,000 – 5,000 B.P.); PN-III = pre-Newberry III (5,000 – 6,000 B.P.); PN-IV = pre-Newberry IV (6,000 –7,500 B.P.); TP/EH = Terminal 
Pleistocene/Early Holocene (7,500–13,500 B.P.); MC = Mono Craters obsidian; Non MC = non Mono Craters obsidian. CORRECTED = values adjusted to 6,000 year time span for each component; 
RESIDUAL = adjusted residual.
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 The current data presented here can shed some light 
on this debate, as there appears to be increased access to 
more extra-local stone sources within the time frame in 
question. That five of the seven projectile points from the 
project have hydration measurements that correspond 
to the NW-I era suggests an increased importance of 
hunting, possibly from base camps situated adjacent 
to Mono Lake’s wetlands. Moreover, bifaces, cores, 
and flake tools also provide hydration measurements 
dating to this era, suggesting that a variety of processing/
retooling activities occurred around the fringe of the 
lakeshore. The suite of the four tool classes is not present 
together in the remaining components. Additionally, 
ground stone artifacts are present in 71% (n = 5) of the 
quadrats with non-MC hydration readings dating to 
the NW-I interval, and 60% (n = 3) of the quadrats with 
double-band hydration measurements.

A definitive temporal placement of the ground 
stone artifacts is hampered by the fact that they were 
surface finds, and quadrats with multiple hydration 
readings generally exhibit an extended temporal range. 
Nevertheless, the association of ground stone artifacts 
along with the NW-I hydration measurements on both 
non-MC and MC obsidian suggests that the lakeshore 
may have served as a locality for seasonal base camps. 

From the base camps, logistical forays could be made 
to the uplands while the remaining family unit stayed 
behind at lakeshore base camps to exploit wetland 
resources.

Temporal Changes in Wetland Use

While it appears that a linear distance-decay model does 
not fully account for the distribution of materials relative 
to Mono Lake’s near-shore wetlands, a model that 
accounts for changing mobility strategies through time 
better explains the arrangement. When source specific 
hydration values are converted to temporal components 
and corrected for component time span, there is an 
apparent pattern of temporal change in wetland use that 
is also affected by geography and lake level fluctuation 
(Table 6). The earliest wetland use before 6,000 B.P. 
(EH, PN-IV) occurs mainly in the brackish habitats. 
The hydration readings come largely from artifacts in 
the northwestern basin and are associated with a time 
of rapidly decreasing lake levels. During the remaining 
portion of the pre-Newberry era, land use intensity was 
focused on the saline habitat. At this time, Mono Lake’s 
elevation remained relatively low, increasing to a high 
stand during the PN-I period. Items pertaining to this era 
are primarily debitage and suggest short-term use. 

Table 6

OBSIDIAN HYDRATION MEASUREMENTS BY TEMPORAL COMPONENT AND WETLAND CLASS*

	M R	 HW	 NW-I	 NW-II	 PN-I	 PN-II	 PN-III	 PN-IV	 TP/EH

COUNT 
  Freshwater	   27	   23	  26	   13	    4	   0	   1	 0	 0 
  Brackish	   16	   16	  28	   11	    9	  4	   1	 2	 6 
  Saline	    4	     6	   11	    8	   20	 12	   7	 0	 1
  Total	   47	   45	   65	   32	   33	 16	   9	 2	 7 
							       X 2 = 83.98, df = 16; p < 0.001

CORRECTED 
  Freshwater	 294	 197	 169	   84	  30	   0	   6	 0	 0 
  Brackish	 175	 137	 181	  72	  68	 24	   6	 8	 6 
  Saline	  44	   52	   71	  52	 150	 72	 42	 0	 1
  Total	 513 	 386	 421	 208	 248	 96	 54	 8	 7 
							       X 2 = 563.14, df = 16; p < 0.001

RESIDUAL 
  Freshwater	 9.22	 4.86	 –0.02	 0.06	 –9.66	 –8.24	 –4.42	 –2.32	 –2.17 
  Brackish	 –0.42	 0.28	 3.95	 –0.08	 –2.64	 –2.08	 –3.72	 3.87	 2.83 
  Saline	 –9.98	 –5.82	 –4.33	 0.02	 13.85	 11.63	 9.10	 –1.63	 –0.65

*Temperature adjusted. MR = Marana (Historic [100] – 650 B.P); HW= Haiwee (650 –1,350 B.P.); NW-I = Newberry I (1,35015 – 2,275 B.P.); NW-II = Newberry II (2,275 – 3,200 B.P.); 
PN-I = pre‑Newberry I (3,200 – 4,000 B.P.); PN-II = pre-Newberry II (4,000 – 5,000 B.P.); PN-III = pre-Newberry III (5,000 – 6,000 B.P.); PN-IV = pre-Newberry IV (6,000 –7,500 B.P.); TP/EH = Terminal 
Pleistocene/Early Holocene (7,500–13,500 B.P.); MC = Mono Craters obsidian; Non MC = non Mono Craters obsidian. CORRECTED = values adjusted to 6,000 year time span for each component; 
RESIDUAL = adjusted residual.
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During the Newberry era, there is a shift in emphasis 
from the saline to the brackish habitat. This appears to be 
a response to a lake-level decline that promoted wetland 
instability (especially in the saline habitat). As the lake 
level declined, geomorphic and hydrologic conditions 
indicate that wetlands in the saline area would not have 
been able to migrate downslope as the lake receded, but 
would instead have dried up. In contrast, conditions in 
the more well-watered western area allowed wetlands to 
re-establish on newly exposed lakebed.

Corresponding with this change, there was increased 
toolstone procurement from local quarry areas in the 
southwest. Toolstone acquisition is apparent at this time 
in southwestern freshwater and brackish quadrats where 
Mono Craters obsidian is present in the alluvium and 
there is abundant debitage and assayed cobbles.

Throughout the Haiwee (HW) and into the Marana 
(MR) periods, land use focused on the freshwater 
habitats at the expense of both the brackish and saline 
wetlands. That people increasingly spent more time in 
the area is demonstrated by the variety and greater 
density of discarded tools, along with the presence of 
bedrock mortar features. These imply recurring if not 
relatively more stable residence than found earlier. Being 
near permanent water sources, the freshwater habitats 
may have been preferable for occupations of greater 
duration. These latest time periods, dating from about 
1,350 years ago, are associated with increased lake level 
oscillations. Rapid fluctuations have a more detrimental 
effect on the migration of wetlands or the revegetation of 
exposed playa in other areas around the lake.

DISCUSSION

Evidence presented here points to changes in the use 
of near-shore wetlands at Mono Lake throughout the 
Holocene. One avenue of exploration tested a linear 
distance-decay model of toolstone source prevalence 
from known obsidian sources in the vicinity of the 
Mono Basin. In contrast to expectations developed from 
excavated assemblages in the Mono Basin and in nearby 
areas, Mono Craters was the most prevalent source in all 
three habitats. When the focus was restricted to formal 
tools and expedient flake tools, a distance-decay model 
showed a somewhat better fit, accounting for the use of 
some alternative sources.

Source specific, temperature-corrected obsidian 
hydration data illustrate changing patterns of land use, 
with the earliest Holocene use of the basin found in 
the brackish wetlands. Middle to early-late Holocene 
times (PN-III to PN-I) had the most intensive obsidian 
deposition in the saline habitat. During NW-II, there 
appeared to be no preference for a given wetland habitat, 
possibly as a result of a continued lakeshore decline 
during this era. The late Newberry (NW-I) occupation 
again emphasized the brackish wetlands, while the latest 
Holocene use of the Mono Basin wetlands was strongly 
focused on the freshwater wetlands.

Recognizing temporal changes in land use better 
illuminates differences in obsidian source distributions 
than a linear distance-decay model. The earliest use 
of the basin involved a significant use of non-MC 
obsidian and was focused on the brackish habitat. 
Later (PN-III to PN-I) occupations shifted to the saline 
wetlands, where MC obsidian is prevalent; however, this 
habitat also contains the greatest toolstone diversity 
of the three wetlands, suggesting continued high 
levels of residential mobility with an array of sources 
represented in the toolkit. In late Newberry (NW-I) 
times, there was a shift to the brackish habitat and a 
renewed heightened presence of non-MC obsidian. 
This indicates an expanded mobility range, and possibly 
represents residential base camps within a logistically 
organized settlement system. Late Holocene (HW, 
MR) occupation of the study area was most intensive 
in the freshwater wetlands, and involved localized 
toolstone use.

As noted previously, tool densities were lowest in 
the saline habitat and highest in the freshwater habitat, 
suggesting that people were spending more time in the 
latter area and visiting the former on a more short-term 
basis. Additionally, the saline habitat is notable for the 
prevalence of bifaces and bifacial flaking debris, while the 
freshwater wetlands have a predominance of cores, core 
reduction debitage, and non-portable milling features 
(Brady 2007, 2009). The relationship between bifaces 
and mobility, along with associations of core reduction 
use and sedentism, is discussed in more depth elsewhere 
(Kelly 1988; Parry and Kelly 1987; but see Railey 2010), 
but is presented here as supporting evidence for greater 
residential stability in the late prehistoric use of the 
freshwater wetlands at Mono Lake.
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Placing the current study within the greater context 
of wetland use in the Great Basin or other semi-
arid environments, it appears that wetlands must be 
understood not only for what they have to offer relative 
to the surrounding environment; one must also consider 
the settlement strategy being practiced, the potential 
resources being targeted, and the paleoenvironmental 
history of a given wetland. The wetlands at Mono Lake 
do not indicate the presence of the same levels of 
intensive activity that are found at other Great Basin 
wetlands (cf. Janetski and Madsen 1990; Livingston 
1986; Oetting 1989; Simms 1999; Zeanah 2004), yet this 
lakeshore habitat contains data relevant to changes in 
settlement and mobility throughout the Holocene that 
have not been previously addressed.

NOTES
1Recent research in the western Great Basin regarding temporal 
patterns of source diversity has identified instances of heightened 
source diversity in the latest prehistoric intervals (cf. Eerkens 
et al. 2008a; McGuire 2002; Smith 2010). In these contexts, 
source profiles are as variable, if not more so, than those of 
earlier components. The degree to which the scavenging of raw 
material from older archaeological deposits or more varied trade 
relations might have affected this pattern, rather than increased 
late prehistoric mobility, is unclear. The fact that studies from 
obsidian quarries in the Inyo-Mono region show a consistent, 
significant decline in late prehistoric obsidian acquisition 
(Gilreath and Hildebrandt 1997; Halford 2008; Ramos 2008; 
Singer and Ericson 1977) lends support to the scavenging 
hypothesis (cf. Delacorte 1999), with changing social relations 
potentially introducing new or previously underrepresented raw 
material (Basgall and Delacorte 2003; Eerkens and Spurling 
2008; Zeanah and Leigh 2002:659).

2One confounding factor may be general patterns of lithic 
conveyance after acquisition from the sources. For example, 
Bodie Hills and Casa Diablo obsidians are common west of the 
Sierra Nevada (Bouey and Basgall 1984; Jones et al. 1996; King 
et al. 2011; Rosenthal and McGuire 2005), while Mt. Hicks and 
Truman-Queen obsidians are more commonly found at sites 
located to the east (Giambastiani 2004; Jones et al. 2003; Ramos 
2008; Smith 2007).

3Survey methodology operated under a distributional (Ebert 
1992) or non-site (Thomas 1975) approach, where the individual 
artifact is treated as the unit of analysis. Following this approach, 
artifacts identified on transect were recorded and collected. 
Tools encountered outside of the 5 m. transect area (for example, 
when recording a site) were not included in the sample. General 
transects within the quadrat were spaced at 25 m. intervals. 
A 100 x 100 m. debitage collection unit was situated in the 
southwest corner of each quadrat. Transect spacing was reduced 
to 10 m. intervals within the debitage collection units.

4Evenness is calculated as a modification of Simpson’s D where 
E1/D= (1/D)/S (Magurran 2004:116)

5The method proposed by Rogers (2007) produces slightly 
elevated EHT measurements compared to an alternative 
method that uses Lee’s (1969) temperature integration equation, 
following Basgall (1990, 1998; see also Origer 1982). 

6One freshwater, four brackish, and two saline quadrats.
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