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Abstract

Non-Local Correlations and Interactive Games

by

Daniel Ciprian Preda

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

Quantum entanglement, and the resulting peculiar non-classical correlations are one of the
most counter-intuitive aspects of quantum mechanics.

The formalism of interactive games from computational complexity theory provides a useful
framework in which to understand the power of entanglement. In an interactive game, a verifier
interacts with a number of infinitely powerful provers who are allowed to share quantum entan-
glement but otherwise can’t communicate. The ability of the verifier to extract useful information
from the provers, whom he does not trust, provides an interesting measure of the ability of the
provers to coordinate using their shared entanglement. Two particular interactive games we’ll look
at are Magic Square and 3SAT.

The Magic Square game is the iconic example of a game where two classical provers cannot
perfectly coordinate their strategies using shared randomness, but quantum provers with shared
entanglement can win with probability 1. We show that by adding an extra prover, we disallow
perfect cheating. For 3SAT with three provers we also show that perfect cheating is not possible.

We then generalize the results for Magic Square and 3SAT by looking at non-commuting
provers, a superset of entangled provers (communication is allowed, but operators applied by dif-
ferent provers must commute). Using this method, we obtain a generalized Tsirelson inequality
that we apply to the Magic Square. Hence, we are able to give provably optimal strategies for the
general Magic Square with n players. We also recover a similar result for 3SAT as with entangled
provers, and we improve on it by showing that the gap is inverse exponential in the input size.

The no-signaling principle, which forbids faster than light communication, is a fundamen-
tal constraint on the non-local correlations resulting from quantum entanglement. However, no-
signaling allows distributions that are more general than those arising from quantum mechanics.
In particular, using a specific “unit” of general non-local correlation (the Popescu-Rohlich box),
we show that there are classes that are equal to NEXP classically, but collapse to AM once such
correlations are allowed. We also show that MIP where the verifier only looks at the XOR of the
answers collapses to PSPACE. For the second approach, we show that by writing general non-
local correlations as linear constraints, MIP is included in EXP under such correlations (vs NEXP
classically).
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We can extend these results to entangled quantum provers, by formulating an artificial MIP-
like class built on a promise problem, that classically is equal to NEXP, but that also collapses to
AM when quantum correlations are present.
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Chapter 1

Introduction

Entanglement is a fundamental resource in Quantum Theory. One of the first examples that
touched on its power is the famous EPR experiment. It can be simply described by two spatially
separated particles whose individual states are random, and yet once we measure one particle, the
state of the other one is precisely determined.

By performing measurements on an entangled quantum system, two separate observers can
obtain correlations that are nonlocal, in the sense that the joint probabilities P(a1, a2|x1, x2) for the
observers to get the outcomes a1 and a2 given the measurements x1 and x2 cannot be written as a
convex combination of marginal probability distributions. The nonlocal character of the correla-
tions implies that two parties who wish to simulate the experiment with only classical resources,
cannot do so without communication. Nonlocal correlations, although they cannot be used to sig-
nal from one observer to the other, can be exploited in various information processing tasks, such
as in communication complexity or for the distribution of a secret key between two parties..

The non-local correlations obtained through entanglement have subtle properties which can
be better understood by studying them in the context of interactive proofs / games. This is the
focus of this dissertation. In an interactive proof, a verifier, with limited computational power,
needs to decide whether a specific input problem has a certain property. To this end, it interacts
with two or more computationally unbounded provers (players) by asking them questions. The
provers cannot communicate during the protocol, but they can agree beforehand on a strategy
and/or share correlations in order to implement that strategy. It is the absence of communication
that allows the verifier to obtain any confidence in the answers of the provers, each of whom it
distrusts individually. It is in this sense that the provers ability to mislead the verifier is a subtle
measure of the non-local correlations achievable through shared entanglement.

Two interactive games of particular interest are the Magic Square and 3SAT. The Magic Square
is an example of a game in which two entangled provers can cheat perfectly, while classical provers
have a non-zero probability of being caught. 3SAT is the canonical interactive proof game in
complexity theory. Moreover, the Magic Square can be cast as a 3SAT game. This implies that,
in some instances, the 3SAT verifier can also be misled with probability 1 by entangled provers.
The focus of the first part of this dissertation is to modify those two protocols in such a way as
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to prohibit perfect cheating. We will accomplish this by adding a third prover to each game, and
drawing on the intuition brought by the monogamy of entanglement principle: if two systems are
strongly correlated, then they cannot be strongly correlated with a third system too.

We will show that by adding a third prover there are no cheating strategies. The main result
for the Magic Square is derived from a 3-party Tsirelson-like bound, which can be seen as a
generalization of the Bell inequality, and that limits the provers ability to mislead the verifier. For
the 3SAT game, we show that the shared state of any quantum strategy that wins with probability
1 can be written as a superposition of states that correspond to ±1 eigenvalues of the operators
applied by each party. Those eigenvalues correspond to a classical satisfying assignment, and
hence the formula is satisfiable.

In the second part of this dissertation, we consider a generalization of the entangled provers by
considering provers that can communicate, but the operators applied by different provers have to
commute. Any winning strategy that is entangled can be written by default as a commuting prover
strategy. Although these provers may be able to mislead the verifier more easily, we know that any
upper bound on the winning probability would apply to the entangled provers as well. Again, we
will study the Magic Square and 3SAT problems under this formalism.

By taking into account the commuting properties of the operators, we first derive a generalized
Tsirelson-like inequality for n parties. We also show that solving a general Magic Square problem
is equivalent to solving a symmetric version of a specific Magic Square instance, where provers
are queried in a predetermined manner. By combining these two facts, we obtain an upper bound
on the probability of wining in a Magic Square game with n players. Finally, we give an explicit
entangled strategy that achieves this bound.

Next we prove the limits of the strategies of commuting-operator provers for three-prover one-
round interactive proof systems for NP and NEXP. The proof system makes use of three-query
non-adaptive probabilistically checkable proof (PCP) systems with perfect completeness intro-
duced by Hastad. In the PCP formalism, instead of the verifier actively interacting with a number
of provers, it can look up certain bits from a (long, pre-written) proof in order to convince itself of
a certain fact. In our protocol, the verifier will perform, with equal probability, either a consistency
test (send the same question to all provers and check for consistent answers), or a simulation test
(behave in the same way as the PCP verifier).

We first give a simpler proof to the fact that if there is no satisfying assignment, then no perfect
cheating is possible. The result is based on the intuitive fact that if there is a strategy that achieves
probability 1, then all operators commute. Thus, they can be simultaneously diagonalized, and
the resulting eigenvalues correspond to a classical assignment. Next, we prove that the soundness
gap is at least inverse exponential in the size of the input. We start with the method introduced by
Kempe et all [25] but instead of using the non-disturbance property, we modify the proof to take
into account the fact that all the POVMs almost commute. The basic idea is that if the consistency
test is passed with high probability, then the provers cannot cheat too much on the simulation test.

In the final part of this dissertation, we contrast quantum entanglement and non-local correla-
tions in general. In particular, it is possible to write down sets of non-signaling correlations that
are more non-local than allowed by quantum mechanics [4].
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In this spirit, it is useful to consider non-local correlations that do not necessarily arise from
a set of measurements on a quantum state. Suppose that two observers have access to a black
box. When an observer i introduces an input xi , the box produces an output ai . The box is
characterized by the joint probability P(a1, a2|x1, x2) of obtaining the output pair (a1, a2) given the
input pair (x1, x2). Compatibility with special relativity requires that these joint probabilities satisfy
the no-signaling conditions∑

a2

P(a1, a2|x1, x2) =
∑

a2

P(a1, a2|x1, x
′

2) = P(a1|x1)

for all a1, x1, x2, x
′

2 , as well as a similar set of conditions obtained by summing over the first
observer’s outputs. This ensures that one observer cannot signal to the other via his choice of input
in the box. Apart from these constraints, the joint distribution can be arbitrary and, in particular,
nonlocal. The definition of nonlocal boxes generalizes to more parties in a straightforward way.

A central question is whether these stronger-than-quantum correlations exist or not in nature.
While we can’t answer directly, we will start by bringing arguments showing that the existence
of such correlations has profound implications for complexity theory. We will show that general
correlations are strong, and in some cases so strong that they can simulate communication among
provers in the context of interactive proofs. We start by looking at the most general non-local
correlations, and we prove two sets of results based either on specific instances of such correlations,
or on arbitrary classes.

Popescu-Rohlich boxes (PR) are one particular instance of a non-local box. In particular, for
two parties, on input bits x and y, the box outputs bits a and b respectively, such that a⊕b = x·y. We
show that two or more parties that share an unlimited number of Popescu-Rohlich non-local boxes
can simulate communication from the point of view of a verifier who only looks at the (bitwise)
XOR of the answers (i.e. the XOR of their answers can be the same as the XOR of the answers
given by any provers who are allowed to communicate). Hence from the point of view of the
verifier there is only one prover, which leads to several class collapses (the most notable being that
there is a class that classically is equal to NEXP but that collapses to AM under such correlations)

We then proceed by writing general correlations as linear equations involving the non-signaling
constraints. We can build a linear program that can be solved in exponential time and that approx-
imates the value of the game. Hence, we can prove that MIP ∈ EXP whenever the provers share
non-local correlations.

Finally, we show that we can build a “fake” three-party PR box using a quantum GHZ state
and a promise problem. This leads to the existence of an artificial class that classically is equal to
NEXP but that also collapses to AM under quantum correlations. However, although this class is
MIP-like, it requires the presence of a “trusted” prover (i.e. a prover that has a fixed behavior) in
order to satisfy the promise problem.
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Chapter 2

Quantum Entanglement

An intriguing open question in quantum complexity is whether quantum multi-prover systems
with prior entanglements have the same language recognition power as the classical multi-prover
systems. This appears to be a subtle question, and the standard way of utilizing the two provers
in the classical case turns out to allow, for some problems such as the Magic Square game, the
provers in the quantum case to cheat a classical verifier successfully with probability 1. In this
chapter we investigate the performance of a natural interactive quantum protocol for 3-SAT using
three quantum provers and a classical verifier. First, we show that for the Magic Square game, the
probability of quantum provers to cheat successfully is at most (2 +

√
3)/4. The key to the proof

is the establishment of a novel cubic polynomial Tsirelson-type inequality of independent inter-
est, which puts constraints on genuinely triple quantum correlations among 3 entangled parties.
Second, for any general unsatisfiable 3- SAT instance, we show that the quantum provers cannot
cheat successfully with probability 1. These results are encouraging, leaving open the possibility
that, with a better analysis of the success probability, the protocol may provide a valid quantum
3-prover system for any language in NEXP, just as in the classical case.

2.1 Introduction
Quantum multi-prover interactive systems were defined in Kobayashi and Matsumoto [27], where
it was shown that they recognize exactly the class of languages NEXP, if the quantum provers do
not share prior entanglements. It is an intriguing open question whether this remains true when the
provers are allowed to be in an entangled initial state.

A natural quantum 2-prover strategy would be to convert the problem into a 3-SAT instance,
pick a random clause, ask prover 1 to give the assignments of the literals in the clause, ask prover
2 to give the value of a random literal in the clause, and then check for consistency. Unfortunately,
there are examples for which two entangled quantum provers can cheat successfully with certainty
as discussed below.

Cleve, Hoyer, Toner and Watrous [11] initiated a study of the power of entangled quantum
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2-prover systems, using to their advantage the linkage between this topic and quantum games for
which there is a substantial literature. In particular it was pointed out that the well-known quantum
Magic Square game provides an easy example of a 3-SAT instance where 2 classical provers cannot
cheat successfully all the time, while 2 entangled quantum provers can. (Another such example
based on graph coloring was credited to Ambainis in [11].) The paper [11] established a wealth of
results regarding quantum 2-prover systems. But there does not seem to be any good candidate left
as potential entangled quantum 2-prover systems to recognize all languages in NEXP.

In this chapter we investigate the performance of a natural interactive quantum protocol for
3-SAT using three quantum provers and a classical verifier, where the provers share entangle-
ment. First, we show that for the Magic Square game, the probability of quantum provers to cheat
successfully is at most (2+

√
3)/4. The key to the proof is the establishment of a novel cubic poly-

nomial Tsirelson-type inequality, which may be of independent interest. Second, for any general
unsatisfiable 3-SAT instance, we show that the quantum provers cannot cheat successfully with
probability 1. These results are encouraging, leaving open the possibility that, with a better anal-
ysis of the success probability, the protocol may provide a valid quantum 3-prover system for any
language in NEXP, just as in the classical case.

Note that one can consider an analogous quantum 2-prover system for 2-SAT. The results in
[11] implies that, for unsatisfiable 2-SAT instances, the 2 quantum provers cannot cheat success-
fully with probability 1. Our second result above can be regarded as a non-trivial extension of
this.

We remark that the verifier is a classical machine in the quantum multi-prover model in [11],
in contrast to that in [27]. This does not affect our current discussion since we are focusing on the
analysis of specific protocols which happen to have classical verifiers.

Related work: Kempe and Vidick [23] give a 2-prover quantum interactive proof system for
GAP-3D-MATCHING with perfect completeness and soundness 1−2−O(n) , where the provers share
entanglement. In their system the verifier and the communication are also quantum. Independently
Ben Toner [36] and Kobayashi and Matsumoto [26] show that languages in NP have a 3-prover
quantum interactive proof system with completeness c and soundness s such that c− s = 1/poly(n).
Their protocols try to simulate the classical 2-prover proof system for NP by three quantum provers.
They are quite different from our protocol.

2.2 Main Result
As in [11], we phrase the results in the quantum game terminology. Its connection to quantum
3-prover system is clear.

Let V be a predicate on a finite set S ×T ×U ×A×B×C, and let π be a probability distribution
on S × T × U . The game G(V, π) is played as follows: A triplet of questions (s, t, u) ∈ S × T × U
is randomly chosen according to π, and s, t, u are sent to players 1, 2, 3, respectively. The players
then respond with answers a ∈ A, b ∈ B, c ∈ C. The players win if V(s, t, u, a, b, c) = 1, and lose
otherwise. The players are not allowed to communicate after the questions are received, but they
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may plan on strategies prior to receiving their questions. For convenience, we shall call the players
Alice, Bob, and Charlie.

The classical value of a game G = G(V, π) is the maximum probability with which the players
can win the game, using purely classical strategies. Denote it by ωc(G). Clearly, the optimal value
can be achieved using some deterministic strategy in which a, b, c are simply functions of s, t, u,
respectively. Thus,

ωc(G(V, π)) = max
a,b,c

∑
s,t,u

π(s, t, u)V(a(s), b(t), c(u))

A quantum strategy is specified by an initial tripartite state |ψ〉 shared by Alice, Bob and Char-
lie, a quantum measurement for Alice for each s ∈ S , a quantum measurement for Bob for each
t ∈ T , and a quantum measurement for Charlie for each u ∈ U . Each player receives an input,
performs the associated measurement on its portion of the state |ψ〉 , and sends back the measured
value. The quantum value of a game G = G(V, π) is the maximum probability with which the
players can win the game. Call this value ωq(G).

Starting with the original Bell inequalities, there are many known constraints on the amount of
correlation achievable in both the classical and the quantum realms. Notable among these are the
CHSH inequality [9] and Tsirelson inequality [38] [39].

Let Alice and Bob be two separate parties sharing a quantum state |ψ〉. Let A1, A2 be Alice’s
observables and Hermitian operators with eigenvalues 1,−1. Similarly, B1, B2 are Bob’s observ-
ables and are Hermitian operators with eigenvalues 1,−1. Let 〈A jBk〉 = 〈ψ|A j ⊗ Bk|ψ〉 . Tsirelson
inequality states

|〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉| ≤ 2
√

2

As comparison, the CHSH inequality states that if Alice and Bob are classical players, then the
correlation is considerably more stringent

|〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉| ≤ 2

These inequalities have been the subjects of much study in recent years, and have played an
important role in the analysis of ωc(G), ωq(G).

2.2.1 3-player Magic Square Game
Our first result relates to a special game which is called the Magic Square game [1] [29] [30] [11].
The basic idea is that there does not exist a 3 by 3 0 − 1 matrix such that each row has even parity
and each column has odd parity. In this game the verifier randomly picks a row or a column and
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asks Alice to fill in the values of the entries and checks the parity, then randomly picks one of the
three entries given to Alice and asks Bob to fill in the value, and then checks the consistency of
the answers given by Alice and Bob. It has been shown that for this game there exists a quantum
strategy for Alice and Bob to cheat perfectly, i.e. ωq(G) = 1 for this game.

Here we consider the magic square game with three players. There are three players: Alice,
Bob and Charlie. The verifier randomly picks a row or a column, and randomly asks Alice, Bob
and Charlie the value of a different entry in that row or column, and then checks the parity of the
answers. It is not hard to see that the classical value of this game is ωc(G) = 5/6. We will prove
ωq(G) ≤ (2 +

√
3)/4, i.e. Alice, Bob and Charlie cannot perfectly cheat even by using a quantum

strategy. The key point is the following novel Tsirelson-type inequality. It gives constraints on
the amount of genuine triple quantum correlations among three parties, instead of the usual two
parties, and should be of independent interest.

Alice, Bob, and Charlie are three separate parties sharing a quantum state |ψ〉 . Let A1, A2, A3

be Alice’s observables and are Hermitian operators with eigenvalues 1,−1. Simi- larly, B1, B2, B3

(C1,C2,C3) are Bob’s (Charlie’s) observables and are Hermitian operators with eigenvalues 1,−1.
Let 〈A jBkCl〉 = 〈ψ|A j ⊗ Bk ⊗Cl|ψ〉.

Theorem 2.2.1.

|A1B2C3 + A2B3C1 + A3B1C2 − A1B3C2 − A2B1C3 − A3B2C1| ≤ 3
√

3

where A j, B j,Ck are observables of Alice, Bob and Charlie.

Corollary 2.2.2. For 3-player magic square game G, ωq(G) ≤ (2 +
√

3)/4

In the literature, there have been suggestions of an even wider class of nonlocal but still non-
signalling strategies, starting with Popescu and Rohrlich [34](also see e.g., [4]). Let ωns(G), the
nonlocal value of a game G denote the maximum possible probability that players can win the game
with such strategies. Clearly, ωns(G) ≥ ωq(G) ≥ ωc(G). The quantity ωns(G) has the advantage of
having certain linear programming characterizations, and there are situations when ωq(G) can be
determined by showing ωns(G) = ωc(G). Our next result shows that this cannot be the case here.
In fact we show that there exists a nonlocal box such that Alice, Bob and Charlie can be correlated
perfectly:

Theorem 2.2.3. For 3-player magic square game G, ωns(G) = 1.

2.2.2 3-SAT Game
Our second result concerns a general 3-player binary game, we call it 3-SAT game: Alice, Bob,
and Charlie would like to convince the verifier that a 3-CNF boolean formula f is satisfiable. The
verifier first randomly picks a clause, and then with 1/2 probability randomly picks a variable in
that clause and asks Alice, Bob and Charlie the value of this variable, then checks the consistency
of the answers, or with 1/2 probability randomly asks Alice, Bob and Charlie each one a different
variable in that clause, then checks the satisfiability of the clause. We have the following theorem:
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Theorem 2.2.4. Let f be a 3-CNF boolean formula and G be the corresponding 3-SAT game, then
ωq(G) = 1 iff ωc(G) = 1, i.e. f is satisfiable.

Remark: Let n be the number of variables in f , then actually we can bound ωq(G) < 1 −
exp(−2cn), if assume ωc(G) < 1, i.e., NP ⊆ MIP∗log n(3, 1, 1, 1 − exp(−2cn)).

2.3 Proof of Theorem 3.2.1
Let

A =

 0 A3 −A2

−A3 0 A1

A2 −A1 0

 , F = A3A1A2 − A2A1A3

The structure of A’s eigenvalues and corresponding eigenvectors is as follows:
Since F is skew-hermitian, we can write F = i

∑
j η j|u j〉〈u j|, iη j is an eigenvalue (η j ∈ R) and

|u j is the corresponding eigenvector, {|u j : j = 1, ..., n} form an orthonormal basis of the space.
For each j:
(1) if |η j| < 2, define λ j,1, λ j,2, λ j,3 as the three roots of equation z(3− z2) = η j (this equation has

three real roots when −2 ≤ η j ≤ 2), and three 3n-dimension vectors

v j,l =
1
√

3


|u j〉

1
1−λ2

j,l
(A1A2 − iλ j,lA3)|u j〉

1
1−λ2

j,l
(A1A3 + iλ j,lA2)|u j〉

 , l = 1, 2, 3

(2) If η j = 2, define λ j,1 = −2, λ j,2 = 1, λ j,3 = 1, and

v j,1 =
1
√

3

 |u j〉

−iA3|u j〉

iA2|u j〉

 , v j,2 =
1
√

3

 |u j〉

ei π6 A3|u j〉

e−i π6 |u j〉

 , v j,2 =
1
√

3


|u j〉

ei 5π
6 A3|u j〉

e−i 5π
6 A2|u j〉


(3) If η j = −2, define λ j,1 = 2, λ j,2 = −1, λ j,3 = −1, and

v j,1 =
1
√

3

 |u j〉

iA3|u j〉

−iA2|u j〉

 , v j,2 =
1
√

3

 |u j〉

e−i π6 A3|u j〉

ei π6 |u j〉

 , v j,2 =
1
√

3


|u j〉

e−i 5π
6 A3|u j〉

ei 5π
6 A2|u j〉


Then iλ j,l are eigenvalues of A and |v j,l〉 are corresponding eigenvectors ( j = 1, ..., n, l = 1, 2, 3),

and {|v j,1〉, |v j,2〉, |v j,3〉 : j = 1, ..., n} form an orthonormal basis of 3n-dimension space,
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A = i
∑

j

λ j,1|v j,1〉〈v j,1| + λ j,2|v j,2〉〈v j,2| + λ j,3|v j,3〉〈v j,3|

Lemma 2.3.1. Suppose α1, α2, α3 and β1, β2, β3 are complex number, α1 + α2 + α3 = β1 + β2 + β3,
η ∈ R, |η| ≤ 2, λ1, λ2, λ3 are the three roots of equation z(3 − z2) = η. Then

|<(iλ1α1β1 + iλ2α2β2 + iλ3α3β3)| ≤
√

3
√

(|α1|
2 + |α2|

2 + |α3|
2)(|β1|

2 + |β2|
2 + |β3|

2)

Remark: The argument is still true if we replace the condition α1 + α2 + α3 = β1 + β2 + β3 by
α1 + α2 + α3 = −(β1 + β2 + β3). We will use both cases in the proof of the main theorem.

Proof. Since −2 ≤ η ≤ 2, we can assume η = 2 sin 3θ. From z(3 − z2) = η we know z ∈ R,
and |z| ≤ 2. Let’s write z = 2 sin γ, from z(3 − z2) = η we have 6 sin γ − 8 sin3 γ = 2 sin 3θ, i.e.
sin 3γ = sin 3θ, thus the three roots are:

z1 = 2 sin θ, z2 = 2 sin(θ +
2π
3

), z3 = 2 sin(θ −
2π
3

)

Therefore, i(λ1α1β1+λ2α2β2+λ3α3β3) = 2i sin θα1β1+2i sin(θ+ 2π
3 )α2β2+2i sin(θ− 2π

3 )α3β3 =

(eiθ − e−iθ)α1β1 + (ei(θ+ 2π
3 ) − e−i(θ+ 2π

3 ))α2β2 + (ei(θ− 2π
3 ) − ei(θ− 2π

3 ))α3β3

Let s = [s1, s2, s3]T , t = [t1, t2, t3]T , where

s1 =
1
√

3
(α1 + α2 + α3), s2 =

1
√

3
(α1 + ei 2π

3 α2 + e−i 2π
3 α3), s3 =

1
√

3
(α1 + e−i 2π

3 α2 + ei 2π
3 α3)

s1 =
1
√

3
(β1 + β2 + β3), s2 =

1
√

3
(β1 + ei 2π

3 β2 + e−i 2π
3 β3), s3 =

1
√

3
(β1 + e−i 2π

3 β2 + ei 2π
3 β3)

We can check

||s||2 = |s1|2 + |s2|2 + |s3|2 = |α1|
2 + |α2|

2 + |α3|
2

||t||2 = |t1|2 + |t2|2 + |t3|2 = |β1|
2 + |β2|

2 + |β3|
2,

and

i(λ1α1β1 + λ2α2β2 + λ3α3β3) =
[
s1, s2, s3

]  0 eiθ −e−iθ

−e−iθ 0 eiθ

eiθ −e−iθ 0


 t1

t2

t2
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Since α1 + α2 + α3 = β1 + β2 + β3 , so s1 = t1 , which implies s1t1 ∈ R,<(is1t1) = 0. Thus:

<(iλ1α1β1 + iλ2α2β2 + iλ3α3β3) = <(iλ1α1β1 + iλ2α2β2 + iλ3α3β3) + sin 3θ · (is1t1)

<

[s1, s2, s3
]  0 eiθ −e−iθ

−e−iθ 0 eiθ

eiθ −e−iθ 0


 t1

t2

t2

 + sin 3θ · (is1t1) =



<

[s1, s2, s3
]  i sin 3θ eiθ −e−iθ

−e−iθ 0 eiθ

eiθ −e−iθ 0


 t1

t2

t2




Therefore,

|<(iλ1α1β1 + iλ2α2β2 + iλ3α3β3)| =

∣∣∣∣∣∣∣∣<
[s1, s2, s3]

 i sin 3θ eiθ −e−iθ

−e−iθ 0 eiθ

eiθ −e−iθ 0


 t1

t2

t2



∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣s†
 i sin 3θ eiθ −e−iθ

−e−iθ 0 eiθ

eiθ −e−iθ 0

 t

∣∣∣∣∣∣∣∣
Let Q =

 i sin 3θ eiθ −e−iθ

−e−iθ 0 eiθ

eiθ −e−iθ 0

, then Q is skew-hermitian and the three eigenvalues of Q are

i, i
√

3,−i
√

3. Therefore,

|<(iλ1α1β1 + iλ2α2β2 + iλ3α3β3)| ≤ |s†Qt| ≤
√

3||s|| · ||t|| =
√

3
√

(|α1|
2 + |α2|

2 + |α3|
2)(|β1|

2 + |β2|
2 + |β3|

2)

�

Proof of main theorem Let Ã j = A j ⊗ I ⊗ I, B̃k = I ⊗ Bk ⊗ I, C̃l = I ⊗ I ⊗ Cl . To prove the
theorem, it is equivalent to prove

〈ψ|(Ã1B̃2C̃3 + Ã2B̃3C̃1 + Ã3B̃1C̃2 − Ã1B̃3C̃2 − Ã2B̃1C̃3 − Ã3B̃2C̃1)|ψ〉 ≤ 3
√

3.

Let B̃ j|ψ〉 = x j and C̃k|ψ〉 = yk, here x j, yk ∈ HA ⊗ HB ⊗ HC, j, k = 1, 2, 3. Then the above
equation is equivalent to
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[x†1, x
†

2, x
†

3]


0 Ã3 −Ã2

−Ã3 0 Ã1

Ã2 −Ã1 0


 y1

y2

y3

 ≤ 3
√

3

Write x =

 x1

x2

x3

, y =

 y1

y2

y3

, and Ã =


0 Ã3 −Ã2

−Ã3 0 Ã1

Ã2 −Ã1 0

. Since Ã j = A j ⊗ I ⊗ I, so

Ã = A ⊗ I ⊗ I, where A =

 0 A3 −A2

−A3 0 A1

A2 −A1 0

 is the matrix in the main lemma.

From the main lemma:

A = i
∑

j

(λ j,1|v j,1〉〈v j,1| + λ j,2|v j,2〉〈v j,2| + λ j,3|v j,3〉〈v j,3|)

where λ j,1, λ j,2, λ j,3 and |v j,1〉, |v j,2〉, |v j,3〉 are defined in the main lemma.
Pick an orthonormal basis {|wk〉} of space HB ⊗ HC . Then

Ã = A ⊗ I ⊗ I = i
∑

j,k

(λ j,1|v j,1〉〈v j,1| ⊗ |wk〉〈wk| + λ j,2|v j,2〉〈v j,2| ⊗ |wk〉〈wk| + λ j,3|v j,3〉〈v j,3| ⊗ |wk〉〈wk|)

and {|v j,1〉 ⊗ |wk〉, |v j,2〉 ⊗ |wk〉, |v j,3〉 ⊗ |wk〉} forms an orthonormal basis of space HA ⊗ HB ⊗ HC .
Suppose  x1

x2

x3

 =∑
j,k

(α j,k,1|v j,1〉 ⊗ |wk〉 + α j,k,2|v j,2〉 ⊗ |wk〉 + α j,k,3|v j,3〉 ⊗ |wk〉)

and

 y1

y2

y3

 =∑
j,k

(β j,k,1|v j,1〉 ⊗ |wk〉 + β j,k,2|v j,2〉 ⊗ |wk〉 + β j,k,3|v j,3〉 ⊗ |wk〉

Then

x†Ãy = i
∑

j,k

(λ j,1α j,k,1β j,k,1 + λ j,2α j,k,2β j,k,2 + λ j,3α j,k,3β j,k,3)
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The goal is to bound this value by 3
√

3. Since x†Ãy ∈ R, we only need to bound<(x†Ãy)
We know that

∑
j,k

(|α j,k,1|
2 + |α j,k,2|

2 + |α j,k,3|
2) = x†x = 3.

Similarly,

∑
j,k

(|β j,k,1|
2 + |β j,k,2|

2 + |β j,k,3|
2) = y†y = 3

From the construction of |v j,1〉, |v j,2〉 and |v j,3〉 in the main lemma, we see that the first n-
dimensions of them are all |u j〉. We get:

x1 =
∑

j,k

(α j,k,1|u j〉 ⊗ |wk〉 + α j,k,2|u j〉 ⊗ |wk〉 + α j,k,3|u j〉 ⊗ |wk〉)

=
∑

j,k

(α j,k,1 + α j,k,2 + α j,k,3)|u j〉 ⊗ |wk〉

From definition x1 = B̃1|ψ〉 = (I ⊗ B1 ⊗ I)|ψ〉 , so

(I ⊗ B1 ⊗ I)|ψ〉 =
∑

j,k

(α j,k,1 + α j,k,2 + α j,k,3)|u j〉 ⊗ |wk〉

which implies

|ψ〉 = (I ⊗ B1 ⊗ I)
∑

j,k

(α j,k,1 + α j,k,2 + α j,k,3)|u j〉 ⊗ |wk〉

=
∑

j,k

(α j,k,1 + α j,k,2 + α j,k,3)|u j〉 ⊗ [(B1 ⊗ I)|wk〉]

Similarly, from y1 we can get

|ψ =
∑

j,k

(β j,k,1 + β j,k,2 + β j,k,3)|u j〉 ⊗ [(I ⊗C1)|wk〉]

Therefore,



CHAPTER 2. QUANTUM ENTANGLEMENT 13

∑
j,k

(α j,k,1 + α j,k,2 + α j,k,3)|u j〉 ⊗ [(B1 ⊗ I)|wk〉] =
∑

j,k

(β j,k,1 + β j,k,2 + β j,k,3)|u j〉 ⊗ [(I ⊗C1)|wk〉].

Since |u j〉 are an orthonormal basis, so for each j, it must be

∑
k

(α j,k,1 + α j,k,2 + α j,k,3)(B1 ⊗ I)|wk〉 =
∑

k

(β j,k,1 + β j,k,2 + β j,k,3)(I ⊗C1)|wk〉

or we can write

∑
k

(α j,k,1 + α j,k,2 + α j,k,3)(B1 ⊗C1)|wk〉 =
∑

k

(β j,k,1 + β j,k,2 + β j,k,3)|wk〉

Recall that we pick the orthonormal basis {|wk〉} of HB ⊗ HC arbitrarily, so we can assume |wk〉

are eigenvectors of B1 ⊗ C1. Notice that B1 ⊗ C1 only have eigenvalues {1,−1}, let {|wk〉 : k ∈ K+}
be the set of eigenvectors corresponding to +1 and {|wk〉 : k ∈ K−} be the set of eigenvectors
corresponding to -1. Then:

∑
k∈K+

(α j,k,1 + α j,k,2 + α j,k,3)|wk〉 −
∑
k∈K−

(α j,k,1 + α j,k,2 + α j,k,3)|wk〉 =
∑

k

(β j,k,1 + β j,k,2 + β j,k,3)|wk〉

Thus,

α j,k,1 + α j,k,2 + α j,k,3 = β j,k,1 + β j,k,2 + β j,k,3

if k ∈ K+, and:

α j,k,1 + α j,k,2 + α j,k,3 = −(β j,k,1 + β j,k,2 + β j,k,3)

if k ∈ K−.
Now we can use the second lemma: Since λ j,1, λ j,2, λ j,3 are the roots of z(3 − z2) = η j:

|<(iλ j,1α j,k,1β j,k,1 + iλ j,2α j,k,2β j,k,2 + iλ j,3α j,k,3β j,k,3)|

≤
√

3
√
|α j,k,1|

2 + |α j,k,2|
2 + |α j,k,3|

2 ·

√
|β j,k,1|

2 + |β j,k,2|
2 + |β j,k,3|

2

We know x†Ay is a real number, so x†Ãy = <(x†Ãy). It follows:
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|x†Ãy| = |<(x†Ãy)| =

∣∣∣∣∣∣∣<
i ∑

j,k

(λ j,1α j,k,1β j,k,1 + λ j,2α j,k,2β j,k,2 + λ j,3α j,k,3β j,k,3)


∣∣∣∣∣∣∣

≤
∑

j,k

|<(iλ j,1α j,k,1β j,k,1 + iλ j,2α j,k,2β j,k,2 + iλ j,3α j,k,3β j,k,3)|

≤
∑

j,k

√
3
√
|α j,k,1|

2 + |α j,k,2|
2 + |α j,k,3|

2 ·

√
|β j,k,1|

2 + |β j,k,2|
2 + |β j,k,3|

2

≤
√

3
√∑

j,k

(|α j,k,1|
2 + |α j,k,2|

2 + |α j,k,3|
2) ·

√∑
j,k

(|β j,k,1|
2 + |β j,k,2|

2 + |β j,k,3|
2)

= 3
√

3

Proof of Corollary We label the entries of the magic square by q j,k( j, k = 1, 2, 3).

ωq(G) =
1
6

3∑
j=1

1
6

∑
σ∈S 3

∑
a⊕b⊕c=0

Pr(abc|q j,σ(1)q j,σ(2)q j,σ(3))

+
1
6

3∑
j=1

1
6

∑
σ∈S 3

∑
a⊕b⊕c=0

Pr(abc|qσ(1),kqσ(2),kqσ(3),k


Here we use the same notations as in [37], Pr(abc|q1q2q3) is the probability that if Alice, Bob

and Charlie receive queries q1, q2, q3 and answer a, b, c respectively. The first term is the prob-
ability that the verifier randomly picks a row j and ask Alice, Bob and Charlie different entries
q j,σ(1), q j,σ(2), and q j,σ(3) respectively. The second term is the probability that the verifier randomly
picks a column k and asks different entries. We can replace the probability by |ψ〉 and the observ-
ables. It is easy to check that:

∑
a⊕b⊕c=0

Pr(abc|q j,σ(1)q j,σ(2)q j,σ(3)) =
1
2

(1 + 〈ψ|A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3)|ψ〉)

and

∑
a⊕b⊕c=0

Pr(abc|qσ(1),kqσ(2),kqσ(3),k) =
1
2

(1 − 〈ψ|Aσ(1),k ⊗ Bσ(2),k ⊗Cσ(3),k|ψ〉)

so
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ωq(G) =
1
2
+

1
72

3∑
j=1

∑
σ∈S 3

〈ψ|A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3)|ψ〉


−

1
72

3∑
j=1

∑
σ∈S 3

〈ψ|Aσ(1),k ⊗ Bσ(2),k ⊗Cσ(3),k|ψ〉


To prove that ωq(G) ≤ 1

4 (2 +
√

3) we only need to show

3∑
j=1

∑
σ∈S 3

(
〈ψ|A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3)|ψ〉 − 〈ψ|Aσ(1), j ⊗ Bσ(2), j ⊗Cσ(3), j|ψ〉

)
≤ 18

√
3

Or

3∑
j=1

∑
σ∈S 3

(
〈A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3) − Aσ(1), j ⊗ Bσ(2), j ⊗Cσ(3), j〉

)
≤ 18

√
3

Denote the the left side of the above equation by L. We will compute L in a different order,

L =
∑
σ∈S 3

3∑
j=1

(
〈A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3) − Aσ(1), j ⊗ Bσ(2), j ⊗Cσ(3), j〉

)
≤

∑
σ∈S 3

∣∣∣∣∣∣∣
3∑

j=1

〈A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3) − Aσ(1), j ⊗ Bσ(2), j ⊗Cσ(3), j〉

∣∣∣∣∣∣∣
By the main theorem we know that for any σ ∈ S 3 ,

∣∣∣∣∣∣∣
3∑

j=1

〈A j,σ(1) ⊗ B j,σ(2) ⊗C j,σ(3) − Aσ(1), j ⊗ Bσ(2), j ⊗Cσ(3), j〉

∣∣∣∣∣∣∣ ≤ 3
√

3

thus L ≤ 6 × 3
√

3 = 18
√

3.

2.4 Proof of Theorem 2.2.3
We can represent ωns(G) as the maximum value of a linear programming problem. The condi-
tional probabilities are the variables and the no-signaling conditions/normalization properties give
constraints on the linear program.
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First we need to decide how many variables we have in this linear program. There are several
symmetries in Magic Square game we can use:

1. Symmetries between Alice, Bob and Charlie: if we permute the roles of Alice, Bob and
Charlie, and also permute their answers, then the probability remains the same, i.e.

Pr(A1A2A3|q j1,k1 , q j2,k2 , q j3,k3) = Pr(aσ(1)aσ(2)aσ(3)|q jσ(1),kσ(1) , q jσ(2),kσ(2) , q jσ(3),kσ(3))(∀σ ∈ S 3)

2. Symmetries between the three rows: The probability are the same if we permutate the rows
in the query part, i.e.

Pr(a, b, c|q j1,k1 , q j2,k2 , q j3,k3) = Pr(a, b, c|qσ( j1),k1 , qσ( j2),k2 , qσ( j3),k3)(∀σ ∈ S 3)

3. Symmetries between the three columns:

Pr(a, b, c|q j1,k1 , q j2,k2 , q j3,k3) = Pr(a, b, c|q j1,σ(k1), q j2,σ(k2), q j3,σ(k3))(∀σ ∈ S 3)

4. Skew symmetries between row and columns:

Pr(a1a2a3|q j1,k1q j2,k2q j3,k3) = Pr(a1a2a3|qk1, j1qk2, j2qk3, j3)

Using 1 through 4 to reduce the number of independent variables, we have finally the following
variables:

Pr(000|q1,1q1,1q1,1) = x0, Pr(001|q1,1q1,1q1,1) = x1

Pr(000|q1,1q1,1q1,2) = y0, Pr(001|q1,1q1,1q2,1) = y1, Pr(010|q1,1q1,1q1,2) = y2, Pr(011|q1,1q1,1q1,2) = y3

Pr(000|q1,1q1,2q1,3) = z0, Pr(001|q1,1q1,2q1,3) = z1, Pr(011|q1,1q1,2q1,3) = z3, Pr(111|q1,1q1,2q1,3) = z7

Pr(000|q1,1q1,1q2,2) = u0, Pr(001|q1,1q1,1q2,2) = u1, Pr(010|q1,1q1,1q2,2) = u2

Pr(000|q1,1q1,2q2,1) = v0, Pr(001|q1,1q1,2q2,1) = v1, Pr(010|q1,1q1,2q2,1) = v2, Pr(011|q1,1q1,2q2,1) = v3

Pr(000|q1,1q1,2q2,3) = w0, Pr(001|q1,1q1,2q2,3) = w1, Pr(010|q1,1q1,2q2,3) = w2

Pr(011|q1,1q1,2q2,3) = w3, Pr(110|q1,1q1,2q2,3) = w6, Pr(111|q1,1q1,2q2,3) = w7
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Pr(000|q1,1q2,2q3,3) = r0, Pr(001|q1,1q2,2q3,3) = r1, Pr(010|q1,1q2,2q3,3) = r2, Pr(011|q1,1q2,2q3,3) = r3

The objective function is

1
6
· 3[Pr(000|q1,1q1,2q1,3) + 3Pr(011|q1,1q1,2q1,3)] +

1
6
· 3[Pr(111|q1,1q2,1q3,1) + 3Pr(001|q1,1q2,1q3,1)]

= Pr(000|q1,1q1,2q1,3) + 3Pr(011|q1,1q1,2q1,3) = z0 + 3z3

The linear programming is easy to solve: when x0 = 0.5, x1 = 0, y0 = y1 = y6 = y7 = 0.25, y2 =

y3 = 0, z0 = z3 = 0.25, z1 = z7 = 0, u0 = u1 = 0.25, u2 = 0, v0 = v1 = v2 = v3 = 0.125,w0 = w3 =

w6 = 0.25,w1 = w2 = w7 = 0, and r0 = r1 = 0.125, it has optimal value ωns(G) = 1.

2.5 Proof of Theorem 2.2.4
We define some notations first: HA,HB and HC are the subspace of Alice, Bob and Charlie. A j, B j

and C j are the observables corresponding to Alice, Bob and Charlie’s measurement if they receive
a query x j, j = 1, ..., n. For any s1, s2, s3 ∈ {−1,+1}, define a subspace

H s1 s2 s3
A, jkl = {|φ〉 ∈ HA : A j|φ〉 = s1|φ〉, Ak|φ〉 = s2|φ〉, Al|φ〉 = s3|φ〉}

Similarly we can define H s1 s2 s3
B, jkl and H s1 s2 s3

B, jkl . We will write H+1+1+1
A, jkl as H+++A, jkl for short, similarly

for other subspace. It is clear that if (s1s2s3) , (s′1s′2s′3), then H s1 s2 s3
A, jkl and H

s′1 s′2 s′3
A, jkl are orthogonal for

any j, k, l.
We now proceed to prove the main theorem. If ωc(G) = 1, it is clear that ωq(G) = 1. So we

only need to give proof for the other direction.
We first consider the case when f only has one clause. Without loss of generality we can

assume f = x1 ∨ x2 ∨ x3 , then

ωq( f ) =
1
6

3∑
j=1

(Pr(000| j j j) + Pr(111| j j j)) +
1
12

∑
{ j,k,l}={1,2,3}

(1 − Pr(000| jkl))

The first term above is the probability when Alice, Bob and Charlie were asked the same query
and answer the same value, the second term is that they were asked different variables.

We can rewrite Pr(abc|q1q2q3) by using |ψ〉 and the observables A j, Bk,Cl ,
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ωq( f ) =
1
6

3∑
j=1

(
〈ψ|

I + A j

2
⊗

I + B j

2
⊗

I +C j

2
|ψ〉 + 〈ψ|

I − A j

2
⊗

I − B j

2
⊗

I −C j

2
|ψ〉

)
+

1
12

∑
{ j,k,l}={1,2,3}

(
1 − 〈ψ|

I + A j

2
⊗

I + Bk

2
⊗

I +Cl

2
|ψ〉

)

=
1
24

3∑
j=1

(1 + 〈ψ|A j ⊗ B j ⊗ I|ψ〉 + 〈ψ|A j ⊗ I ⊗C j|ψ〉 + 〈ψ|I ⊗ B j ⊗C j|ψ〉)

+
1
24

∑
{ j,k,l}={1,2,3}

(
1 − 〈ψ|

I + A j

2
⊗

I + Bk

2
⊗

I +Cl

2
|ψ〉

)
So, if ωq( f ) = 1 the the following conditions apply: for all j, 〈ψ|A j ⊗ B j ⊗ I|ψ〉 = 1, 〈ψ|A j ⊗ I ⊗

C j|ψ〉 = 1, 〈ψ|I ⊗ B j ⊗C j|ψ〉 = 1, and for all { j, k, l} = {1, 2, 3}, 〈ψ| 1+A j

2 ⊗
1+Bk

2 ⊗
1+Cl

2 |ψ〉 = 0.

Lemma 2.5.1. For all j, 〈ψ|A j ⊗ B j ⊗ I|ψ〉 = 1, 〈ψ|A j ⊗ I ⊗C j|ψ〉 = 1, 〈ψ|I ⊗ B j ⊗C j|ψ〉 = 1, if and
only if |ψ〉 =

∑
s1 s2 s3∈{+,−} |ψs1 s2 s3〉, where |ψs1 s2 s3〉 ∈ H s1 s2 s3

A, j1 j2 j3
⊗ H s1 s2 s3

B, j1 j2 j3
⊗ H s1 s2 s3

C, j1 j2 j3

Proof. To simplify notations, we assume { j1, j2, j3} = {1, 2, 3}. One directiondirection is easy
to check. We only focus on the other direction. Since HB = H+B,1 ⊕ H−B,1,HC = H+C,2 ⊕ H−C,2
, so HB ⊗ HC = (HB,1 ⊗ HC,2) ⊕ (HB,1 ⊗ HC,2) ⊕ (HB,1 ⊗ HC,2) ⊕ (HB,1 ⊗ HC,2). Suppose |ψ〉 =
|ψ++〉 + |ψ+−〉 + |ψ−+〉 + |ψ−−〉 is the orthogonal decomposition of |ψ〉 , where

|ψ++〉 ∈ HA ⊗ H+B,1 ⊗ H+C,2
|ψ+−〉 ∈ HA ⊗ H+B,1 ⊗ H−C,2
|ψ−+〉 ∈ HA ⊗ H−B,1 ⊗ H+C,2
|ψ−−〉 ∈ HA ⊗ H−B,1 ⊗ H−C,2

Since 〈ψ|A1 ⊗ B1 ⊗ I|ψ〉 = 1, it follows that Ã1|ψ〉 = B̃1|ψ〉. Here the notation Ã1, B̃1 are similar
as in the previous sections. Thus

Ã1|ψ++〉 + Ã1|ψ+−〉 + Ã1|ψ−+〉 + Ã1|ψ−−〉 = |ψ++〉 + |ψ+−〉 − |ψ−+〉 − |ψ−−〉

We know that HA ⊗ H+B,1 ⊗ H+C,2, HA ⊗ H+B,1 ⊗ H−C,2, HA ⊗ H−B,1 ⊗ H+C,2, HA ⊗ H−B,1 ⊗ H−C,2 is an
orthogonal decomposition of the whole space, and operator Ã1 will not apply to space HB and HC,
so the only way is that:

Ã1|ψ++〉 = |ψ++〉, Ã1|ψ+−〉 = |ψ+−〉, Ã1|ψ−+〉 = −|ψ−+〉, Ã1|ψ−−〉 = −|ψ−−〉
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Therefore,

|ψ++〉 ∈ H+A,1 ⊗ H+B,1 ⊗ H+C,2
|ψ+−〉 ∈ H+A,1 ⊗ H+B,1 ⊗ H−C,2
|ψ−+〉 ∈ H−A,1 ⊗ H−B,1 ⊗ H+C,2
|ψ−−〉 ∈ H−A,1 ⊗ H−B,1 ⊗ H−C,2

Similarly, from 〈ψ|A2 ⊗ I ⊗C2|ψ〉 = 1, we can get:

Ã2|ψ++〉 = |ψ++〉, Ã2|ψ+−〉 = −|ψ+−〉, Ã2|ψ−+〉 = |ψ−+〉, Ã2|ψ−−〉 = −|ψ−−〉

Thus,

|ψ++〉 ∈ H+A,2 ⊗ H+B,1 ⊗ H+C,2
|ψ+−〉 ∈ H−A,2 ⊗ H+B,1 ⊗ H−C,2
|ψ−+〉 ∈ H+A,2 ⊗ H−B,1 ⊗ H+C,2
|ψ−−〉 ∈ H−A,2 ⊗ H−B,1 ⊗ H−C,2

Combining the last two sets of equations, we have:

|ψ++〉 ∈ H++A,12 ⊗ H+B,1 ⊗ H+C,2
|ψ+−〉 ∈ H+−A,12 ⊗ H+B,1 ⊗ H−C,2
|ψ−+〉 ∈ H−+A,12 ⊗ H−B,1 ⊗ H+C,2
|ψ−−〉 ∈ H−−A,12 ⊗ H−B,1 ⊗ H−C,2

If we further consider 〈ψ|A1 ⊗ I ⊗C1|ψ〉 = 1 and 〈ψ|A2 ⊗ B2 ⊗ I|ψ〉 = 1, we can prove that

|ψ++〉 ∈ H++A,12 ⊗ H++B,12 ⊗ H++C,12

|ψ+−〉 ∈ H+−A,12 ⊗ H+−B,12 ⊗ H+−C,12

|ψ−+〉 ∈ H−+A,12 ⊗ H−+B,12 ⊗ H−+C,12

|ψ−−〉 ∈ H−−A,12 ⊗ H−−B,12 ⊗ H−−C,12

Now we consider A3, B3 and C3 , from 〈ψ|A3 ⊗ B3 ⊗ I|ψ〉 = 1 we have:
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Ã3|ψ++〉 + Ã3|ψ+−〉 + Ã3|ψ−+〉 + Ã3|ψ−−〉 = B̃3|ψ++〉 + B̃3|ψ+−〉 + B̃3|ψ−+〉 + B̃3|ψ−−〉

Consider the above equation in space HC. Operators A3, B3 do not apply in HC , so Ã3|ψs1 s2〉,
B̃3|ψs1 s2〉 ∈ HA ⊗ HB ⊗ H s1 s2

C,12 for any s1, s2 ∈ {−,+}. But H++C,12,H
+−
C,12,H

−+
C,12,H

−−
C,12 are orthogonal

subspaces of HC, so

Ã3|ψ++〉 = B̃3|ψ++〉, Ã3|ψ+−〉 = B̃3|ψ+−〉, Ã3|ψ−+〉 = B̃3|ψ−+〉, Ã3|ψ−−〉 = B̃3|ψ−−〉

Similarly,

Ã3|ψ++〉 = C̃3|ψ++〉, Ã3|ψ+−〉 = C̃3|ψ+−〉, Ã3|ψ−+〉 = C̃3|ψ−+〉, Ã3|ψ−−〉 = C̃3|ψ−−〉

Therefore,

Ã j|ψs1 s2 = B̃ j|ψs1 s2 = C̃ j|ψs1 s2 ,∀s1, s2 ∈ {−,+}, j = 1, 2, 3

We know that |ψ++〉 ∈ H+A,1 ⊗ H+B,2 ⊗ I, and HC = H+C,3 ⊕ H−C,3 , so we can decompose |ψ++〉 on
it: |ψ++〉 = |ψ+++〉 + |ψ++−〉 , where

|ψ+++〉 ∈ H+A,1 ⊗ H+B,2 ⊗ H+C,3, |ψ++−〉 ∈ H+A,1 ⊗ H+B,2 ⊗ H−C,3

It follwos that:

|ψ+++〉 ∈ H+++A,123 ⊗ H+++B,123 ⊗ H+++C,123, |ψ++−〉 ∈ H++−A,123 ⊗ H++−B,123 ⊗ H++−C,123

Similarly we can decompose |ψ+−〉, |ψ−+〉, |ψ−−〉 and prove the corresponding properties.
�

From the previous lemma we know that

|ψ〉 ∈
⊕

s1 s2 s3∈{+,−}

H s1 s2 s3
A,123 ⊗ H s1 s2 s3

B,123 ⊗ H s1 s2 s3
C,123

and also

〈ψ|
1 + A1

2
⊗

1 + B2

2
⊗

1 +C3

2
|ψ〉 = 0
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Setting |ψ〉 =
∑

s1 s2 s3
|ψs1 s2 s3〉 in this equation, and using the fact that

∑
s1 s2 s3
|||ψs1 s2 s3〉||

2 =

〈ψ|ψ〉 = 1 to simplify it, we get:

|||ψ+++〉|| = 0, |ψ+++〉 = 0

Thus |ψ〉 is the superposition of a classical assignment, i.e.

|ψ〉 ∈
⊕

s1 s2 s3∈{+,−},(s2 s2 s3),(+++)

H s1 s2 s3
A,123 ⊗ H s1 s2 s3

B,123 ⊗ H s1 s2 s3
C,123

Suppose f = f1 ∧ f2 ∧ ... ∧ fm, fi = X ji ∨ Xki ∨ Xli are clauses (i = 1, ...,m), literal Xh = xh or
Xh = xh, (h = 1, ..., n). Then

ωq( f ) =
1

6m

m∑
i=1

[(Pr(000| ji ji ji) + Pr(111| ji ji ji))+

(Pr(000|kikiki) + Pr(111|kikiki)) + (Pr(000|lilili) + Pr(111|lilili))]

+
1

12m

m∑
i=1

 ∑
{ j,k,l}={ ji,ki,li}

(
1 − Pr(X jXkXl = 000| jkl)

)
ωq( f ) = 1 implies that for i = 1...m and { j, k, l} = { ji, ki, li}:

Pr(000| ji ji ji) + Pr(111| ji ji ji) = 1
Pr(000|kikiki) + Pr(111|kikiki) = 1

Pr(000|lilili) + Pr(111|lilili) = 1
Pr(X jXkXl = 000| jkl) = 0

Similarly we can rewrite the probability using |ψ〉 and the observables; we have for all i = 1...m:

1 + 〈ψ|A ji ⊗ B ji ⊗ I|ψ〉 + 〈ψ|A ji ⊗ I ⊗C ji |ψ〉 + 〈ψ|I ⊗ B ji ⊗C ji |ψ〉 = 4
1 + 〈ψ|Aki ⊗ Bki ⊗ I|ψ〉 + 〈ψ|Aki ⊗ I ⊗Cki |ψ〉 + 〈ψ|I ⊗ Bki ⊗Cki |ψ〉 = 4

1 + 〈ψ|Ali ⊗ Bli ⊗ I|ψ〉 + 〈ψ|Ali ⊗ I ⊗Cli |ψ〉 + 〈ψ|I ⊗ Bli ⊗Cli |ψ〉 = 4

i.e. for i = 1...m:

Ã ji |ψ〉 = B̃ ji |ψ〉 = C̃ ji |ψ〉

Ãki |ψ〉 = B̃ki |ψ〉 = C̃ki |ψ〉

Ãli |ψ〉 = B̃li |ψ〉 = C̃li |ψ〉
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From the last equation we get, for all 1 ≤ i ≤ m:

〈ψ|(I + ti,1A ji) ⊗ (I + ti,2Bki) ⊗ (I + ti,3Cli)|ψ〉 = 0

where ti,1, ti,2 and ti,3 are the sign of literal X ji , Xki and Xli
Consider i = 1, f1 = x j1 ∨ Xk1 . We have:

|ψ〉 =
∑

s1 s2 s3∈{−,+},(s1 s2 s3),(t1,1t1,2t1,3)

|ψs1 s2 s3〉

where |ψs1 s2 s3 ∈ H s1 s2 s3
A, j1k1l1

⊗ H s1 s2 s3
B, j1k1l1

⊗ H s1 s2 s3
A, j1k1l1

Since |||ψ〉||2 = 1, at least one of the vectors
{|ψs1 s2 s3 : s1, s2, s3 ∈ {−,+}, (s1s2s3) , (t1,1t1,2t1,3)} is nonzero. For example assume |ψs∗1 s∗2 s∗3

〉 , 0.
We claim that instead of |ψ〉, |ψs∗1 s∗2 s∗3

〉 also satisfies all the equations above (actually we will prove
all |ψs1 s2 s3〉 satisfy those equations)

(*) For any 1 ≤ h ≤ n, suppose Ãh|ψ〉 = B̃h|ψ〉 = C̃h|ψ〉, then from Ãh|ψ〉 = B̃h|ψ〉 we know

Ãh

∑
s1 s2 s3∈{−,+},(s1 s2 s3),(t1,1t1,2t1,3)

|ψs1 s2 s3〉 = B̃h

∑
s1 s2 s3∈{−,+},(s1 s2 s3),(t1,1t1,2t1,3)

|ψs1 s2 s3〉

Consider this equation in space HC: all H s1 s2 s3
C, j1k1l1

are orthogonal subspaces of HC and the oper-
ators Ãh and B̃h do not apply to space HC , thus Ãh|ψs1 s2 s3〉 = B̃h|ψs1 s2 s3〉 . Similarly, Ãh|ψs1 s2 s3〉 =

C̃h|ψs1 s2 s3〉 . Therefore:

Ãh|ψs1 s2 s3〉 = B̃h|ψs1 s2 s3〉 = C̃h|ψs1 s2 s3〉

(**) We know that

〈ψ|(Ĩ + ti,1Ã ji)(Ĩ + ti,2B̃ki)(Ĩ + ti,3C̃li)|ψ〉 = 0

We also know that C̃li |ψ〉 = Ãli |ψ〉, which implies (Ĩ + C̃li)|ψ〉 = (Ĩ + Ãli)|ψ〉. Thus, we can
replace operator Cli by Ali:

〈ψ|(Ĩ + ti,1Ã ji)(Ĩ + ti,2B̃ki)(Ĩ + ti,3Ãli)|ψ〉 = 0

Now we replace |ψ〉 by
∑

s1 s2 s3
|ψs1 s2 s3〉 and consider the equations in the space of HC , and we

get:
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〈ψs1 s2 s3 |(Ĩ + ti,1Ã ji)(Ĩ + ti,2B̃ki)(Ĩ + ti,3Ãli)|ψs1 s2 s3〉 = 0

From (*) we already know that Ãli |ψs1 s2 s3〉 = C̃li |ψs1 s2 s3〉 , so we can replace Cli back:

〈ψs1 s2 s3 |(Ĩ + ti,1Ã ji)(Ĩ + ti,2B̃ki)(Ĩ + ti,3C̃li)|ψs1 s2 s3〉 = 0

From (*) and (**), |ψs1 s2 s3〉 (and in particular, |ψs∗1 s∗2 s∗3
〉 ) satisfy all the original equations.

By the definition of |ψs1 s2 s3〉:

Ã j1 |ψs∗1 s∗2 s∗3
〉 = B̃ j1 |ψs∗1 s∗2 s∗3

〉 = C̃ j1 |ψs∗1 s∗2 s∗3
〉 = s∗1|ψs∗1 s∗2 s∗3

〉

Ãk1 |ψs∗1 s∗2 s∗3
〉 = B̃k1 |ψs∗1 s∗2 s∗3

〉 = C̃k1 |ψs∗1 s∗2 s∗3
〉 = s∗2|ψs∗1 s∗2 s∗3

〉

Ãl1 |ψs∗1 s∗2 s∗3
〉 = B̃l1 |ψs∗1 s∗2 s∗3

〉 = C̃l1 |ψs∗1 s∗2 s∗3
〉 = s∗3|ψs∗1 s∗2 s∗3

〉

So |ψs∗1 s∗2 s∗3
〉 can be considered as a classical assignment of variables in f1: x j1 = 1 if s∗1 = − and

0 if s∗1 = +. Similarly for xk1 and xl1 (with s∗2 and s∗3 respectively)
Let f ′ be the new formula if we put this assignment of x j1 , xk1 and xl1 in formula f . Then f ′

has at most (m − 1) clauses and (n − 3) variables. We can repeat the arguments we have done for
formula f . After at most (m − 1) rounds we will get a truth assignment for f . So ωc( f ) = 1
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Chapter 3

Commuting Provers

A central question in quantum information theory and computational complexity is how power-
ful nonlocal strategies are in cooperative games with imperfect information, such as multi-prover
interactive proof systems. This chapter develops a new method for proving limits of nonlocal
strategies that make use of prior entanglement among players (or, provers, in the terminology of
multi-prover interactive proofs). Instead of proving the limits for usual isolated provers who ini-
tially share entanglement, in this chapter we prove the limits for “commuting-operator provers,”
who share private space, but can apply only such operators that are commutative with any operator
applied by other provers. Obviously, these commuting-operator provers are at least as power-
ful as usual isolated but prior-entangled provers, and thus, limits in the model with commuting-
operator provers immediately give limits in the usual model with prior-entangled provers. Using
this method, we obtain an n-party generalization of the Tsirelson bound for the Clauser–Horne–
Shimony–Holt inequality, for every n. Our bounds are tight in the sense that, in every n-party case,
the equality is achievable by a usual nonlocal strategy with prior entanglement. We also apply
our method to a three-prover one-round binary interactive proof system for NEXP. Combined
with the technique developed by Kempe, Kobayashi, Matsumoto, Toner and Vidick to analyze the
soundness of the proof system, it is proved to be NP-hard to distinguish whether the entangled
value of a three-prover one-round binary-answer game is equal to one or at most 1 − 1/p(n) for
some polynomial p, where n is the number of questions. This is in contrast to the two-prover one-
round binary-answer case, where the corresponding problem is efficiently decidable. Alternatively,
NEXP has a three-prover one-round binary interactive proof system with perfect completeness and
soundness 1 − 2−poly.

3.1 Introduction
Nonlocality of multi-party systems is one of the central issues in quantum information theory. This
can be naturally expressed within the framework of nonlocal games [13], which are cooperative
games with imperfect information. Because of this, the nonlocality also has a strong connection
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with computational complexity theory, in particular with multi-prover interactive proof systems [6].
In nonlocal games, the main interests are whether or not the value of a game changes when parties
use nonlocal strategies that make use of prior entanglement, and if it changes, how powerful such
nonlocal strategies can be. In multi-prover interactive proof systems, these correspond to the ques-
tions whether or not dishonest prior-entangled provers can break the original soundness condition
of the system that is assured for any dishonest classical provers, and if so, how much amount they
can deviate from the original soundness condition.

3.1.1 Our contribution
The main contribution of this work is to develop new methods for proving limits of nonlocal
strategies that make use of prior entanglement among players (or, provers, in the terminology of
multi-prover interactive proofs — this study uses “player” and “prover” interchangeably). Specifi-
cally, we consider commuting-operator provers, the notion of which was already introduced in the
seminal paper by Tsirelson [40] in 1980. In contrast to usual provers for multi-prover interactive
proofs, commuting-operator provers are no longer isolated, and share a private space correspond-
ing to a Hilbert space H . Initially, they have some state |ϕ〉 ∈ H , and when the kth prover Pk

receives a question i, he applies some predetermined operation A(k)
i acting over H . The only con-

straint for the provers is that operators A(k)
i and A(l)

j of different provers Pk and Pl always commute
for any questions i and j. It is obvious from this definition that these commuting-operator provers
are at least as powerful as usual isolated but prior-entangled provers, and thus, limits in the model
with commuting-operator provers immediately give limits in the usual model with prior-entangled
provers. Using these commuting-operator provers, or more precisely, making intensive use of the
commutativity of operators, we obtain a number of intriguing results on the limits of nonlocal
strategies.

A family of n-party Tsirelson inequalities and n-player Magic Square games We first show a
tight bound of the strategies of commuting-operator players for the generalized n × n Magic Square
game played by n players. This bound is naturally interpreted as an n-party generalization of the
Tsirelson bound for the Clauser-Horne-Shimony-Holt (CHSH) inequality, and thus, we essentially
obtain a family of generalized Tsirelson-type inequalities. In particular, for n = 2, our inequality is
identical to the Tsirelson bound for the CHSH inequality. The case for n = 3 was originally proved
with a different proof in a preliminary work by a subset of the authors (Sun, Yao and Preda [35]).

Our inequalities include the inequalities proved by Wehner [44] as special cases — our proof
is completely different from hers. It is stressed that our inequalities are tight even in the usual
nonlocal model with prior entanglement, a simple proof of which is also given in this study.

Our inequalities can be interpreted as the upper bound on the winning probability for commuting-
operator players in an n-player cooperative game which is closely related to the Magic Square
game. We call this n-player game n-player Magic Square game. In particular, we show that
commuting-operator players cannot win with certainty in the three-player Magic Square game.
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A conceptual consequence of this is that the “breakage” of the oracularization paradigm for the
Magic Square game shown in Ref. [13] does not arise from allowing prior entanglement among
provers alone, but arises from both allowing prior entanglement and the process of oracularization.

Three-prover one-round interactive proof systems for NP and NEXP Next we prove the lim-
its of the strategies of commuting-operator provers for three-prover one-round interactive proof
systems for NP and NEXP. The proof system makes use of three-query non-adaptive probabilis-
tically checkable proof (PCP) systems with perfect completeness due to Håstad [19]. Because
of the commutativity of operators which each prover applies, it is quite easy to apply the tech-
nique developed by Kempe, Kobayashi, Matsumoto, Toner, and Vidick [25] when analyzing the
soundness accepting probability of our system. With this analysis, we show that it is NP-hard to
compute the value of a three-player one-round binary-answer game with entangled players, which
improves the original result in Ref. [25] where a ternary answer from each prover was needed for
the NP-hardness. In fact, we show that it is NP-hard even to decide if the value of a three-player
one-round binary-answer game is one or not. In sharp contrast to this, the result by Cleve, Høyer,
Toner and Watrous [13] implies that the corresponding decision problem is in P in the case with a
two-player one-round binary-answer game. Alternatively, we show that any language in NEXP has
a three-prover one-round binary interactive proof system of perfect completeness with soundness
1 − 2−poly, whereas only languages in EXP have such proof systems in the two-prover one-round
binary case.

As is pointed in Ref. [13], an important consequence of Tsirelson’s theorem [40] is that, using
semidefinite programming, it is easy to compute the maximum winning probability of a so-called
two-player one-round XOR game with entangled players, which is a two-player one-round binary-
answer game with entangled players in which the result of the game only depends on the XOR of
the answers from the players. Our result shows that this is not the case if we consider three players
and we drop the XOR condition of the game unless P = NP.

3.1.2 Background and related work
Multi-prover interactive proof systems (MIPs) were proposed by Ben-Or, Goldwasser, Kilian and
Wigderson [6]. It was proved by Babai, Fortnow and Lund [3] that the power of MIPs is exactly
equal to NEXP. Subsequently, it was shown that they still achieve NEXP even in the most restric-
tive setting of two-prover one-round interactive proof systems [17]. One of the main tools when
proving these claims is the oracularization [6, 18], which forces provers to act just like fixed proof
strings.

Cleve, Høyer, Toner and Watrous [13] proved many examples of two-player games where
the existence of entanglement increases winning probabilities, including the Magic Square game,
which is an example of breakage of the oracularization paradigm under the existence of entan-
glement. They also proved that two-prover one-round XOR proof systems, or the proof systems
where each prover’s answer is one bit long and the verifier depends only on the XOR of the an-
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swers, recognize NEXP without prior entanglement but at most EXP with prior entanglement.
Kobayashi and Matsumoto [28] showed that multi-prover interactive proof systems with provers

sharing at most polynomially many prior-entangled qubits can recognize languages only in NEXP
(even if we allow quantum messages between the verifier and each prover). On the other hand, if
provers are allowed to share arbitrary many prior-entangled qubits, very little were known about
the power of multi-prover interactive proof systems except for the case of XOR proof systems. Re-
cently, Kempe, Kobayashi, Matsumoto, Toner and Vidick [25] showed that NP ⊆ MIP∗1,1−1/poly(3, 1)
and NEXP ⊆ MIP∗1,1−2−poly(3, 1). Subsequently to the present work, Ito, Kobayashi, and Mat-
sumoto [22] showed that the same holds with two provers. Cleve, Gavinsky and Jain [12] proved
that NP ⊆ ⊕MIP∗1−ε,1/2+ε(2, 1), where ⊕MIP∗c(n),s(n)(2, 1) is the class of languages recognized by a
two-prover one-round XOR interactive proof system with entangled provers.

The notion of commuting-operator provers is also used by Navascués, Pironio, and Acín [31]
and Doherty, Liang, Toner, and Wehner [14] to obtain an upper bound of the entangled value of
two-prover games. The only known relation between the model with commuting-operator provers
and the one with usual isolated entangled provers is that they are equivalent in the two-prover
one-round setting that involves only finite-dimensional Hilbert spaces [40, 41].

3.1.3 Organization of the chapter
Section 3.2 gives definitions on MIP systems used in later sections. Section 3.3 introduces the
commuting-operator-provers model which we will use later and states some basic facts on it. Sec-
tion 3.4 discusses the n-player generalization of Tsirelson’s bound based on the n×n Magic Square
game. Section 3.5 treats the three-prover one-round binary interactive proof system for NEXP and
compares it with the two-prover case.

3.2 Preliminaries
We assume basic knowledge about quantum computation, interactive proofs and probabilistically
checkable proofs. Readers are referred to textbooks on quantum computation (e.g. Nielsen and
Chuang [32]) and on computational complexity (e.g. Du and Ko [15]).

The trace distance between two quantum states ρ and σ is defined by D(ρ, σ) = (1/2)‖ρ−σ‖1,
where ‖·‖1 denotes the induced 1-norm.

See Nielsen and Chuang [32] for the proof of the following basic facts about the trace distance.
Applying the same operation to two states does not increase the trace distance between them:
D(Φ(ρ),Φ(σ)) ≤ D(ρ, σ) for any admissible superoperator Φ. For pure states |ϕ〉 and |ψ〉, the trace
distance and the inner product are related by: D(|ϕ〉〈ϕ|, |ψ〉〈ψ|)2 = 1 − |〈ϕ|ψ〉|2.
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3.2.1 Games and multi-prover interactive proof systems
Here we review basic notions of multi-prover interactive proof systems that are necessary to define
commuting-operator model in Section 3.3.

A multi-prover interactive proof system can be best viewed as a sequence of cooperative games
indexed by input string.

An m-player cooperative one-round game (simply an m-player game) is a pair G = (π,V) of
a probability distribution π over Qm and a predicate V : Qm × Am → {0, 1}, where Q and A are
finite sets. As a convention, we denote V(q1, . . . , qm, a1, . . . , am) by V(a1, . . . , am | q1, . . . , qm). In
this game, a referee decides whether the players win or lose according to a predetermined rule
as follows. The referee chooses questions q1, . . . , qm according to the distribution π and sends the
question qi to the ith player. The ith player sends back an answer ai ∈ A, and the referee collects the
answers a1, . . . , am. The players win if V(a1, . . . , am | q1, . . . , qm) = 1 and lose otherwise. We often
refer to players as “provers” for better correspondence to multi-prover interactive proof systems.

A behavior or a no-signaling strategy for G is a function S : Qm × Am → [0, 1] with normal-
ization and no-signaling conditions. Like V , we denote S (q1, . . . , qm, a1, . . . , am) by S (a1, . . . , am |

q1, . . . , qm), and it corresponds to the probability with which the m players answer a1, . . . , am un-
der the condition that the questions sent to the players are q1, . . . , qm. The normalization con-
dition requires that for all q1, . . . , qm ∈ Q,

∑
a1,...,am∈A S (a1, . . . , am | q1, . . . , qm) = 1. The no-

signaling condition requires that for any 1 ≤ i ≤ m, any q1, . . . , qi−1, qi+1, . . . , qm ∈ Q and any
a1, . . . , ai−1, ai+1, . . . , am ∈ A, the sum

∑
ai∈A S (a1, . . . , am | q1, . . . , qm) does not depend on the

choice of qi ∈ Q. The winning probability w(S ) of the strategy S is given by

w(S ) =
∑

q1,...,qm∈Q

π(q1, . . . , qm)
∑

a1,...,am∈A

S (a1, . . . , am | q1, . . . , qm)V(a1, . . . , am | q1, . . . , qm).

A behavior is said to be classical (resp. entangled) if it is realized by a classical (resp. entan-
gled) strategy. In a classical (resp. entangled) strategy, m computationally unlimited players share
a random source (resp. a quantum state), and each of them decides his/her answer according to
his/her question and the shared random source (resp. state). It is well-known that for any classical
strategy, there exists an equivalent classical strategy without shared random source. Also for any
entangled strategy, there exists an equivalent entangled strategy where the players share a pure
state and their measurements are projective.

The classical (resp. entangled, no-signaling) value of G, denoted by wc(G) (resp. wq(G),
wns(G)), is the supremum of the winning probabilities over all classical (resp. entangled, no-
signaling) behaviors for G. Clearly we have 0 ≤ wc(G) ≤ wq(G) ≤ wns(G) ≤ 1. The classical
and no-signaling values of G can be attained for all games G, but it is not known whether the
entangled value of G can be attained for all games G.

An m-prover one-round interactive proof system is a pair (Mπ,MV) of two Turing machines.
A probabilistic Turing machine Mπ is given an input string x and outputs m questions q1, . . . , qm.
A deterministic Turing machine MV is given an input x and 2m strings q1, . . . , qm, a1, . . . , am, and
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outputs 0 or 1. Both Mπ and MV must run in time polynomial in |x|. This system naturally defines
an m-player game Gx for each input string x.

Let c, s : Z≥0 → [0, 1]. An m-prover one-round interactive proof system is said to have com-
pleteness acceptance probability c(n) for a language L for classical (resp. entangled) provers when
wc(Gx) ≥ c(|x|) (resp. wq(Gx) ≥ c(|x|)) for all x ∈ L. Similarly, it is said to have soundness accep-
tance probability s(n) for a language L for classical (resp. entangled) provers when wc(Gx) ≤ s(|x|)
(resp. wq(Gx) ≤ s(|x|)) for all x < L.

Let MIP∗c(n),s(n)(m, 1) denote the class of languages having m-prover one-round interactive proof
systems with completeness and soundness acceptance probabilities c(n) and s(n) for entangled
provers.

Let naPCPc(n),s(n)(r(n), q(n)) denote the class of languages having PCP systems with complete-
ness and soundness acceptance probabilities c(n) and s(n) where the verifier reads q(n) bits in a
proof non-adaptively using r(n) random bits.

Håstad [19] gave the following characterizations of NP and NEXP.

Theorem 3.2.1 (Håstad [19, Theorem 6.18]). For any constant 3/4 < s < 1, NP =
⋃

c>0 naPCP1,s(c log n, 3)
and NEXP =

⋃
p∈poly naPCP1,s(p, 3).

3.3 Commuting-operator provers

3.3.1 Definition and basic properties
Here we define a class of strategies called commuting-operator strategies, which are a generaliza-
tion of entangled strategies. All the upper bounds of the entangled values of games proved in this
study are actually valid even for this class. A commuting-operator strategy is a triplet (H , ρ,M(i)

q )
of a Hilbert space H , a quantum state ρ in H , and a family of POVMs M(i)

q = (M(i)
q,a)a∈A on

the whole space H for 1 ≤ i ≤ m, q ∈ Q such that M(i)
q,a and M(i′)

q′,a′ commute whenever i , i′:
[M(i)

q,a,M
(i′)
q′,a′] = M(i)

q,aM(i′)
q′,a′ −M(i′)

q′,a′M
(i)
q,a = 0. In this strategy, m players share a quantum state ρ, and

player i measures the state ρ withM(i)
qi depending on the query qi sent to him/her. Then the joint

probability of the answers a1, . . . , am under the condition that the questions are q1, . . . , qm is given
by S (a1, . . . , am | q1, . . . , qm) = tr ρM(1)

q1,a1 · · ·M
(m)
qm,am . Such a behavior S induced by a commuting-

operator strategy is called a commuting-operator behavior, and the commuting-operator value
wcom(G) of a game G is the supremum of the winning probabilities over all commuting-operator
behaviors for G.

An entangled strategy in the usual sense with Hilbert spaces H1, . . . ,Hm is a special case of
commuting-operator strategies with Hilbert spaces H = H1 ⊗ · · · ⊗ Hm, since for i , i′, POVMs
on Hi and POVMs on Hi′ commute element-wise when they are viewed as POVMs on H . This
implies that 0 ≤ wc(G) ≤ wq(G) ≤ wcom(G) ≤ wns(G) ≤ 1.

For the special cases of two-player binary-answer games where the referee decides the result
of the game depending only on the queries and the XOR of the answers from the two players,
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the optimal strategy for entangled players and the maximum acceptance probability is given by
optimizing certain inner products among vectors [40], and the entangled value of the game can be
computed efficiently by using semidefinite programming. Tsirelson [40] also proved that this value
does not change if we replace the entangled players by commuting-operator players. Tsirelson [41]
generalized the equivalence of the two models to the case of two players where the dimension of
the quantum state shared by the players is finite. However, it is not known whether this equivalence
holds for general two-player binary-answer games.

If the outcomes of measurements are real numbers, then the expected values of the product of
the outcomes ofM(i)

qi for i ∈ P ⊆ {1, . . . ,m} is tr ρ
∏

i∈P X(i)
qi with observables X(i) =

∑
a∈A aM(i)

q,a.
The following simple observation relates the commutativity of observables and unentangled

players.

Lemma 3.3.1. If there is a commuting-operator strategy in a game G with acceptance probability
w where all POVM operators M(i)

q,a commute, then wc(G) ≥ w.

Proof. Intuitively, the lemma holds since one can measure all the POVMs M(i)
q simultaneously

because of commutativity. Details follow.
Let a(i)

q ∈ A for 1 ≤ i ≤ m and q ∈ Q, and let a = (a(1)
1 , . . . , a(1)

|Q|, a
(2)
1 , . . . , a(2)

|Q|, . . . , a
(m)
1 , . . . , a(m)

|Q| ).
We define a linear operator

M(a) =
m∏

i=1

∏
q∈Q

M(i)
q,a(i)

q
.

By commutativity of the observables, M(a) is Hermitian and nonnegative definite for any a, and∑
a M(a) = I.

We construct a classical strategy with acceptance probability w. The players share a(1)
1 , . . . , a(1)

|Q|,

. . . , a(m)
1 , . . . , a(m)

|Q| ∈ A with probability 〈ψ|M(a)|ψ〉. The ith player answers a(i)
q when asked query

q. By simple calculation, the probability distribution of the answers conditioned on arbitrary set
of m queries in the classical strategy is exactly equal to that in the original commuting-operator
strategy. �

Like entangled strategies, for any commuting-operator strategy, there exists an equivalent
commuting-operator strategy with a pure shared quantum state and projection-valued measures
(PVMs).

3.3.2 Symmetrization
Here we prove that we can assume the players’ optimal strategy is symmetric under any permu-
tations of the players. A precise definition of the symmetry of a commuting-operator strategy
follows.

Let G = (π,V) be an m-player game. G is said to be symmetric if the following conditions are
satisfied.
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(i) π is symmetric: π(qσ(1), . . . , qσ(m)) = π(q1, . . . , qm) for any permutation σ ∈ Sm.

(ii) V is symmetric under permutations of players: V(aσ(1), . . . , aσ(m) | qσ(1), . . . , qσ(m)) = V(a1, . . . , am |

q1, . . . , qm) for any permutation σ ∈ Sm.

Now we define the symmetry of a commuting-operator strategy. Let H be the Hilbert space
shared by the players, let |Ψ〉 ∈ H be the state shared by the players, and letM(i)

q = (M(i)
q,a)a∈A be

the A-valued PVM measured by the player i when asked the question q. The strategy is symmetric
if there exists a unitary representation Φ of the symmetric group Sm inH such that Φ(σ)|Ψ〉 = |Ψ〉
and Φ(σ−1)M(σ(i))

q,a Φ(σ)|ϕ〉 = M(i)
q,a|ϕ〉 for any permutation σ ∈ Sm and any state |ϕ〉 ∈ H .

This definition is a natural extension of the usual definition of symmetric entangled strategy in
the following sense: consider an entangled strategy on a Hilbert spaceH = K⊗m, that is, |Ψ〉 ∈ K⊗n

is a state shared by the players and M(i)
q,a = I ⊗ · · · ⊗ I ⊗M′(i)q,a ⊗ I ⊗ · · · ⊗ I only acts on the ith tensor

factor of H . This strategy is symmetric as a commuting-operator strategy with respect to the
representation Φ of Sm in H defined by Φ(σ)(|ϕ1〉 ⊗ · · · ⊗ |ϕm〉) = |ϕσ−1(1)〉 ⊗ · · · ⊗ |ϕσ−1(m)〉 if and
only if M′(1)

q = · · · = M′(m)
q for all q ∈ Q.

Lemma 3.3.2. In an m-player one-round symmetric game, if there exists a commuting-operator
strategy achieving winning probability p, then there also exists a symmetric commuting-operator
strategy achieving the same winning probability p.

Proof. The lemma can be proved by constructing a symmetric strategy by averaging over all the
permutations on provers. Detail follow.

Let (H , |Ψ〉,M(i)
q ) be a (not necessarily symmetric) commuting-operator strategy achieving

acceptance probability p. Note that for any permutation τ ∈ Sm, the strategy (H , |Ψ〉,M(τ(i))
q ) also

achieves the same probability p because of the symmetry of the game.
We construct a symmetric strategy (K , |Ψ′〉,N (i)

q ) from the strategy (H , |Ψ〉,M(i)
q ). Let K =

H⊗Cm!. We regard {|τ〉 | τ ∈ Sm} as an orthonormal basis ofCm!. We define a unitary representation
Φ of the symmetric group Sm in K as Φ(σ)(|ϕ〉 ⊗ |τ〉) = |ϕ〉 ⊗ |τσ−1〉. Now we define |Ψ′〉 ∈ K by

|Ψ′〉 = |Ψ〉 ⊗
1
√

m!

∑
τ∈Sm

|τ〉.

The player i in the constructed symmetric strategy measures the Cm!-part of the state, and acts just
like the player τ(i) in the original strategy:

N(i)
q,a =

∑
τ∈Sm

M(τ(i))
q,a ⊗ |τ〉〈τ|.

This strategy is a commuting-operator strategy since, for i , i′,[
N(i)

q,a,N
(i′)
q′,a′

]
=

∑
τ∈Sm

[
M(τ(i))

q,a ,M(τ(i′))
q′,a′

]
⊗ |τ〉〈τ| = 0.
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The symmetry of the strategy is verified as follows:

Φ(σ)|Ψ′〉 = |Ψ〉 ⊗
1
√

m!

∑
τ∈Sm

|τσ−1〉 = |Ψ′〉

and

Φ(σ−1)N(σ(i))
q,a Φ(σ)(|ϕ〉 ⊗ |τ〉) = Φ(σ−1)N(σ(i))

q,a

(
|ϕ〉 ⊗ |τσ−1〉

)
= Φ(σ−1)

(
M(τ(i))

q,a |ϕ〉 ⊗ |τσ
−1〉

)
= M(τ(i))

q,a |ϕ〉 ⊗ |τ〉

= N(i)
q,a(|ϕ〉 ⊗ |τ〉).

In the constructed strategy, if measurement of the Cm!-part of the shared state results in τ ∈ Sm,
the players just follow the strategy (H , |Ψ〉,M(τ(i))

q ), and therefore the strategy achieves winning
probability p. �

3.4 n-party generalization of Tsirelson’s bound based on n× n
Magic Square

3.4.1 Definitions and basic facts
We define an n-player game for the n × n Magic Square as follows. Consider an n × n matrix
with {0, 1}-entries not known to the referee. The referee chooses one row or column randomly and
uniformly. Then he assigns the n cells on the chosen row or column to the n players one-to-one
randomly and uniformly, and queries the content of each cell to the corresponding player. Every
player answers either 0 or 1. The players win if and only if the sum of the n answers is even, except
that, when the referee chose the column n, the players win if and only if the sum of the n answers
is odd. We call this game the n-player Magic Square game and denote MSn.

We consider a variant of this game. Let L = (L jk) be a Latin square of order n. That is,
L jk ∈ {1, . . . , n} and every row or column contains 1, . . . , n exactly once. We define the n-player
Magic Square game with assignment L, denoted MSn(L), as follows. The referee chooses one row
or column randomly and uniformly. Then he queries the contents of the n cells on the chosen row
or column to the n players, but this time he assigns the cells to the players according to L: the
referee asks the L jk-th player the content of the cell at row j, column k. The rest is the same.

It is easy to verify that wc(MSn) = wc(MSn(L)) = 1 − 1/(2n) for any Latin squares L, and this
classical bound corresponds to a sequence of Bell inequalities. The Bell inequality correspond-
ing to the two-player Magic Square game with an assignment is known as the Clauser–Horne–
Shimony–Holt (CHSH) inequality [10], and the maximum winning probability wq(MS2(L)) =
wcom(MS2(L)) = (2 +

√
2)/4 ≈ 0.85 for entangled players and even commuting-operator play-

ers follows from the quantum version of the CHSH inequality called Tsirelson’s bound [40].
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The following theorem states that an upper bound for the value of the game MSn(L) is also
valid for MSn.

Theorem 3.4.1. For any Latin square L of order n, wq(MSn) ≤ wq(MSn(L)) and wcom(MSn) ≤
wcom(MSn(L)).

Proof. First we prove that wq(MSn) ≤ wq(MSn(L)). Consider an arbitrary entangled strategy S in
the game MSn. We construct an entangled strategy S ′ in the game MSn(L) with the same winning
probability as S .

Let |ϕ〉 ∈ H1 ⊗ · · · ⊗ Hn be the state shared by the players in S . Without loss of generality, we
assume thatH1 = · · · = Hn. In S ′, the players share the state

|ϕ′〉 =
1
√

n!

∑
σ∈Sn

Uσ|ϕ〉⊗|σ(1)〉⊗· · ·⊗|σ(n)〉 ∈ (H1⊗· · ·⊗Hn)⊗(Cn)⊗n � (H1⊗C
n)⊗· · ·⊗(Hn⊗C

n),

where Sn is the symmetric group on {1, . . . , n} and Uσ is the unitary operator on H1 ⊗ · · · ⊗ Hn

defined by Uσ(|ϕ1〉 ⊗ · · · ⊗ |ϕn〉) = |ϕσ(1)〉 ⊗ · · · ⊗ |ϕσ(n)〉. Every player i holds the part of |ϕ′〉
corresponding to the space Hi ⊗ C

n. When asked the content of the cell at row j, column k, the
player i = L jk measures the Cn-part of |ϕ′〉 in the computational basis to obtain the value of σ(i),
and acts like the player σ(i) in S . This achieves the same winning probability as S .

The inequality wcom(MSn) ≤ wcom(MSn(L)) can be proved similarly. Let S be a commuting-
operator strategy in MSn. Let |ϕ〉 ∈ H be the state shared by the players in S , and M(i)

jk =

(M(i)
jk,a)a∈{0,1} be the POVM measured by player i when he is asked the content of the cell at row j,

column k. Now we consider Cn! as a Hilbert space spanned by an orthonormal basis {|σ〉 | σ ∈ Sn}.
In a strategy S ′ for MSn(L), the commuting-operator players share the state

|ϕ〉 ⊗
1
√

n!

∑
σ∈Sn

|σ〉 ∈ H ⊗ Cn!.

When asked the content of the cell at row j, column k, the player i = L jk measures |ϕ′〉 according
to the POVM

N(i)
jk,a =

∑
σ∈Sn

M(σ(i))
jk,a ⊗ |σ〉〈σ|.

Note that if L jk = i , i′ = L j′k′ , then N(i)
jk,a and N(i′)

j′k′,a′ commute as required in the commuting-
operator model since [

N(i)
jk,a,N

(i′)
j′k′,a′

]
=

∑
σ∈Sn

[
M(σ(i))

jk,a ,M(σ(i′))
j′k′,a′

]
⊗ |σ〉〈σ| = 0. �

3.4.2 A strategy for entangled players
Theorem 3.4.2. There exists an entangled strategy in the n-player Magic Square game with win-
ning probability (1 + cos(π/(2n)))/2. That is, wq(MSn) ≥ (1 + cos(π/(2n)))/2.
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We define an n-qubit pure state |ϕn〉 ∈ (C2)⊗n as

|ϕn〉 =
1

2(n−1)/2

( ∑
x∈{0,1}n

W(x)≡0 mod 4

|x〉 −
∑

x∈{0,1}n
W(x)≡2 mod 4

|x〉
)
,

where W(x) is the number of 1’s in x ∈ {0, 1}n.
We denote by Zθ the ±1-valued observable represented by the 2 × 2 Hermitian matrix

Zθ =
(
cos θ sin θ
sin θ − cos θ

)
=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

) (
1 0
0 −1

) (
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.

The n players share the n-qubit state |ϕn〉, one qubit for each player. When asked the content of
the cell at row j, column k, the player measures the observable Zθ jk , where

θ jk =


0 if 1 ≤ j, k ≤ n − 1,
π/(2n) if 1 ≤ j ≤ n − 1, k = n,
−π/(2n) if j = n, 1 ≤ k ≤ n − 1,
π/2 if j = k = n,

and answers 0 (resp. 1) if the measured value is +1 (resp. −1).
To prove the players win with probability (1+cos(π/(2n)))/2, we prepare the following lemma.

Lemma 3.4.3. Let n ≥ 1 and θ1, . . . , θn ∈ R, and let |ϕn〉 and Zθ as defined above. Let M =

Zθ1 ⊗ · · · ⊗ Zθn . Then,
〈ϕn|M|ϕn〉 = cos(θ1 + · · · + θn).

Proof. Let

|ϕ′n〉 =
1

2(n−1)/2

( ∑
x∈{0,1}n

W(x)≡1 mod 4

|x〉 −
∑

x∈{0,1}n
W(x)≡3 mod 4

|x〉
)
.

We actually prove the following stronger statement:

〈ϕn|M|ϕn〉 = −〈ϕ
′
n|M|ϕ

′
n〉 = cos(θ1 + · · · + θn),

〈ϕn|M|ϕ′n〉 = 〈ϕ
′
n|M|ϕn〉 = sin(θ1 + · · · + θn).

The proof is by induction on n. The case n = 1 holds by the definition of Zθ1 . If n > 1, note that

|ϕn〉 =
1
√

2
(|ϕn−1〉 ⊗ |0〉 − |ϕ′n−1〉 ⊗ |1〉),

|ϕ′n〉 =
1
√

2
(|ϕ′n−1〉 ⊗ |0〉 + |ϕn−1〉 ⊗ |1〉).
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Let N = Zθ1 ⊗ · · · ⊗ Zθn−1 . Then,

〈ϕn|M|ϕn〉 =
1
2
(
〈ϕn−1|N|ϕn−1〉〈0|Zθn |0〉 + 〈ϕ

′
n−1|N|ϕ

′
n−1〉〈1|Zθn |1〉

− 〈ϕn−1|N|ϕ′n−1〉〈0|Zθn |1〉 − 〈ϕ
′
n−1|N|ϕn−1〉〈1|Zθn |0〉

)
= cos(θ1 + · · · + θn−1) cos θn − sin(θ1 + · · · + θn−1) sin θn

= cos(θ1 + · · · + θn−1 + θn).

The other three equalities are proved similarly. �

It is easy to verify that
∑

k θ jk = π/(2n) for every row j. Similarly,
∑

j θ jk = −π/(2n) for every
k , n, and

∑
j θ jn = π − π/(2n). By Lemma 3.4.3, the expected value of the product of the n

measurement results is cos(π/(2n)), except that, when the referee chose the column n, the expected
value of the product is cos(π − π/(2n)) = − cos(π/(2n)). This means that the players win with
probability (1 + cos π

2n )/2 for every query.

3.4.3 Optimality of the strategy
We prove the following theorem in this section, and relate it to the n-player Magic Square game.

Theorem 3.4.4. Let X(i)
j be ±1-valued observables onH for 0 ≤ i ≤ n−1 and 1 ≤ j ≤ n where X(i)

j

and X(i′)
j′ commute if i , i′ (∀1 ≤ j, j′ ≤ n). Let M j =

∏n−1
i=0 X(i)

j and Nk =
∏n−1

i=0 X(i)
k−i be observables

for 1 ≤ j, k ≤ n, where the subscript k − i is interpreted under modulo n. Then,

n∑
j=1

〈M j〉 +

n−1∑
k=1

〈Nk〉 − 〈Nn〉 ≤ 2n cos
π

2n
, (3.1)

where 〈·〉 denotes expected value.

For n = 3, Theorem 3.4.4 gives the following Tsirelson-type inequality.

Corollary 3.4.5. Let X(i)
j be ±1-valued observables on H for 1 ≤ i, j ≤ 3 where X(i)

j and X(i′)
j′

commute if i , i′ (∀1 ≤ j, j′ ≤ 3). Then,

〈X(1)
1 X(2)

1 X(3)
1 〉+ 〈X

(1)
2 X(2)

2 X(3)
2 〉+ 〈X

(1)
3 X(2)

3 X(3)
3 〉+ 〈X

(1)
1 X(2)

3 X(3)
2 〉+ 〈X

(1)
2 X(2)

1 X(3)
3 〉− 〈X

(1)
3 X(2)

2 X(3)
1 〉 ≤ 3

√
3.

We use the following lemma to prove Theorem 3.4.4.

Lemma 3.4.6. Let H be a Hilbert space, |ϕ〉 ∈ H be a unit vector, and A, B be unitary operators
on H . (We do not assume that A and B commute.) Let α = 〈ϕ|A|ϕ〉 and β = 〈ϕ|B|ϕ〉. Then∣∣∣〈ϕ|AB|ϕ〉 − αβ

∣∣∣ ≤ √
1 − |α|2

√
1 − |β|2.
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Proof. If |β| = 1, then B|ϕ〉 = β|ϕ〉 and the statement is trivial. In the rest of the proof, we assume
that |β| < 1.

Let
|ψ〉 =

B|ϕ〉 − β|ϕ〉√
1 − |β|2

.

Then 〈ϕ|ψ〉 = 0 and 〈ψ|ψ〉 = 1. It follows that 〈ϕ|AB|ϕ〉 = 〈ϕ|A
(
β|ϕ〉 +

√
1 − |β|2 |ψ〉

)
= αβ +

〈ϕ|A|ψ〉
√

1 − |β|2. Let |ξ〉 = A∗|ϕ〉. Since 〈ϕ|ψ〉 = 0, we have
∣∣∣〈ξ|ϕ〉∣∣∣2 + ∣∣∣〈ξ|ψ〉∣∣∣2 ≤ 1. Note that

〈ξ|ϕ〉 = 〈ϕ|A|ϕ〉 = α. It follows that
∣∣∣〈ϕ|A|ψ〉∣∣∣2 = ∣∣∣〈ξ|ψ〉∣∣∣2 ≤ 1 − |α|2. Hence

∣∣∣〈ϕ|AB|ϕ〉 − αβ
∣∣∣2 =∣∣∣〈ϕ|A|ψ〉∣∣∣2(1 − |β|2) ≤ (1 − |α|2)(1 − |β|2). �

Corollary 3.4.7. LetH , |ϕ〉, A, B, α and β be as defined in Lemma 3.4.6. Suppose α ∈ R, α = cos θ,
<β = cos θ′ with 0 ≤ θ, θ′ ≤ π, where < denotes the real part. Then cos(θ + θ′) ≤ <〈ϕ|AB|ϕ〉 ≤
cos(θ − θ′).

Proof. By Lemma 3.4.6, ∣∣∣<〈ϕ|AB|ϕ〉 − α<(β)
∣∣∣ = ∣∣∣<(〈ϕ|AB|ϕ〉 − αβ)

∣∣∣
≤

∣∣∣〈ϕ|AB|ϕ〉 − αβ
∣∣∣

≤
√

1 − α2
√

1 − |β|2

≤
√

1 − α2
√

1 − (<β)2,

which implies

α<(β) −
√

1 − α2
√

1 − (<β)2 ≤ <〈ϕ|AB|ϕ〉 ≤ α<(β) +
√

1 − α2
√

1 − (<β)2.

The statement follows from the facts that α = cos θ,<β = cos θ′ and sin θ, sin θ′ ≥ 0. �

Corollary 3.4.8. Let |ϕ〉 be a unit vector in a Hilbert space H , let A1, . . . , An be Hermitian op-
erators on H with A2

i = I, and let 〈ϕ|Ai|ϕ〉 = cos θi with 0 ≤ θi ≤ π. If θ1 + · · · + θn < π, then
<〈ϕ|A1 · · · An|ϕ〉 ≥ cos(θ1 + · · · + θn) > −1.

Proof. Use Corollary 3.4.7 repeatedly. �

Proof of Theorem 3.4.4. For notational convenience, the index j in X(i)
j is interpreted in modulo n.

Let |ϕ〉 be the quantum state shared by the n parties, and Z =
∑n

j=1 M j +
∑n−1

k=1 Nk − Nn. We prove
〈Z〉 = 〈ϕ|Z|ϕ〉 ≤ 2n cos(π/(2n)).

Let P =
∏n

j=1 M jNn+1− j = M1NnM2Nn−1 · · ·MnN1.1 We prove that P = I. For i = 0, . . . , n − 1,
let

Pi =

n∏
j=1

X(i)
j X(i)

n+1− j−i = X(i)
1 X(i)

n−iX
(i)
2 X(i)

n−1−i · · · X
(i)
n X(i)

1−i.

1Here
∏n

j=1 O j denotes the product O1O2 · · ·On of operators. This is a slight abuse of the notation since the
operators do not necessarily commute.
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Note that P = P0P1 · · · Pn−1, since X(i)
j and X(i′)

j′ commute whenever i , i′ by assumption.
Fix any i with 0 ≤ i ≤ n − 1. We define Y2 j−1 = X(i)

j and Y2 j = X(i)
n+1− j−i. Note that Pi =

Y1Y2 · · · Y2n. By calculation, it can be verified that Yn−i+1−k = Yn−i+k for 1 ≤ k ≤ n − i. Since Y2
j = I

for all 1 ≤ j ≤ 2n, this implies that Y1Y2 · · · Y2(n−i) = Y1(Y2 · · · (Yn−iYn−i+1) · · · Y2(n−i)−1)Y2(n−i) = I.
Similarly, the equation Y2n−i+1−k = Y2n−i+k for 1 ≤ k ≤ i implies that Y2(n−i)+1 · · · Y2n = I. Therefore
Pi = (Y1 · · · Y2(n−i))(Y2(n−i)+1 · · · Y2n) = I. This concludes that P = P0 · · · Pn−1 = I.

Let 〈ϕ|M j|ϕ〉 = cos θ j for 1 ≤ j ≤ n, 〈ϕ|Nk|ϕ〉 = cos θ′k for 1 ≤ k ≤ n − 1, and −〈ϕ|Nn|ϕ〉 =
cos θ′n with 0 ≤ θ j, θ

′
k ≤ π. Since M1(−Nn)M2Nn−1M3Nn−2 · · ·MnN1 = −P = −I, it holds that∑n

j=1 θ j +
∑n

k=1 θ
′
k ≥ π by Corollary 3.4.8. As is shown in the following Lemma 3.4.9, 〈ϕ|Z|ϕ〉 ≤

2n cos(π/(2n)) subject to this constraint, which establishes Theorem 3.4.4. �

Lemma 3.4.9. Let n ≥ 1, 0 ≤ θ1, . . . , θn ≤ π and θ1 + · · · + θn ≥ π. Then cos θ1 + · · · + cos θn ≤

n cos(π/n).

Proof. Since the function cos θ is decreasing in the range 0 ≤ θ ≤ π, we may assume that θ1+ · · ·+

θn = π. The statement is trivial for n ≤ 2. We assume n ≥ 3 for the rest of the proof.
First consider the case where 0 ≤ θ1, . . . , θn ≤ π/2. In this case, since the function cos θ is

concave in the range 0 ≤ θ ≤ π/2, it follows that cos θ1 + · · · + cos θn ≤ n cos(π/n).
Next consider the case where for some i, θi > π/2. Without loss of generality, we assume that

θ1 > π/2. Then, again from the concavity of the function cos θ in the range 0 ≤ θ ≤ π/2, it follows
that cos θ2 + · · · + cos θn ≤ (n − 1) cos((π − θ1)/(n − 1)). Since cos θ1 + (n − 1) cos((π − θ1)/(n − 1))
is decreasing in the range π/2 ≤ θ1 ≤ π,

cos θ1 + · · · + cos θn ≤ cos θ1 + (n − 1) cos
π − θ1

n − 1
< cos

π

2
+ (n − 1) cos

π

2(n − 1)
< n cos

π

n
. �

Consider the n-player Magic Square game with the assignment L defined as L = (L jk) with
L jk ≡ k− j mod n. We refer to this Latin square as the cyclic Latin square of order n, and this game
as the n-player Magic Square game with the cyclic assignment.

Corollary 3.4.10. For every n ≥ 2, the maximum winning probability in the n-player Magic
Square game both for commuting-operator players and for usual prior-entangled players is equal
to (1 + cos π

2n )/2.

Proof. Note that the inequality (3.1) is equivalent to the claim that wcom(MSn(L)) ≤ (1 + cos π
2n )/2

for the cyclic Latin square L. Therefore, Corollary 3.4.10 follows from Theorems 3.4.4, 3.4.1 and
3.4.2. �

We note that Theorem 3.4.4 includes the following inequality proved by Wehner [44] as special
cases.



CHAPTER 3. COMMUTING PROVERS 38

Theorem 3.4.11 (Wehner [44]). LetH = H1⊗H2 be a Hilbert space consisting of two subsystems,
and let |ϕ〉 ∈ H be a state. Let n ≥ 1, and let X1, . . . , Xn be ±1-valued observables on H1 and
Y1, . . . ,Yn be ±1-valued observables onH2. Then,

n∑
j=1

〈X jY j〉 +

n−1∑
j=1

〈X j+1Y j〉 − 〈X1Yn〉 ≤ 2n cos
π

2n
. (3.2)

Proof. In the inequality (3.1), let X(0)
j = I ⊗ Y j, X(n−1)

j = X j ⊗ I, and X(i)
j = I ⊗ I for 1 ≤ i ≤ n − 2.

Then the inequality (3.1) is exactly the same as the inequality (3.2). �

The equality in (3.2) is achievable [33]. This gives another proof of wq(MSn(L)) ≥ (1+cos π
2n )/2

for the cyclic Latin square L (but not of wq(MSn) ≥ (1 + cos π
2n )/2).

Remark 3.4.1. For some games G, an upper bound on wq(G) is obtained from an upper bound on
the no-signaling value wns(G) of G, which can be characterized by linear programming and often
easier to compute than wq(G). This is not the case for Corollary 3.4.10 since wns(MSn) = 1. This
follows from the result by Barrett and Pironio [5, Theorem 1]: for any game G = (π,V) where the
predicate V does not depend on the individual answers from the players but only on the XOR of
all the answers, there exists a no-signaling strategy with winning probability one.

Remark 3.4.2. We say two Latin squares of order n are equivalent if one is obtained from the other
by swapping rows, swapping columns, relabelling the elements, and/or transposing. For n ≥ 4,
Latin squares of order n is not unique up to this symmetry. For n = 4, there are two inequivalent
Latin squares:

L =

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

, L′ =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

.

The first Latin square L is cyclic, but the second Latin square L′ is not. The proof of Corol-
lary 3.4.10 depends on the actual assignment of cells to the provers and it is not applicable to L′. It
can be verified by exhaustive search that for L′, the product of the matrices M1,M2,M3,M4,N1,N2,N3,N4

in any order where each of the eight matrices appears exactly once is not equal to −I for general
matrices A jk.

3.5 Three-prover proof system based on three-query PCP
Let naPCPc(n),s(n)(r(n), q(n)) be the class of languages recognized by a probabilistically checkable
proof system with completeness and soundness acceptance probabilities c(n) and s(n) such that
the verifier uses r(n) random bits and makes q(n) non-adaptive queries, and let MIP∗c(n),s(n)(m, 1) be
the class of languages recognized by a classical m-prover one-round interactive proof system with
entangled provers with completeness and soundness acceptance probabilities c(n) and s(n). Our
main technical theorem is stated as follows.
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Theorem 3.5.1. There exists a constant c1, c2 > 0 such that for any functions ε : Z≥0 → (0, 1)
and r : Z≥0 → Z≥0 and any language L ∈ naPCP1,1−ε(n)(r(n), 3), L has a three-prover one-round
interactive proof system which satisfies the following conditions.

(a) The proof system is binary, i.e. the verifier receives only one bit from each prover.

(b) The verifier uses r(n) + O(1) random bits.

(c) The verifier receives only one bit from each prover.

(d) The completeness holds perfectly with classical provers.

(e) If dishonest provers are classical, the soundness acceptance probability is at most 1 − c1ε(n).

(f) If dishonest provers are commuting-operator, the soundness acceptance probability is at most
1 − εq(n), where εq(n) = c2ε(n)2 · 2−2r(n).

This implies naPCP1,1−ε(n)(r(n), 3) ⊆ MIP∗1,1−εq(n)(3, 1).

Letting c1 = 1/8 and c2 = 1/384 suffices for our proof. We do not attempt to maximize c1 or
c2.

By applying Theorem 3.5.1 to the PCP systems of Theorem 3.2.1, we obtain the following
corollaries.

Corollary 3.5.2. There exists a constant 0 < ε < 1 and a polynomially bounded function p : Z≥0 → Z≥1

such that the following promise problem is NP-complete.

Instance A classical three-player one-round binary-answer game G with n questions,
given as a description of a probability distribution over triplets of questions and
a table showing whether the answers are accepted or not for each triplet of ques-
tions and each triplet of answers.

Yes-promise wc(G) = 1.

No-promise wc(G) ≤ ε and wcom(G) ≤ 1 − 1/p(n).

Corollary 3.5.3. NEXP ⊆
⋃

p∈poly MIP∗1,1−2−p(3, 1), where each prover answers one bit, honest
provers do not need to share prior entanglement, and the soundness error becomes some constant
if provers are restricted to classical.
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3.5.1 Construction of proof system and basic facts
Let L ∈ naPCP1,1−ε(n)(r(n), 3). We construct a three-prover one-round interactive proof system for
L as follows. First, the verifier acts like the PCP verifier except that, instead of reading the q1th,
q2th and q3th bits of the proof, he writes down the three numbers q1, q2, q3. Next, he performs
either consistency test or PCP simulation test each with probability 1/2. In the consistency test,
the verifier chooses q ∈ {q1, q2, q3} each with probability 1/3, and sends q to the three provers. He
accepts if and only if the three answers coincide. In the PCP simulation test, he sends q1, q2, q3 to
the three different provers randomly. He interprets the answers from the provers as the q1th, q2th
and q3th bits in the proof, and accepts or rejects just as the PCP verifier would do.

The properties (a), (b) and (c) of Theorem 3.5.1 are obvious from the construction. This inter-
active proof system clearly achieves perfect completeness with honest provers answering the asked
bit in the proof, thus part (d) holds.

We proceed to part (e). Let x be an input string with |x| = n, and suppose that there exists a
strategy for the three unentangled provers to achieve the acceptance probability at least 1− ε(n)/8.
This strategy is accepted in each of the consistency test and the simulation test with probability
at least 1 − ε(n)/4. We may assume without loss of generality that the strategy is deterministic.
For 1 ≤ i ≤ 3 and q ∈ Q, let fi(q) be the answer given by the prover i when he/she is asked the
question q.

Let y = y1 · · · yN be a string consisting of the answers of the prover 1: yq = f1(q) for all q ∈ Q.
We prove that using y as PCP certificate makes the PCP verifier accept with probability at least 1−
ε(n). A question q ∈ Q is said to be good if f1(q) = f2(q) = f3(q), and bad otherwise. Suppose
the PCP verifier has chosen three questions q1, q2, q3 ∈ Q. If all the three questions are good and
the PCP verifier rejects, then the verifier in the constructed three-prover system must reject in the
simulation test in the same situation. However, this happens with probability at most ε(n)/4. On
the other hand, each of the three questions is good with probability at least 1−ε(n)/4, and therefore
at least one question is bad with probability at most 3ε(n)/4. Therefore, the PCP verifier can reject
at most ε(n)/4 + 3ε(n)/4 = ε(n).

By soundness property of the PCP system, this implies x ∈ L, and therefore our three-prover
system has soundness acceptance probability at most 1 − ε(n)/8. This proves part (e).

In the rest of this section, we will prove part (f), i.e. we will show that the soundness acceptance
probability of this interactive proof system with any commuting-operator provers is at most 1 −
(1/384)(1 − s(n))2 · 2−2r(n).

Our soundness analysis to prove Theorem 3.5.1 shows that for any commuting-operator strat-
egy with high acceptance probability, there exists a cheating proof string for the underlying PCP
system. The construction of the cheating proof string is similar to the construction of unentangled
strategy used in [25].

We note that without the consistency test, the entangled provers can sometimes cheat with cer-
tainty. An example is the well-known GHZ-game, which corresponds to an unsatisfiable boolean
formula f = (x1 ⊕ x3 ⊕ x5) ∧ (x1 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x6) ∧ (x2 ⊕ x4 ⊕ x5), where ⊕ denotes the
exclusive OR.
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3.5.2 Impossibility of perfect cheating
Before proceeding to the proof of Theorem 3.5.1, we first give a much simpler proof of the fact that
entangled or even commuting-operator provers cannot cheat with certainty in the interactive proof
system constructed in the previous subsection if x < L. Such impossibility of perfect cheating was
originally proved in a preliminary work by Sun, Yao and Preda [35] with a different proof. We
provide a simpler proof of this fact.

Assume that there exists a commuting-operator strategy for perfect cheating. We prove that
such a strategy essentially satisfies the condition stated in Lemma 3.3.1. Precisely speaking, we
define a “good” subspace H ′ of H containing the shared quantum state such that the restrictions
of the POVM operators toH ′ pairwise commute.

Let |Ψ〉 ∈ H be the state shared by the three provers, and M(i)
q = (M(i)

q,a)a∈{0,1} be the PVM
measured by prover i for question q. Because the strategy by the provers is accepted with certainty,
it must pass the consistency test in particular. This means that 〈Ψ|M(i)

q,0M(i′)
q,0 |Ψ〉+〈Ψ|M

(i)
q,1M(i′)

q,1 |Ψ〉 = 1
for i , i′ and all q ∈ Q, or equivalently,

M(1)
q,a|Ψ〉 = M(2)

q,a|Ψ〉 = M(3)
q,a|Ψ〉 (3.3)

for all q ∈ Q and a ∈ {0, 1}.
Let H ′ be the subspace of H spanned by vectors obtained from |Ψ〉 by applying zero or more

of M(i)
q,a for any times and in any order.

Claim 3.5.1. If |ϕ〉 ∈ H ′, then M(1)
q,a|ϕ〉 = M(2)

q,a|ϕ〉 = M(3)
q,a|ϕ〉.

Proof. The proof is by induction on the number k of operators applied to |Ψ〉 to obtain |ϕ〉.
The case of k = 0 is by assumption. If k > 0, then |ϕ〉 = M|ξ〉 with M ∈ {M(1)

q′,a′ ,M
(2)
q′,a′ ,M

(3)
q′,a′}

for some q′ and a′, and |ξ〉 is obtained by applying M(i)
q,a for k − 1 times to |Ψ〉. By the induction

hypothesis, |ϕ〉 = M(1)
q′,a′ |ξ〉 = M(2)

q′,a′ |ξ〉 = M(3)
q′,a′ |ξ〉. Therefore, M(1)

q,a|ϕ〉 = M(2)
q,a|ϕ〉 since M(1)

q,a|ϕ〉 =

M(1)
q,aM(3)

q′,a′ |ξ〉 = M(3)
q′,a′M

(1)
q,a|ξ〉 = M(3)

q′,a′M
(2)
q,a|ξ〉 = M(2)

q,aM(3)
q′,a′ |ξ〉 = M(2)

q,a|ϕ〉, here we use the fact that
M(i)

q,a and M(i′)
q′,a′ commute whenever i , i′. The equation M(2)

q,a|ϕ〉 = M(3)
q,a|ϕ〉 is proved similarly. �

Claim 3.5.2. The 6n projectors M(i)
q,a pairwise commute onH ′.

Proof. Let |ϕ〉 ∈ H ′. By Claim 3.5.1, M(1)
q,aM(1)

q′,a′ |ϕ〉 = M(1)
q,aM(3)

q′,a′ |ϕ〉 = M(3)
q′,a′M

(1)
q,a|ϕ〉 = M(3)

q′,a′M
(2)
q,a|ϕ〉 =

M(2)
q,aM(3)

q′,a′ |ϕ〉 = M(2)
q,aM(1)

q′,a′ |ϕ〉 = M(1)
q′,a′M

(2)
q,a|ϕ〉 = M(1)

q′,a′M
(1)
q,a|ϕ〉. The equations M(2)

q,aM(2)
q′,a′ |ϕ〉 =

M(2)
q′,a′M

(2)
q,a|ϕ〉 and M(3)

q,aM(3)
q′,a′ |ϕ〉 = M(3)

q′,a′M
(3)
q,a|ϕ〉 are proved similarly. �

Note that |Ψ〉 ∈ H ′ and thatH ′ is invariant under each M(i)
q,a. This means that we could useH ′

instead ofH in the first place. By Claim 3.5.2, these 6n operators are pairwise commuting Hermi-
tian operators when restricted to H ′. By Lemma 3.3.1, there exists a classical strategy achieving
the same acceptance probability 1, and therefore the original PCP is accepted with certainty. This
means that if x < L, the commuting-operator provers cannot achieve perfect cheating.
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Remark 3.5.1. A statement analogous to Claim 3.5.2 does not hold if there are only two provers.
For example, let |Ψ〉 = (|01〉 − |10〉)/

√
2 ∈ C2 ⊗ C2. Let M1,M2 be arbitrary Hermitian projectors

on C2 such that M1 and M2 do not commute, and let M(1)
q,1 = Mq⊗ I, M(2)

q,1 = I⊗ (I−Mq) for q = 1, 2.
Then M(1)

q,a|Ψ〉 = M(2)
q,a|Ψ〉 for q ∈ {1, 2} and a ∈ {0, 1} whereas M(1)

1,aM(1)
2,a′ |Ψ〉 , M(1)

2,a′M
(1)
1,a|Ψ〉.

3.5.3 Proof of part (f) of Theorem 3.5.1
In the case of imperfect cheating, the equalities in (3.3) hold only approximately, and we cannot
define a “good” subspace H ′ as in the case of perfect cheating. Instead, we will prove that an
approximate version of the equation (3.3) implies that measurementsM(i)

q are almost commuting
on the shared state |Ψ〉.

Kempe, Kobayashi, Matsumoto, Toner and Vidick [25] prove soundness of their classical three-
prover interactive proof system by comparing the behavior of the first and second provers in an
arbitrary entangled strategy to that in the strategy modified as follows: instead of measuring the
answer to the asked question, the two provers always measure the answers to all possible questions
and just send back the answer to the asked question. This modification makes the behavior classi-
cal. The key in their proof is that if the third prover answers consistently with high probability, the
measurements performed by the first and second provers do not disturb the reduced state shared
by them so much (Claim 20 in [24]), and the modification above does not decrease the acceptance
probability so much.

We will use a similar idea when constructing a proof string for the original PCP system, but
instead of the non-disturbance property, we use the fact that all the POVMs almost commute on
|Ψ〉. This modification of the proof technique seems necessary because taking partial trace is
meaningless in the commuting-operator model.

The following lemma is the key to bound the difference between two POVMs applied to states
other than |Ψ〉.

Lemma 3.5.4. Let ρ be a density matrix, andM = (Mi)v
i=1 and N = (Ni)v

i=1 be POVMs. Let

λ =
1
2

v∑
i=1

tr ρ(
√

Mi −
√

Ni)2 = 1 −
v∑

i=1

tr ρ
√

Mi
√

Ni +
√

Ni
√

Mi

2
,

∆ =

v∑
i=1

∥∥∥√
Miρ

√
Mi −

√
Niρ

√
Ni

∥∥∥
1
.

Then ∆ ≤ 2
√

2λ.
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Proof. Let Xi =
√

Mi and Yi =
√

Ni. We define linear operators U,V : H → H ⊗ Cv by

U : |ϕ〉 7→
v∑

i=1

Xi|ϕ〉 ⊗ |i〉,

V : |ϕ〉 7→
v∑

i=1

Yi|ϕ〉 ⊗ |i〉.

It is easy to check U∗U = V∗V = I. Using these operators, ∆ can be written as∆ = 2D(UρU∗,VρV∗).
First we prove the case where ρ is a pure state: ρ = |Ψ〉〈Ψ|. In this case,

∆2 = 4D(U |Ψ〉〈Ψ|U∗,V |Ψ〉〈Ψ|V∗)2 = 4(1 − |〈Ψ|U∗V |Ψ〉|2)
= 4(1 + |〈Ψ|U∗V |Ψ〉|)(1 − |〈Ψ|U∗V |Ψ〉|)
≤ 8(1 −<(〈Ψ|U∗V |Ψ〉))
= 8λ.

If ρ is a mixed state, decompose ρ to a convex combination of pure states: ρ =
∑n

j=1 p jρ j. Let

λ j =
1
2

v∑
i=1

tr ρ j(Xi − Yi)2,

∆ j =

v∑
i=1

‖Xiρ jXi − Yiρ jYi‖.

Then,

∆ ≤

n∑
j=1

p j∆ j ≤

n∑
j=1

p j · 2
√

2λ j ≤ 2
√

2λ. �

We fix an input x < L. Let Q ⊆ Z≥1 be the set of indices of the bits in a proof string which
are queried by the PCP verifier with nonzero probability, and N be the maximum of the elements
of Q. Note that |Q| ≤ 3 · 2r. Let π(q1, q2, q3) be the probability with which the PCP verifier reads
the q1th, q2th and q3th bits in the proof at the same time (

∑
q1,q2,q3∈Q π(q1, q2, q3) = 1). Without

loss of generality, we assume that π(q1, q2, q3) is symmetric and that π(q1, q2, q3) = 0 if q1, q2, q3

are not all distinct. For q1, q2, q3 ∈ Q and a1, a2, a3 ∈ {0, 1}, let V(a1, a2, a3 | q1, q2, q3) = 1 if
the PCP verifier accepts when he asks the q1th, q2th and q3th bits in the proof and receives the
corresponding answers a1, a2 and a3, and V(a1, a2, a3 | q1, q2, q3) = 0 otherwise. For q ∈ Q, let
πq =

∑
q2,q3∈Q π(q, q2, q3) =

∑
q1,q3∈Q π(q1, q, q3) =

∑
q1,q2∈Q π(q1, q2, q). For simplicity, we let πq = 0

for q < Q.
Consider an arbitrary commuting-operator strategy for the constructed three-prover one-round

interactive proof system, and let w be its acceptance probability. By Lemma 3.3.2, we can assume
that this strategy is symmetric without loss of generality. Let |Ψ〉 be the quantum state shared by
the provers. For 1 ≤ i ≤ 3 and q ∈ Q, let M(i)

q = (M(i)
q,0,M

(i)
q,1) be the PVM measured by the ith
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prover when asked the qth bit in the proof. For simplicity, we let M(i)
q,0 = I and M(i)

q,1 = 0 for q < Q.
Then, when asked the q1th, q2th and q3th bits in the proof, the provers answer a1, a2, a3 ∈ {0, 1}
with probability

Pcom(a1, a2, a3 | q1, q2, q3) =
∥∥∥M(1)

q1,a1
M(2)

q2,a2
M(3)

q3,a3
|Ψ〉

∥∥∥2
.

Because the strategy is symmetric, it holds that 〈Ψ|M(1)
q,aM(2)

q,a|Ψ〉 = 〈Ψ|M
(2)
q,aM(3)

q,a|Ψ〉 = 〈Ψ|M
(3)
q,aM(1)

q,a|Ψ〉.
Let

λq = 1 −
∑

a∈{0,1}

〈Ψ|M(1)
q,aM(2)

q,a|Ψ〉

= 1 −
∑

a∈{0,1}

〈Ψ|M(2)
q,aM(3)

q,a|Ψ〉

= 1 −
∑

a∈{0,1}

〈Ψ|M(3)
q,aM(1)

q,a|Ψ〉.

Note that λq = 0 for q < Q. Now we can write w as w = (wcons + wsim)/2, where

wcons =
∑
q∈Q

πq

(
Pcom(0, 0, 0 | q, q, q) + Pcom(1, 1, 1 | q, q, q)

)
=

∑
q∈Q

πq

(
〈Ψ|M(1)

q,0M(2)
q,0M(3)

q,0|Ψ〉 + 〈Ψ|M
(1)
q,1M(2)

q,1M(3)
q,1|Ψ〉

)
=

∑
q∈Q

πq

∑
a∈{0,1}(〈Ψ|M

(1)
q,aM(2)

q,a|Ψ〉 + 〈Ψ|M
(2)
q,aM(3)

q,a|Ψ〉 + 〈Ψ|M
(3)
q,aM(1)

q,a|Ψ〉) − 1
2

= 1 −
3
2

∑
q∈Q

πqλq,

wsim =
∑

q1,q2,q3∈Q

π(q1, q2, q3)
∑

a1,a2,a3∈{0,1}

Pcom(a1, a2, a3 | q1, q2, q3)V(a1, a2, a3 | q1, q2, q3).

Since πq ≥ 1/(3 · 2r) for all q ∈ Q, we have

wcons ≤ 1 −
1

2 · 2r

∑
q∈Q

λq. (3.4)

We construct a random proof string y = y1 · · · yN according to the probability distribution

Pr(y1, . . . , yN) =
∥∥∥∥M(i)

N,yN
· · ·M(i)

1,y1
|Ψ〉

∥∥∥∥2
.

Note that the value of the right-hand side does not depend on the choice of i because of the symme-
try. For distinct q1, q2, q3 ∈ Q and for a1, a2, a3 ∈ {0, 1}, the joint probability of the events yq1 = a1,
yq2 = a2, yq3 = a3 is given by

Pc(a1, a2, a3 | q1, q2, q3) =
∑

y∈{0,1}N
yq1=a1,yq2=a2,yq3=a3

Pr(y1, . . . , yN).
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By the soundness condition of the PCP system,∑
q1,q2,q3∈Q

π(q1, q2, q3)
∑

a1,a2,a3∈{0,1}

Pc(a1, a2, a3 | q1, q2, q3)V(a1, a2, a3 | q1, q2, q3) ≤ s.

We will prove that if wcons is large, then the difference between Pcom and Pc is not large and
therefore wsim is not much larger than s.

For a1, a2, a3 ∈ {0, 1} and distinct q1, q2, q3 ∈ Q, let

P′(a1, a2, a3 | q1, q2, q3) = ‖M(i)
q′1,a

′
1
M(i)

q′2,a
′
2
M(i)

q′3,a
′
3
|Ψ〉‖2,

where {(a′1, q
′
1), (a′2, q

′
2), (a′3, q

′
3)} = {(a1, q1), (a2, q2), (a3, q3)} and q′1 < q′2 < q′3. Again the value of

the right-hand side does not depend on the choice of i.

Claim 3.5.1. For distinct q1, q2, q3 ∈ Q,

∑
a1,a2,a3∈{0,1}

|Pc(a1, a2, a3 | q1, q2, q3) − P′(a1, a2, a3 | q1, q2, q3)| ≤
max{q1,q2,q3}∑

q=1

2
√

2λq.

Proof. We may assume without loss of generality that 1 ≤ q1 < q2 < q3 ≤ N. Let l = q3. We prove
the claim by hybrid argument. To do this, we shall define probability distributions p0, . . . , pl on
{0, 1}l such that p0 and pl are related to Pc and P′, respectively. For 1 ≤ q ≤ l, we define iq as iq = 1
if q ∈ {q1, q2, q3} and iq = 2 otherwise. Note that M(iq)

q,a commutes with M(3)
q′,a′ for all 1 ≤ q′ ≤ l and

a′ ∈ {0, 1} in either case.2 For 0 ≤ q ≤ l and y ∈ {0, 1}l, let

pq(y) = ‖M(i1)
1,y1

M(i2)
2,y2
· · ·M(iq)

q,yq M(3)
l,yl

M(3)
l−1,yl−1

· · ·M(3)
q+1,yq+1

|Ψ〉‖2.

For a1, a2, a3 ∈ {0, 1},∑
y∈{0,1}l

yq1=a1,yq2=a2,yq3=a3

p0(y) = Pc(a1, a2, a3 | q1, q2, q3),

∑
y∈{0,1}l

yq1=a1,yq2=a2,yq3=a3

pl(y) = ‖M(1)
q1,a1

M(1)
q2,a2

M(1)
q3,a3
|Ψ〉‖2 = P′(a1, a2, a3 | q1, q2, q3).

Let 1 ≤ q ≤ l. By Lemma 3.5.4, we have∑
yq∈{0,1}

∥∥∥M(3)
q,yq
|Ψ〉〈Ψ|M(3)

q,yq
− M(iq)

q,yq |Ψ〉〈Ψ|M
(iq)
q,yq

∥∥∥
1
≤ 2

√
2λq.

2This argument is the reason why we need three provers.
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Since the trace distance between two states is an upper bound on the statistical difference between
the probability distributions resulting from making the same measurement on the two states,∑
y∈{0,1}l

∣∣∣‖M(i1)
1,y1
· · ·M(iq−1)

q−1,yq−1
M(3)

l,yl
· · ·M(3)

q+1,yq+1
M(3)

q,yq
|Ψ〉‖2 − ‖M(i1)

1,y1
· · ·M(iq−1)

q−1,yq−1
M(3)

l,yl
· · ·M(3)

q+1,yq+1
M(iq)

q,yq |Ψ〉‖
2
∣∣∣ ≤ 2

√
2λq,

or equivalently, ∑
y∈{0,1}l

|pq−1(y) − pq(y)| ≤ 2
√

2λq.

Summing up this inequality for 1 ≤ q ≤ l, we obtain

∑
y∈{0,1}l

|p0(y) − pl(y)| ≤
l∑

q=1

2
√

2λq

by the triangle inequality, or equivalently,

∑
a1,a2,a3∈{0,1}

∑
y∈{0,1}l

yq1=a1,yq2=a2,yq3=a3

|p0(y) − pl(y)| ≤
l∑

q=1

2
√

2λq.

The claim follows by moving the summation over y inside the absolute value by using the triangle
inequality. �

Claim 3.5.2. For distinct q1, q2, q3 ∈ Q,3∑
a1,a2,a3∈{0,1}

|P′(a1, a2, a3 | q1, q2, q3) − Pcom(a1, a2, a3 | q1, q2, q3)| ≤ 2
√

2λq1 + 2
√

2λq2 + 2
√

2λq3 .

Proof. If q1 < q2 < q3, sum up the two inequalities∑
a1,a2,a3∈{0,1}

∣∣∣‖M(1)
q1,a1

M(1)
q2,a2

M(1)
q3,a3
|Ψ〉‖2 − ‖M(1)

q1,a1
M(1)

q2,a2
M(3)

q3,a3
|Ψ〉‖2

∣∣∣ ≤ 2
√

2λq3 ,∑
a1,a2,a3∈{0,1}

∣∣∣‖M(3)
q3,a3

M(1)
q1,a1

M(1)
q2,a2
|Ψ〉‖2 − ‖M(3)

q3,a3
M(1)

q1,a1
M(2)

q2,a2
|Ψ〉‖2

∣∣∣ ≤ 2
√

2λq2 ,

each of which follows from Lemma 3.5.4, and use the triangle inequality. The other cases are
proved similarly, where we use P′(a1, a2, a3 | q1, q2, q3) = ‖M(i)

q1,a1 M(i)
q2,a2 M(i)

q3,a3 |Ψ〉‖
2 with i such that

qi is the smallest in q1, q2, q3. �

3Actually, we can omit the term 2
√

2λqi from the right-hand side of the inequality, where qi = min{q1, q2, q3}.
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By Claims 3.5.1 and 3.5.2, for any distinct q1, q2, q3 ∈ Q,∑
a1,a2,a3∈{0,1}

|Pc(a1, a2, a3 | q1, q2, q3) − Pcom(a1, a2, a3 | q1, q2, q3)|

≤ 2
√

2λq1 + 2
√

2λq2 + 2
√

2λq3 +

max{q1,q2,q3}∑
q=1

2
√

2λq

≤ 4
√

2
∑
q∈Q

√
λq.

Therefore,

|wsim − s| ≤ 4
√

2
∑
q∈Q

√
λq ≤ 4

√
2
√
|Q|

∑
q∈Q

λq ≤ 4
√

2
√

2 · 2r|Q|(1 − wcons) ≤ 8
√

3 · 2r
√

1 − wcons,

where the third inequality follows from the inequality (3.4) and the last inequality follows from the
fact |Q| ≤ 3 · 2r. This implies4

8
√

6 · 2r
√

1 − w = 8
√

3 · 2r
√

(1 − wsim) + (1 − wcons) ≥ 1 − wsim + 8
√

3 · 2r
√

1 − wcons ≥ 1 − s,

or equivalently 1 − w ≥ (1/384)(1 − s)2 · 2−2r.

3.5.4 The two-prover case
Finally, the result by Cleve, Høyer, Toner and Watrous [13] essentially implies that it is efficiently
decidable whether the entangled value of a given two-player one-round binary-answer game is
equal to one or not.

Theorem 3.5.5. (i) Given a classical two-player one-round binary-answer game with entangled
players, the problem of deciding whether the value of the game is equal to one or not is in P.

(ii) Only languages in EXP have two-prover one-round binary interactive proof systems with
entangled provers of perfect completeness and soundness acceptance probability 1 − 2−poly.

Proof. (i) For a two-player one-round binary-answer game G, wq(G) = 1 if and only if wc(G) =
1 [13, Theorem 5.12]. Therefore, the problem of deciding whether wq(G) = 1 or not is
equivalent to a problem of deciding whether wc(G) = 1 or not. Since G is two-player and
binary-answer, testing whether wc(G) = 1 or not can be cast as an instance of the 2SAT
problem, and it is solvable in time polynomial in the number of questions.

(ii) This part follows from (i) since any classical two-prover one-round binary interactive proof
system with entangled provers involves at most exponentially many questions. �

4The first inequality is shown as follows. Let c = 8
√

3 · 2r, t = 1 − wsim, u =
√

1 − wcons. Then 8
√

6 · 2r
√

1 − w =
c
√

t + u2. Since c ≥ 8
√

3, it follows that c2(t + u2)− (t + cu)2 = c2t − t2 − 2ctu ≥ t(c2 − t − 2c) ≥ t(c2 − 1− 2c) ≥ 0, or
c
√

t + u2 ≥ t + cu = 1 − wsim + 8
√

3 · 2r √1 − wcons.
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Chapter 4

General Non-Local Correlations

4.1 Motivation
Entanglement, superposition and negative amplitudes are three fundamental properties of quantum
mechanics and quantum computation. The relation of superposition and negative amplitudes to
computation can be studied in the context of quantum algorithms - this is the “intuition” behind
the fact that some quantum algorithms outperform the classical ones. Entanglement, on the other
hand, is best studied not only in a strictly quantum mechanical framework (e.g. state teleportation,
no-cloning theorem, etc), but also in communication.

The communication model we will study is that of multiprover interactive proofs and games.
These proof systems have many connections with other areas in theoretical computer science, like
inapproximability / hardness of approximation results, probabilistic checkable proofs, cryptogra-
phy, etc.

The class MIP (multiprover interactive proofs) is defined as the set of all languages that can
be decided by a polynomial time verifier by interacting with several computationally unbounded
provers that do not communicate with each other. Informally, the goal of the provers is to convince
the verifier that a string has a certain property. They should succeed when the string indeed has the
property, and fail otherwise.

Because the intuition behind MIP is to bound the power of the verifier and not that of the
provers, the latter may be allowed to share quantum entanglement. The verifier and its communi-
cation with the provers remain classical, but now the provers can use the entanglement to obtain
stronger-than-classical correlations. There are several reasons to study entanglement and interac-
tive proof together. First, it may give new insights regarding the power of entanglement. Second,
quantum arguments have begun to play a significant role in proving classical complexity results.
From this point of view, we also hope to get a better understanding of MIP and its connections to
other areas.
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4.2 Introduction
It has been shown by Babai et al [2] that any language in NEXP has a two-prover interactive proof
system. This result has been improved by Feige and Lovasz [16] by showing that a language is
in NEXP if and only if it has a two-prover, one round interactive proof with perfect completeness
and exponentially small soundness error. Recently, Cleve et all [11] showed that NEXP is equal to
MIP with two provers, one round, one-bit answers, the verifier only looks at the XOR of these bits,
and some specific values of the correctness and soundness error (call this class ⊕MIP[2](c, s))

The only known result when one allows quantum correlations between the provers is that of
Wehner [43] that ⊕MIP[2](c, s) with quantum correlations is included in QIP(2) ∈ EXP for any
choice of c and s.

Another interesting question is to allow the provers to have access to arbitrary non-local cor-
relations. The only constraint is non-communication among the provers, i.e. for any prover, the
distribution of its answer to a given question is independent on the questions sent to the other
provers. This model has been introduced by Popescu and Rohrlich [34] and further studied by Bar-
rett et all [4]. Although there is no physical implementation of this model so far, the question that
arises is: Is there any reason why these correlations haven’t been observed in nature? One way to
answer this question is to see what would happen from a computational or information-theoretical
point of view if these “perfect” correlations existed. Buhrman and Massar [8] showed that if these
correlations can be realized using quantum operations, then they lead to super-luminal communi-
cation. They conjecture that reversibility might be one of the reasons that stronger-than-quantum
correlations do not exist.

4.3 Total Non-Local Correlations
We will show that if we allow the provers to share arbitrary non-local correlations, ⊕MIP =
PS PACE (MIP with the verifier looking at the bitwise XOR of the provers’ answers), and in
particular ⊕MIP[2](c, s) is contained in AM. The idea is similar to the one used by van Dam [42]
to show that the communication complexity of any two-party boolean function is 1 bit if total
non-local correlations are allowed.

Definition 4.3.1. Consider n parties with inputs xi and outputs yi. We say that these parties have
access to total non-local correlations if for any i, Pr[yi = a] depends only on xi for all allowed
values of a.

Basic non-local box: There is a non-local box that on inputs x and y outputs a and b such that
a ⊕ b = xy

Consider two parties Alice and Bob, who receive x1 and x2 respectively. The goal is to output y1

and y2 such that y1 ⊕ y2 = x1x2, using no communication. Classically (i.e. with share randomness),
Pr[y1 ⊕ y2 = x1x2] ≤ 3/4. However, theoretically this relationship can hold with probability
1: if input x1x2 ∈ {00, 01, 10}, the output is 00 or 11 with equal probability. If the input is 11,
the output is 01 or 10 with equal probability. It is easy to see that this distribution satisfies the



CHAPTER 4. GENERAL NON-LOCAL CORRELATIONS 50

no-communication requirement (the probability of each individual output depends only on the
corresponding input - the probability that each output bit is 0 is constant 1/2)

Claim 4.3.1. Any Boolean function f of n variables can be written as the XOR of (product) mono-
mials, each appearing with coefficient 1 or 0

Proof. By induction. It is true for any function on 1 variable. Suppose it is true for all functions
on n − 1 variables. Any Boolean function on n variables can be written as: f (x1, x2, ..., xn) =
xng(x1, ..., xn−1) ⊕ (1 ⊕ xn)h(x1, ..., xn−1) = h ⊕ xn( f ⊕ h)

h is an XOR of monomials all with coefficients 0 or 1 (by induction hypothesis), f ⊕h is another
Boolean function on n − 1 variables and hence also an XOR of monomials all with coefficients 0
or 1. �

Claim 4.3.2. Using the basic non-local box that on input x, y outputs a, b such that a ⊕ b = xy, we
can construct a (non-local) box that on input x1, ..., xn outputs a1, ..., an such that a1⊕...⊕an = x1...xn

Proof. By induction: suppose it’s true for n − 1 variables, add another one. So we have a1 ⊕ ... ⊕
an−1 = x1...xn−1 This means that x1...xn = a1xn ⊕ ... ⊕ an−1xn = a′1 ⊕ an,1 ⊕ ... ⊕ a′n−1 ⊕ an,n−1 =

a′1 ⊕ ...⊕ an−1 ⊕ an In the last step we used the non-local box on inputs a1 and xn, etc up to an−1 and
xn and then group variables together. �

Claim 4.3.3. A set of n machines (provers) that don’t communicate but have access to full non-
local correlations, on input q1, ..., qn can output bits b1, ..., bn such that b1 ⊕ ... ⊕ bn can define any
Boolean function on q1, ...qn

Proof. Using Claims 2&3 above, each prover can obtain sets a1...ak for each monomial, then each
prover XORs its a’s and outputs the answer. �

Definition 4.3.2. • Let MIP be the class of languages such that ∃ polynomial time verifier V
such that: x ∈ L then ∃ prover P such that Pr[V(x, P)accepts] ≥ c; x < L then ∀ provers P
Pr[V(x, P)accepts] ≤ s

• Let ⊕MIP be a class similar to MIP, except that the verifier V⊕ doesn’t look at individual
prover answers in a given round, but only at the bit-wise XOR (assume all answers have the
same length)

• Let MIPNL be equal to MIP when provers share total non-local correlations

Theorem 4.3.3. For any verifier V⊕ and any k-round protocol involving n communicating provers
PCOMM, there is a set of non-local provers PNL such that the acceptance probability is the same.

Proof. We’ll prove that there is a set PNL that for each given questions q1...qn to the provers, give
the same behavior of the verifier.

Consider the (V⊕, PCOMM) protocol. At each round, the provers return the answers r1...rn. Let
b1...bl be the bit-wise XOR of these answers (the only thing that counts from the point of view of
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the verifier) (l = length of provers’ answers). Each bi is a Boolean function of the questions asked
so far to all provers, and hence can be simulated by a set of non-local provers. So, there is a set of
non-local provers that can create the same b1...bl and that would make the verifier accept with the
same probability. �

Theorem 4.3.4. ⊕MIPCOMM = ⊕MIPNL

Proof. L ∈ ⊕MIPCOMM iff ∃V⊕ such that:

• x ∈ L => ∃PCOMM
i such that Pr[(V⊕, PCOMM

i ) acc.] ≥ c

• x < L => ∀PCOMM
i Pr[(V⊕, PCOMM

i ) acc.] ≤ s

L ∈ ⊕MIPNL iff ∃V ′⊕ such that:

• x ∈ L => ∃PNL
i such that Pr[(V ′⊕, P

NL
i ) acc.] ≥ c

• x < L => ∀PNL
i Pr[(V ′⊕, P

NL
i ) acc.] ≤ s

“ =>′′: Let V ′⊕ = V⊕
Let x ∈ L ∈ ⊕MIPCOMM Then ∃PCOMM

i such that Pr[(V⊕, PCOMM
i ) acc.] ≥ c. Using Theorem 5,

we obtain that ∃PNL
i such that Pr[(V⊕, PNL

i ) acc.] ≥ c
Let x < L ∈ ⊕MIPCOMM Then ∀PCOMM

i Pr[(V⊕, PCOMM
i ) acc.] ≤ s => ∀PNL

i Pr[(V⊕, PNL
i ) acc.]

≤ s
“ <=′′: Let V ′⊕ = V⊕
Let x ∈ L ∈ ⊕MIPNL Then ∃PNL

i such that Pr[(V⊕, PNL
i ) acc.] ≥ c => ∃PCOMM

i such that
Pr[(V⊕, PCOMM

i ) acc.] ≥ c
Let x < L ∈ ⊕MIPNL Then ∀PNL

i Pr[(V⊕, PNL
i ) acc.] ≤ s Suppose ∃PCOMM

i such that Pr[(V⊕, PCOMM
i )

acc.] > s Using Theorem 5, we obtain that ∃PNL
i such that Pr[(V⊕, PNL

i ) acc.] > s, contradiction.
So, ∀PCOMM

i Pr[(V⊕, PCOMM
i ) acc.] ≤ s �

Theorem 4.3.5. IP = ⊕MIPCOMM

Proof. L ∈ IP iff ∃V such that:

• if x ∈ L then ∃P such that Pr[(V, P) acc] ≥ c

• if x < L, then ∀P, Pr[(V, P) acc] ≤ s

′′ =>′′ Let V ′ the ⊕MIPCOMM verifier be such that it behaves exactly like the IP verifier, except
it sends the question to prover 1 and a fixed question to all the others.

Let x ∈ L ∈ IP Then ∃P such that Pr[(V, P) acc] ≥ c. Let PCOMM
1 = P and all other PCOMM

i just
return Ol Then Pr[(V ′, PCOMM

i ) acc] ≥ c.
Let x < L ∈ IP Then, ∀P, Pr[(V, P) acc]≤ s Suppose there is a set PCOMM

i such that Pr[(V ′, PCOMM
i )

acc] ≥ s We could build a P that behaves the same way, contradiction.
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“ <=′′ Let V ′ the IP verifier be such that it is identical to the ⊕MIPCOMM verifier after it
computes the XOR of the provers’ answers (and asks all questions to the only prover)

Let x ∈ L ∈ ⊕MIPCOMM Then ∃PCOMM
i such that Pr[(V, PCOMM

i ) acc.] ≥ c. Let P simulate the
behavior of PCOMM

i ’s and then take the XOR. We have: Pr[(V ′, P) acc] ≥ c
Let x < L ∈ ⊕MIPCOMM Then ∀PCOMM

i Pr[(V, PCOMM
i ) acc.] ≤ s Suppose ∃P such that

Pr[(V ′, P) acc] ≥ s. But P could be simulated by PCOMM
i , contradiction. �

Corollary 4.3.6. ⊕MIPNL = IP and ⊕2IPNL = AM

Corollary 4.3.7. There exists a class A such that classically A = NEXP but if total non-local
correlations are allowed, ANL ⊆ AM

Proof. Let A = ⊕MIP[2](12/16, 11/16 + ε) It has been proved by Cleve et al [3] that this class
(with classical correlations, one-bit answers) equals MIP = NEXP. From the discussion above, it
results that this class with totally non-local correlations is contained in AM. �

The above results are valid for specific subclasses of MIPNL when the verifier only looks at the
XOR of bits. Because the basic non-local transformation we use has this XOR property, we might
ask what happens in the general case. We show that MIPNL is unlikely to be equal to NEXP

Theorem 4.3.8. MIPNL ∈ EXP

Proof. Let L ∈ MIPNL and a verifier that decides it. Then, if r ∈ L, there is a set of provers such
that the verifier accepts with probability at least c; if r < L, then for any set of provers, the verifier
accepts with probability at most s.

Let x represent questions of the verifier, and y answers of the provers (assume n provers, k
rounds). Let q(x|y) be the distribution of the verifier’s questions (can be computed efficiently by a
polynomial time machine). Let a(y|x) the the distribution of the provers’ answers. The acceptance
probability of the verifier is:

S =
∑
x,y

q(x|y)a(y|x)Pr[Vaccepts|x, y] (4.1)

The goal of the provers is to maximize the acceptance probability of the verifier, so in order to
simulate the behavior of the provers we have to be able to approximate maxa(y|x) S and decide if it’s
greater than c or less than s.

We can think of x as x = x11...x1n...x21...x2n...xk1...xkn, where xi j is the question sent to prover j
in round i (and we can write y similarly)

The non-local conditions can be written as: for any answer yi j of the provers, its distribution
depends only on xi′ j, with i′ ≤ i (the questions sent to the same prover in the previous rounds).
Mathematically, this can be written as:

∀i j : f ix x1 j...xi j, yi j then
∑

y

a(y|x) = same ∀x (4.2)
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Normalization conditions: for any input, the probability of obtaining an output is 1.

f ix x then
∑

y

a(y|x) = 1 (4.3)

We can think of approximating the acceptance probability of the verifier as the solution to the
system:

max
a(y|x)

∑
x,y

q(x|y)a(y|x)Pr[Vaccepts|x, y] (4.4)

∀i j : f ix x1 j...xi j, yi j then
∑

y

a(y|x) = same ∀x (4.5)

∀x
∑

y

a(y|x) = 1 (4.6)

This is a linear program in variables a(y|x) that can be solved in time polynomial in the number
of variables and hence exponential in the input size (we only need an approximation of the optimum
within an additive factor of (c − s)/2)

�

4.4 Quantum correlations
Quantum correlations (entanglement) are a proper subset of the total non-local correlations. It can
be proved that, in the case of Alice and Bob game we introduced in the previous section, the best
they can do using entanglement is approx. 0.857, whereas with total non-locality the probability is
1. This makes the proof above fail.

However, if we allow promise problems, then it turns out that there is a correlation that is
satisfied with probability 1 quantumly, but with probability less than 1 classically. Mathematically,
this reduces to:

Claim 4.4.1. We have a quantum non-signaling (no communication) box that on inputs x, y, and
x ⊕ y returns a, b, and c such that a ⊕ b ⊕ c = xy ⊕ x ⊕ y

Proof. Consider the GHZ state (|000 > +|111 >)/
√

2 We have three parties, Alice, Bob, and Carol,
each one receiving one bit and outputting another one. If the input bit is 0, they measure in the
X basis, and if the input bit is 1 they measure in the Y basis. If the result is along +X (+Y) they
output 0, otherwise (along -X/-Y) they output 1.

We only have four possible inputs: 000, 011, 101, 110. It’s easy to see that for 000 the XOR of
the output bits is 0, whereas for the other possible inputs, the XOR of the output bits is 1, which is
exactly xy ⊕ x ⊕ y �
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Claim 4.4.2. If we have a non-signaling box that on inputs x, y, and x ⊕ y returns a, b, and c such
that a ⊕ b ⊕ c = xy ⊕ x ⊕ y, we can construct a non-signaling box such that a′ ⊕ b′ ⊕ c′ = xy

Proof. Let a′ = a ⊕ x, b′ = b ⊕ y, c′ = c �

Claim 4.4.3. A set of 2+k machines (provers) that don’t communicate but have access to quantum
non-local correlations, on input q1, q2, π1, ...πk can output bits b1, ..., b2+k such that b1 ⊕ ...b2+k can
define any Boolean function f on q1, q2 (k is the number of monomials in f that depend on both
q1 and q2) Here, π represents the XOR of the two products of variables that come from the two
questions qi in a given monomial (e.g. for monomial x1y1y2, the corresponding π is x1 ⊕ y1y2)

Proof. Using Claims 2&13 above, each prover can obtain sets ai for each monomial, then each
prover XORs its a’s and outputs the answer. �

Definition 4.4.1. Let ⊕MIP[2] be a class similar to MIP[2], except that the verifier doesn’t look at
individual prover answers in a given round, but only at the bit-wise XOR (and moreover, answers
are one-bit long)

Definition 4.4.2. Let ⊕GHMIP[2] be similar to ⊕MIP[2] except that we have a governor G and
helpers H j. The communication with the provers is the same. The verifier sends all questions to the
governor which in turns sends to each helper a π j as defined above (the XOR of the two products
of variables that come from the two questions qi in a given monomial) Each helper returns a bit,
then the governor takes the XOR of those bits and returns the answer to the verifier, which takes
the XOR of this bit and the provers’ answers. Please note that the behavior of the governor is fixed.

Theorem 4.4.3. For any verifier V⊕ and any 1-round protocol involving 2 communicating provers
PCOMM

i , there is a set of quantum non-local provers PQ
i such that the acceptance probability is the

same.

Proof. We’ll prove that there is a set PQ
i that for each given questions q1...qn to the provers, give

the same behavior of the verifier.
Consider the (V⊕, PCOMM

i ) protocol. The provers return the answers r1, r2 that maximize the
acceptance probability of the verifier. Let b be the bit-wise XOR of these answers (the only thing
that counts from the point of view of the verifier) b is a Boolean function of the questions, and
hence simulated by a set of quantum non-local provers + governor + helpers (as per Claim 14).
So, there is a set of quantum non-local provers that can create the same b and that would make the
verifier accept with the same probability. �

Theorem 4.4.4. ⊕MIP[2]COMM = ⊕GHMIP[2]Q

Proof. L ∈ ⊕MIP[2]COMM iff ∃V⊕ such that:

• x ∈ L => ∃PCOMM
i such that Pr[(V⊕, PCOMM

i ) acc.] ≥ c

• x < L => ∀PCOMM
i Pr[(V⊕, PCOMM

i ) acc.] ≤ s
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L ∈ ⊕GHMIP[2]Q iff ∃V ′⊕ such that:

• x ∈ L => ∃PQ
i such that Pr[(V ′⊕, P

Q
i ) acc.] ≥ c

• x < L => ∀PQ
i Pr[(V ′⊕, P

Q
i ) acc.] ≤ s

“ =>′′: Let V ′⊕ = V⊕
Let x ∈ L ∈ ⊕MIP[2]COMM Then ∃PCOMM

i such that Pr[(V⊕, PCOMM
i ) acc.] ≥ c. Using Theorem

17, we obtain that ∃PQ
i such that Pr[(V⊕, P

Q
i ) acc.] ≥ c

Let x < L ∈ ⊕MIP[2]COMM Then ∀PCOMM
i Pr[(V⊕, PCOMM

i ) acc.] ≤ s => ∀PQ
i Pr[(V⊕, P

Q
i ) acc.]

≤ s
“ <=′′: Let V ′⊕ = V⊕
Let x ∈ L ∈ ⊕GHMIP[2]Q Then ∃PQ

i such that Pr[(V⊕, P
Q
i ) acc.] ≥ c => ∃PCOMM

i such that
Pr[(V⊕, PCOMM

i ) acc.] ≥ c
Let x < L ∈ ⊕GHMIP[2]Q Then ∀PQ

i Pr[(V⊕, P
Q
i ) acc.] ≤ s Suppose ∃PCOMM

i such that
Pr[(V⊕, PCOMM

i ) acc.] > s Using Theorem 17, we obtain that ∃PQ
i such that Pr[(V⊕, P

Q
i ) acc.] > s,

contradiction. So, ∀PCOMM
i Pr[(V⊕, PCOMM

i ) acc.] ≤ s �

Theorem 4.4.5. ⊕MIP[2]COMM ⊆ AM

Proof. L ∈ AM iff ∃V (using just one round) such that:

• if x ∈ L then ∃P such that Pr[(V, P) acc] ≥ c

• if x < L, then ∀P, Pr[(V, P) acc] ≤ s

Let V ′ the AM verifier be such that it is identical to the ⊕MIP[2]COMM verifier after it computes
the XOR of the provers’ answers (and asks all questions to the only prover)

Let x ∈ L ∈ ⊕MIP[2]COMM Then ∃PCOMM
i such that Pr[(V, PCOMM

i ) acc.] ≥ c. Let P simulate
the behavior of PCOMM

i We have: Pr[(V ′, P) acc] ≥ c
Let x < L ∈ ⊕MIP[2]COMM Then ∀PCOMM

i Pr[(V, PCOMM
i ) acc.] ≤ s Suppose ∃P such that

Pr[(V ′, P) acc] ≥ s. But P could be simulated by PCOMM
i , contradiction. �

Corollary 4.4.6. ⊕GHMIP[2]Q ⊆ AM

Theorem 4.4.7. ⊕GHMIP[2] = ⊕MIP[2]

Proof. Clearly, any ⊕MIP[2] protocol can be simulated by a ⊕GHMIP[2] machine with the same
acceptance probability. We only have to prove the converse. Each of the helper’s answers is a
(linear) function of p1 + p2, where p1 is a product of variables from q1 and p2 is a product of
variables from q2 (q represent the questions to the provers). The governor’s answer is the XOR of
the helpers’ answers, hence also a (linear) function in p1i and p2i. Now, because the verifier only
looks at the XOR of the provers’ and governor’s answers, we can define a new set of provers that
XORs the corresponding linear part that depends on p1i (from prover 1) and p2i (from prover 2)
respectively to its answer - and not use the governor and helpers anymore. Hence, any ⊕GHMIP[2]
protocol can be simulated by a ⊕MIP[2] protocol with the same acceptance probability �
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Corollary 4.4.8. There exists a class A such that AC = NEXP and AQ ⊆ AM

Proof. Let A = ⊕GHMIP[2](12/16, 11/16 + ε) This class (with classical correlations, one-bit
answers) equals ⊕MIP[2](12/16, 11/16+ ε) which (proved by Cleve et al) equals MIPC = NEXP.
From the discussion above, it results that this class with quantum correlations is in AM. �

We can modify the behavior of the governor such that a claim similar to Claim 3 would hold
in the quantum case. In that case, the resulting class would be equal to PSPACE, while the same
class with no correlations would be equal to NEXP. We must emphasize again that all these classes
are artificial constructions and the governor has a fixed behavior.
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Chapter 5

Conclusions

In this study we presented several results that bring out different aspects of correlations natu-
rally arising (quantum) or theoretically possible (general non-local) among two or more parties. In
particular, we looked at several interactive games and proof systems (Magic Square, 3SAT, MIP
and MIP variants) and showed that under different protocols, correlations can weaken them in
various degrees.

We first focused our attention on two particular games: Magic Square, and 3SAT. For both
games, drawing on the monogamy of entanglement principle, we showed that by adding an extra
prover, no cheating strategies are allowed. We then generalized the results for Magic Square and
3SAT by looking at non-commuting provers, a superset of entangled provers (communication is al-
lowed, but operators applied by different provers must commute). Using this method, we obtained
a generalized Tsirelson inequality that we applied to the Magic Square. Hence, we were able to
give provably optimal strategies for the general Magic Square with n players. We also recovered a
similar result for 3SAT as with entangled provers, and we also improved on it by showing that the
gap is inverse exponential in the input size.

We then argued that general non-local correlations lead to several class collapses: classes that
are strong when classical correlations are allowed, become weak when provers have access to
general non-local correlations. In particular, there are classes that classically are equal to NEXP,
but collapse to AM once such correlations are allowed. We also showed that MIP where the
verifier only looks at the XOR of the answers collapses to PSPACE. By writing general non-local
correlations as linear constraints, MIP collapses to EXP under such correlations (vs being equal to
NEXP classically). Finally, we presented an artificial MIP-like class built on a promise problem,
that classically is equal to NEXP, but that also collapses to AM when quantum correlations are
present.

We would like to have a better understanding of the power of the interactive proofs under differ-
ent types of correlations. In particular, we would like to have matching upper and lower bounds for
MIP. Recent work by Ito [20] showed that MIP with general non-local correlations with 2 provers,
one round is contained in PSPACE. Combining this result with work by Ito, Kobayashi and Mat-
sumoto [21] exactly characterizes MIP with non-local correlations with 2 provers, one round as
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equal to PSPACE. An open question is whether this equality holds if we add more provers or
increase the number of rounds. In the case of quantum correlations, we know that if the amount
of entanglement is limited, then quantum correlations don’t help [28], and that in the particular
case of XOR games the quantum-to-classical gap is small [13]. Although we know that by adding
extra provers they cannot cheat perfectly, it would be interesting to find more general classes of
interactive games for which the quantum-to-classical gap is small, in addition to XOR games.

Another direction of interesting research is trying to understand the gap between quantum and
general non-local correlations. In a sense, we would like to know what makes a correlation general,
and whether there is something particularly interesting about how much we can simulate PR boxes
with different types of correlations. Brassard et all [7] showed that using amplification, PR boxes
that have a 0.908 or better reliability can be used to simulate a box with almost perfect reliability.
We also know that quantum PR boxes have a 0.854 reliability, and hence cannot simulate perfect
PR boxes. It would be interesting to bridge the gap between quantum and the PR boxes that can
simulate perfect correlations.

Answers to some of those questions would help us better understand not only various protocols
used in interactive games, but also the nature and power of correlations naturally arising in quantum
mechanics.
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