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ABSTRACT OF THE DISSERTATION

Sparsity-Inducing Methods in Imaging Sciences
and Partial Differential Equations

by

Giang Thi Tra Tran
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2015
Professor Stanley J. Osher, Chair

Sparsity has played a central role in many fields of applied mathematics such as
signal processing, image processing, compressed sensing, and optimization. Theo-
retically, sparse solutions are of interested in these fields because they can be recov-
ered exactly from ill-posed inverse problems. Numerically, methods for computing
sparse solutions have fast and efficient implementations, making them extremely
practical. In terms of modeling, sparsity is promoted through the addition of an L*
norm (or related quantity) as a constraint or penalty in a variational model. This
methodology is also related to various properties of solutions of partial differential
equations (PDEs) including compact support sets for free boundary problems and
sparse representation of the solution space. Recently, sparsity-inducing methods
used in image processing and compressed sensing have been applied to computa-

tional PDEs and applied harmonic analysis.

Part T of the thesis focuses on the construction of efficient numerical schemes
for PDEs with sparse structures. From the early theoretical work on variational
inequalities, it was showed that PDEs with L! subdifferential terms have unique
solutions with compact supports which can be considered to be sparse in the dis-
crete sense. We considered an elliptic PDE derived from a variational principle

or a parabolic PDE associated with the gradient flow of a convex functional. In
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order to compute the solutions, fast computational schemes were introduced to
solve the resulting minimization problem. Those methods can handle the multi-
valued nature of the sub-gradient d||u||z1, which involve the proximal operator of
the L' term. Although these methods are popular in imaging and data science,

their applications in PDEs are limited.

The L'-based methodology was also introduced to elliptic obstacle problems
and related free boundary problems such as Hele-Shaw flow, two-phase membrane,
and divisible sandpile. Our numerical methods are based on a reformulation of
those PDEs in terms of L!-like penalties on the associated variational problems.
One advantage of the proposed methods is that the free boundary inherent in the
obstacle problem arises naturally in the energy minimization without any need for
problem specific or complicated discretization. Moreover, the numerical solution

can be computed using fast and simple algorithms.

Part II of the thesis focuses on data decomposition methods to extract im-
portant features or recover the intrinsic properties from the original data. From
the variational approaches, a unifying retinex framework was developed to de-
compose an image into two components with certain sparsity and fidelity priors.
The unified formulation connects many retinex implementations into one model.
Moreover, new retinex applications were introduced within a single framework
which includes shadow detection, cartoon-texture decomposition, nonuniform il-

lumination correction and color contrast enhancement.
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Part I

Partial Differential Equations

with Sparse Structures



CHAPTER 1

Introduction to PDEs with Sparse Structures

Sparsity has played a central role in recent developments in fields such as imaging
science, data analysis and optimization. Examples include compressed sensing
(32, 42], phase retrieval [30], robust principal component analysis [31, 41, 126], as
well as many others. A key step in these examples is the use of an L'-norm (or

related quantity) as a constraint or penalty term in a variational formulation.

The use of sparse techniques in physical sciences and partial differential equa-
tions (PDEs) has been studied recently. For example, in [134, 97], L'-regularized
least squares were used to sparsely approximate the Fourier coefficients of the
multiscale oscillatory solutions. In [109, 118, 119], new sets of spatially localized
orthonormal functions were introduced to solve problems in quantum mechan-
ics. Sparse solutions with respect to low-rank libraries are used in modeling and

approximating dynamical systems, see for example [24].

Motivated by these works and by the early theoretical framework established
in multivalued PDEs [20, 21, 22, 23|, we investigated PDEs with L' subdifferen-
tial terms. We considered elliptic PDEs coming from a variational principle or
parabolic PDEs coming from a gradient flow of a convex functional. Our starting

point is the convex functional:
1
B(w) = [ 5(Vu) M(Tu) ~uf +uldz, (1.1)

where v > 0, M = M(z) is a symmetric, positive definite matrix as a function
of x, and f = f(x) or f = f(z,t) will be a specified function depending on z or
(x,t). Define the partial differential operator Au = —V - (MVu). Minimization



of E(u) for f = f(z) leads to the following elliptic PDE

Au = f —p(u), (1.2)

and gradient descent d,u = —0, F(u), starting from initial data g(x), leads to the
following parabolic PDE
up + Au = f —yp(u)
u(z,0) = g(z),

in which p(u) is a subgradient of ||ul|z1, i-e., [|v]|1 > ||u|l1 + (v — u, p(u)), for any

(1.3)

u and v, where (,) denotes the (L', L>) pairing.

In either case, the L' term in the convex functional leads to a subgradient
term in the PDE. Fortunately, the subgradient term has a simple explicit form, so
that the PDEs are amenable to analysis and computation. Moreover, by adding
the subdifferential of L! to some typical PDEs, such as the heat equation and the
graph diffusion, it can be shown that the solutions are compactly supported [22].
In addition, we have shown several theoretically insights on the behavior of the
solutions, such as L!-contraction, total variation diminishing, entropy condition,
regularity and estimation of the support size. We also demonstrated that the
subdifferential term can be related to some physical equations, such as divisible
sandpile and signum-Gordon. Those properties are discussed at the beginning of

Chapter 2.

Our main focus in Chapter 2 is to present fast computational schemes for these
modified PDEs, where we apply the proximal gradient and Douglas-Rachford
splitting algorithm to solve the resulting minimization problem. Both methods
can handle the multivalued nature of the subgradient 0||u||z:, which involve the
proximal operator of the L! term. Although these methods are popular in imaging

and data science, their applications in PDEs are limited.

On the other hand, L' optimization is also deeply connected to some physical

properties of solutions to PDE. In the case where the PDE emits solutions which



are compactly supported (possible after a linear transformation), the underlying
equation should have a discontinuous structure which is directly related to the L*
subdifferential. Therefore, the appearance of an L' term in the energy formulation
is expected. Indeed, many physical free boundary problems have compactly sup-
ported solutions. In Chapter 3, we showed that certain free boundary problems
can be represented in an unconstrained variational form with the addition of an

L' term.

The classical obstacle problem models the equilibrium state of an elastic mem-
brane stretched atop of a physical obstacle with fixed boundary conditions. This
has a direct mathematical interpretation as an energy minimization (i.e. the clas-
sical elastic energy of the membrane) with the addition of a constraint (i.e. the

solutions are bounded below by the obstacle).

The original theory for obstacle problems centered around minimizations of

the form:
Lrélll(l CL(U, ’LL) - <f7 U> )
where a(—, —) is a bounded and coercive bilinear form on some Sobolev space V/,

K = {v > ¢} for some smooth ¢, and <,> is the standard L? inner product
[131, 78, 51]. This minimization problem is equivalent to the problem of finding

a u € K satisfying the variational inequality:
alu,v —u) > (f,v—wu) forall veK,

which can be considered as the Euler-Langrange equation for the constrained

problem.

Over the years, there have been many numerical methods for solving various
types of obstacle problems. A list of numerical methods for variational inequalities
are discussed in [54, 150]. A vast majority of those algorithms use the weak
variational inequality characterization to approximate the solutions numerically,

see for example [64, 8, 144, 7, 65, 80, 81, 153, 38|. It is also possible to solve the



obstacle problem using the complementarity conditions [131, 61]. With the help
of the level set method [114], the authors of [98] construct a method to locate the
contact set of the obstacle problem, then find the solution to the obstacle problem

directly without the need of the variational inequalities.

Alternative approaches use the constrained optimization formulation to con-
struct appropriate algorithms; see for example [62, 135]. In those papers, a penalty
method or a regularization formulation were proposed to encourage solutions to
satisfy the constraint. However, the penalty method is not exact and the existence

of solutions relies on regularizing the functional due to the lack of differentiability.

For the two-phase membrane problem, which is a double obstacle problem, the
author of [17] introduces two algorithms. In the first method, the solution is split
into two parts, a positive and a negative part, which results in a coupled system of
PDE with matching conditions. In the second method, a finite element approach is
done on a regularized version of the problem so as to avoid the non-differentiablity

of the L!-like functions.

In Chapter 3, we will use an L!-like penalty on the original variational form

of the obstacle problem:

muin a(u,u) — (f,u) + u/max(ap —u,0)dz,

which is an exact penalty for sufficiently large p > 0, see [50, 101]. For more details
on general theoretical results including regularity of solutions for the obstacle and
related free boundary problems, see for example, [28, 27, 26]. In particular, we
provide some theoretical results on solutions of L! regularized variational meth-
ods to the solutions of obstacle problems with zero obstacle. We derive bounds
on the exactness of the penalty formulation as well as construct a fast and sim-
ple algorithm to solve the non-differentiable unconstrained problem. Unlike other
penalty methods, we do not require the penalty parameter to go to oo (for suffi-

ciently smooth obstacles) and no regularization of the penalty is required.



CHAPTER 2

PDEs with Compressed Solutions

In this chapter, we first provide the general formulation of the problem. Then
we review known results and present various properties of solutions to the modi-
fied PDEs. The numerical implementation and simulations are presented in Sec-

tions 2.3 and 2.4. This chapter was taken with slight modification from [29].

2.1 Problem Formulation

The problem we consider is to numerically solve the following PDE:

uy + Au = [ — yp(u)
u('r? 0) = g(x)v
and to verify theoretical results. The difficulty with such equations is the multi-

valued nature of the subgradient term. Fortunately for this type of equation, we

can explicitly identified the subgradient as

sign(u) if |u] >0
p(u) = (2.1)
argmin|f — ~q| if u = 0.
lgl<1

Note that if u = 0 and |f(z)| < 7, then p = f(z)/v. Equation 2.1 was proved
in general in [33, 20]. It can be shown directly from Equations (1.2) and (1.3),
as follows. For u = 0 in an open set, the left side of the equations is 0 so that
f(x)—~p(u) = 0, which is only possible if f(z) <~ and p(u) = f(x)/~. The value

of p(u) on a lower dimensional set does not matter, since the value of the forcing



terms on a lower dimensional set does not affect the solution u of the differential

equations.

2.2 Various Properties

In this section we recall the established existence theory for the elliptic equation
(1.2) and the parabolic equation (1.3), and provide some further insights to the

behavior of solutions.

Review of Theoretical Results

Equation (1.2) is related to the general class of elliptic equation:
—Au = F(u),

where F' contains a discontinuous component. The existence and uniqueness of
the solution w are studied in [79, 75, 40]. Solutions also satisfy the standard max-
imum and comparison principles given the correct sign of F. The solutions are
compactly supported in both the elliptic and parabolic case, under some addi-
tional conditions [22, 23|. For the parabolic equation, the solutions are Lipschitz
continuous and right differentiable in time. Furthermore, solutions exhibit finite
speed of propagation [23]. More precisely, let S(t) be the support set of u(x,t),

then for small times ¢:
e if u(x,0) does not vanish on 95(0) , then
S(t) < $(0) + Bley/tog(t)),
e if u(z,0) and Vu(z,0) vanishes on 05(0), then

S(t) € S(0) + B(evt),



where B(r) is the ball of radius r centered at the origin. In a simple case, we can
construct the exact bounds in order to verify the convergence of the method to a

known solution.

At a number of places in the manuscript, we will simplify the presentation by
assuming that z € R! and that M = 1, so that the elliptic PDE (1.2) becomes

Laplace’s equation with nonlinear forcing:

Uge = —f + yp(0), (2.2)

and the parabolic PDE (1.3) becomes the heat equation with nonlinear forcing:

Up — Uge = [ — yp(0). (2.3)

Support Size

Since it is known that the support is compact, we would like to estimate its size.

First, observe that if v > max]|f|, then the unique solution of Equation (1.2).

is u = 0. Indeed, if u = 0, since f € [—1,1], we can choose p(u) = ! and
Y

~
Equation (1.2) is satisfied.

Now, take & = supp(u) and integrating both sides of Equation (1.2) gives us
MVu- Nds = — / fdx + ~ysign(u)|S],
oS S
where NV is the normal. On 9S8, since u = 0, we have Vu = wNN, for some scalar
function w : S — R. In addition, since v > 0 in S and v = 0 on 0§, we
have w < 0. Lastly, by assumption M is positive definite so the left hand side of
Equation (A.3) is non-positive:

MVu-NdSZ/ wMN - Nds <0

oS oS

Therefore,

jsupp(u)] < 7! / fd. (2.4)

supp(u)



A slight modification of (2.4) shows that for any nonnegative o and g with o+ =

1, we have
upp(u)] < (@) [ (1] = B7)sde 25)

In this inequality, the superscript + denotes the positive part; i.e., (z); =

max(x,0).

For the parabolic case, define the time dependent support set S(t) := supp(u(x,t)).
Differentiating the integral of u over §(t) and using the boundary conditions (i.e.,

u=0on 0S(t)) yields:

d
— u(z, t)de = / wdr = V- MVu+ f—vp(u) dx.
dt Js S() S()

Because of the divergence theorem and the fact that M is positive definite, we

have

d
e t)de < / \Fldz —~|S(0).
dt Jsw S(t)

Integrating the expression in time yields the following bound on the support size:

supp e )| < [ gldo+ [[ flaeae
S(t) S(t)

Also, similar to the elliptic case, we have

| suppge ul,1)] < () (/ olde+ [ [1- m+dxdt) (2.6)

for any nonnegative o and 8 with a + 8 = 1.

L' Contraction and Total Variation Diminishing

Let v and v be solutions of Equation (2.3) with initial data g(z) and h(x), respec-

tively. First, note that for any subgradient p of a convex functional, we have

sign(u — v)(p(u) — p(v)) = 0. (2.7)



We wish to show that the solutions are L' contractive and TVD by computing

the following:
d d
%||u—v||L1 == / |lu — v|dx
lu—v|>0

= sign(u — v)(uy — vy)dx

|[u—v|>0

- /)QQWPWMU—WM—WQ@W—WWWU—MWWW

|[u—v|>0
The first term is zero by the divergence theorem and the second term is negative
by Equation (2.7), so we have 4||lu —v|[z1 < 0, and thus the modified PDE is an

L' contraction. Moreover, if we take h(x) = g(x + ) for any § > 0 we have

d
e, t) = ulw +6,0)] <0,

Dividing the equation above by § and taking the supremum over all §, the following

inequality holds:

d
— <0.
dtHuHTV >

Therefore, Equation (2.3) is TVD.

Entropy Condition

The L' contraction and TVD results are directly analogous to those that are

obtained by solving the viscosity regularized nonlinear conservation laws:
€ € €
Wy = €Wyy — f(w )337

for € > 0. Then by letting € — 0, one recovers the unique inviscid limit, see [87].

We can also easily obtain an “entropy inequality” in the same spirit. Consider

the scaled modified heat equation:
Up = €Uy — YP(1). (2.8)

10



We deliberately put an € in front of the diffusion term to emphasize the similarities
to the theory of scalar conservation laws. The following argument holds in more

general cases.
Let K(u) be a convex function of u with subgradient g(u). Multiplying Equa-
tion (2.8) by the subgradient (as in [87]) yields:

LK) < -0 K u) - ra(wp(u). (2.9)

For example, if K(u) = |u|, then whenever u # 0, we have
lule < €lul|pe — 7. (2.10)

We integrate Equation (2.9) over the region S(t), the support set of u(x,t)

defined in Section 2.2, to get

d
= /S ) K(u)dr < —v /S o q(u)p(u) dz, (2.11)

since the spatial gradient is zero along the boundary. By choosing K (u) = 1[ul|®

for a > 1, Equation (2.11) provides L* estimates of the solutions. Furthermore, if

K(u) = (u—c¢)4 for ¢ > 0, then
d

— (u— )4 de < —|SF(t)], (2.12)
dt Js )

where S (t) is the set of x for which u(z) > c.

Regularity

We can show that the solutions of the Laplace’s equation (2.2) and of the heat
equation (2.3) are smooth. Let Q,, Q_, and 2y denote the sets {u > 0}, {u < 0}
and {u = 0}, respectively. Then the solution u of the Laplace’s equation (2.2)

can be represented by

uu>=l;ew—yxﬂw—vmy+/'Gu—yxﬂw+vm% (2.13)



and the solution of the heat equation (2.3) can be written as

u(e.t) = [ Gla - yitigl dy+//9+ Gl -yt — 5)(f(y) — 7)dyds

+/0 /Q_(S) Gz —y,t = 5)(f(y) +7)dyds,

in which the Green’s function G(z,t) for the heat equation and the Green’s func-

(2.14)

tion G(x) for the Laplace’s equation are given by

G(x) = ||/2,
(2.15)
G(x,t) = (4mt) V2 exp(—a?/4t).

From these formulas, if f is continuous, then one can see that u is C?(z) and

Cl(t) away from u = 0 and that u is C'(z) everywhere.

Traveling Wave

To demonstrate finite speed of propagation, consider the 1D-traveling wave solu-
tion u(z,t) = v(s) for s = — ot, of the Equation (2.3) with no forcing term. To
be specific, we will assume that v(s) > 0 for s > 0 and v(s) = 0 for s < 0. We see

that v must satisfy the ODE
Vgs + 0vs — 7 = 0, (2.16)

subject to the conditions

v(0) ='(0) = 0.

The general solution of Equation (2.16) is

Istce P+, s2>0
v(s) = (2.17)

0, otherwise.

The boundary conditions imply

€= —C=—7,
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so that the traveling wave solution of Equation (2.3) is

Iz —ot)+ % (e“’(m_"t) — 1) ., T >ot
u(z,t) =
0, otherwise.

We see that in this case we have one sided support.

Remark 1. This traveling wave solution is used as a reference solution to compute
the error for our numerical scheme (see Section 2.4). Also, the simple analytic

form shows that solutions with non-trivial support sets are easy to find in the

modified PDEs.

An Exact Solution
We construct the exact solution of Equation (2.2) with nonnegative force f =
(14 22)7%/2 and v € [0,1]. The exact solution is given explicitly by:
1
—(1+2%)Y2 + §7x2 +c¢, |z|<a

0, |z|>a.

where,

The boundary value a and constant ¢ are determined so that u(+a) = u,(+a) = 0.
At the boundary of the support, f(da) = v* < . These results show that the

solution is nonnegative for nonnegative f, and that having |f(z)| < v does not

imply p(u(z)) = L2

Flux Condition

We provide here the natural boundary condition to Equation (2.3).

Lemma 1. Let u(x,t) € C°(CY(R);(0,T)) and uy € L>*(C*(R); (0,T)) be a solu-
tion to

Up — Uz = h(x, T, 7). (2.18)
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Assume that there exists a positive valued function a € C*(0,T) such that h = 0

for |x| > a(t), the initial data g =0 for |x| > a(0), and the exterior mass,
m(t) = /u(x,t)d:p,

is conserved, then u(a(t),t) =0 and u,(a(t),t) = 0.

To derive this condition, consider the heat equation (2.18). Differentiate the

one sided mass in time yields:

D el 00+ [l

in which F is the flux across the moving boundary x = a(t).

We now can see that if the flux across a moving boundary = = a(t) is zero (i.e.

the mass is conserved), we have
F(t) = u(a(t),t)a' (t) + ug(a(t),t) = 0. (2.19)

This is the natural boundary condition for this problem. In the time-dependent
region F = {(x,t) : * > a(t)}, the initial data g, force h and and incoming flux F’
are all zero, so that the solution is identically zero. In particular, u = u, = 0 on

x = ta(t).
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A Free Boundary Formula

In 1D, consider the following equation

fle) =~ ol <al(t)
0, z| > a(t) (2.20)
u(z,0) =0,
which is equivalent to Equation (1.3) where the support set is parametrized. For
simplicity assume that f(z) = f(|z|) and f is a radially decreasing function with

f(Jz]) — 0 as |z| — oo. Denote ag > 0 such that f(ap) = v and assume that

fz(ag) # 0. Then, the free boundary’s endpoint is governed by (for small time ¢):
a(t) = ag + a1Vt + o(\V1), (2.21)

for some a; > 0. Indeed, we look for an increasing function a(t) such that the

exterior mass of Equation (2.20) is zero:

) t a(s)

mit) = [do [ds [ Gyt 9)s) -y

a(t) 0 —a(s)
where we use the Green’s formula for the heat equation, Equation (2.15), to

represent u. Since a(t) is an increasing function, we have
y <a(s) <a(t) <z
Therefore, for ¢ small, the Green’s function G(x — y,t — s) is sharply peaked near

the point

So we can replace (f(y) — ) by the first few terms in its Taylor expansion

fly) =~ =(y—ao)fi + O(y — ao)?),
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in which f; = f.(ag). Also, since G(x —y,t— s) decays exponentially as y — —oo,

we replace the lower limit y = —a(s) by —oo. Now the mass can be approximated
by
00 toa(s)
mt) =11 [ do [ds [ (- a)Ga—y.t-s)dy
a(t) 0 —00

Next we show the existence of a; satisfying the following approximations
a(t) = ap + a1Vt + o(v/t), and m(t) = 0.
We change the variables to

x =11Vt + ag, x1 € |ay, 00),
y=y1\/f+ao, Y1 € (—00,a14/51],
5 =s1t, s1 € [0, 1],
and
Ty =T9ay, x9 € [1,00),
Y1 =Yoa1, Y2 € (—00, \/a]v
and note that G(z —y,t—s) = t " V2G (21 —y1, 1 —51) = t2G (a1 (22— 1), 1 — 51).

Then
0o 1 a1./s1

m(t) :fth/d%/dSl / nG(r1 —y1, 1 — s1)dy
0 —00

ai

[e.9]

1 Vst
:ai’fth/dm/dSl /yzG(a1($2—y2)71—51)d?/2-
0 —00

1

Consider the rescaled masses my(a;) = m(t)/(f1t?) and ma(a1) = m(t)/(a? f1t?);

1.e.,
o) 1 a14/81

mi(a) :/dxl/dbl / nG(r1 — vy, 1 — s1)dyy,

al 0 —00
[e'e) 1 V51
%(al) = /de/dsl / ?JQG(CH(@ - y2),1 - S1)dy2.
1 0 —00
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As a; — 0, mi(ay) goes to

[e’e) 1 0
m1(0) :/dﬂfl/d31 /ylG(ﬂfl—yl,l—Sl)dyl
0 0 —00

with m3(0) < 0. This shows that m(t) < 0 for a; = 0.

On the other hand, for a; > 1, a1G(ay(x2 — y2),1 — s1) is approximately the
Dirac delta function at xo = ¥, s; = 1. At this point, we have y, > 0, therefore
ma(ay) > 0. This shows that m(t) > 0 for large values of a;. Thus there exists a

positive value a; so that m(t) = 0.

A similar result holds for zero force and non-zero (finitely supported) initial data.

2.3 Numerical Implementation

Given an elliptic operator A, we would like to solve problems of the form:
Au+9|ullpr > f

or

ur + Au+ 0||ul|pr > f

which corresponds to the elliptic or parabolic equations, respectively. We will
present two methods to do so. The first scheme is semi-implicit (also known as
implicit-explicit or proximal gradient method), where the subgradient term is dis-
cretized forward in time and the diffusion term is lagged. We apply this method to
solve the time dependent equations. The second scheme is the Douglas-Rachford
method, which we use to solve both the elliptic problem and the parabolic prob-
lem. Both methods can handle the multivalued nature of the subgradient 0|ul| 1.
In this section, we denote h and 7 the space and time steps of the finite difference

schemes.
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Implicit-Explicit Scheme (Proximal Gradient Method)

From the numerical perspective, the multivalued term O||u||z: is the main source
of difficulties, since the value is ambiguous. However, an operator of the form
I+0 OF ( where F'is convex) has an easy-to-compute inverse. The inverse operator
(I +0O0F)~1, also known as the resolvent or proximal operator, prox, (), can be
found by solving the following optimization:

(I + 0 0F) *(z) = argmin %Hv —2||3. + o F(v). (2.22)

For example, if F(u) = ||u||z1 and thus OF (u) = 9||ul|z1, we have:
1 1 2
(I +00|-[l21)""(2) = argmin [lv = 2[[2 + of[][s
= S(v,0),

v

where the shrink operator, .S, is defined point-wise as S(v, o) := max(|v|—o, O)‘—|
v

Using the proximal operator, we will write the discretization of Equation (1.3)

in a semi-implicit form. We first discretize Equation (1.3) in time, then to apply

the proximal gradient method, the subdifferential term is evaluated at time step

n + 1, yielding:
" —u" T AU+ 70| | D TS, (2.23)
where 7 > 0 is the time step. The resulting iterative scheme is:
u" = S(u" — TAU + T, 7). (2.24)

For example, for the heat equation, where A = —A and is discretized using five-

point stencil, the iterative scheme is:

u" = S(u" 4+ AU +Tf,T), (2.25)

and is convergent given 7 < %. This scheme has the same complexity as the

corresponding standard explicit methods for PDEs.
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Alternating Direction Implicit (Douglas-Rachford) Method

The Douglas-Rachford algorithm for nonlinear multivalued evolution equation was

studied in [93]. Denote Bu := J||ul|:, the iterative scheme for Equation (1.3) is
W= (I +7B)7 (I +7A) (I —7B)+1B]u", (2.26)

which can be rewritten as:

"t = (I +7B) 4"
(2.27)
@t = a4 (1 4+ TA) T uT — @) — umth

It was shown that the method is unconditionally stable and convergent for all
T >0 [37, 93, 136]. Also, note that the iterates u™ converges to a solution of the
stationary equation (1.2). For the sandpile problem [91], which is discussed in

Section 2.4, the operators A and B are chosen specifically as follows:
Au=—Au—f, Bu=0|ur, (2.28)

so that the operation for "1 in the iterative process, Equation (2.27), is a shrink.

The corresponding proximal operators are

prox,p(z) = (I +7A)(2) = (I = 7A) ' (z + 7f)
prox,(2) = (I +7B)7'(2) = S(z,7),
where F(z) = 3||Vz||3. — (f,2) and G(z) = |[|z[|;». To compute (I — 7A)™*

numerically, we use the FF'T, where the discrete Laplacian Aju is viewed as the

convolution of v with the finite difference stencil.

Remark 2. Since the shrink operator is the last step of the iterative process, this
method provides a numerically well-defined support set for u, making it easier to

locate the free boundary.
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2.4 Computational Simulations

In this section we show convergence of our numerical scheme to known solutions,
approximations to the support set evolution, and numerical solutions for higher

dimension.

Numerical Convergence

In Figure 2.1, we solve Equation (2.3) (with v = 0.05) using the implicit-explicit
scheme (Equation (2.25)). The initial data is taken to be the traveling wave profile
(Equation (2.17)) with speed ¢ = 2. The numerical solution has the correct
support set and speed of propagation, validating the traveling wave solution as

well as the numerical method.

This is further confirmed in Figure 2.2, where the numerical solution is com-

pared to the exact solution. To compute the error, we use the following norms:
EI’I’OI"q(h) = mT?X HUZ - uexact”qa

where ¢ = 1,2, 00 and u}} is the solution at ¢,, with space resolution h. The errors
in these three norms are plotted along side the line representing the second order

(dashed line) convergence.

To test the stability of these traveling wave solutions, we initialize our nu-
merical scheme with the traveling wave profile perturbed by uniformly random
noise sampled from [0,0.05]. The time evolution is shown in Figure 2.3. In a
short time, the Laplacian term dominates the evolution, which is expected. The
solution gradually smoothes down to a new traveling wave profile and begins to
translate at the expected speed. This shows that the traveling wave solution is

an attracting solution, at least locally.
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Figure 2.1: Numerical solution starting with an initial traveling wave profile with

o =2 and v = 0.05 computed using 500 grid points.

One Dimensional Heat Equation

In Figure 2.4, the plot shows the modified heat equation (Equation (2.3)) with
zero initial data and force f(z) = 2¢75*". The solutions evolves upward in time
with their support sets marked by red circles. We see that the computed solutions
are indeed compactly supported in space, as the theory states. The corresponding
table provides a least squares fit to estimate the coefficient a; from Equation (2.21)
under grid refinement. We see that the coefficient a; approaches the value 1
quickly within some small approximation error, which is used to verify that our

numerical approximation is valid.
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Figure 2.2: Convergence analysis using the L' (dotted line), L? (dashed line), and
L* (solid line) norms in space and L* norm in time. The z-axis is the log of
the grid resolution h and the y-axis is the log of the Error. The blue dashed line

represents second order convergence.
Two Dimensional Heat Equation

In Figure 2.5, we compute the solution of Equation (2.3) with v = 2 and f = 0.
In this case, we apply the parabolic Douglas-Rachford algorithm, which allows
for larger time-steps. The initial data is a smoothed indicator function on the
star shaped domain. In Figure 2.6, the corresponding support set of Figure 2.5 is
shown. The support set grows outward to a maximum size and retracts inward

as the solution decays to zero. The solution is identically zero at time ¢t = 0.1152.

Graph Diffusion
In higher dimensions, we can consider the standard normalized diffusion equation:
w = Lgu = — (I - D_l/QAD_l/Q) u

u(z,0) = g(),

(2.29)

where L, is the graph Laplacian, A is the adjacency matrix, and D is the degree

matrix. For more on the graph Laplacian, see [36, 151].
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Figure 2.3: Numerical solution starting with an initial traveling wave profile per-
turbed by uniformly random noise sampled from [0, 0.05] with o = 2 and v = 0.05.

This is solved on a grid of 500 points.

In Figure 2.7, the points represent the projection of vectors from R'% and each
point is connected to many others in a non-local fashion. For the initial data, we

concentrate the mass on one point in the far left, specifically, the u(z;,0) = 61000
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Number of grid points | Estimate of a;

256 0.948

01 ’ ‘ , 512 0.979

008 1024 0.985
006 2048 0.991
004 4096 0.995
002 8192 0.997
Qe W 16384 0.997

Figure 2.4: The graph is a 1D simulation of the heat equation with the subgradient
term, zero initial data, and a Gaussian forcing function centered around zero,
f(z) = 2¢~57" The solutions are growing upward in time and their support sets
are marked by red circles. The table shows the estimate of the coefficient a; from

Equation (2.21) under grid refinement.

where 0, is the Kronecker delta function. As the system evolves governed by

Equation (2.29), the solution becomes strictly positive quickly.

The modified equation is:
u=—(I- D_I/QAD_1/2) u— yp(u),

u(z,0) = g(z).

(2.30)

In Figure 2.8, we begin with the same initial condition and see that over time
the support set does not grow past a bounded region if u evolves as in (2.30).
Therefore, numerically we show that the support is of finite size for the case of
graph diffusion. In Figure 2.8(d), the solution begins to decay to zero which causes

its support set to retract towards the initial support before vanishing.
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Signum-Gordon Equation

The signum-Gordon equation has an interpretation as an approximation to certain
physical models [4, 3, 5]. The equation takes the form of a second order nonlinear

hyperbolic equation:

Uy — Au = —sign(u)
u(z,0) = g1 (x) (2.31)

ut(xv O) = gQ(x)7
and exhibits both compactly supported traveling waves and oscillatory (station-
ary) soliton-like structures. This equation can be derived from the Lagrangian

with the following L' potential:
— : oo 1 2
L = Kinetic — Potential = §\ut| - é\Vu\ — |ul.
The equation of motion can be derived from the Lagrangian:

uy — Au = —p(u)
u(ac, O) - 91<x>

ut(xv O) = 92($)7

which is the same as Equation (2.31) by replacing the sign(u) term with the
subgradient p(u).

To discretize the problem, we apply the ideas from the proximal gradient

method, by placing p(u) in the future:
un+1 S 4 unfl - TZAun — _7_2p(un+1)7
and thus,

"t = S(2u" — u" Tt TPAU", 7).

In Figure 2.9, we plot our numerical approximation to the traveling wave

solution found in [3]. Since the traveling wave profile is also known analytically,
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we show numerical convergence of our scheme as h — 07 (see Table 1). Also,
in Figure 2.10, we show the time evolution of an oscillatory compact soliton-like
structure which appears in [4, 5]. These examples show the range of behaviors

that appear via the addition of an L! subgradient term.

Table 2.1: Error between our numerical solution and the analytic solution of the

Signum-Gordon Equation.

Grid Size | 128 256 512 1024 2048 | 4096 8192

L?-Error | 0.4601 | 0.2319 | 0.1133 | 0.0569 | 0.0284 | 0.0143 | 0.0072

Divisible Sandpile

As a model for self-assembly and internal diffusion limited aggregation, the sand-
pile problem has received attention recently [121, 91, 46, 89, 90]. The problem
is posed discretely, but has the following continuous formulation for the divisible

sandpile problem [91, 46, 92]:
Au=1—f ifu>0 (2.32)

where f is some non-negative external force. By multiplying Equation (2.32) with

u and integrating over R?, the associated variational energy is:
u

1
min/ ~|Vul* + u — uf dx. (2.33)
u>0 2

There are several choices for relaxing the constraint v > 0, in particular, we use

the following:
: 1 2
min §|Vu\ + |u| —uf dx. (2.34)

It can be shown (via maximum principle) that for f > 0 the solution of Equa-

tion (2.34) and Equation (2.33) are the same. The Euler-Lagrange equation for
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the L' sandpile problem is:
A= plu) — . (23

and is solved numerically via the Douglas-Rachford algorithm (see Equation (2.27)).
Note that if the external force is a finite sum of characteristic functions f =
Z;V:l ajxs; where S; are compact sets and «; > 0, then by integrating Equa-

tion (2.35) over R? we get:
N
[supp(u)| = > ay]S;l, (2.36)
=0

since u > 0 and supp(u) is compact. This is referred to as the preservation of

mass.

In Figure 2.11, we take f = xg, + Xxs,, where S; and Ss are the two overlapping
square domains (on the left). The support set of u, given in Figure 2.11 (right),
agrees with direct numerical simulation of the discrete sandpile problem. The

direct simulation follows a topping rule described in [91].

In Figures 2.12-2.14, we take f = ayxgs where S is the shape given in Fig-
ures 2.12-2.14 (the top left), and o = 2.0,1.2 and 1.5, respectively. The support
set of w is given in Figures 2.12-2.14 (the bottom right) with intermediate calcula-
tion shown in Figures 2.12-2.14 (the remaining plots). To verify that the solutions
from our algorithm correspond to the correct solutions for the sandpile problem,
we use the mass conservation property, Equation (2.36). Unlike direct simulation,
our method also calculates the function u as shown in Figure 2.15. One of the
benefits of our approach is that the solutions can be computed quickly, for exam-
ple, our method is at least 8 times faster than direct simulation (76 seconds vs.

652 seconds) at approximating the solution found in Figure 2.15.
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Conclusion

By adding the subdifferential of L' to certain PDEs, we have shown (numerically
and theoretically) various properties of the solutions. These problems arise from
physical models as well as exact relaxation of other PDEs, and could provide useful
tools in computing fast approximations to nonlinear problems with a compactly
supported free boundary. This is all in the spirit of borrowing the key idea from
compressed sensing, that L! regularization implies sparsity of discrete systems

and transferring it to classical problems in PDEs.
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Figure 2.5: Solutions of the initial value problem (no forcing term) computed on
a 500 by 500 grid with v = 2 at times indicated. The solution smoothes out and

decays to zero.
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Figure 2.6: Support set of the initial value problem in Figure 2.5. The support

set grows outward to a maximum size and retracts inward as the solution decays

to zero.
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(c) t =475 (d) t = 1425

Figure 2.7: Solution of the initial value problem diffusing standard normalized

graph Laplacian.
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(c) t =6.65 (d)t=114
Figure 2.8: Solution of the initial value problem with the subgradient term, v =

5 x 1075,

600
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Figure 2.9: Our numerical approximation to a compact traveling wave solution to

the Signum-Gordon equation.

32



0.06[ 0.06
0.04F 0.04F
0.021 0.021
0 0
-0.02 -0.02f
-0.04 —0.04
-0.06 -0.06
-0.5 0 0.5 -0.5 0.5
0.06
0.06
0.04
0.04
0.02
0.02
0
0
-0.02
-0.02
004 -0.04
-0.06 -0.06
-0.5 0 05 1.5 -0.5 0 05
0.061
0.04+
0.02+
0
-0.02f
—0.047
—0.067
-0.5 0.5 1.5

Figure 2.10: The dynamics of an oscilatory compact solution of the Signum-

Gordon equation.
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Figure 2.11: A two-region sandpile problem, where each of the larger squares
defines the set S;, for j = 1,2. The darker blue region has no mass, the lighter
blue and yellow region has a mass density of 1, and the red (overlap) region has

a density of 2. On the left, the region of positive mass is displayed.

W

Figure 2.12: The iterative evolution of our sandpile problem algorithm applied to
a flower-shaped region S on the top left with f = 2xs. The final state appears in

the bottom right corner.
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Figure 2.13: The iterative evolution of our sandpile problem algorithm applied to

the fractal region S on the top left with f = 1.2ys. The final state appears in the

bottom right corner.
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Figure 2.14: The iterative evolution of our sandpile problem algorithm applied to

the fractal region S on the top left with f = 1.5xs. The final state appears in the

bottom right corner.

A

@

Figure 2.15: The solution u from Figure 2.14 (bottom right).
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CHAPTER 3

An ! Penalty Method for Obstacle Problems

In this chapter, we illustrate the use of an L!'-penalty method to construct an
unconstrained problem whose solutions correspond exactly to those of the obstacle
problems. We provide a lower bound on the value of the penalty parameter and
use this to guide our numerical calculations. We then present several experimental
results showing the applicability of our method to various physical problems. This

chapter was taken with slight modification from [149].

3.1 Motivation

In this section, we motivate the use of L' based optimization for obstacle prob-
lems by establishing a connection between solutions of an L' penalized variational
method and the solutions of obstacle problems with zero obstacle. These prob-
lems were considered in [22, 29] and can be used for finding compactly supported
functions. Given f € L*(R%) and p > 0, consider the following functional defined
for v € H'(R?) N LY(RY),
T() :/Rd%mﬁ ~ fut o] d. (3.1)
Then for all test functions ¢ € H*(R?) N L*(RY), its unique minimizer u,
u = argmin{J (v) | v € H'(R%) N L}(R%)}, (3.2)

satisfies the following equation:

/R V- VY= fo o+ pp(u)ip e =0, (3.3)
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where p(u) is an element of the subdifferential of the L' term in Equation (3.1)

and can be identified by (see [29]):

sign(u) if w#0
—f/p it uw=0.

p(u) =

We also consider the solution of the following obstacle problem,
% = argmin{J (v) | v € H'(RY) N LY(R%) and v > 0}. (3.4)
As a minimizer, u satisfies the variational inequality

Vu -V — fip+ wpdr >0, (3.5)
Rd

for all test functions v € H'(R?)NLY(R?) with 1 > 0. One can analogously define
u as the minimizer of J over v € H'(RY) N LY(R?) with v < 0. We will show that
the solutions to the variational problems above, u, 4 and u, are related. For the

rest of the paper, we denote
uy :=max(u,0) and wu_ :=min(u,0).

Theorem 3. Let u and u be the solutions of Equations (3.2) and (3.4), respec-
tively, then u = uy.. Moreover, if f > 0 then u = u. Similarly, we have u = u_

and if f <0 then u = u.

Proof. Let w > 0 be a solution of the variational inequality:

/ Vw -V — fp+ upde >0, (3.6)
R4

for all v € HY(R?) N LY(R?) with ¢ > 0. Next, since (u — w), is a valid test

function for Equation (3.3) the following holds:
0= / Vu-V(u—w)y — flu—w)y + pp(u)(u—w); de.
Rd
Since p(u) =1 on {(u —w); # 0} C {u > 0}, we have

0= RdV(u—w)-V(u—w)++Vw-V(u—w)+—f(u—w)++u(u—w)+dx.
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Note that (u — w); is also a valid test function for Equation (3.6), so the sum of

the last three terms in the above equation is non-negative. Therefore

OZ/}RdV(u—w)-V(u—w)+dx:/}Rd\V(u—w)+\2dx.

Thus (u—w), = c a.e., for some non-negative constant c. Since (u—w), € L*(R?),
we have ¢ = 0, which means v, < w. In particular, since u is also a supersolution

of (3.6), we have u; <.

As for @, after noting that for any e the perturbation @ — e(u — w), is an

admissible function in the minimization (3.4), a similar calculation shows that
d _ _ _ 2
0< —| Ju—clu—w)y) < — |V(u—w)|*dx.
de|._q Rd

Taking the derivative in € above can be justified by writing out the difference
quotients. Using the same argument as before, we conclude that u < w. Finally,
to prove that uy > u, we will show that u, is also a supersolution of (3.6). Indeed,

since —f + pp(uy) < —f + p so as long as 1 € H'(RY) N L' (RY) is nonnegative,

(Vs Vot (e > /R Vuy Vo — fi+ ppluy ) dz = 0.

We have proven that « = uy. In particular, if f > 0, one can show that u is

non-negative [22, 29]. In this case we have u = u. This completes the proof. [

3.2 Obstacle Problem

In this section, we recall the classical obstacle problem as well as its penalty formu-
lation which contains an L'-like term. It is shown in [50, 101] that if the penalty
parameter is large enough, the solution of the penalized problem is identical to
the solution of the constrained optimization problem (the obstacle problem in our
case). In addition, we provide a lower bound on the size of the penalty parameter

of the unconstrained problem as a function of the obstacle.
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We will consider the obstacle problem in a bounded domain Q C R? with
Dirichlet boundary conditions. The results we describe in this case will also hold
on the whole space R? under similar assumptions. Consider the problem of mini-

mizing the Dirichlet energy

T(v) = /Q %]Vv\de, (3.7)

among all functions v such that v — g € H}(2) and v > ¢, where ¢ :  — R is
a given smooth function, called the obstacle, which has ¢ < g on 0f). Its unique

minimizer u satisfies the complementarity problem [131]:

~Au>0, u>¢, (“Au)(u—¢)=0, u—g¢c HyQ).

Let u, be the unique minimizer in H}(f2) of

) = [ 3190+l 0. . (33)

In [50, 101], the authors showed that u, = @, for p large enough and provided a
lower bound for p which is the L*-norm of any dual optimal multiplier of (3.7).
That is if p > —Awv, for any dual optimal multiplier v > ¢ of the optimization
(3.7), then w, = u. Here we provide a concrete lower bound for p, which can also

be derived from Theorem 3.

Theorem 4. Let u and u, be the optimal minimizers of Equations (3.7) and

3.8), respectively. Then for an such that —Ap < p we have u, = u.
Y (e Y= p m

Proof. For any v € HJ (), define w = v+ (p—v),. Then w is a valid test function

for (3.7), i.e., w > ¢. Compute
1 1
Tutw) = [ IV + V=) Vot 5V(p =)y P o

]‘ 2 1 2

= Qg!Vv\ +V(p—v) Vo = S|V(p —v):[Mde
1 1

< [ 5190+t =k = [ 19— ds

Q Q

= 3u0) = [ 5IV(e =) de
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The inequality in the third line holds since —Ag < 1 in the weak sense. Therefore,
Ju(v+ (p —v)y) < Ju(v) unless V(¢ — v)4 is zero, which implies (¢ —v); =

since (¢ —v)y € H}(Q). In particular, we have
Tty + (0 = up)t) < Tu(ug).

Since u,, is the uniqueness minimizer of (3.8), (¢ —u,)+ = 0 which means u, > ¢

is a valid test function for (3.7). In addition, we observe
j(u“) = ju(“u) < j“(u) = J(u).
Since w is the unique minimizer of 7, we conclude that u = u,. O

Remark 5. It is worth noting that in the numerical experiments provided in this
work, the smaller the value of i s, the faster the iterative scheme converges to
the steady state. Therefore, an explicit lower bound on p greatly improves the

convergence rate of the method.

3.3 Free Boundary Problem

In this section, we show how to transfer a class of free boundary problems into a
form where the methodology of Sections 3.1 and 3.2 can be directly applied. We
emphasize that for these problems our primary interest is in the location of the
free boundary d{u > 0} as opposed to the solution itself. For a concrete example,

we will focus our attention on the Hele-Shaw model.

Turning a Class of Free Boundary into an Obstacle

Consider the solution u > 0 of the following free boundary problem in R

—Au=f—-—v in {u>0}
u=|Vul=0 on 0{u>0},

(3.9)
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with some given source function f and constant . In this form, we can see
the connection to an L'-minimization problem (Equation (3.1) with v = p). In
general, this can be difficult to solve numerically because of the free boundary
O{u > 0}. We will show that our method naturally treats the free boundary
conditions thereby avoiding any difficulty in directly tracking or approximating

it. The details are described below.

First let us define the obstacle:

p = =gzl = (=A)7" f(2).

Here (—A)~! is shorthand for convolution with the Newtonian potential in R
Then the function w = u + ¢ will be the least super harmonic majorant of ¢ in

R?, that is, it solves the free boundary problem:

—Aw=0 in {w>ep}
Vw=Ve on 0w > p}.

(3.10)

By transforming the PDE (3.9), we replace the source term with an obstacle.
Indeed, the solution w of Equation (3.10) is the unique minimizer of the following
optimization problem:
: 1 2
w = argmin [ —|Vo|* + u(p —v), dz, (3.11)
veHI\(RAY S 2

for some parameter . Therefore, by finding the solution to the unconstrained
optimization problem (Equation (3.11)), we can locate the free boundary to the

original problem directly.

Hele-Shaw

Let us recall the classical Hele-Shaw problem with a free boundary. Let K C R¢
be a compact set and 5 D K be open and bounded. Fluid initially occupies
o and is injected at a constant rate 1 per unit length through the surface K.

The fluid expands and occupies the region €2; with the free boundary I';. Let
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p(x,t) : R4x [0,00) — R be the pressure of the fluid. For simplicity we consider a
slight variant of the Hele-Shaw model where p(x,t) instead of its normal derivative
is equal to 1 on OK, see [71]. Then the time integral of p, u(x,t) = f[fp(x, T)dr

formally satisfies (see also [45, 60]),

—Au=x9,—1 in  Qu)\ K

u=t on K (3.12)

u=|Vu| =0 on T[y(u).
Note that €;(u) = {u > 0}. We are free to solve Equation (3.12) only since
the free boundary is the same as the free boundary of the pressure p. Here we
consider the stable flow examples. For an example of a numerical method to solve

the unstable Hele-Shaw flow (with the known fingering effect), see [67].

Let us define the obstacle:

o 1= —gglz* = (=A)""xa,.

Similar to Section 3.3, the function w = u + g solves

1
w = argmin/ §|Vv|2 + (o — v) 4 de,
vEV RANK

where the admissible set is defined as follows
Vi={(v—0) € (H'NLHR'\K):v=y+t on OK}.

For computational purposes, it is desirable to avoid solving a minimization prob-
lem in a possibly complicated domain R?\ K. We formulate a penalization pro-
cedure to include the boundary condition on K as a second obstacle. To do so,

we define new obstacles 1 < g,

o1 =0 +txx and o = @ixx +t(1 — xk)

with the associated double penalized energy,

1
Jy(v) = / §|VU|2 +71(p1 = v) 4 — y2(p2 —v)_dz, (3.13)
]Rd
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for some parameters 71,7, > 0. Note that the true solution of (3.12) has u <t
in R? and ¢, < 0 thus v = u 4 ¢; < t as well. Thus the true solution satisfies

v < g in R,

Since ¢ is not smooth, the argument of the previous section, namely that
—Ap—y is subharmonic for v; sufficiently large, is not directly applied. However,
we can build a smooth approximation for the obstacle using mollifier. Heuristically
when one minimizes a discretization of J, with grid spacing h, the minimizer of

the discretization is as good an approximation to J, as it is to,
Trw) = [ |Vo]* +71(pn * o1 — v)4 — Y2(pp * 2 — v)_ dx,
R4

where p;, = h™%p(h~1x) with p € C*(R?) being a standard mollifier. Note that

since mollifying preserves ordering, py * 1 < pp * @2. Now one can estimate:
18P % rllzoe < 1A¢o0]l oo + tApnllt Xkl < 1+ th™|| Apll ).
For the mollified functional jﬂ? as long as
n 2> th™*[|Ap| ey + 1,

the global minimizer solves the obstacle problem with pj % ¢; as the obstacle from
below. A similar argument holds for 7. We are using a slight extension of the

result of Section 3.2 to include an obstacle from above and from below.

Remark 6. The solution of Equation (3.12) can also be viewed as the minimizer

of
1
J(v) :/ §|VU|2—XQOU+|U|dI’,
R\ K

over the admissible set,
Vi={ve(H'NLHYR'\K):v=t on 0K}

Let us call

u(-,t) = argmin{J (v) : v € V; },
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then as in the Section 3.1, u will be the same as the solution of the obstacle problem
(3.12) obtained as the infimal non-negative supersolution. Simulations based on

this observation yield similar results to those of the penalized energy.

3.4 Numerical Method

For the numerical method, we employ the energy minimization formulation and
discretize the energy using a uniform fixed grid on a given domain. The energies
are convex, so we construct an algorithm via [56] to decouple the problem into
an explicit part and a strictly convex part. In the explicit part, the optimal value
can be computed directly using shrink-like operators. For the strictly convex
part, we can use either a conjugate gradient method or an accelerated gradient
descent method to quickly solve the subproblem. The detailed algorithm and its
construction are described here. Note that for each problem, there could be slight

variations in the algorithm, which we will explain in each subsection.

For a domain © C RY, we approximate functions v € H(Q) N LY(Q) by
taking an N-point uniformly spaced discretization of the domain and defining the
discrete approximation of u by u, € R¥, where h > 0 is the space step. The

discrete spatial gradient is defined by

(un)iviy — (un)iy (un)ijrn — (un)ij
h ’ h

thh =

but any standard finite difference scheme can be used. Consider the following

discrete energy

min F(Vyu),

u>p
where F': RV? — R is a convex function of its input. For simplicity we drop the
subscript h on the functions. To solve this problem, we first convert it into an

unconstrained problem by using the penalty method:

min F(Vyu) + pll(e — w)illor,
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for some parameter p > 0. Here the L' norm, || - |11, is approximated using the
quadrature rule N
/ vdr = Z v; h.
Q J=1
Since (-)4 is not differentiable, we construct an equivalent minimization prob-
lem using [56]. We first introduce an auxiliary variable v = ¢ — u then apply the
Bregman iteration:

(uFH oR ) = argmin F(Viu) 4 plvg| + 5o — ¢ + u + 7|3,

u,v

Now we can efficiently solve the minimization by splitting it into two subproblems

with respect to u and v:

Step 1: ™! = argmin F(u) = F(Vau) + 3|[v" — ¢ +u+ "3,

u

Step 2: v =argmin pfvi| + 3ljv — @ +umt 4 b3,
The solution for v is given explicitly:

v=29, (ap—u”“—bn, §>,

where S, (z,¢) == (2 —c¢) if z > ¢, z if 2 <0, and 0 otherwise.

To solve the u subproblem, we consider two cases for the first variation, G,
of F. If G is linear, for example taking the continuous functional F(Vu) =

1
5 [ Vu- AVudx and A is positive semi-definite, then the first variation is:
M=V -AV)u = A —0" =b"),

which can be solved by using the conjugate gradient method. In the case where G
is non-linear, for example taking the continuous functional F(Vu) = [ /1 + |[Vu|? dx,

we leverage the strict convexity of the functional to quickly solve the substep by
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using Nesterov’s acceleration method [110]. The resulting scheme for u is as fol-

lows:

k _ 17k | VL=V k k—1
w —U—l—ﬁﬁ(U—U)

(3.14)
Uk+1 k

=wh — 7(G(w*) + A" — p + w* + b)),

where 7 > 0 is a psuedo-time step, L is the Lipschitz norm of F, and w is an

auxiliary variable. This scheme has the following convergence bound:

F(U*) - F(U*) <2 (1 - \@) (FW) = F(U7)

where u" = U°, "™ = U*, and U* is the steady state solution of Equation (3.14).

Both algorithms are summarized below.

Algorithm (Linear)

Given: u°,b°, tol and parameters \, p
while ||[u" — u" Y| > tol do
u"t = (I = 2M1G) e — v =)
vt =8, (gp —u"t -, %)

bn+1 — + un+1 + ,Un+1 — @

end while
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Algorithm (Non-linear)

Given: u°,b°, tol and parameters \, p
while ||u™ — u" || > tol do
Uo — yn
while ||U* — U*1||, > tol do
wh = Uk + % (Uk . qu)
UM = wk — 7(G(w®) + A" — ¢ + wk + 7))
end while
ym —
vt =8, (gp —u™tt — %)

bn+1 =h + un+1 + Un+1 -

end while

Obstacle Problem

Given an obstacle ¢ : R — R and y satisfying the condition from Theorem 4, we

solve the following obstacle problem:

u

1
min/ §|Vu|2 + p(p — u)y du.

The corresponding discrete problem (where we factor the h? constant) is given by:

) 1
mulﬂz IVl + e — )+
j

where u; = u(x;) and h > 0 is the uniform grid spacing. Since the functional is

quadratic, the Euler-Lagrange equation for the subproblem in terms of u satisfies

a Poisson equation:

(M — Ap)u= ANy —v+Db), (3.15)
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with Dirichlet boundary conditions which will be specified for each problem. To
approximate the solution of the linear system, we use a few iterations of the
conjugate gradient method. It was noted in [56] that full convergence is not
necessary within the main iterations, thus we are not required to solve Equation

(3.15) exactly.

Two-Phase Membrane Problem

Consider the following optimization problem arising from finding the equilibrium

state of a thin film:

1
min/ §|Vu|2 + puy — pou_ dx,
for some positive and continuous Lipschitz functions p;(z) and ps(x). The corre-

sponding Euler-Lagrange equation is:

Au = p11 X {u>0) — H2X {u<0}-

The regularity of this problem was studied in [137, 122]. Here we are concerned
with the numerical approximation of this problem as well as computing the zero

level set.

The corresponding discrete minimization problem is given by:
) 1
m;nz 3 Vsl 4 ()4 = pa(ug) -
J

Now one can apply the split Bregman method by introducing two auxiliary vari-
ables v; = uy and vy = u_. However, the algorithm can be further simplified by
using the following relations:

_ut |ul

Uy = and u_ = u—_]u\

2 2

Now we can rewrite the problem as:

) 1
m;nz 5‘VhUj|2 + au; + Bluyl,
J
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p1tp2
5

where o = #5#2 and 8 = In this form, we have a slightly different

numerical scheme. As before, the splitting leads to:
: 1 v 2 )\ b 2
mumZ§| ntgl” + auy + Blo| + S vy =y = bl
j
and iterative scheme is written as follows

u" ™ = (N = AR) T = 0" — a)

o= (. )
D)

bn+1 =+ un—i—l . Un—l—l

Y

where the shrink function is defined as S(z,¢) := (|z| — ¢)4 sign(2).

Hele-Shaw

As described in Section 3.3, we minimize the obstacle problem transformation of

the Hele-Shaw flow:
. 1 9
min [ S|Vul” +m(p = w)+ = 72(txx —u)-dz,
with ¢ given by Equation (3.3). The corresponding discretization problem is:
. 1 2
mulnz §’vhuj‘ + () —uwi)y — vt xry — uj) -
J

Once again, we construct an equivalent minimization problem by introducing two
auxiliary variables v; = ¢ —u and vy = u — txg. For convenience, we drop the
subscript j in all terms:

. 1 A A
min Va4 (00) 72 (02) 4+ 5 (01— g butbn)*+ T (-t b Hha)”

u,v1,v2,b1,b2 2
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The iterative scheme is written as follows:

un+1 _ (()\1 + )\2)[ . Ah>_1 ()\1(()0 _ U{L — b?) —+ )\2(1}2 -+ tXK + b2))
’U?+1 _ S+ (90 o un-‘rl —pn ﬂ)

=8, (u bk B, Z—)

b711+1 — b?f + ’U?—H — o+ un-‘rl
ngrl — bg + U;Jrl _ unJrl + tXK-

Each substep is either a linear system of equations or an explicit update using the

shrink-like operators, making it easy to solve.

3.5 Computational Simulations

In this section, we apply the methods from Section 3.4 to various examples. The
iterative schemes stop when the difference between two consecutive iterations in
the L* norm is less than a set tolerance, tol. We will specify the tolerance
parameter for each problem. In general, tol is set to be Ch?, for some constant

C'. Unless otherwise specified, the solutions are zero on the boundary.

Obstacle Problem

For our first examples, we show some numerical results for the minimization prob-

lem:

u

1
min/§|Vu|2+u(go—u)+dx,

with different types of obstacles. In particular, consider the following 1D obstacles:

)
10022 for 0<2<0.25
pi(z) = 100x(1 —x)—12.5  for 025 <z <05 (3.16)
kgpl(l — ) for 0.5<z<1.0,
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Figure 3.1: The dashed curves are the obstacles and the black ones are our nu-

merical solutions associated with Equations (3.16) (left) and (3.17) (right) after

50 iterations. The grid size is 256, the parameters are (u, A) = (300,45) and
(2.5 x 10%,250), respectively.
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Figure 3.2: The plots show the error between our numerical solutions (from

Fig. 3.1) and the analytic solutions versus number of iterations. More precisely,

the error is measured by E" = ||u} — Uezact||= and we plot log(E™) versus n.
and )
10sin(27z) for 0<2<0.25
¢2() = { eos(m(4z — 1)) +5  for 0.25<z<0.5 (3.17)
wa(l —x) for 0.5<z<1.0.

In both cases, the parameter p is determined discretely (see Theorem 4) and u

is initialized using the obstacle, i.e. u® = . The results are shown in Fig. 3.1.

In both cases the numerical solutions are linear away from their corresponding
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obstacles, which agrees with the analytic solutions:

((100 — 501/2)x for 0<a< s
Uresact() = {1 1002(1 —2) =125 for L5 <2 <05
Kulﬂmd(l —x) for 0.5 <z <1.0,
and )
10 sin(27z) for 0<z<0.25
U2 exact(T) = 4 10 for 025<z<05

\u2’ewct(1 — ) for 0.5 <z <1.0.

These simple examples are used to verify the numerical convergence of our method.
The errors between the analytic solutions and the numerical solutions versus the
number of iterations associated to obstacle problems (3.16) and (3.17) are shown

in Fig. 3.2. Notice that the numerical scheme has nearly exponential error decay

in the beginning.

- £

Py iy

-8 -6 4] 2 4
L |
‘ ‘ -5
x 10

Figure 3.3: The plots above are our numerical solution (left) and the difference
with the analytic solution (right) associated with Equation (3.18). The grid size
is 256 by 256, the parameters are (u, \) = (10/h?,20.3), and tol = 107°.

Next, we consider a 2D problem on the domain 2 = [—2,2] x [—2,2] with the
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following obstacle:

V1= a2 =2 for 22 +¢y*<1
o(z,y) = (3.18)
-1, otherwise.

Since the obstacle is radial symmetric, the analytical solution can be solved di-

rectly:

V1—a2? -y for r<r*
—(r")?log(r/2)/\/1 — (r*)2,  for r>r*
where r = /22 + 92, and r* is the solution of

u(r,y) =

(r)*(1 — log(r*/2)) = 1.

Our numerical solution and the difference with the analytic solution are presented
in Fig. 3.3. For comparison see [98]. We can see that the error is concentrated
along the contact set, where the function is no longer C?, and is relatively small

everywhere else.

08

é
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02

0O 02 04 0.6 0.8 1

Figure 3.4: The plots above are our numerical solution (left) and its level curves
(right) of the obstacle problem associated with Equation (3.19). The grid size is
256 by 256, the parameters are (u, ) = (6.5 x 10%,1.3 x 10%), and tol = 5 x 1072
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Next, to examine the behavior of non-smooth obstacles, we consider:

5.0,  for |z —0.6]+ |y —0.6] <0.04

45, for (z—0.6)2+ (y— 0.25)% < 0.001
ps(z,y) = (3.19)
45, for y=057 and 0.075 <z < 0.13

0, otherwise

\

which consists of different disjoint shapes inside the domain [0,1] x [0,1]. The
numerical result and its level curves are shown in Fig. 3.4. One can see that the

solution is smooth away from the obstacle and agrees well with the obstacle on

UARRRRRAN

its support set.

i
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Figure 3.5: The plots above are the level curves of the obstacle (left) and our
numerical solution (right) associated with Equation (3.20). The grid size is 256
by 256, the parameters are (u, A) = (10°,5 x 10%), and tol =5 x 1074

Finally, in Fig. 3.5, an obstacle consisting of two intersect planes with a bump
on each plane in the domain [—1,1] x [—1, 1] is examined:

¢4 = min(z+y—2, 22+0.5y —2.5) — 200+ 1 5—200((z-0T5)*+{y+0-5)%) (3 90)

In this case, the solution agrees with the obstacle in a large portion of the domain.
The analytic solution is given by the two intersecting planes, which can be seen

by the linear level curves.
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Figure 3.6: The plots correspond to the log error between analytic solution and
numerical solution computed by our method (left) and method from [93] (right)
vs. the number of iterations. Both algorithms are applied to Equation (3.18) on

a grid of size 256 by 256, with the error measured in the L? norm.

We compare our method to the one found in [93], which uses an indicator
function to enforce the obstacle inequality. The addition of an indicator function
to the variational problem may be found in many of the models cited in the
introduction of this paper. We choose to compare directly to the method from
(93], since their algorithm also uses operator splitting (in particular the Douglas-
Rachford algorithm) which is closely related to the algorithm we use here. Also,
their method can be seen as a representative for indicator based methods found

in the literature.

In Table 3.1, we calculate the lowest achievable errors for our method and the
method in [93] applied to the problem found in Figure 3.4. The errors for our
method, in the L? and L> norm, are lower than the errors for the method used
in [93]. Additionally, our method seems to converge at a faster rate. This is likely
due to the differences in continuity between the penalty functions. In Table 3.2 the
time and iteration complexity are examined. Note that although the complexities
are similar, which is expected for these two algorithms, the absolute CPU times

and number of iterations are lower in our method.
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Table 3.1: The errors for our method and the method found in [93] are calculated

for the obstacle in Figure 3.4. The error for our method, in the L? and L* norm,

is lower than the error for the method used in [93].

Table 3.2: The CPU times and number of iterations for our method and the
method found in [93] to achieve the errors in Table 3.1 are shown here. The com-

plexity is measured as a function of the number of nodes used in the discretization.

Also, the error between the analytic solution and the numerical solution com-
puted by both methods versus the number of iterations are shown in Figure 3.6.
Our method quickly achieves a relatively low error ( 1073) compared to method
in [93]. A partial explanation for this fast initial decay can be found in [56].
The more rapid convergence of our method might be due to the “error forgetting”
property of L! regularization combined with Bregman iteration, which is analyzed

in [160].



Nonlinear Obstacle

0 0.2 0.4 0.6 0.8 1

Figure 3.7: The dashed curve is the obstacle and the black one is the numerical
solution of the nonlinear obstacle problem (Equation (3.21)). The grid size is 512,
A=53,u=11x10%7=1/L = h?/2.

We would like to show that the methodology here can be easily applied to

nonlinear problems, so as a proof of concept we minimize the surface tension:

1
min/ V14 |Vol?de,
0

v>p
which is the energy associated with the classical model of stretching an elastic
membrane over a fixed obstacle. The obstacle ¢ is given by the oscillatory func-
tion:

¢ = 10sin*(n(x +1)%), =z €]0,1]. (3.21)

The boundary data for this example is taken to be u(0) = 5 and u(1) = 10. The

numerical solution is linear away from the contact set as can be seen in Fig. 3.7.

Two-phase Membrane Problem

We examine the two-phase membrane problem:

1
min/ §|Vu|2 + puy — pou_ dw,

u
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with different sets of (u1, p2) and boundary conditions. First, in the symmetric

case, we consider the following 1D problem:

T 8X{u>0} — 8X{u<0} with u(l) = 1,

whose analytic solution is given by:

(
4% — 4 —1
u(r) =40
472 — 4 + 1
\
1
3
0.5 i
!
K
K
of —————————————” '
."
_I
05t}
p
-1 . . .
-1 05 0 05

(3.22)

for —1<x<-05
for —05<2<0.5
for 05 <x<1.
0.5
At
1.5
-
2.5
_3_
-3.5

5

0 15 20 25 30 35

Figure 3.8: Left: The black curve is the final numerical solution, the dotted one

is the numerical solution after 3 iterations of the two-phase membrane associated

with Equation (3.22). The grid size is 512, A = 204.8 and tol = 5 x 107°. Right:

The log error in L*°-norm between the numerical and the analytic solutions.

In Fig. 3.8 (left), we plot our numerical solution at the third iteration and

the final state. Within a few iterations, our numerical method is able to locate

the correct zero set. The error versus the number of iterations is shown in Fig.

3.8 (right), and converges nearly exponentially. For comparison of the numerical

results, see [17].

Next we consider a non-symmetric equation:

u’ = 2X {u>0} — X{u<0} with wu(l) =1,
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The calculated free boundary is at the point x &~ 0.141, which was also observed

in [137] (see Fig. 3.9).

0.5¢

- -0.5 0 0.5 1

Figure 3.9: The plot above is our numerical solution of the two-phase membrane
associated with Equation (3.23). The free boundary point (the dot) is located at
x ~ 0.141. The grid size is 2'2, A = 3072, and tol =5 x 1077.

For an example in 2D, we set uy = po = 1 with Dirichlet boundary condition

g given by:

.

(1-2)?/4 —-1<z<land y=1

—(1—-2)?/4 -1<x<land y=-1

9(x,y) = 4 42 0<y<land z=-1 (3.24)
—y? —-1<y<O0and z=-1
0 —1<y<land x=1.

In this case, the zero set has non-zero measure, see Fig. 3.10 (right). The boundary
between the regions {u > 0}, {u < 0} and {u = 0} contains a branching point,

which we are able to resolve numerically.

Hele-Shaw

We present three examples of the Hele-Shaw problem:

) 1
mm/ §|VU|2 + (e —u)y —y2(txx —u)- dz,

u
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0.5r

gt -05 0 0.5 1

\ 4

Figure 3.10: Left: Our numerical solution associated with Equation (3.24). Right:
the boundaries between the regions {u > 0} (top), {u < 0} (bottom) and {u = 0}.
The grid size is 256 by 256, A = 100.0 and tol = 1076.

with different sets of (K, €)g). The parameters are fixed at 7, = v, = 1.5x10%, \; =

A2 = 150. The free boundary starts moving from 2.

To validate our numerical scheme, in the first example we compare the bound-
ary of our numerical solution and that of the analytic solution. In particular,

when both K and € are circles centered at the origin:

K ={(z,y) € [-5,5] |2 +* <1}, Qo ={(z,y) € [-5,5]" | 2* +y* <2},
(3.25)
the free boundary remains a circle centered at the origin for all time. Thus the
radius of €, Re.qct, can be calculated explicitly. In Table 6.1, we compute the error
between the radius of the free boundary of our numerical solution and the analytic
solution at time ¢t = 0.25 using different grid sizes. The experimental error in the

radius is about O(h%®), which is expected for a low dimensional structure.

Next, we present two numerical results for more complicated cases of (K, ).
In Fig. 3.11 (left), the free boundary 0f is pinned at the two acute vertices along
0€)y. As expected, the free boundary opens up to right angles then smooth out
and move away from {2y. For more details on this short time behavior as well

as singularities in the Hele-Shaw model see [71, 145, 112]. Finally, in Fig. 3.11
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Table 3.3: The error between the radius of the free boundary of our numerical
solution and the exact radius associated with (K, €)) defined in Equation (3.25)
at time t = 0.25. The parameters are fixed at v; = 15 = 1.5 x 104, \; = Xy =

150, tol = 107%. The convergence rate is approximately O(h%%).

Grid Size 128 x 128 | 256 x 256 | 512 x 512 | 1024 x 1024

Error (radius) | 0.0238 0.0124 0.0083 0.0044
2 1
1.5
1 1 o5
0.5
a Or
05
1t 1 -0.5¢
~1.5¢
R R 0 : > M 05 0 05 1

Figure 3.11: From inside to outside: boundaries of the sets K, {2y and the free
boundary of the Hele-Shaw problem. The grid size is 256 by 256, v, = v =
1.5 x 10%, A\; = Xy = 150, tol = 107°, and time ¢t = 0.1 and t = 0.06, respectively.

(right), we take the boundary of €2y to be smooth but concave. The free boundary

moves away from the initial state and begins to smooth out.

Conclusion

Using an L!-penalty method, we are able to construct an unconstrained problem
whose solutions correspond exactly to those of the obstacle problems. We pro-

vide a lower bound on the value of the penalty parameter and use this to guide
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our numerical calculations. We present several experiment results showing the

applicability of our method to various physical problems.
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Part 11

Non-local Operators and Retinex
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CHAPTER 4

A Short Review of Retinex Implementations

Introduction

Retinex is a theory on the human visual perception [82, 86, 85]. It was an attempt
at explaining how a combination of processes supposedly taking place both in
the retina and the cortex is capable of adaptively coping with illumination that
varies spatially. The fundamental observation is the insensitivity of human visual
perception with respect to a slowly varying illumination on a Mondrian-like scene,

see Figure 4.1.

The original Retinex computational algorithm was a model of human vision.
The input was the array of scene radiances. The algorithm’s output was the
array of calculated appearances. The experimental data used in [86] was a Black
and White Mondrian (a flat array of uniform reflectance rectangles in a smooth
gradient of illumination). Here, appearance does not correlate with radiance.
Since gradients in illumination are nearly invisible, appearance shows moderately
good correlation with reflectances. More generally, however, appearance correlates
with edge ratios in radiance, not surface reflectance. That is not a problem,
because the original Retinex goal is to calculate appearances. 3-D Mondrians [105]
use uniform reflectance surfaces in non-uniform illuminations that include edges
in illumination. Here, there is very little average correlation with appearance and
surface reflectance. Some areas show high correlation; other show no correlation.

Land and McCann’s model of human vision calculates appearance both when it
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Figure 4.1: Mondrian illusion. Left: Under uniform illumination, the relative
intensity ratio between the top-most and bottom-most patch in this synthetic “Mon-
drian” image is obvious. Right: Albeit these patches have the same absolute gray-level
under smoothly varying illumination, their underlying relative reflectance ratio, 2.7, is
still perceived by humans, and it can be recovered by multiplying the local intensity ra-
tios at the discontinuities along any path joining the two patches, effectively discarding

gradients due to lighting.

correlates with reflectance, and when it does not. Land and McCann’s Retinex is

not intended, however, to identify illumination (nor reflectance).

Inspired by the initial ideas of Retinex, other researchers picked up the model,
but the goal shifted towards reflectance-illumination decomposition (given the con-
nection with the original Land and McCann work, it is also coined the “Retinex-
problem”), contrast enhancement, and image aesthetics. It is important to note
that this new goal differs from the original Retinex motivation, and from the
human visual system. Moreover, the aspired reflectance-illumination separation
does not even have to be physically plausible, depending on the requirements and
priors of the specific decomposition application. For the rest of the thesis, the
terms illumination and reflectance, are thus greatly relaxed with respect to the

strict physical definitions.

Among models for enhancement and noise removal—such as [152, 88, 129, 130],
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for an overview see [1]—Retinex has received particular attention because it is
deeply connected with psycho-visual empirical evidence of human perception.
However, depending on the application, the various Retinex assumptions are given
different importance, and resulting implementations vary significantly. In this the-
sis, we even include shadow-removal as potential Retinex-application. Important
differences are also found in the respective pre- and post-processing steps for each
application, such as calibration or gamma correction. For an overview, we re-
fer to [106]. In this thesis, we focus on the more recent interpretation of the

“Retinex-problem” and largely refrain from extensive pre- and post-processing.

We tentatively classify models and algorithms in five main classes: original
Retinex formulation, threshold-based PDE-models, reset-based random walk and
kernel-based methods, reset- and threshold-free center-surround models, varia-
tional Retinex. While fundamental connections and equivalences have been shown
between random-walk, threshold, and the original Retinex formulation [68, 108], a
divide still exists between recent kernel-based Retinex such as [10] and variational
models like [76]. We will show in Chapter 5 how threshold-based, kernel-based,
and center-surround Retinex can be expressed as variational models by making
use of non-local generalizations of differential operators using particular kernels.
It is to note that similar connections between variational denoising models, PDE

schemes, and short-time kernels have been established in [141].

Part IT of this thesis was taken with slight modification from the article “Non-
local Retinex - a unifying framework and beyond”, published in SIAM Journal on

Imaging Sciences, 8(2), 787826.

Original Retinex Algorithm

Land formalized the reflectance ratios, by summing thresholded log-ratios over

continuous paths between two pixels [83]. He defines the relative reflectance of
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pixel i to j as (see figure 4.2):

]' . .
R(i,j) =Y 6, 1og% with — 0,(-) := (4.1)
k k 0 otherwise

where 0, denotes hard thresholding, and I} is the intensity of the k-th pixel along
the path from ¢ to 5. The thresholding makes sure, that only sharp intensity
transitions are included in the sum, and the slow drift due to smoothly varying il-
lumination is eliminated. Provided that the thresholding yields perfect distinction
between illumination gradients and actual feature edges, the relative reflectance
of i to j is invariant to the path connecting them. The average relative reflectance

at 7 is then estimated as
N

RG) = B[R, §)] = 5 > RG.j) (1.2

j=1
However, “the ultimate purpose is to describe any area by relating its reflectance
to a single, standard, high reflectance somewhere in the Mondrian or to several
equally high reflectances” [86]. Instead of localizing the highest reflectance in a
preprocessing step, which seemed biologically unplausible, it was proposed to esti-
mate the maximum reflectance directly while performing the sequential sum along
each path. Indeed, whenever the intermediate sequential sum from j up to k& + 1,
i.e. the relative reflectance of pixel £ + 1 to j, becomes positiv—equivalent to a
sequential product bigger than 1—, one has reached a new maximum reflectance,
and the sequential sum is reset, with I, as new reference intensity. Due to the
presence of the thresholding operator, the final reference pixel does not necessarily
coincide with the brightest pixel along the path. For a mathematical definition

and analysis of this reset mechanism, see [125].

There has been quite some debate about the respective role and importance of
both threshold and reset in the Retinex, including by McCann himself [104]. The
criterion will serve us dividing the many Retinex implementations in two broad

classes: threshold-based versus reset-based. A third class of implementations is
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a) Relative reflectance of i to j b) Average reflectance of

Figure 4.2: Relative and average reflectance. a) The relative reflectance of
pixel ¢ to pixel j is computed by accumulating all important local intensity gradients
along any path « joining these pixels. b) The average reflectance of i is then obtained

as the average relative reflectance of ¢ to different j.

based on an alternative technique proposed by Land, which determines lightness
as ratio of the local intensity compared to the average intensity of its immedi-
ate (circular) surroundings, without neither thresholding, nor reset [84]. A forth
class, finally, extracts the reflectance and illumination information variationally,

by optimizing different energy functionals.

Threshold-based Retinex Implementations (PDE)

In 1974, Horn proposed a mathematical alternative to the Retinex algorithm that
differs substantially in form [66]. He essentially stripped the Retinex algorithm
down to a smoothness prior on the illumination field, and thus to a threshold-
ing on intensity derivatives. He poses the problem of recovering the underlying

reflectance R, which multiplied by the illumination B resulted in the observed I:

I(z,y) = B(z,y)R(z,y) (4.3)

By taking the logarithm, i := log(I) etc., we obtain an additive impact of illumi-

nation:

i(z,y) = b(z,y) +r(z,y) (4.4)
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Since the illumination b is supposed to be varying smoothly, the spatial derivatives
of the observed intensity are mostly due to edges in the reflectance r. Horn
considered the scalar Laplacian operator: Ab will be finite everywhere, while Ar
will be zero except at each edge separating regions [66]. Therefore, discarding the
finite parts of the observed intensity Laplacian is supposed to yield the Laplacian

of the reflectance (Poisson equation):
Ar =6, Ai (4.5)

A tight mathematical connection between Land’s and Horn’s computations, on
the basis of Green’s formula, has been shown in work by Hurlbert [68]. A fully
discrete alternative to Horn’s convolution and inversion scheme was proposed by
[102]. There, an equivalent two-stage algorithm was introduced, which achieves
inversion at very low computational cost, feasible in terms of neural networks. The
steps are first local contrast computation and thresholding (d;), then inversion,
as follows:

c(x) = & (i(x) - wlz, y)i(y)> (4.6)

y#£T

r(x) = ) + ) wlz,y)r(y) (4.7)

yFx
where w(z,y) are the weights associated with the finite differences stencil for the

discrete Laplacian operator.

While the first step is straightforward, the second step realizes inversion through
feedback in terms of neural networks: r(y) is Retinex output computed in parallel,

and the system (hopefully) converges to a steady state solution.

Horn’s model has been strongly backed up by a much more recent paper by
Morel [108], where the authors show a very tight connection between Horn’s Lapla-
cian thresholding and Land’s original, resetless Retinex algorithm. Indeed, “if the
Retinex paths are interpreted as symmetric random walks, then Retinex is equiv-

alent to a Neumann problem for a linear Poisson equation” [108]. The main
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difference between Horn and Morel concerns the argument of the hard threshold-
ing operator: while Horn thresholds the scalar Laplacian, Morel thresholds the
components of the gradient prior to computing the divergence. De facto, Morel

thus effectively solves an L?-gradient fitting problem:
# = argmin {||Vr — §,Vi||3} (4.8)

We refer to this basic model as L?-Retinez. Note that reconstruction from thresh-
olded gradient has earlier been proposed by Blake [14, 15, 18]. More recently,
the L'-equivalent thresholded-gradient fidelity Retinex has been proposed: The

L'-Retinex minimizes the isotropic L'-distance [95]:

7 = argmin {||Vr — 0. Vi, } (4.9)

Reset-based Retinex Implementations (Random Walk)

Moving away from thresholding and relying purely on the reset mechanism, Fran-
kle and McCann have patented their Retinex algorithm [49]. The Frankle-McCann
algorithm replaces sequential products along paths by pairwise pixel ratios sam-
pled along discrete spirals. Long-distance interactions are computed first, then the
sampling progressively approaches the center pixel while decreasing the spacing.
At each step, the lightness estimate is updated with a ratio-product-reset-average
operation [52]. More recent variants of the algorithm mainly involve multires-
olution image pyramids [103, 52|, different sampling patterns [161, 69], or ratio
modifiers [140].

Two of the main drawbacks of the Frankle-McCann algorithm are the strong
dependence on the path length of the spiral pattern (represented as number of iter-
ations), and the appearance of asymmetric halos due to the anisotropic sampling
pattern. In order to avoid these issues, Provenzi et al. replace the path-based

sampling pattern by a repeated sampling through random sprays [123]. Indeed,
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if the threshold is removed from the Retinex formulation, then the reset reduces
the relative reflectance, computed using a specific path v, to the ratio of central

pixel I(i) and brightest pixel I(x) along that same path ; [125]:

where x;, is the brightest pixel encountered along 7. Therefore, many paths be-
come redundant, and the maxima I(xj) can be sampled alternatively. It was sug-
gested that averaging repeated random spray sampling of z;, directly, with radially
decreasing sampling density, can substitute the path-based filtering efficiently. On
the downside, such sampling of extrema exhibits high variance, and the recovered
reflectances are typically noisy. More robust estimators, such as high-percentage
quantiles rather than the most extreme sample, results in smoother illumination

estimation and therefore lower noise.

Beyond, the (white-patch) random spray Retinex was combined with a (gray-
world) model used for automatic color equalization (ACE) [129, 124]. Eventually,
the random spray sampling was replaced by a kernel, representing the sampling
density of the random spray in the limit case [10, 120]:

Ri= Y waf (75)+ X el
31 (5)21(7) J(G)<I(5)
where w(i, j) is the kernel, representing the probability density of picking a pixel
J in the neighborhood of i [10]. Here, we find the ratio modifier f as a general-

ization of the log-ratio seen until now. Such a ratio-modifier has previously been

introduced by Sobol [140].
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Center-surround Retinex Implementations

A simple alternative to threshold/reset based Retinex algorithms was proposed
by Land based on findings of lateral inhibition [84]. The alternative consists in
determining the local lightness (reflectance) as the ratio between local intensity
and an average of its close surroundings. Land realized that this much simpler
model could reproduce all Retinex behavior modeled so far, and had the additional
competence of generating empirically perceived Mach bands [128, 43].The funda-
mental idea is again that the low-frequency components are due to illumination,

while the high-frequency details are features in the reflectance.

10 years later, only, the idea was picked up and formulated as single- and multi-

scale center-surround Retinex [74, 73, 127]. The single-scale Retinex is given by
R(i) =log I(i) — log [F = I] (i) (4.10)

where F' is a Gaussian kernel. The multi-scale Retinex is then simply the combi-

nation of different single-scale retinexes:
R(i) =1log I(i) = > wylog[F, I (i) (4.11)

where w,, : > w, = 1 are the weights of each scale, and F;, are Gaussian kernels

of different scale.

Starting from the single-scale retinex (4.10), by changing the order of log and

Gaussian convolution, one gets homomorphic filtering
R(i) =log I(i) — [F *log I] (i) (4.12)

which in turn can be identified as a special case of (resetless) kernel-Retinex, with

the kernel w(i, j) = F and ratio modifier f = log:

R(i) =Y _w(i,j)log (%) =logI(i) — Y w(i,j)logI(j) (4.13)

J J
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Variational Retinex

A whole family of variational Retinex models handles the regularity priors on the
reflectance and illumination parts of the Retinex decomposition in a more explicit
way. First of its kind, the variational framework by Kimmel introduces competing
H' smoothness priors on both the illumination and reflectance fields, as well as
a quadratic fidelity prior between illumination and observed intensity [76]. In
addition, illumination is constrained to be bigger or equal to observed intensity,

i.e. the reflectance is limited by an upper bound:

min {/Q |Vb|* + a(b—14)* + B|Vb — Vz’|2dxdy} st. b>i, (Vb ) =0 on 0.
(4.14)
Kimmel solves this quadratic programming problem using projected normalized
steepest descent at multiple resolutions [76]. Here, we rewrite the problem slightly,
optimizing for the reflectance rather than the illumination, by substituting accord-

ing to the coherence condition ¢ = b+ r:

min {||Vr — Vi[|3 + a3 + 8| Vr]3} st r<0, (Vra) =0 on 0.
(4.15)
This form makes clear that variational Retinex is an optimization between re-

flectance gradient fidelity and some sparsity penalties.

Subsequently, variations of this variational Retinex model have been proposed,
mainly involving different norms for the fidelity and sparsity terms, and dropping
the asymmetry constraint » < 0. First, Ma and Osher have dropped a few terms

and replace H' smoothness of the reflectance by a TV-prior [96]:
min {[|Vr — Vi[5 + 2| V7| } (4.16)

As a complication, instead of the local TV prior, they also make use of non-local

total variation. Further, Ng and Wang introduce an L?-fidelity prior between
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reflectance and intensity [111]:
min {||[Vr — Vil + afr — i3 + 2X| V7| } (4.17)

Chen et al. have used a TV-L!-based variational Retinex approach, which they
call logarithmic total variation (LTV), for illumination normalized face detection
[35]:

min {{|Vr = Vil + afjr{l} (4.18)

Remark 7. At this point it is worthwhile noting, that both the L?- and L'-Retinex

[108, 95] have a threshold-free variational equivalent.

Indeed, the hard threshold on the intensity gradient can be seen as a con-

traction of an LY-sparsity prior on the gradients of the reflectance (see §5.2 for

2} (4.19)

mTin{ch’— Vill3+7?qlo} st. Vr=¢ (4.20)

details):

win { [V — 5,Vi[3} = min {Hv — argmin {7 — il + 7200}
T T q‘

which is a relaxed version of the more complicated problem

This connection between basic threshold and a related variational problem makes
it intuitive, that other variational models, such as the TV-Retinex [96], can be
retro-fit into a threshold based Poisson-problem, as well. This is the fundamental

insight leading to the non-local unification proposed in this paper.

75



CHAPTER 5
Non-local Differential Operators

In this chapter, we recall and give a few definitions of non-local differential opera-
tors, which we need in order to cast existing kernel-based Retinex methods into a
variational framework, and based on which we will propose our unifying Retinex

framework in Chapter 6.

5.1 Non-local Differential Operators

Product and Norms

First, we give the definitions of particular products and norms of scalars and

non-local vectors. To begin with, we require appropriate inner products.
Definition 1. For scalars i : 2 — R, we choose:

(i) = [ ila)iCo)de (5.1)
which is the common L? inner product.

Definition 2. Accordingly, we introduce the following inner product for vectors
v —QxQ:
(@7) = [ utey)oley)dady 5.2
QxQ

Definition 3. The associated L* norms are respectively for scalars i : 8 — R:

il o= VT = [ itapas, (53)
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and for vectors v : 2 —  x Q:

18], == /17, 5) = \//Q olay)rdody. (5.4)

Definition 4. Similarly, the L'-norm of the vector v, ||U]; : @ x Q — R, is

defined as
@l = / o(, )| ddy. (5.5)
QxN

Definition 5. Let w be a non-negative weighting function and v a vector. The

weighted L°- “norm” of the vector U, ||U]|o.w : 2 X Q — R, is defined as

1o = / (e y)(1 = 8(v(r.y)drdy, (5.6)

where § is the Dirac distribution. This functional emphasizes the (L°) sparsity of

important vector components.

Definition 6. Further, point-wise multiplication is written for scalars ¢ and j as

(i )) = i(2)j(z), @€, (5.7)
and for vectors u and U as:

(@ 0)(z,y) = u(z,y)v(z,y), z,y€cN. (5.8)

Differential Operators

We recall some definitions of non-local operators [53].

Definition 7. Let Q € R", z € Q, i(x) be a real function i : Q@ — R. We
define the non-local gradient of this function as the vector of all partial derivatives,

Vi Q— QxQ:

(Vwi)(z,y) = Vw(z,y)(ily) —i(z), @yec, (5.9)

for some non-negative weights w(x,y).
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Remark 8. Note that this definition of non-local gradients amounts to a point-
wise multiplication between the vector of all finite differences, d:, and the weight-

vector (J:

. @ w(z,y) = vw(@,y) zye

d; : di(z,y) =i(y) —i(x) z,y €
Thus we will call any such point-wise product between a weighting function and
another vector, say, ¢, a quasi-gradient, as it shares the form of an actual gra-

dient up to the fact that the vector ¢ does not actually stem from non-local finite

differences.

Definition 8. The associated divergence of a vector v €  x ), namely .U :

O xQ — Q, is then defined as the negative adjoint under the above inner products:
(Vi, V) = (i, — 4 U) . (5.11)

The expression for the divergence is easily found as
() = [ Valeule.) - Volahad. (12

Definition 9. The non-local Laplacian, Ay : @ — € is defined as the composition

of non-local divergence and non-local gradient:

(Awi) (@) = (+u(Vwi))(x) = /Q(w(:my)ﬂLw(y,ﬂf))(i(y) —i(z))dy.  (5.13)

Note that if ws(z,y) is a symmetric weighting function, then the associated

Laplacian can be simplified as:

(Aw,i)(2) = (Fu,(Vu,1))(z) = 2/ws(l‘,y)(i(y) — i(x))dy, (5.14)

Q

where the Laplacian now differs from the regular graph Laplacian by a factor 2.
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Filtered Gradients

Based on the non-local differential operators defined above, we now introduce fil-

tered gradients, by making use of a filter function f acting on the scalar differences.

Definition 10. Let f : R — R be a real-valued distortion function applied to the
finite differences. We define filtered non-local gradients, V,, 51 : @ — Q x ), as

the quasi-gradients obtained as follows:

(Vu i) (2, y) = Vw(z,y) f(i(y) —i(z), 2y€Q (5.15)

Definition 11. We call A, ; the filtered non-local Laplacian obtained by applying
the (regular) divergence to filtered gradients

(Au)(@) = (F0(Vuyi) (@) = /Qw(w,y)f(i(y) —i(z)) —w(y, =) f(i(z) —i(y))dy.
(5.16)

Therefore, if f; is a symmetric real-valued function, i.e., fs(z) = fs(—2), and
the weight ws(+,-) is symmetric, then the associated filtered non-local Laplacian
Ay, s, is always zero. On the other hand, if f, is an anti-symmetric real-valued

function, the filtered non-local Laplacian is given by:

(B )0) =2 [ wile, ) fulity) — i(a)dy. (.17

Q
Non-stationary Filtering

In the above definitions, the filter function f was stationary, i.e., independent of

the location. Now we introduce a non-stationary filtering function.

Definition 12. Let f™ : RxQx € — R be a non-stationary real-valued distortion
function applied to the finite differences. We define non-stationary filtered non-

local gradients, V., st : Q0 — Q x Q, as follows:
(vw7f"3i)($ay) =V w(x7y)fns(z(y) —i(x),x,y), T,y € Q (518)
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Definition 13. We call A, jns the non-stationary filtered non-local Laplacian

obtained by applying the (regular) divergence to non-stationary filtered gradients

(D) (@) 1= (Vg o)) () (5.19)

=Lw@wvmmw—wmam—w@wﬁmmw—uwwwMy

Again, if f is a cross-symmetric non-stationary real-valued filter function, i.e.,
f(z,z,y) = —f(—2,y, ), and the weight w,(-, -) is symmetric, then the associated

non-stationary filtered non-local Laplacian A, ; is given by:

(A, )(2) = Q/ws(%y)f(i(y) —i(x), z, y)dy. (5.20)

Q

5.2 Sparse Quasi-gradients

Based on the above definitions of non-stationary filtered gradients, we can now
make a formal connection between particular types of sparse gradient approxima-

tions and related thresholding filter functions.

L°-Sparse Quasi-gradients

Lemma 2. Let wy and wy be two non-negative weighting functions. We look for a
vector qro which is LY sparse as weighted by wi, while the quasi-gradient \/ws - §ro
remains close to the observed gradients V,,,i. This is the solution of the following

optimization problem

Gro = argmin {\*[|qllow, + VW2 - 7= Vau,ill3} . (5.21)
q

which has a closed form as a component-wise hard-thresholding applied to the

non-local finite differences:

wi(x,y) 0 |z <7

quo(w,y) = S7(i(y)—i(z)), where 7=\

|
8
<

z  otherwise
(5.22)
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Proof. We first proceed by rewriting the optimization problem component-wise,
and explicitly using the definition of the L°-cost function:

qro(z,y) = argmin {Nwi(z,y)(1 = 6(q)) + wa(z,y) (q — (i(y) —i(z)))*},

V(z,y) € Q x Q. (5.23)

It is easy to see that the sub-differential of the expression to be minimized contains
0 in at most two points, i.e., there are at most two local minima (just one if they

coincide), namely:
qro(x,y) €{0,i(y) —i(x)}. (5.24)

Since the expression goes to +oo for ¢ — +oo, the global minimum is determined

by comparing the cost associated with just these two candidates:

0 wa(z, y)(i(y) —i(x))* < Nwi(z,y)
qro(z,y) = V(z,y) € QxQ.
i(y) —i(z) otherwise,
(5.25)
Identifying this expression with hard-thresholding completes the proof. O]

Remark 9. Let w3 be another weighting function, based on wy and wo as
w3('xay) :max(wl(:c,y),wQ(x,y)) z,y € (526>

The quasi-gradient \/ws - qro 1s an instance of non-stationary filtered non-local

gradient:

(Vws - qro) (2,y) = (Vg pre) (2,y) = VVws(z, y) f*(i(y) —i(z),z,y)  (5.27)

with

ns __ Qh - w1($,y)
=58 and T(x,y) =\ (1) (5.28)

Note that other weights ws could be chosen, e.q., w3 = wy+ws. It is wise, however,

to ensure supp(ws) = supp(w;) U supp(ws) to avoid ill-defined thresholds.
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L'/TV Sparse Quasi-gradients

After making the relation between hard-thresholded gradients and L°-sparsity, we
now highlight the similar connection between soft-thresholding (shrinkage) and

L'/ TV-sparsity.

Lemma 3. Let wy and wy be two non-negative weighting functions. We look for
a vector Gry such that the quasi-gradient \/w; - ¢ry has small L'-norm, while
the quasi-gradient \/ws - ¢ry remains close to the observed gradients V,,i. More

precisely, we are interested in the solution of the following convex optimization

problem:
Gry = argmin {2X|vwr - @l + Vw2 - @ = Vaill3 } - (5.29)
q
It is found as component-wise soft-thresholding applied to the non-local finite dif-
ferences:
qrv(z,y) = S7(i(y) —i(x)), (5.30)
where
)
2H+T z2<—T
T=A wi@,y) and S:(z) =10 Es
w?(x7 y)
2—T Z>T
(
Proof. For shorter notation, let us write 7 := )\—m >0, and z :=i(y) —i(z).

Again we rewrite the problem component-wise:

grv(z,y) = argimin {f@:=2rlgl +(a—2)*}, V(zy)exQ (531

The cost functional f(g) is non-differentiable at ¢ = 0, and it grows to infinity for
q — +oo. As a consequence, it is minimized for a finite ¢* such that the func-

tional’s sub-gradient contains 0 at that point, d,f(¢*) 3 0. The sub-differential is
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easily computed as

(

2(1+q—2) q>0

Of@) =S [-T—27—2] ¢=0 (5.32)

k2(—T+q—z) q<0.

There are, thus, three cases to consider:

Case la: z > 7 Clearly, in this case 0 is not in the sub-differential at ¢ = 0.
Also, the differential does not vanish for any negative ¢. Instead, ¢ = z — 7 is the

only minimizer.

Case 1b: z < —7 Similar to case la, except that the only minimizer is found

forg=z+T.

Case 2: z € [—7,7] In this case, 0 € J,f(¢ = 0), while no ¢ # 0 leads to a

vanishing derivative. The minimizer is thus given by ¢ = 0. In addition, we have:

f(0) =22 (5.33)
flg>0)—f0)=2rq+(z—q)* —2*=2(1—2)¢+¢ >0 (5.34)
flg<0)—f(0)==27¢q+ (2 —q)* —2*=2(—7 — 2)q +¢* >0, (5.35)

which confirms ¢ = 0 as only minimizer in this case. Identifying the three cases

and their minimizers with soft-thresholding (shrinkage) completes the proof. [

Remark 10. Let again ws be the weighting function such that ws = max (wy, ws).
The quasi-gradient \/ws - ¢ry is an instance of non-stationary filtered non-local

gradient:

(Vws - Grv) (2,y) = (Vg prsi) (2, y) = VJws(z,y) f*(i(y) —i(x),2,y)  (5.36)
with

=5 and 7(z,y) = A—”wl(x"w (5.37)

w2(‘rvy>
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L?/H! Sparse Quasi-gradients

Lemma 4. Let wy, and wy be two non-negative weighting functions. We look
for a vector @ such that the quasi-gradient \/wy - @i has small L?-norm, while
the quasi-gradient \/wsy - g1 remains close to the observed gradients V.,i. This

corresponds to the following quadratic, convex optimization problem:

Gir: = axgmin { |V @3 + VT - 7~ Vi) (539
q

Its solution is found as scaling applied to the non-local differences:

_ Qu(; . o wl(x7y) an Ul) — <
QH1<£C7y) - ST<Z(y) - Z(Q?)), where T = )\UJQ(SU,Z/) d ST( ) - 1+7
(5.39)

Proof. The cost function is fully differentiable and can be solved point-wise:

gm (z,y) = argmin { \wi¢” + w(q — (i(y) —i(x)))?}, V(z,y) € Q x L
' (5.40)
Since the cost functional approaches +oo for ¢ — 400, the minimum is achieved
for vanishing first variation. Optimality thus requires from a minimizer ¢*:
(ML 1) ¢ = i) - i), (.41
wa(z,y)

from which the lemma is directly obtained. O]

Remark 11. Let again ws be the weighting function such that ws = max (wy, ws).
The quasi-gradient \/ws - G 1S an instance of non-stationary filtered non-local

gradient:

(Vws - @) (2,y) = (Vg ps1) (2, y) = Vws(z,9) [ (iy) —ix),2,y)  (5.42)

with
_ )\wl (.ﬁE, y)

=8 and T(x,
f ; (z,y) 027, 9)

(5.43)

84



Remark 12. For the particular choice of identical weights w = w; = wy, we
have ws = w, and the thresholdings in both L° and L?/H" sparse quasi-gradients
become a constant in space, that is T(x,y) = X uniformly, which makes the filter-
ing function stationary and anti-symmetric. If the weights are binary, then this
extends to the L' /TV case, as well. On the other hand, if the weights controlling
the sparsity and the fidelity are different, then those thresholding functions T vary
spatially, which results in adaptive thresholding. We will further discuss this in

Section 6.5.

TV Augmented Quasi-gradients

The last case deals with a gradient enhancement:

Lemma 5. Let wy and wy be two non-negative weighting functions. We look for
a vector ¢*V such that the quasi-gradient \/wy - q*" has increased L'-norm, while
the quasi-gradient \/wy - @1V remains close to the observed gradients V,,i. It’s

the solution of the following optimization problem:

q—’TV — arg{nin {—2)\||\/w1 . Cﬂ|1 =+ ||\/’LU2 . J— Vwﬂ”%} (544)
q

and is found as unshrinkage applied to the non-local differences:

q"V(z,y) = S (ily) —i(x)), (5.45)
where )
z+1 2>0
T=2A wi (7, y) and S°_(2) =<0 2 =0
w2(:l3,y)
z—717 2<0

\

Proof. In this case again, we proceed by rewriting the problem component-wise,

AV wl )y

wa (,y)

and substituting 7 := A and z :=i(y) —i(x):

"V (x,y) = arg;rnin {f(q) :== —27]q| + (¢ — 2)*}, V(z,y) € 2 x Q. (5.46)
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The cost function f(g) is non-differentiable at ¢ = 0, and f(q) — oo as ¢ — +oo.
The subgradient of f is:

(

20—7+q—2) ¢>0

Oaf(q) =4 @ qg=0 (5.47)

\2(7’4—(]—2’) q<0.

There are now 5 cases to be considered:
Case la: z > 7 The only vanishing subgradient is found for ¢ = z + 7.

Case 1b: z € (0,7) There are two locations with vanishing subgradient, namely
q = z=£ 7, corresponding to two local minima, one of which is the minimizer. The

global minimum is found by evaluating the cost function at these two locations:

fz4+71)==21(z+ 1)+ 7%= 272 — 7* (5.48)

fz—1)=21(z —7) + (-7)* = +212 — 72, (5.49)

therefore f(z +7) < f(z — 7), and the global minimizer is found as ¢ = z + 7.
Case 2a: z < —7 The only vanishing subgradient is found for ¢ = z — 7.

Case 2b: z € (—7,0) As in case 1b, there are two local minima, at ¢ = z £ 7.

This time, f(z — 7) < f(2 +7) and ¢ = z — 7 is the unique minimizer.

Case 3: z = 0 In this case, there are two equal minimizers, ¢ = =7, since
f(r) = f(=7) = —72, here.
The cases 1a through 2b combine into the gradient enhancement of the lemma.

For the single point z = 0 we are left with an ambiguity between two minimizers.

In order to resolve this ambiguity, we deliberately set the solution to ¢ = 0 for
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z = 0, albeit this 1s clearly not a minimizer, but a local maximum instead. This
choice is primarily motivated by the desire to obtain an odd filtering function,

and since no image gradients are to be created out of nowhere. O]

Remark 13. Let again ws be the weighting function such that ws = max (wq, ws).
The quasi-gradient /ws - ¢*V is an instance of non-stationary filtered non-local

gradient:

(Vws - q") (2, y) = (Vg ) (2, y) = Vws(z, y) f*(i(y) — i(z),z,y)  (5.50)

with
=5 and t(z,y)= )\—‘wl(x’y) (5.51)

w2(x>y)
5.3 Computing the Weights

At this point, it is worthwhile spending some time on different choices for the
weight vectors used in the non-local differential operators. We will discuss common
choices such as local weights, patch-based non-local weights, semi-local Gaussian

kernels, and finally we suggest the use of cosine-based distances.

Local Weights

It is possible to construct a local weight vector that reproduces the finite difference

scheme of standard local differential operators.

Definition 14. Indeed, we construct two-dimensional local weights between two

points x and y as

1 € 0
we(w,y) == - olz—y+ . +o|lx—y+ , (5.52)
€

where § is the Dirac distribution.
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Then, in the limit ¢ — 0, the non-local derivative approaches the standard

gradient:
€
ulx+ — u(x)
: .1 0
lim(V, u)(z) = lim — = (Vu)(z) (5.53)
e—0 e—0 € 0
u x4+ — u(x)
€

(Here, in an abuse of notation, (V,, u)(x) € RI® denotes the collection of (V,, u)(z,)
for all y € Q, of which only two elements corresponding to y = x + (¢,0) and

y =1z + (0,¢6) are non-zero.)

Semi-local Gaussian Kernel

The Gaussian kernel corresponds to a symmetrical extension and mollification of

local weights.

Definition 15. The isotropic 2-dimensional normalized Gaussian kernel is given

by:

1 d(x,y)?
2

e 207 (5.54)

wg(x7 y) = 27_(_0_2

where d(z,y) denotes the Fuclidean distance between points x and y, and o is a

scale factor.

Patch-based Non-local Weights

The non-local weights commonly used in imaging have been introduced in [25].

Definition 16. Based on an image i(x), we define non-local weights as

,d(1<z>,21<y>>2
wnl<x7 y) =c h

with  @(1(z), I(y)) = / G, (8)(iy + 1) — il + 1))dt,
Q

(5.55)

where h > 0 is a scale parameter and G, is a Gaussian window with standard

deviation o.
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This weight is close to zero if the regions (patches) around z and y, I(x) and
I(y), have an important Gaussian-weighted L2-distance d(I(z),I(y)). Practically,
for each pixel 2 we only calculate wy,(z,y) for y in a small search window centered
at x, keep only a few, large coefficients and discard the rest [25, 53, 96]. These
weights are generally used today, and little attention is typically paid to where

they come from.

However, an important connection has been shown by [2], where the expo-
nential weights have been connected with maximum-entropy distributions known
from statistical mechanics [70, 57]. Indeed, the Gaussian weights are maximum-
entropy weights minimizing the non-local H'-energy based on patch-distances
d(I(x),I(y)). This argument suggests, that different weights are optimal when
functionals other than non-local H! are considered, such as non-local TV or non-

local LY, corresponding to different choices of distances d.

Remark 14. Combining patch-distances in both space and intensity leads to the
bilateral filter or Beltrami diffusion in patch-space [148, 9, 132, 154/, as used for
shadow removal in [158].

Cosine-distances

Indeed, it must appear wrong to use (illumination-sensitive) non-local weights
based on the input image, to measure the non-local H' of the illumination in-
variant reflectance (or its fidelity to filtered gradients). Instead of computing and
updating the weights on the current estimate of the reflectance, we suggest using
illumination-robust weights stemming from the input image as a proxy, by nor-
malizing patches by their L2-norm before computing distances. Such normalized

L?-distance can be shown to be equivalent to a cosine distance:

d(I(z)/[[1(@)|l2, L)/ (W)ll2) = 1 = (L(z) /L (2)|2, L(W) /L ()]|2) = 1 — cos oy,
(5.56)
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where oy, = Z(I(x),1(y)) is the angle between two patches.

Further, exponentials of such cosine distances have the same low order terms

in their series expansion as powers of the cosine:
e Mmeosam) o ot gy < 1 (5.57)

Remark 15. The use of L?*-normalization amplifies the noise in low-intensity

T€GIONS.

Color Distances

In a natural image, objects of similar material may have similar texture and thus
small patch-angle. However, more likely pixels of the same material will have a
very similar hue. Here, cosine distances come in very handy. Indeed, to measure
the similarity in material between pixels, we use the cosine distance in RGB space.
This comes from the observation that two pixels in RGB space have the same hue
if the angle between the two corresponding RGB vectors is small—irrespective of
their strength of illumination, encoded as magnitude. Given any two pixels =,y
with the corresponding RGB values (I;(x), Is(z), I3(x)) and (I1(y), I2(y), I3(y)),

the angle between those two vectors, oy, is computed via

s o 1@ 10) L)L) + b)) + L))
M@~ ) + ) + B/ TEy) + Ry) + B)
(5.58)
Definition 17. Then we define the color/hue-based weight as follows:
we(z,y) = 5(0en) 4 08{0) 2 € (5.59)

0 otherwise,

where 0 < ¢ < 1 is a parameter close to one.

This definition of color weight in RGB space can be directly generalized to

weights based on cosine-distances in hyperspectral images [6].
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5.4 Closing the Gap Between Kernel and Variational Retinex

The link between PDE-Retinex (thresholded Poisson equations) and variational
models has been shown before. The definitions of non-local differential operators
will now allow us to make a formal connection between semi-local kernel-based
and center-surround Retinex models on one hand, and local variational as well
as threshold-based models on the other hand. This will eventually provide a big

umbrella under which all Retinex methods can be classified.

Homomorphic Filtering as Variational Problem

We have already mentioned that the homomorphic filtering Retinex can be rewrit-

ten as a Gaussian-kernel wy(z,y) based computation of the following form:
r(e) = i) = Y wy(w,w)ily) = = > wy(w,y) (i(y) — i), (5.60)
y y

provided that the Gaussian kernel is normalized, i.e., Zy wy(z,y) = 1. The
second sum now clearly identifies with our definition of non-local Laplacian (see
Definition 9 and (5.14)), and we may thus also write:

r(z) + %Awgz’(x) 0. (5.61)

This in turn is the Euler-Lagrange equation corresponding to the following convex

optimization problem:

min { ||V, r = V|2 = |V, 7|2+ 2172 7 - (5.62)
T [\ ~ 7 H_/ W—/
A B

The interpretation of this variational model is as follows: We look for a reflectance
r whose gradients are similar to those of i (A), but enhanced (B), while having

minimal energy (C).
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Perceptual Contrast Enhancement and Non-local Derivatives

In their award-winning model, Bertalmio and colleagues have used their kernel-
based lightness estimate together with a grey-world prior and a fidelity constraint
to build a “perceptually inspired variational framework” for image enhancement
[10, 120]. Their anti-symmetrized kernel-based Retinex has a variational formu-

lation, which is very close to the ACE model [11], namely:

min { /Q o (R(a:) _ %) + B(R(@) - I(@))?| do + CT% (R)}  (5.63)

where C:}% (R) is a contrast function. For particular, but reasonable choices of

the contrast functions, the contrast term can be written as

min

== [ Ve plhlr) = r@)ldady = ~|Voprl. (560

In particular, f, may be the identity. Thus, we rewrite the perceptual contrast

enhancement in terms of non-local derivatives as follows:

2

1
=3

2

min {a +B|IR—1I| - ||Vw7"\|1}. (5.65)
r=log(R)

where the first term represents the gray-world prior, the second is a fidelity term

with respect to the observed intensity, and the contrast term increases non-local

TV of the reflectance.
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CHAPTER 6

Non-local Retinex Model

In this chapter, we introduce our unifying non-local Retinex model. We will
first show show how the existing Retinex implementations can be reproduced in
our proposed model. Moreover, our proposed framework also yields new results in
shadow detection, color contrast enhancement and cartoon-texture decomposition.

Part II of the thesis was taken with slight modification from [164, 165].

6.1 Non-local Retinex Model

All those Retinex models that we have seen so far have a variational cousin,
potentially through the use of non-local differential operators. Even more, these
variational counterparts all share a very similar structure: the energy typically
comprises one or two fidelity terms (image and/or its gradient), as well as sparsity

priors or alternatively, through negation, enhancement terms.

Also, we have shown that this type of variational problem can be retrofitted
into a Horn/Morel-style gradient-fidelity problem (PDE-Retinex), potentially adding
further terms. In particular, we have shown in the previous section, how different
gradient sparsity and fidelity terms translate into different associated thresholding

functions.

Here, we want to formulate this retrofitted PDE-Retinex model as a general

recipe. We tackle the Retinex problem in a two step approach:
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1) Gradient filtering We realize that the reflectance obeys both to some gra-
dient sparsity priors and some gradient fidelity priors. In a first step, we thus
look for an optimal quasi-gradient that best satisfies those two constraints. This
quasi-gradient is obtained as filtered gradient of the observed image V,, si. Here,
we write w as short for ws, since both w; and ws are entirely hidden within the
generic gradient filter f, inspired by the threshold employed by Horn and Morel
(66, 108].

2) Gradient fitting However, the resulting quasi-gradient almost certainly is
not a valid gradient by itself, and we wish to fit a reflectance, whose gradient
comes closest to the quasi-gradient determined in the first step, while possibly

respecting some additional constraints:
7 = argmin {||Vwr — Vy sillb +a ||7"||§ +B|r— z||§} (6.1)

The sparsity and gradient fidelity terms of the first step will determine the exact
filter function f to be used, while the sparsity /smoothness priors on the illumina-

tion will essentially govern the gradient fidelity norm p of the second step.

The interest of such a two step procedure is manifold: First, each step, i.e.,
thresholding the input gradient, followed by a gradient fitting is relatively simple
to compute, compared to the non-compacted variational model. Further, the
computational tools required to solve the gradient reconstruction step become

independent of the gradient sparsity imposed.

Finally, this two step procedure is fully compatible with Marr’s theory of light-
ness computation in the (primate) retina, given in (4.6) and (4.7) [102]. Beyond, it
particularly neatly fits into Wilson-Cowan equations, modeling large-scale activity

in cortical neural populations [155, 156], as will be shown below.
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6.2 Numerical Optimization

In this section, we present basic solvers used for proof of concept. Note that
solvers with better efficiency could easily be devised, but doing so is beyond the

scope of this manuscript.

L? Gradient Fidelity

The L?-based problem is differentiable and we propose to solve its Euler-Lagrange

equations. The energy of the L? gradient-fidelity non-local Retinex is
J(r) = | Vur = Vasill +allrll3 + 81l =il
The corresponding Euler-Lagrange equations are
0=2(—Aur+ Ay i+ ar+ B(r—1)), (6.2)
and we recover an estimate of the reflectance 7 as
P = ((a+ B) = L) (Bi = Dugi). (6.3)
where [ is the identity matrix, and L is the Laplacian matrix derived from the

weights w(zx, y):

L, - w(z,y) +w(y, z) T #y (6.4)

=@, 2) tw(z,x) T=y.
Remark 16. Since the graph Laplacian L is negative semi-definite, the operator
(a4 B)I — L is diagonally dominant. Therefore, we can solve for 7 either by a

Gauss-Seidel algorithm or conjugate gradient method with a few iterations.

Remark 17. The problem at hand strongly resembles the L* statistical ranking
problem [72, 63, 116], from which alternative optimization strategies could be in-

spired. Also, in some cases the quadratic programming scheme of [76], and its

efficient approzimations in [44], apply.
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Wilson-Cowan Equations

Originally, the Wilson-Cowan equations [155, 156] provided a description of the
(temporal) evolution of the coarse-scale, mean activity of a population of both
inhibitory and excitatory neurons in the cortex [12]. The equations have later
been generalized in order to model the spatio-temporal distribution and patterns
of excitation in the visual cortex (V1) [19]. A first connection between the Wilson-
Cowan equations and Retinex was proposed by Cowan and Bressloff, where it was
shown that Marr’s Retinex model could actually be written in terms of Wilson-
Cowan equations, and thus be implemented by corresponding neuron populations

(102, 39].

Definition 18. The relevant descriptor of mean activity, a(x,¢,t), at cortical
coordinates x, orientation preference ¢ is given by the following integro-differential

equation (IDE) [19, 12]:

(gt@ ) - = —va(z,¢:t) + / / z, 6, Y, )0 [a(y, v, )] dydp + Ah(z, ¢, 1)
(6.5)

where h(z, ¢, t) is the external stimulus, w is a kernel that decays with the distances

|z —y| and |¢p — ¢, and o is a sigmoid function.

Definition 19. Like previous authors, we ignore the orientation ¢ and assume

the external stimuli to be constant in time:

8&(62;, t) = —va(x,t) + p /Q w(z,y)o [a(y,t)] dy + Ah(x) (6.6)

Lemma 6. The proposed L*-based non-local Retinex model is a steady-state of the

above orientation-insensitive Wilson-Cowan equations.

Proof. First, let us write the gradient-descent equation associated with the first
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variation

67“%2’ t) = Q/Qw(x,y)(r(?/:t) —r(x,t))dy

—2/umawﬂuw—i@»w—2m¢aw—zmmxw—ww»
Q

After rearrangement,

5’7“(8? H_ (a LB+ /Qw(x,y)dy> r(z,t) + 2/Qw(x7y)r(y,t)dy

+5ww—24wwwﬁmw—awm%

the individual terms can easily be identified with the elements of the Wilson-

Cowan equation:

V:2a+2ﬁ+2/w(x,y)dy

Q
=2
olrl=r
AM@=BM@—24w@wﬁww—M@M%

where the first coefficient can easily be made constant by imposing kernel nor-
mality, 7.e., Vx : fQ w(z,y)dy = 1. Further, the central term clearly identifies as
lateral excitation, whereas the input stimulus i(z) is affected by lateral inhibition

through the (thresholded) gradients [, w(z,y)f(i(y) — i(x))dy.

As usual, the solution of the initial minimization problem is associated with
the steady state of its gradient descent, and since the gradient descent corresponds
to a Wilson-Cowan IDE, therefore, the L? non-local gradient Retinex is a steady

state of the corresponding Wilson-Cowan IDE. O

Remark 18. [t is to note that a similar claim was made in [12], where the per-
ceptually inspired variational Retinex model is associated with a Wilson-Cowan
IDE. However, there, the claim involves the sigmoid function o to be both spa-
tially varying and depending on r(x,t); a complication which is not required in the

Retinex IDE proposed here.
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L' Gradient Fidelity

Let us now consider the optimization of the proposed gradient fitting after filtering
in the p = 1 case. We would like to point out that this problem is formally equiv-
alent to the L' statistical ranking problem, for which efficient graph-cuts-based
solvers have been developed [117]. Here, as simpler yet less efficient alternative for
illustrative purposes we might as well explore a more intuitively accessible split

Bregman/augmented Lagrangian based approach, as outlined in [13, 55, 113].

The L'-based problem writes:
min { | Vur — Vil +alrl; + 8llr = ill3} (6.7)

which we may split into the following linearly constraint minimization problem

over two variables:
: . 2 12
min {lle = Vuyilli +alrlz+ B8lr—il;} st e=Vyr (6.8)

We address the constraint by introducing the following augmented Lagrangian,
which includes the constraint as both a quadratic penalty and Lagrangian multi-

plier term:

AL(r, 1) = lle = Vangill + @ 713 + BlIr — i3+ p [V — ell2 4+ 2 (1, Vir — €)

(6.9)
The L' minimization problem can now be solved by iteratively finding a saddle
point to this augmented Lagrangian, iteratively along the different problem dimen-

sions (ADMM). This process essentially involves iteration of three steps: solving
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the L? minimization in 7, shrinkage of e, updating the Lagrangian multiplier p:

( k112
r* 1 = argmin {a I7ll3+ B —illa+p var — e+ % }
r 2
v
= (a4 B) — pL) " (6@' —p+uw (ek — —)) (L*-Retinex)
P
k112
| e = argmin { |le — Vi, sill1 + p|le — Vr* — ull
T P 2
ik
= 5%, (VwrkJrl — Vi, pt + ?) + Vo, rt (Shrinkage)
\ i =k 4 p (VwTkH — ekH) (Dual ascent)

(6.10)

Remark 19. The most time consuming part is the update r*t1. To speed up,
we use a fized p for every iteration as suggested by the split Bregman method
[56], resulting in repeated inversion using the same system. Also, since the system
matriz ((a+ )] —pL) is sparse and strictly positive, we can use the Gauss- Seidel

or conjugate gradient methods to solve r**1 with a few iterations.

L° Gradient Fidelity

Finally, let us look at the non-convex L-based gradient-fidelity optimization prob-

lem. This L°-based problem writes:
min {||Vur = Va,sillo + o Irll + 8 llr —éll3} - (6.11)

This problem is hard to solve. We propose to treat it very similarly to the above
L'-problem and first split it into the following linearly constraint minimization

problem over two variables:
ngien {lle = Vusillo + a )2+ 8 ||r — zH;} s.t. e= V. (6.12)

The resulting sub-optimization problems are now easy to solve, but we have no

guarantee for overall convergence. Indeed, we address this problem in analogy
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to the L' gradient fidelity, introducing both quadratic penalty and Lagrangian
multiplier, and solve iteratively along each direction, where the only change occurs

in the e-step:

( k 2
rhtt :argmin{a”r”%—I—ﬁ||r—i||3—|—pk Vwr—ek+% }
T 2
kry—1 - k p" 2 :
= ((a+ B)I — p*L) Bi—p" =y | e— 5 (L*-Retinex)
k112
eF+l = argmin{He—Vw,fiHO—kpk e — Vyrtth — “—k }
. Pkl
h E+1 "
= Sl/m <Vw7’ Vit E) + Vo5t (Thresholding)
p = b 4 pf (V™ — e (Dual ascent)
\ PPt =pF s (Step reduction)

(6.13)
where s > 1 is a constant that essentially reduces the step size at each iteration

and causes the iterative process to stabilize eventually.

Remark 20. Note that the L°-optimization problem is not convex. In order to
enforce convergence, we add one more step to the iterative process, that is decreas-
ing the effective step-size of the variable-split at every iteration. As a ramification,
however, the matriz (o + B)I — pL is not constant, and the r**-update is less
efficient. Moreover, such system-matriz becomes singular at some point. Numer-
eally, we will converge sooner and stop before that. The proof of the convergence
of this scheme s still an open question. However, we can see later that despite rig-
orous theory, this model offers interesting new applications of Retinex in shadow

detection with interesting, stable results.

6.3 Results I: Relations to Existing Models

The first results section is dedicated to demonstrate the unifying power of the

proposed non-local two-step Retinex model.
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Table 6.1: Filtered non-local gradient-fidelity based approximations to existing

Retinex models. Both Poisson PDE [108] and L!-Retinex [95] employ gradient fil-

tering natively. For the other methods, the filtered gradient reproduces a gradient

sparsity term.

Model Norm p Weights w Filter f, Additional
terms

Poisson PDE [108] L? local Sh —

L'-Retinex [95] L local Sh —

TV-Retinex [96] L? local S3 —

Variational Retinex [76] L? local Sy a7 (r<0)

TV-Retinex [111] L? local S5 Bllr — i

TV-L' [35] L' local — allr|;
(eflrly)

Random walk/Kernel [120] L2 Gaussian 5%, allr|lz+ B lr —ill;

In the following paragraphs, we want to show how the existing Retinex im-

plementations can be reproduced in our proposed, fundamental non-local Retinex

model. In all these models, we can restrict ourselves to identical weights w =

wy = wy = ws. The different correspondences are summarized in table 6.1.

Poisson

The PDE version of Retinex [108] can be derived exactly from the L2-version, p =

2, of the proposed Retinex model, under local weights w; and gradient thresholding

fo =S Indeed:

# = argmin {||Vy,r — Vo, i[5} (L*-Retinex) (6.14)
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implies the Euler-Lagrange equations

(A7) (z,y) = (A, 1) (x,y) =,y € Q. (Poisson PDE Retinex) (6.15)

L'-Retinex

The next close relative of the proposed non-local Retinex model is its local L!
predecessor, L'-Retinex [95]. The closest match to L'-Retinex in the proposed
framework is obtained if we choose the weights w;(x,y) such as to reproduce the
well-known local finite differences differential operators, gradient filtering f, = S%,

and with p = 1:

7 = argmin {||V,r — Vu,.1.t]|1} = argmin {/ Z |Vkr(x) — SQ(sz(x))\ dx}
T T (9] =1
(6.16)

which is the anisotropic L!-distance for local gradient fidelity.

TV Regularized Retinex

In [96], the authors propose to solve directly for an image, whose gradient is close

to the observed gradient in L?, while minimizing isotropic TV:
# = argmin {||Vr — Vi[5 + 2X[||[Vr|2[1} . (TV Retinex) (6.17)

This is the constraint L!-relaxed gradient sparsity assumption, solved through

Bregman iterations:

# = argmin {|lg — Vi||3 + 2)[||gl2|li} s.t. ¢=Vr (Bregman TV Retinex)
(6.18)

A similar model can be obtained through the proposed general Retinex model
by employing soft-shrinkage gradient filtering, f, = S5, to which the according

potential is recovered:

# = argmin {||Vy,r — Va, i[5} (6.19)
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Again, the main difference is the use of anisotropic TV through gradient filtering

in the proposed framework.

H'+L? Regularized
The variational Retinex model in [76] can be rewritten exactly as

7 = argmin {||Vr — VilZ + a|r)2 + A HVng} st. r<0 (H'/L? Retinex)
' (6.20)
In [76], the authors motivate the L? term mainly as “a regularization of the
problem that makes it better conditioned”, and they state that “in practice this
penalty term should be weak [...] and « should therefore be very small.” The
constraint r < 0 corresponds to the reset in the original Retinex theory. The

constraint and L? norm together push the reflectance close to white.

We may find a similar problem within the proposed framework, where we

choose uniform gradient scaling f, = S} and omit the clipping constraint:

7= argmin{valr—thfaiH;—I—aHTH;} ) (6.21)

TV+L? Regularized

Recently, a mixture of TV regularized and Kimmel’s variational approach was

proposed [111]. This model essentially boils down to:
i = argmin {|Vr — Vi|; + B |r —il[3 + 2A|Vr|,} (TV/L? Retinex) (6.22)

Again, we may approximate this model with a similar energy based on similarity

to filtered gradients, with f, = S3:
7 = argmin { ||V, — Vil + 8r — z||§} . (6.23)

The main difference is the use of anisotropic TV through gradient filtering in the

proposed framework.
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TV-L!

The “logarithmic total variation” (LTV) model was suggested for extraction of
illumination invariant features for face recognition [35]. It is defined as an TV-L!

based on the logarithmic input image and its logarithmic illumination:
# = argmin {||Vr — Vi||, + «|7|,} (TV-L') (6.24)

Its equivalent in the proposed framework is found by relaxing the second term to

an L?-norm, i.e., TV-L? Retinex.

Bertalmio Model

To approximate the perceptually inspired Retinex model through our proposed
general framework, we replace or complete the intensity fidelity by a gradient

fidelity:

# = argmin {a |[r||3 + B |Ir — i[5 + |Ver — Vails = 2X [Vur|l,} (-TV+L? Retinex)
(6.25)
This is essentially homomorphic filtering with TV in place of H!'. Again, we may

now substitute by incorporating the TV-enhancement term as an input-gradient

filter f, = S°,:

i = argmin {||Vr — V. pills + a||rlla + 8 |Ir — ]2} (6.26)

Next, we will provide a range of results obtained using the proposed non-local

Retinex model to illustrate the broad spectrum of Retinex flavors it includes.

Examples: The Logvinenko Illusion

We have applied the whole range of Retinex “modes” retrofitted above to exist-

ing Retinex implementations to a single common test image extracted from the
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Input DemonstrationReflectance Illumination

n) a = 0.05

Figure 6.1: Logvinenko illusion and different Retinex decompositions
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Logvinenko illusion pattern [94]. The test image is shown in Fig. 6.1a). The illu-
sion consists of the following: due to the suggested smoothly varying lighting, the
oblique grey diamonds of the upper row appear darker than the diamonds of the
lower row. However, as shown in the adjacent Fig. 6.1b), their actual intensity is
exactly equal. In this example, the Retinex model is expected to separate the al-
most smooth shading from the rough checkerboard-like reflectance, thereby truly

rendering the two rows of diamonds at different reflectances.

The first model, L?-Retinex equivalent to [108], produces the standard result
in Fig. 6.1c). It can be clearly seen that in particular the lower row of diamonds
is not recovered completely flat, since the illumination is not smooth everywhere.
The related L'-Retinex in Fig. 6.1d), inspired by [95], suffers from very similar
artifacts. In Fig. 6.1e) we show the results of our model with parameters set to
correspond to TV-regularized Retinex [96], resulting in less artifacts. Adding an
L? fidelity-constraint (3 > 0), as in [111], injects more of the initial shading into

the estimated reflectance, see Fig. 6.1f).

The TV-L!-inspired model [35] is in our case an TV-L? model for illumination
recovery, where the TV-sparsity of the extracted illumination is tuned by the
parameter «. It is clearly appreciated in Fig. 6.1g—j) that the impact of the
parameter is quite severe, with higher values corresponding to the output desired
for illumination invariant feature extraction. The choice of parameters inspired
by Kimmel’s Retinex formulation yields the output shown in Fig. 6.1k—m), which
corresponds well to the behavior expected from [76]. The parameter « controls the
degree of dynamic range compression applied, ¢.e., the dominance of local contrast
enhancement. Finally, in Fig. 6.1n-p) we provide the output produced by model
parameters mimicking Bertalmio’s perceptually inspired Retinex [10]. Here, the

unshrinking of the gradients has the unpleasant effect of amplifying pixel noise.
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Input Reflectance [Nlumination

Figure 6.2: Unifying non-local Retinex model. a—b) Our unifying model decomposes
an input image into underlying reflectance and estimated illumination, and successfully
reproduces basic Retinex behavior (b/w squares and checkerboard, respectively). c)
The same model allows dynamic range compression and local contrast enhancement
(here: radiography), as well as d) illumination-invariant feature extraction, e.g. for face

detection.
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Reflectance [Mlumination (grey) Output

Figure 6.3: HSV color Retinex. Retinex is performed on the value-channel of a
color image in HSV space. The final output is obtained by applying post-processing

enhancement as in [76].

Examples: Other Applications

To show the “unifying power” of the proposed Retinex model, we provide a few

more illustrating examples in Fig. 6.2.

First, in Fig. 6.2a-b) two standard results are shown, that are based on L>-
gradient thresholding. As expected, we succeed in separating the smooth gradient

illumination from the sharp reflectance features.

The third example in Fig. 6.2¢) is an (artificially) unevenly exposed radiogra-
phy, where important features are masked due to the great dynamic range. We
perform center-surround-like exposure correction and dynamic range compression
simply by choosing p = 2, wide Gaussian kernel based weights, no thresholding,
and o = 0.01.

The forth example is based on the challenge of illumination-invariant feature
extraction for face recognition [35]. For this, we use p = 1, soft-thresholding

A = 0.2, and dynamic range compression o = 5.

In Fig. 6.3 we provide an example inspired by Kimmel’s variational Retinex

[76], where color images are involved. Here, Retinex is applied to the V-channel
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(lightness) of the color image (as opposed to separately on each RGB channel, as
originally proposed), and we use matching parameters in our proposed framework.
After application of their suggested postprocessing steps, we obtain images very

similar to Kimmel’s original results.

6.4 Results II: New Perspectives

Beyond reproducing existing Retinex models, our proposed framework also has
the potential to yield new results thanks to it generalizing power. In this section,
we explore a few new possibilities offered by choosing new sets of parameters, in
particular based on p = 0 gradient fidelity, with applications to shadow detection

and removal, and cartoon-texture decomposition.

L° Gradient Fidelity

In Fig. 6.1 we have shown a series of decomposition results obtained with different
model configurations. The best results in terms of piecewise constant reflectance
versus illumination have been achieved with the basic hard-thresholding models
(L?- and L'-Retinex), as well as the soft-thresholding based TV-Retinex. How-
ever, all these models suffer from artifacts of illumination estimation at the edges
and corners of the flat diamonds, where illumination smoothness is not a strin-
gent enough prior. Therefore, we propose seeking for further illumination gradient
penalty by choosing p = 0, corresponding to L° gradient fidelity (as opposed to
TV- or H'-sparsity of the illumination). In Fig. 6.4 we show a few results where
we make use of TV-regularization of the reflectance (soft-thresholding). In par-
ticular in combination with Gaussian kernel weights, the decomposition exhibits

less artifacts than previous results, see Fig. 6.4b).
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Reflectance Ilumination

a) b) c)

Figure 6.4: Logvinenko illusion and new L°-based Retinex decompositions. Soft-
thresholding, p = 0, « = § = 0. a) Local weights. b) Narrow Gaussian kernel weights
02 =1, A =0.33. ¢) Wider Gaussian kernel weights 02 = 2, A = 0.8.

Shadow Detection in Natural Images

Shadow removal from a single (natural) image plays an important role in many
computer vision algorithms. Most methods are based on a two-step procedure:
first detect shadows, and then reconstruct shadow-free images. Shadow detection
can be based on features such as intensity, gradients or texture, and even make use
of supervision or training data [163, 59, 133]. Once the shadow regions have been
reliably detected, several techniques aim at reconstructing shadow-free images,

through matting, inpainting, or Poisson editing [133, 157].

Here, we explore the applications of the proposed unified Retinex model for
shadow detection, first, and removal from a single image, second. We propose to
use the L° gradient fidelity criterion combined with dynamic range compression,
without any gradient thresholding. The unfiltered L° gradient fidelity is a strong
prior on illumination gradient sparsity, while the dynamic range compression tends
to take large intensity modulations out of the reflectance, and balance the mean
intensities of inside- and outside-shadow regions. Our model can detect shadows
in monochromatic and color images. We show a few example results for shadow

detection in Fig. 6.5. We believe that the proposed model can largely compete
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with the recent state-of-the-art shadow detection scheme proposed in [58, 59].

Moreover, to some extent our model also provides a shadow-free reflectance
estimate at the same time. Reflectance output (i.e., after shadow removal) is
illustrated in Fig. 6.6. However, in most natural scenes, the actual border between
shaded and unshaded regions is rather smooth, called the penumbra, which is due
to the spatial extent of the light source. Hence the estimated shadow boundary
in the proposed model is consistently overly sharp, and the estimated shadow-free
reflectance image includes artifacts, see Fig. 6.6¢). This problem can partially
be tackled by smoothing the estimated illumination field in post-processing, as
shown in Fig. 6.6d) (this is not equivalent to employing an L? gradient sparsity in
the first place). A noticeable difference in texture is still visible, however, due to
the missing specular highlights in the shadowed region, exclusively lit by ambient

light.

Shadow Removal in Color Images

If the images are treated as color images, however, a few shortcomings of the simple
shadow-removal model become obvious, beyond the penumbra-issue. In Fig. 6.6e)
we show the output of Retinex being applied to the lightness channel in HSV-space
only. Since the shadowed region was lit by (sky-blueish) ambient light only, com-
pared to warmer direct sun light, the colorcast after intensity correction becomes
really striking. If, in contrast, we perform Retinex on all three RGB channels
independently, the colorcast can be successfully avoided, see Fig. 6.6f). However,
since the three channels are not coupled, the respective shadow-boundaries differ

slightly, creating local color-artifacts.

The observed issues are just a manifestation of a more fundamental Retinex
problem when dealing with color images: namely the correct choice of color space

and channels in which to perform Retinex. Traditionally, Retinex theories con-
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Input Guo et al.  Proposed

model

LEEE Y

Figure 6.5: Shadow detection results. We compare the shadow detection results

(illumination output) of our proposed model against the recently published results (blue
mask) from [58, 59]. The results of the first row are very comparable, while we believe the
examples of the second row are in favor of the proposed model. Indeed, our illumination
output may be “multilevel” rather than just binary, and therefore better reflect the
different nuances of shade in natural images (pole). On the other hand, our approach

is less subject to local artifacts and produces more coherent shadow estimates.
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Input Guo et al.  Reflectance (proposed model)

a) b) c¢) Grayscale d) smoothed  e) HSV f) RGB

Figure 6.6: Shadow removal results. a) Input image. b) Recently published results
from Guo et al. [58, 59]. c¢) Reflectance output of input image reduced to grayscale.
The sharp boundary of the detected shadow region creates artifacts in the penumbra.
d) The artifacts are almost entirely removed by smoothing the estimated illumination
in post-processing. e) If the Retinex model is applied only to the V-channel of the color
image in HSV-space, then strong colorcast becomes apparent, due to different lighting
color for direct and ambient light. f) The colorcast is avoided by correcting all three
RGB channels (colorbalancing). However, local artifacts appear due to inconsistent

shadow region boundaries in the three individual channels.

sider RGB-images and treat the color channels independently in order to achieve
color constancy (color normalization) [86]. To some purists, this is the one and
only right way. Other authors have suggested to perform illumination correction
by just working on the V-channel (lightness) of images in HSV color space—
Retinex is expected to correct the amount of lighting but should conserve the
general tone-trend in an image. Both approaches can yield unsatisfactory results
in some situations. In particular, HSV-Retinex is unable to normalize differences
between different lighting-temperatures (for example, blueish ambient lighting ver-
sus directly lit parts of a scene). It was alternatively proposed to perform color
correction in CIELAB colorspace, where Retinex again works on the lightness
channel, while a co-correction is performed on the chroma-channels based on the

estimated change of illumination [147, 146].

An intermediate compromise between channel-wise RGB and lightness-only
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Input Cartoon Texture

Figure 6.7: Cartoon-texture decomposition. For important «, the L (p = 0) model
separates texture (reflectance) from cartoon (illumination). Gaussian weights w, with

02 =2, A =0.15. left: o = 250 right: o = 100.

HSV Retinex could be devised as follows. The main advantage of RGB-Retinex is
the capability of color-normalizing (“greying” ) the respective shadow /light regions
in a scene independently. Its main drawback is the lack of coupling between
shadow boundaries in the three color channels. For HSV-retinex the situation
is exactly opposite. A potential solution could perform channel-wise Retinex
in RGB, but using a coupling term that encourages shadow boundaries to be
collocated in all three color channels. Such a goal could be achieved by replacing
the current channel-wise gradient fidelity by a grouped gradient fidelity derived
from group sparsity [99, 100]. More advanced, another gradient fidelity functional
involving stronger channel coupling could be employed, such as the Color Beltrami

energy, that aligns gradients across color channels [77].

Cartoon-texture Decomposition

The separation of an image into a piecewise regular component (cartoon) and
its high-frequency parts (texture) is generally referred to as cartoon-texture de-
composition [159, 115, 142]. If we give even more importance to dynamic range
compression, then our proposed L° gradient-fidelity based Retinex model can be
used to this very same end. Indeed, the “reflectance” will only contain the texture
of the image, whereas all larger scale intensity patches will be attributed to illu-

mination (cartoon part). The scale of separation is determined by the weight of
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the dynamic range compression, .. In Fig. 6.7 we show results of cartoon-texture

decompositions of two natural images.

6.5 Adaptive Thresholding with Texture and Color

In the preceding examples and comparisons, we always considered equal weights
for gradient sparsity and fidelity, w = w; = wy. However, doing so is not a
requirement of the method, and choosing alternative weights for the two terms
tremendously broadens the spectrum of possibilities. The fundamental principle
is as follows: the reflectance of two pieces of same material is likely to be similar.
If the non-local weights are constructed in a way that strongly connects same-
material pixels, then the reflectance should have low non-local gradient magnitude.
The first milestone is the definition of a suitable “material-distance” and the
construction of the associated weights-graph. In the following, we quickly want to
discuss two possible routes, namely the use texture and color-based weight graphs,

as introduced in Section 5.3, and their connections to existing methods.

Texture-based Non-local Sparsity

Here, the assumption is that pixels belonging to objects of the same material (and
thus same reflectance) are characterized by local image structure (image patches)
that are similar to (at least some) other, distant patches of the same material,

and dissimilar to patches around pixels of different material.

This idea of texture sparsity in reflectance has been employed in non-local

retinex already, to different extents [138, 143, 96].

In the proposed, unified model, this idea could be easily implemented as fol-
lows. The reflectance gradient is expected to be non-locally sparse, therefore we
would pick w; = w,;. The gradient fidelity, however is required locally, thus one

chooses local weights w, = w,, or mollified semilocal weights w, = w,. This
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choice, together with an appropriate norm on both terms leads to one of the
non-stationary gradient filters exposed in Section 5.2. In order to improve the
material-similarity weights based on texture distances, illumination normalized

cosine distances may be used in lieu of the classical non-local weights w,,;.

Chroma-conditioned Gradient Thresholding

The argument of texture-based material (dis-)similarity can easily be extended
into a color-based (dis-)similarity metric, by using color-distances (see section 5.3).
As pointed out earlier, classical Retinex treats the color channels independently
and ignores any relations between them. In shadow-removal applications, however,
this is clearly a shortcoming, since the presence of a shadow can be expected to

similarly affect all color channels, and it is reasonable to exploit this interaction.

The role of threshold in the original Retinex theory is “to remove the effects
of nonuniform illumination over the scene” [83]. However, those gradients are not
necessarily small, for example the ones cross the shadow edges [47]. Explicitly, a
large gradient belongs to reflectance if the material is different on both sides but
to illumination if the material is the same. Such similar conditional thresholdings
have been used in shadow removal [47, 48], and appeared in intrinsic image de-
composition [16, 139, 107, 162, 34]. All these models aim at enforcing reflectance
gradient sparsity between pixels that have similar hue, since these are believed to
belong to objects of the same material and thus similar reflectance. Conversely,
reflectance gradients are conserved only, if they are “motivated” by a hue gradient,

suggesting a material boundary.

Such a method can easily be implemented within the non-local Retinex frame-
work presented in this paper. Indeed, hue constancy requires sparsity of re-
flectance under illumination invariant but hue-sensitive weights. Thus one would

choose w; = w.. In contrast, the gradient fidelity weights can again be chosen

116



Figure 6.8: The original, our retinex output and our illumination layers using

adaptive thresholding, A = 0.015,a = 0.4, 3 = 0.6.

locally, wy = we, or semilocally, wy = wy. The resulting non-stationary filter
function thresholds the observed gradients according to these criteria, and then a

reflectance gradient is fitted to this thresholded target.

Conclusion

In the last three chapters, we have provided an overview of Retinex implementa-
tions existing in literature, and unified them within a single computational frame-
work. Using non-local differential operators, the proposed unifying framework
is a generalization of the well-known threshold-based two-step Retinex imple-
mentations. We also presented numerical implementations to solve the proposed
non-local Retinex model in different configurations using variable splitting and

the alternate direction method of multipliers.

Using the proposed Retinex functional, we are able to expose relations with all
major classes of existing Retinex implementations, such as kernel and variational
Retinex, perceptual-contrast enhancement, and threshold-based PDE-Retinex.
Moreover, our proposed framework offers potential for new forms of Retinex. In
particular, the L°-based non-local Retinex model produces interesting results in
shadow detection and removal. On the other hand, an important, yet largely
unexplored, property of the proposed non-local Retinex model is the use of hy-

brid weights in the thresholding part; more specifically, different weight functions
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can be employed in the gradient sparsity and gradient fidelity component, leading
to a gradient filtering function that is spatially varying (non-stationary, adaptive
thresholding). In this thesis, we presented one example of this form which is the
L'-based non-local Retinex model with adaptive thresholdings and its application

in color contrast enhancement.
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