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Abstract

Understanding arithmetic word problems involves a
complex interaction of text comprehension and
mathematical processes. This work presents a com-
puter model of the hypothesized processes that are
required of a young student solving arithmetic word
problems, including the processes of sentence-level
reading and text integration. Unlike previous com-
puter simulations of word problem solving, which
neglect the early stages of text processing, this model
forces a detailed consideration of the linguistic pro-
cess, which is being increasingly recognized as a pri-
mary source of difficulty. Experiments were con-
ducted to isolate critical text comprehension processes.
Children’s probability of solution was analyzed in
regression analyses as a function of the model’s text
comprehension processes. A variable measuring the
combined effects of the load on working memory and
text integration inferences accounted for a significant
amount of variance across four grade levels (K-3).
The results suggest new process-oriented measures of
determining why a particular word problem may be
difficult, especially for young students. An implica-
tion for education is the potential for a difficulty-
differentiated network of problems that includes a
multiple number of rewordings for each *‘traditional’’
problem wording as an aid for classroom assessment
and future computer-based learning environments.
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Introduction

Researchers in cognitive science and mathematics edu-
cation have recently emphasized that it is not only
mathematical problem solving abilities that are at the
root of children’s difficulties with mathematical word
problems, but also linguistic difficulties. That is,
many difficulties occur at the stage of comprehension
of the natural language statement of the problem.
Most of these researchers, however, stop short of
defining how natural language 1is somehow
“‘translated’’ into correct mathematical relationships or
into a solution.

As researchers leam more about the processes of
reading and the difficulties children have with
mathematics, detailed analyses of the requirements of
word problem solving are providing common ground
for interdisciplinary results, including results on
semantic types of problems and children’s logico-
mathematical competencies (Riley & Greeno, 1988),
the locus of low-achieving students’ eye-fixations
(Hegarty, Mayer and Green, 1992) and the develop-
mental sequence of central numerical structures (Case,
1985; Okamoto, 1992). Lacking in the above work,
however, is an account of how the student’s ability to
arrive at mathematical connections might depend on
identifiable ways in which natural language expresses
or facilitates such connections. Recent results
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concerning the ettects of small changes in problem
wording (Cummins, 1991; Davis-Dorsey, Ross &
Morrison, 1991; DeCorte, Verschaftel & DeWin,
1985), the role of integrated propositions in memory
(Trabasso & Sperry, 1985 and others) and the impor-
tance of short-term memory as a bottleneck in the
comprehension process (Fletcher, 1986 and others)
provide new evidence that problem ditficulty is deter-
mined by text comprehension factors as well as by
semantic structure and the development of central
numerical structures.

The information processing and learning
assumptions in this research reflect the idea that dit-
ferent kinds of natural language used to convey a
problem situation have different effects on the ability
to conceptualize the problem in terms of correct
mathemadcal relationships. Specific problem wording
can (1) highlight certain mathematical relationships
(e.g., direct references to previous sets facilitate the
process of text integration), and/or (ii) lead to situa-
tional interpretations of events or quantities which are
easier to retain in memory. Children’s ability to
follow-up on explicit set references (or infer such
references) is a crucial step towards recognizing the
conditions that make an arithmetic operation appropri-
ate for a given situation,

There is as yet no detailed hypothesis of how a
student might proceed from linguistic
(mis)understanding to mathematical
(mis)understanding. A precise model of this complex
process, i.e., a computer model, starting with the ini-
tial presentaton of the problem would be consistent
with Goldin’s (1992) call for a comprehensive model
of mathematical problem understanding. In particular,
a model which focuses on early stages of processing
would force a consideration of critical features of the
problem solving process that are often overlooked and
could suggest new ways of isolating word problem
solving competencies.

This paper describes our recent implementation
of a computer model which simulates text integration
processes involved in word problem understanding.
The empirical results present new measures of text
comprehension which determine why a particular word
problem may be difficult, especially for young
“‘bottom-up’” readers. In this sense, the computer
model proposes a new fine-grained classification of
problems which vary according to both logical-
mathematical problem solving processes and the often
overlooked but critical processes involved in text
comprehension.
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EDUCE and SELAH

The current computer model comprehends arithmetic
word problems written in English in a word-by-word,
sentence-by-sentence fashion. The model is composed
of two components: EDUCE and SELAH. EDUCE is
an expectation-driven conceptual analyzer adapted
from the work of Schank and Riesbeck (1981) and
developed according to principles found to be distinct
for word problem solving (LeBlanc and Russell,
1989). SELAH is a text integration component which
accepts EDUCE’s canonical representations of indivi-
dual sentences and instantiates arithmetic actions
based on explicit conceptual actions or direct or impli-
cit references between sets (LeBlanc, 1991). In partic-
ular, the computer model keeps track of (i) the number
of text integration inferences that are required and (ii)
the load on working memory while performing text
integration across sentences. It should be recognized
that looking at the linguistic stage of word problem
understanding is not just a matter of tacking on
linguistic comprehension prior to mathematical con-
siderations. We are assuming not that language and
mathematics are separate components, but rather that
they are intertwined, or that the mathematics is
“‘embedded’’ in the natural language statement.

Experiments

Children’s probability of solution as obtained in previ-
ous studies (Riley and Greeno, 1988) was analyzed in
exploratory regression analyses as a function of 4
predictor variables, where the predictor variables were
measures of text comprehension processes as simu-
lated by the text integration component, SELAH. The
word problems solved by the computer model are a
classic benchmark set of 18 types of addition and sub-
traction problems. A sample problem is shown below:

Kathy and Jacob have 8 soda cans altogether.
Kathy has S soda cans. How many soda cans
does Jacob have?

Procedure

The 18 problems were input to the model one at a
time. For each problem, the model read and solved the
problem while printing out a record of its text integra-
tion processes. The model’s output for each problem
was then analyzed to obtain scores for the 4 predictor
variables to be used in the regression analysis. A



summary of the 4 variables is described next in the
context of the model’s comprehension of the word
problem shown above.

(1) AVGMEM. The average number ol conceptual
units in memory. This is the running sum of the
number of conceptual units which appear in the
model’s working memory at the end of each sentence
divided by the number of sentences in the problem. A
conceptual unit is defined as either (i) a single concep-
al set (e.g., [Kathy & Jacob’s 8]); (ii) an arithmetic
action (e.g., JOIN or SEPARATE_FROM); or (iii) an
action and conceptual set(s) that have been
“‘chunked’’ together. For example, in Table 1, the
number of concepts in working memory at the end of
the first sentence is two: ([K&J's 8] and JOIN). In the
second sentence, the presence of the arithmetic action
SEPARATE_FROM in conjunction with two concep-
tual sets with known quantities results in a chunking
(or merge) of three concepts into two concepts.
Specifically, the three concepts, ‘‘[Kathy’s 5]
[SEPARATED_FROM] [K&J's 8],”” are chunked into
two concepts: “‘[SEPARATE Kathy's 5] [FROM
K&J’s 8].”" Two conceptual sets and an associated
action are chunked only if both sets have known quan-
tities. In the other case, where one of the sets has an
unknown quantity, the three concepts [Kathy's some]
[SEPARATED_FROM] [K&J’s 8] are counted as
three concepts, reflecting the model’s sensitivity to a
difference between remembering concrete vs. abstract
quantities. Performing such chunking when both
quantities are known reflects the fact that all the infor-

mation needed to solve the problem (i.e., quantity-
action-quantity) is known at this point. It may well be
the case that these three concepts are actually chunked
into one concept, however the more conservative
chunking hypothesis (of three concepts into two con-
cepts) is currently used throughout. In Table 1, the
number of conceptual units in working memory at the
end of each of the three sentences is 2, 2, and 3
respectively, for a total of 7. The average number of
concepts in memory across the three sentences is thus
(2+243)/3=2.33

(2) AVGINF. The average number of inferences
made. This is the running sum of the number of infer-
ences which are made divided by the number of sen-
tences in the problem. An inference is defined here
as: (i) establishing a relationship between (wo sets
when that relationship is not described in the text or
(i) instantiating an arithmetic action (e.g., JOIN) when
the text does not mention a significant action. Text
integration and arithmetic action inferences are made
when the conceptual representation of a new sentence
(as produced by EDUCE) lacks the explicit informa-
tion needed to establish text connections between con-
ceptual sets or instantiate an appropriate arithmetic
action. As shown in Table 1 in the first sentence,
SELAH infers the JOIN action by noting (i) that the
current set is partitioned by ownership and (ii) that the
word *‘altogether’” implies that this current set is the
result of JOINing two (currently unknown) sets. In
the second sentence, SELAH infers that the 5 cans that
Kathy has are *“‘part of the previously established set

Table 1 Computer model’s processing summary for one of the eighteen problems.

Kathy and Jacob have 8 soda cans altogether. Kathy has 5 soda cans.
How many soda cans does Jacob have?
Sentence
1 2 3 Average |

Processing make set; make set;
Summary make set; infer 5 part-of 8; infer ? part-of 8;

infer JOIN infer SEP-FROM; | infer ? is result

REACT of SEP-FROM

Edc::ﬁ?rj;s Y| K&rss) BER X $2) [nssgpl(ﬁ':]&

JOIN [FR K&J’s 8] [RE J's 7]
# of concepts 2 2 3 2.33
# of inferences 1 2 2 1.67
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of 8. (An example sentence which would not have
required this inference is: “Kathy has 5§ of them.”
Here the phrase 'S of them' would create a direct
link to the previous “‘set of 8" so o text integration
inference would not be required). SELAH makes
another inference in the second sentence in order (o
build the set of [Kathy's 5]; since the five are now
established as being parr of the eight, the arithmetic
action of SEPARATING-FROM is needed. The pre-
viously instantiated JOIN action is now suppressed in
tavor of SEPARATING-FROM. (This *‘reactivation’
of an arithmetic action is noted in Table 1 as REACT;
see variable #4 below). The average number of infer-
ences icross the three sentences is (14242)/3 = 1.67

(3) MEM+INF. The sum of the variables AVGMEM
and AVGINF, that is, the combination of the average
number of concepts in working memory and the aver-
age number of inferences that are made. This variable
reflects the theory that children’s total processing
capacity is made up of (i) what they must remember as
well as (i) what must be devoted to executing basic
operations, such as making inferences (Case, 1982).
In the context of arithmetic word problems, the fact
that some problems require inferences may not be as
critical as the number of concepts they must remember
while they make those inferences.

(4) REACT. This variable indicates the situation
where a previously instantiated arithmetic action must
be suppressed in favor of a new action. A REACTiva-
tion (from JOIN 0 SEPARATE_FROM) is noted in
sentence 2 of the example in Table 1.

Results

The four predictor variables were entered into a
regression equation with the probability of solution for

a specific grade level as the dependent variable, For
cach grade level, a stepwise regression was conducted.

Table 2 summarizes the results of the four
regression analyses (grades K-3). For each grade, the
variables listed in Column 2 are those that met a
liberal .15 probability-to-enter criterion in the stepwise
regression; they appear in the order that they were
selected. Column 3 presents the proportion of total
variance accounted for by the subset of variables in
that row and all preceding rows for each grade. (The
double line indicates a new grade-level and thus an
independent regression analysis). For examnple, in
grade K, MEM+INF accounts for .537 of the variance
and MEM+INF and REACT wgether account for .690
of the variance. Columns 4 and 5 present the regres-
sion coefficients and standard errors for the selected
variables. The last column presents the p values
(two-tailed) associated with each of the regression
coetficients, For example, in grade K, MEM+INF was
significant at  the 000 level and REACT was
significant at the .016 level.

Discussion

An important result from this exploratory analysis is
that MEM+INF is significant across all four grade lev-
els (K-3). Because MEM+INF is always entered first
in the stepwise analyses, the combination of “‘concepts
to remember’”’ and ‘‘inferences made’’ (MEM+INF)
accounts for larger amounts of the variance in solution
probability than either AVGMEM (the average
number of concepts that must be held in working
memory) and AVGINF (the average number of infer-
ences that must be made in order to establish an
integrated text).

Table 2 Results of regression analyses across four grade levels (K-3)

Variance Regression | Standard
Grade Variable Accounted For (Rz) Coefficient Error p Value
K MEM+INF 537 -0.37 0.07 .000
REACT 690 0.32 0.12 016
1 MEM+INF 646 -0.47 0.07 000
REACT .764 0.36 0.13 015
2 MEM+INF 721 -0.29 0.05 000
3 MEM+INF 577 -0.08 0.03 019
REACT 664 -0.12 0.06 066




One explanation is that a slight increase in either the
number of concepts that must be remembered or the
number of inferences required is not enough, in and of
itself, to cause a working memory overload.

In addition, it is noteworthy that REACT
appears as a significant predictor (p < .05) for only the
youngest children: kindergarten and first grade. This
confirms previous results which show that students
often make wrong operation errors in line with an ini-
tial (although erroneous) activation of an arithmetic
action (Cummins, Kintsch, Reusser and Weimer,
1988; DeCorte et al., 1985). For example, in the word
problem shown above, the most likely incorrect
answer is thirteen (13), that is, students will add (i.e.,
JOIN) the two numbers in the problem rather than
subtract 5 from 8. One explanation is that very young
children do not have the ability to suppress previously
activated information, in this case, a previously instan-
tiated arithmetic action. In the current ‘‘bottom-up’’
implementation of the model, arithmetic actions can be
(prematurely) instantiated by the presence of
mathematical “‘keywords’” (e.g., altogether means
JOIN).

Implications for Teaching
and Learning Mathematics

On the basis of the results from the regression experi-
ments described above, predictor equations can be
used to confirm previous research on the effects of
problem wording and to extend the traditional meas-
ures of why one problem is easier or harder than
another. The educational objectives are to increase
teacher awareness of the multiple sources of problem
difficulty and to show how slight changes in problem
wording may affect children’s solution success. The
results of this analysis is a difficulty-differentiated net-
work of problems that includes a multiple number of

Table 3 Predicted and observed 1st grade solution
probabilities for static, non-relational problem wordings

Problem Model’s DeCorte | Cummins
Wording Prediction Data Data
Traditional 0.47 0.43 0.30
altogether & 0.94 0.57 )
of them
of them only 0.82 - 0.85
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rewordings for each problem type in order to help
teachers or a future computer-based learning environ-
ment determine a “‘next best’’ problem to present.

For example, the model confirms previous
empirical results concerning children’s success on the
word problem discussed above, as well as on reworded
versions of that same problem. This static (i.e., con-
taining no significant actions), non-relational problem
has received considerable attention in the literature,
mostly due to its high level of difficulty. As discussed
above, slight changes in wording (e.g., introducing the
phrase “‘of them’’) may facilitate the processes of text
integration and make this problem easier, as confirmed
in studies with children (Cummins, 1991; DeCorte et
al., 1985) and highlighted by the computer model. A
summary of probability of solution results are shown
in Table 3. In line with the empirical studies, the
model predicts that including the phrase ‘‘of them”
will help most children (i.e., solution probability
increases) and that removing the term ‘‘altogether’’ in
the first sentence while also including the phrase *‘of
them’’ can help considerably. The similarities and
differences between the model’s predictions and other
empirical findings are beyond the scope of this paper.
Our intent here is to show how the model’s sensitivity
to slight changes in wording is being used to extend
the traditional classification of word problems. In
addition to the rewordings discussed above, the model
is sensitive to other slight changes in problem word-
ing, including changes in the sequence of events and
the use of significant action language to describe rela-
tional situations (LeBlanc, 1993).

Future Directions

The ability to explain problem difficulty rankings in
terms of the processing of particular wordings brings
us closer to a more comprehensive or global model of
arithmetic word problem solving processes. The work
presented above focuses on text integration processes
and suggests that, even within this specific domain, the
interaction of two tasks (e.g., concepts to remember
and inferences made) may cause difficulty, where each
individual task may not. Similarly, at a higher level, it
seems clear that language comprehension processes
and their relation to mathematical processes should be
included in any model of arithmetic word problem
solving, since consideration of mathematical or
linguistic processes alone do not reflect all that is
going on in the process of word problem solution.



A related reason for studying linguistic and text
integration  processes  along  with  mathematics
processes is the determination of possible relationships
or distinctions between the various developmentally
determined competences which underlie each process.
From the perspective of the development of number
concepts, for example, Case (1985) has postulated suc-
cessive conceptual structurings, built up recursively
from preceding structures, which are necessary for a
child to understand the mathematics of arithmetic
word problems with differing semantic structures.
Some linguistic competences could apparently be
related to some of these structurings. An understand-
ing of nonquantitative verbal comparisons, for exam-
ple. may be a prerequisite for an understanding of
quantitative comparison and may therefore refer to the
same conceptual structure. In the case of mathemat-
cally significant natural language, the determination of
mathematical connections in EDUCE/SELAH in effect
presupposes the mediation of elementary competences
or structurings common to both linguistic and
mathematical expression. Other aspects of natural
language processing, (e.g., the additional memory load
imposed by an “unnatural” or inconsistent ordering of
sentences Or sentence components) are presentation-
rather than mathematics-related and may therefore
require different competences, in addition to the ability
to handle both textual and mathematical processing at
the same time, as discussed above. The described
research provides the future possibility to integrate
competences for both tasks into a developmental
theory which relates stages of mathematical under-
standing with stages of natural language understand-
ing.
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