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Summary

Earth system models must predict forest responses to global change in order to simulate future global 

climate, hydrology, and ecosystem dynamics. These models are increasingly adopting vegetation 

demographic approaches that explicitly represent tree growth, mortality and recruitment, enabling 

advances in the projection of forest vulnerability and resilience, as well as evaluation with field data. 

To date, simulation of regeneration processes has received far less attention than simulation of 

processes that affect growth and mortality in spite of its critical role maintaining forest structure, 

facilitating turnover in forest composition over space and time, enabling recovery from disturbance, 

and regulating climate-driven range shifts. Our critical review of regeneration process representations 

within current Earth system vegetation demographic models reveals the need to improve parameter 

values and algorithms for reproductive allocation, dispersal, seed survival and germination, 

environmental filtering in the seedling layer, and tree regeneration strategies adapted to wind, fire, 

and anthropogenic disturbance regimes. These improvements require synthesis of existing data, 

specific field data collection protocols, and novel model algorithms compatible with global scale 

simulations. Vegetation demographic models offer the opportunity to more fully integrate ecological 

understanding into Earth system prediction; regeneration processes need to be a critical part of the 

effort.

Key words: forest regeneration, Earth system models, vegetation demographic models, vegetation 

dynamics, tree recruitment, reproductive allocation
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I. Introduction

Forest management, clearing, and abandonment have affected roughly seventy percent of forested 

area globally (FAO, 2015), while climate change and intensifying natural disturbance regimes are 

increasingly affecting all forests (Gauthier et al., 2015; Abatzoglou & Williams, 2016; Seidl et al., 

2017; McDowell et al., 2020). Anticipating the individual and combined effects of these pressures on 

future forests requires understanding not only the resistance and vulnerability of mature trees to global 

changes, but also the resilience of forest communities through regeneration processes (Lloret et al., 

2012; Martínez-Vilalta & Lloret, 2016; McDowell et al., 2020). Even where land use and climate 

change pressures are minimal and forests experience relative ecological stability, regeneration 

processes must compensate for mortality to ensure that forests persist. Regeneration processes, 

including reproductive allocation, dispersal, seed survival, germination, seedling survival, and growth 

into adult size classes (see Box 1, Glossary), are known to be sensitive to light, water, temperature, 

and soil nutrients and can limit where trees regenerate. By acting as a bottleneck to tree establishment, 

regeneration processes have strong leverage on forest structure, distribution, and composition (Kobe, 

1999; Beckage & Clark, 2003; Wright & Calderón, 2006; Engelbrecht et al., 2007; Ibanez et al., 

2007; Walck et al., 2011; Conlisk et al., 2018), which ultimately give rise to forest function within the 

Earth system (Bonan, 2008). Factors that shift resource availability or preferentially select 

reproductive individuals and their offspring can contribute to compositional turnover within a forest 

(Engelbrecht et al., 2007; Barlow & Peres, 2008; Comita et al., 2009; Swenson, 2012), and coupled 

with dispersal, a shift in the geographic distribution of species (Clark et al., 1998). Finally, following 

landscape-scale disturbances such as fire, harvest, land clearing for agriculture, or hurricanes, the rate 

of forest recovery or transition to a non-forest state is dictated by regeneration processes (Turner et 

al., 1999; Chazdon, 2003; Comita et al., 2009; Schoennagel et al., 2009; Martinez-Vilalta et al., 2016; 

Tepley et al., 2017). 

Box 1. Glossary

Bioclimatic envelope: Climatic tolerances of a species or plant functional type, generally based on 

correlations with observed distributions.
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Forest: An area ≥ 0.5 hectares with a tree canopy cover of more than 10%, which is not primarily 

under agriculture or other specific non-forest land use (UN-CBD, 2006).

Patch: In a modeling context, a contiguous area of non-cultivated vegetation (typically 0.1 - 1 ha) 

with the same disturbance history (e.g. from canopy gap formation or a landscape-scale disturbance 

event) where vegetation competes for resources. Patches can represent fixed (Smith et al., 2001; Sato 

et al., 2007) or dynamic fractions (Koven et al., 2020) of their climatic grid cell.

Forest regeneration: The establishment of a new tree cohort (Ponge et al., 1998) or cohorts that 

reach the post-seedling size classes (≥ 1.35 m in height), which maintain existing forest or replace 

forest lost during landscape-scale disturbance. We consider regeneration from seed, resprouting, and 

clonal propagation.

Germination: Emergence of the radicle from the seed coat. This is a critical component of the more 

observable phenomenon of seedling emergence.

Plant functional type (PFT): A class of plant species that share key traits and life history strategies, 

which mediate their physiological and demographic responses to environmental conditions (Bonan, 

2015). In a modeling context, a PFT can be considered a unique vector of parameter values (typically 

based on traits) that determine how a PFT interacts with its simulated environment.

Recalcitrant seed: Desiccation-sensitive seed requiring sufficient moisture to remain viable (Walck 

et al., 2011).  

Reproductive allocation: The fraction of available photosynthetic energy (typically modeled as net 

primary productivity remaining after allocation to tissue turnover and storage) allocated to flowers, 

seeds, and other reproductive tissues.

Reproductive schedule: Changes in reproductive allocation as a plant increases in size or age (Wenk 

& Falster, 2015)

Resprouting strategy: The way in which bud location, protection, and resourcing allows trees to 

regenerate vegetatively, typically after disturbance (Clarke et al., 2013).

Seedling: An individual that has germinated and is < 1.35 m in height. 
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Tree recruitment: Addition of new trees to the post-seedling size classes (≥ 1.35 m in height) of an 

existing population or establishment of a new population. Recruitment is one of multiple regeneration 

processes that contribute to forest regeneration.

The next generation of Earth system models (ESMs) endeavors to dynamically project changes in 

vegetation function and distribution in response to climate and land use changes to better capture 

essential biosphere responses and feedbacks. The ESM community is increasingly interested in using 

vegetation demographic models (VDMs) to represent vegetation dynamics within ESMs (Fisher et al., 

2018; Bonan, 2019). VDMs comprise a class of Dynamic Global Vegetation Model (DGVM) that 

tracks multiple size-classes or individuals of the same plant functional type (PFT) and that represents 

multiple light environments within a single climatic grid cell (Fisher et al., 2018). Despite the central 

role of regeneration processes in forest dynamics, the algorithms for these processes  are often 

missing or overly simplified within VDMs, introducing biases, uncertainties, and compensating errors 

in the model dynamics (Fisher et al., 2010; Snell et al., 2014; Powell et al., 2018). Parameter 

sensitivity analyses indicate that some regeneration parameters have leverage on forest function and 

structure (Fisher et al., 2010; Snell, 2014; Koven et al., 2020), but the lack of a systematic effort to 

understand model sensitivity to existing parameters and alternative process representations hinders a 

prioritization of processes for improvement. Additionally, the diverse ways in which VDMs represent 

forest regeneration have never been critically and comprehensively reviewed, hindering the 

prioritization of model development goals and supporting research activities. 

Based on theoretical and empirical ecological literature, we review the key forest regeneration 

processes influencing the Earth system (II), critically evaluate how current VDM representations of 

these processes (III) are likely to succeed or fail in predicting forest responses to global change (IV), 

and conclude with recommendations for advancing prediction (V). We focus on forests due to their 

large influence on global biogeochemistry and biogeophysics (Bonan, 2008). Regeneration in non-

forest vegetation is largely represented with the same algorithms, but a future review evaluating non-

forest regeneration processes is also needed.  
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II. Forest regeneration processes critical to the Earth system

Forests regulate global terrestrial ecosystem functioning and climate (Bonan, 2008), but only persist 

where trees are able to recruit after individual mortality and landscape-scale disturbance. Further, 

regeneration processes help shape forest responses, including range shifts, post-disturbance recovery, 

and compositional changes, to changing environmental conditions and disturbance regimes both 

across spatial gradients and over time (Engelbrecht et al. 2007; Dupuy & Chazdon, 2008; DeSantis et 

al., 2011; Pausas & Keeley, 2014; Tepley et al., 2017). This occurs when abiotic and biotic variables 

limit one or more aspects of the regeneration niche, which includes conditions necessary for viable 

seed production, seed dispersal, germination, and seedling growth and survival (Grubb, 1977). The 

regeneration niche ultimately impacts terrestrial ecosystem functioning by filtering species 

assemblages, affecting the distribution of functional traits such as maximum growth rates, stature, and 

drought tolerance, which mediate the cycling of carbon, water, and energy within the Earth system 

(Bonan, 2019).

Forest regeneration can be conceptualized as a series of environmentally sensitive processes, each 

acting as a selectively permeable sieve (i.e. potential bottleneck) culminating in tree recruitment (Fig. 

1), thereby influencing global forest dynamics. For tree recruitment to occur, seeds must be produced, 

arrive at a site, remain viable and germinate, survive the vulnerable seedling stage, and grow 

sufficiently to recruit into the adult population (Box 1, Glossary). Vegetative regeneration via basal or 

epicormic sprouting can also be critical in some forests. Regeneration bottlenecks may occur at 

different levels of biological organization, from populations to the entire tree physiognomic class. We 

are concerned with bottlenecks occurring at the level of 1) the entire tree physiognomic class because 

they delineate the boundaries between forested and non-forested vegetation, and 2) PFTs because they 

shape the global distribution of forest types and the distribution of traits within a forest. 

The first potential bottleneck to successful forest regeneration is viable seed production, which is 

largely governed by mature tree productivity and reproductive allocation (RA; Wenk et al. 2015). RA 

and seed production are sensitive to climate (Sirois, 2000; Roland et al., 2014) and are believed to 

contribute to limitation of tree distributions beyond alpine and polar tree line ecotones in some A
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regions (Brown et al., 2018; Lantz et al., 2019; Anadon-Rosell et al., 2020; Körner et al., 2021). RA 

schedules, the changing magnitude of RA over a plant’s lifetime, can vary dramatically among PFTs 

(Wenk et al. 2015; Ruger et al., 2020), and are adapted to specific disturbance regimes (Wenk & 

Falster, 2015) such that changing disturbance regimes can render an RA schedule non-viable (Lamont 

et al., 2020). For example, obligate postfire seeders, such as serotinous pines, successfully regenerate 

in fire-prone forests where fire return intervals remain between maturation age and tree lifespan 

(Greene et al., 1999; Pausas & Keeley, 2014). When fire return intervals deviate from this range, trees 

face “immaturity risk” (Fig. 2a) or “senescence risk” (Fig. 2b), and other regeneration strategies, such 

as post-fire resprouting (discussed below) dominate (Pausas & Keeley, 2014).

Seed production depends on temperature and light in species-specific ways (Alfaro-Sanchez et al. 

2017; Wright & Calderón, 2006; Girardin et al., 2016; Gallego Zamorano et al., 2018; Detto et al., 

2018; Hacket-Pain et al., 2018) suggesting that as climates change, differential environmental 

limitations on seed production could mediate functional type turnover. Evidence of environmentally 

mediated tradeoffs between reproduction and growth (Thomas et al., 2011; Berdanier & Clark, 2016; 

Hacket-Pain et al., 2018) makes the ecophysiology of RA even more important to understand for 

accurate predictions of global carbon cycle dynamics. In sum, RA and seed production are 

particularly important for mediating a) climate-driven range shifts where viable seed production 

contributes to limits on forest distribution, b) functional type turnover within existing forests in 

response to changing disturbance regimes and possibly climate, and c) carbon available for growth.

After seeds are produced, dispersal limitations affect establishment success if propagules are unable to 

reach suitable sites (Turnbull, 2000). This particularly influences local species’ ability to recolonize 

sites following landscape-scale disturbance. For example, limited dispersal by non-serotinous conifers 

after large wildfire is believed to facilitate vegetation transitions from forest to shrubland in the 

western United States (Tepley et al., 2017; Urza & Sibold, 2017; Stevens-Rumann & Morgan, 2019). 

Similarly, in tropical forests, dispersal limitation slows the rate of forest recovery on abandoned 

agricultural land (Hooper et al. 2005; Chapman & Chapman, 1999). Within mature tropical forests, A
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animal-dispersed trees become more clustered following removal of their seed dispersers and 

abiotically dispersed species experience higher recruitment rates than sympatric, biotically dispersed 

species (Wright et al., 2007; Harrison et al., 2013). This evidence suggests that local dispersal 

limitation affects forest recovery rates after landscape-scale disturbance and forest species 

composition following defaunation.

On larger spatio-temporal scales, dispersal limitation mediates the geographic range of trees by 

influencing their migration potential (Clark et al., 1998; Caplat et al., 2008; Mokany et al., 2014;  

Miller & McGill, 2017). For example, simulations using realistic dispersal assumptions in a temperate 

deciduous forest suggest that tree migration is incapable of keeping pace with climate change, 

particularly where anthropogenic land use poses migration barriers (Miller & McGill, 2017). In 

Australian tropical forests climate change is projected to reduce the seed dispersal services of 

frugivores, thereby limiting the large scale tree migration potential for multiple species (Mokany et 

al., 2014). Ninety percent of tropical tree species are animal dispersed (Howe & Smallwood, 1982), 

portending decreasing migration potential and increasing seed and seedling mortality for many trees 

(de Paula et al., 2018) amid a global wave of “anthropocene defaunation” (Dirzo et al., 2014). These 

observations highlight the central role of dispersal in mediating tree range shifts.

After dispersal, seeds rely on a variety of traits designed to help them survive, germinate, and emerge 

under favorable conditions following a disturbance event. Seed size mediates functional type turnover 

from boreal coniferous to deciduous forests after severe fire because the smaller-seeded deciduous 

species lack large reserves and a taproot to mitigate moisture stress and benefit from a shallow post-

fire organic layer where it is easier to reach stable water supplies (Johnstone & Chapin, 2006; Beck et 

al., 2011). Similarly, where compounding disturbances (such as windthrow followed by fire) kill not 

just the canopy trees but also the seedling layer in spruce-fir dominated forests, smaller, wind-

dispersed seeds such as paper birch (Betula papyrifera) and aspen (Populus tremuloides) are favored 

for establishment (Johnstone et al., 2016), thereby altering functional composition. These 

observations demonstrate that seed size and germination are linked to establishment strategies which 

regulate functional composition in response to disturbance regimes.A
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After emergence, seedling survival and growth determine tree recruitment. Seedlings are particularly 

sensitive to abiotic stress, competition, herbivory, and fire (Burns & Honkala, 1990; Bond, 2008; 

McLaughlin & Zavaleta, 2012) making the seedling stage a critical filter on future forest distribution 

and functional composition.  Climate-driven range shifts beyond current high-elevation range edges in 

many alpine ecosystems are expected to be limited by seedling survival (where viable seed is not 

already limiting), due to interactions between increasing temperature and moisture stress (Loranger et 

al., 2016; Conlisk et al. 2017; Kueppers et al. 2017). For example, experimental warming in the 

absence of additional summer moisture decreased lodgepole pine seedling establishment rates (Fig. 

3a), which may prevent tree population growth above current range limits (Fig. 3b) in the Central 

Rocky Mountains. More broadly, seedling associations with particular regeneration niches are well 

correlated with mature tree composition across light, aridity, and nutrient gradients (Engelbrecht et 

al., 2007; Dupuy & Chazdon, 2008; Zalamea et al., 2016), indicating the strong leverage these early 

life stages have over mature forest composition. Engelbrecht et al. (2007) showed that tropical tree 

seedling drought tolerance (Fig. 4a) explained species turnover across local plant available water and 

regional precipitation gradients (Fig. 4b). Disturbance regimes also influence forest composition 

through their impacts on seedling survival. For example, hurricanes alter understory conditions and 

thereby differential seedling success (Comita et al., 2009). Changes in forest and woodland 

management that alter fire or grazing regimes dramatically alter forest composition over time through 

effects on seedling survival (Cierjacks & Hensen, 2004; Brown & Wu, 2005; Boulanger et al., 2015). 

These examples demonstrate that seedling survival and growth are particularly important for 

mediating tree ranges and forest composition in response to changing disturbance regimes and not all 

regeneration relies on seed. Resprouting is common following cyclones, fire, and pest outbreaks (Van 

Bloem et al., 2007; Clarke et al., 2013; Pausas & Keeley, 2014; Pausas et al., 2015) and strongly 

influences recovery rates and post-disturbance forest structure and composition (Cooper-Ellis et al., 

1999; Van Bloem et al., 2007; Uriarte et al., 2012; Saha et al., 2003; DeSantis et al., 2011; 

Kulakowski et al. 2013). Resprouting potential is not a binary trait. Bud bank location (underground, 

epicormic, or apical), protection (e.g. bark) and resourcing mediate resprouting success (Clarke et al., 

2013; Pausas et al., 2015). For example, eucalyptus recovers quickly after fire despite its thin bark A
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because deeply embedded epicormic meristems are well protected (Clarke et al., 2013). Many 

landscape-scale disturbances are predicted to become more frequent and severe in the coming decades 

(Turner, 2010; Trumbore et al., 2015; Seidl et al., 2017), likely driving changes in the relative 

abundance of seed and non-seed-based regeneration strategies. Epicormic or apical resprouting by 

mature trees also limits the short-term loss of ecosystem carbon relative to what occurs with mature 

tree mortality followed by recruitment from seed (Zeppel et al., 2015; Walden et al., 2019).

III. Forest regeneration in Vegetation Demographic Models 

Our review of seven state-of-the-art VDMs reveals diverse approaches to representing forest 

regeneration processes (Table 1). The VDMs reviewed here predominantly rely on prescribed 

parameters in place of environmentally sensitive functions, all (except for one) omit at least one key 

process, and each one emphasizes different aspects of the regeneration niche. We reviewed models 

that 1) satisfy the definition of a VDM (Fisher et al., 2018) by tracking multiple size classes or 

individuals of the same PFT that compete with each other under varying light environments 

(excluding e.g., Haverd et al. 2014, Argles et al. 2020 and “big leaf” models such as Lawrence et al., 

2019), 2) show potential for global scale simulations (excluding gap and forest landscape models), 

and 3) represent regeneration with a minimal level of complexity to warrant a full review (see bottom 

of Table S1 for models that represent regeneration with one equation, e.g. Joetzjer et al., 2018). We 

note where additional versions of each VDM have been published with meaningful updates to the 

regeneration scheme. We present cohort-based and spatially implicit models first, followed by 

spatially explicit and individual-based models.    

ED2, CLM(ED), and FATES

The Ecosystem Demography model version 2 (ED2; Medvigy et al., 2009), the implementation of ED 

within the Community Land Model (CLM(ED); Fisher et al., 2015), and the Functionally Assembled 

Terrestrial Ecosystem Simulator (FATES; Koven et al., 2020; FATES Development Team, 2020), are 

derived in part from the modeling framework presented in the original ED model formulation 

(Moorcroft et al., 2001). ED-based models simulate a mosaic of spatially implicit forest “patches” A
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(Box 1, Glossary), which have unique disturbance histories, areas, stand structure and composition, 

but no notion of spatial adjacency or location within the larger, spatially explicit climatic grid cells 

used by ESMs (typically 50-500 km resolution) for global simulations, hereafter referred to as “grid 

cells”. Within each patch, trees of the same size and PFT are tracked as a single cohort that is 

represented by an average individual. Within the patch, stand structure and composition emerge 

deterministically from size- and PFT-structured competition. With the exception of seed production, 

which is proportional to productivity, no regeneration processes in ED-based models are sensitive to 

environmental variation. Reproductive allocation (RA) in all ED-based models occurs in each daily 

timestep, wherein a prescribed, PFT-specific fraction, Frepro (typically 0.1-0.37, of cohort-level carbon 

for growth and reproduction (Cg+r; net after respiration and tissue replacement) is allocated to 

reproduction (Moorcroft et al., 2001).  

In ED2, reproductive carbon is subsequently reduced by a seedling mortality parameter, Ms (0.95 

month-1 by default), which implicitly represents non-seed reproductive carbon and all causes of 

mortality between reproductive allocation and recruitment into the smallest size class (Longo et al., 

2019a; Longo et al., 2019b). Reproductive carbon (numerator in Eqn 1) is converted into a number 

density (i.e. recruitment rate) of new recruits (Nrecruit) based on the amount of biomass required to 

make an individual in the smallest size class (Z0) such that

(Eqn 1)

where S is additional “seed rain”, represented as a prescribed input of reproductive carbon arriving to 

each grid cell with no specific origin. ED2 includes a PFT-specific minimum size threshold required 

for RA to occur (regardless of canopy position), but this parameter is not typically differentiated 

among tree PFTs within a biome. This is also true for CLM(ED) and FATES. Dispersal between 

patches within a grid cell can be represented by prescribing the fraction of reproductive carbon that 

can leave its patch of origin.. 
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Unlike ED2, intra-grid cell dispersal is not represented in CLM(ED) or FATES, but they do explicitly 

represent PFT-specific seed banks (Eqn 2) which gain carbon from RA (Seedin) and lose carbon due 

to seed decay (Seeddecay) at a prescribed, constant rate for all PFTs (0.51 yr-1; Fisher et al., 2015). 

Subsequently, carbon emerges from the seed bank (Seedgerm) according to a prescribed germination 

rate (0.5 yr-1) that is constant across PFTs by default. 

(Eqn 2)

All carbon emerging from the seed bank is converted to new recruits based on Z0 (Eqn 1), typically 

producing recruits between 0.25 and 0.5 cm diameter at breast height (dbh; C. Koven, personal 

communication, 2018). Aside from Ms in ED2, which has strong leverage on community structure and 

ecosystem properties (Fisher et al., 2010), seedling survival and growth in ED-based models is only 

implicitly represented by specifying the size of the smallest size class (Z0), effectively making 

recruitment proportional to adult net primary productivity (NPP). 

LPJ-GUESS

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) represents the forested 

landscape as a series of spatially implicit replicate patches where stand structure and composition vary 

as a function of stochastic disturbance and demographic processes (Smith et al., 2001). LPJ-GUESS 

is typically considered an individual based model, but for regional- and global-scale simulations it is 

usually run in “cohort mode” for computational efficiency (Wramneby et al., 2010; Hickler et al., 

2012; Smith et al., 2014), using an average individual to represent cohorts in the same way as ED-

based models. Therefore, our discussion of LPJ-GUESS pertains to cohort mode. Unlike ED-based 

models, regeneration occurs on an annual time step and reproduction and establishment only occur 

within PFT-specific bioclimatic envelopes (BEs) defined by a minimum number of growing degree 

days for reproduction (GDDmin), the maximum mean temperature of the coldest month (Tcmax; a 

chilling requirement), and the minimum temperature of the coldest month required for establishment 

and survival (Tcmin; Hickler et al., 2012). Each cohort of climatically eligible PFTs allocates a fixed 

fraction (0.1 by default; Smith et al., 2001) of NPP to reproduction. The main version of LPJ-GUESS A
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does not impose a size threshold for RA, but some versions, LPJ-GUESS-MIGRATION (LPJ-GM) 

and LPJ-DISP do (Snell, 2014; Lehsten et al. 2019). 

Dispersal, germination, and seed survival are not explicitly represented in LPJ-GUESS, but LPJ-GM 

represents germination with a prescribed germination probability parameter and dispersal using 

dispersal kernels and changes to the sub-grid cell patch structure (Lehsten et al., 2019; discussed in 

IV). LPJ-GM has an angular dispersion parameter that adjusts the shape of the dispersal kernel to 

reflect variables such as wind direction. LPJ-DISP also uses dispersal kernels to represent dispersal 

between grid cells (Snell, 2014) and calculates the probability of inter-patch dispersal (i.e. within a 

grid cell) as a function of the number of patches already containing the PFT. 

In addition to the BEs, PFT-specific limitations on seedling growth and survival are represented by 

prescribing the minimum amount of photosynthetically active radiation at the forest floor (PARmin) 

required for establishment (Smith et al., 2001) where shade tolerant PFTs have a lower PARmin.  The 

fraction of plant-available water holding capacity (fAWC) in the surface soil layer (Hicker et al., 

2012) must be above a critical level, but this has only been used in regional, species-specific 

simulations. The number of new recruits per year is pulled from a Poisson distribution with the 

expectation, , calculated from a PFT-specific observed maximum establishment rate, estmax, which is 

modified by the amount of carbon allocated to reproduction in the prior year (Crepro), and f, the 

potential productivity at the forest floor expressed as a fraction of the maximum (i.e. full sun; Smith et 

al., 2001; Hickler et al., 2012, S1; Wramneby et al., 2008) such that 

(Eqn 3)

(Eqn 4)

where  is a PFT-specific shape parameter that governs the sensitivity of recruitment to reductions in 

productivity at the forest floor (see Fulton, 1991); light demanding species experience steeper declines 

in recruitment as light at the forest floor decreases. kreprod and kbgestab are constants scaled such that A
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(kreprod) (Crepro) + kbgestab = 1 at the “highest plausible value of Crepro” (Wramneby et al., 2008). kbgestab 

(i.e. background establishment) ensures that recruitment never goes to zero for any PFT due to lack of 

productivity and carbon allocated to reproduction. This is functionally similar to the concept of seed 

rain in the ED-based models. New recruits are 1.2 meters in height and allometry determines the 

corresponding biomass per new recruit. In summary, recruitment occurs for any given PFT if its BE 

(GDDs, Tcmax, Tcmin) and establishment thresholds (PARmin, fAWC) are satisfied. Recruitment rate 

is governed by estmax, PFT-specific sensitivity to reductions in potential understory productivity, the 

amount of carbon allocated to reproduction and the background establishment (kbgestab) rate. 

LM3-PPA

Land Model 3 with the Perfect Plasticity Approximation (LM3-PPA; Weng et al., 2015), is a spatially 

explicit, individual-based model that can be implemented at global scale (Dunne et al., 2020). It 

handles recruitment similarly to ED-based models, albeit with a slightly different allocation scheme. 

Nonstructural carbohydrates (NSC) remaining after allocation to leaf and fine root turnover are 

allocated to Cg+r. Trees in the canopy allocate a fixed fraction of Cg+r (0.1) to reproduction, while trees 

in the understory do not reproduce. Dispersal and seed survival in a seed bank are not explicitly 

represented, but germination is represented with a prescribed germination probability. New recruits in 

LM3-PPA emerge as seedlings (Box 1, Glossary) because Z0 (Eqn 1) is generally set much smaller 

(0.02-0.1 Kg C per seedling) than in the other models reviewed here (E. Weng, personal 

communication, 2021). Seedling survival is represented with a prescribed establishment probability 

and a size-dependent understory mortality function (Weng et al., 2015). 

SEIB-DGVM

The Spatially-Explicit Individual-Based Dynamic Global Vegetation Model (SEIB) is a spatially 

explicit, individual-based VDM (Sato et al., 2007). SEIB simulates 30 m x 30 m forest patches (Box 

1, Glossary; patch size can vary depending on the application) where individual trees grow, compete 

for resources, and die. For large-scale applications, the forest dynamics of one patch is assumed to be 

representative of the grid cell. 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Reproduction in SEIB occurs on an annual time step and only individuals with more than 10 kg of 

biomass reproduce. Reproductive individuals allocate ten percent of Cg+r  to reproduction regardless of 

canopy position. Reproductive carbon flows to the litter pool, which is used to create new recruits 

(starting dbh of 1 cm).  Dispersal, seed survival, and germination are not explicitly represented in the 

main version of SEIB. However, Sato and Ise (2012) published a version of SEIB (referred to here as 

“SEIB-2012”) that gives any climatically eligible PFT the opportunity to establish in ten percent of 

neighboring grid cells. They prescribed the frequency at which PFTs could jump between grid cells to 

match rates of plant migration observed in paleo records.   

Similar to LPJ-GUESS, SEIB implicitly models environmental constraints on seedling survival and 

growth using PFT-specific BEs including PARmin, GDDmin, Tcmin, Tcmax, a soil moisture threshold, 

and a number of “dry months” (monthly potential evapotranspiration exceeding monthly 

precipitation) that must not exceed a maximum (Sato & Ise, 2012). Additionally, the simulation plot is 

divided into a grid wherein each unoccupied 1 m2 cell has a prescribed, PFT-specific establishment 

probability. The establishment probability and the number of unoccupied cells determine recruitment 

rates. At model initialization, all PFTs can establish in any unoccupied cell, but as the simulation 

progresses, the number of cells available to each PFT is assumed to be proportional to the PFT’s 

biomass. The amount of reproductive carbon allocated to the litter pool does not influence recruitment 

rates. In sum, the primary factors influencing PFT-specific recruitment rates in SEIB are BEs, 

prescribed PFT-specific establishment probabilities in open cells, and the relative biomass of PFTs. 

aDGVM

The Adaptive Dynamic Global Vegetation Model (aDGVM) represents individual trees within 

flexibly-sized (typically 1 ha) forest patches and was originally developed with a focus on tropical 

vegetation at grassland-savanna-forest biome boundaries (Scheiter & Higgins, 2009). aDGVM2 

builds upon aDGVM, but instead of having PFTs with a fixed set of traits defined at model 

initialization, it allows individuals to assume unique trait combinations during the simulation in 

response to environmental conditions (Scheiter et al., 2013). aDGVM2 has been run at regional to 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

continental scales on multiple continents (Langan et al., 2017; Martens et al., 2021) and shows 

promise for global scale simulations.

Trees above an age threshold (default = 10 years) produce seeds at a rate proportional to Cg+r on the 

first day, i, of each month such that

(Eqn 5)

where Seedin is the number of seeds entering the seed bank and Bseed is the mass of carbon in one 

seed. Seed banks (Seeds) are tracked similarly to CLM(ED) / FATES, but seeds can’t germinate until 

the next wet season, which is defined as three consecutive days with soil moisture of the upper soil 

layer at field capacity. In the wet season, a stochastic proportion of the seed bank, Psprout, is available 

for germination which helps avoid all seeds germinating at once. Individual seedlings are tracked and 

the number of new seedlings produced is calculated as

(Eqn 6)

where Pgerm is a prescribed germination probability. Seedling light availability is reduced by 

competition with grasses and other trees which affects the probability of seedling mortality via 

negative carbon balance (Scheiter & Higgins, 2009). Seedling biomass has a high probability of being 

killed by fire due to a size-dependent “topkill” probability. However, stems are not killed by fire 

which allows them to resprout. A favorable period without fire can allow seedlings, or resprouts, to 

grow large enough to escape the fire trap, but the risk of mortality via negative carbon balance 

increases with successive top kill events. 

IV. Strengths and weaknesses of current regeneration algorithmsA
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In this section we review how current model representations are positioned to capture critical forest 

responses to climate change. In Section V we propose directions forward for parameterizing, 

evaluating, and improving algorithms. The current representations of regeneration processes pose 

unique challenges for predicting future forests. All models reviewed here represent RA as an 

environmentally insensitive process and use uncertain parameters which likely bias estimates of 

biomass accumulation. Aside from aDGVM’s representation of resprouting and moisture-sensitive 

germination, no other models we reviewed explicitly represent environmentally sensitive seed 

survival, germination, or resprouting sufficiently to capture vegetation responses to changing 

disturbance regimes and climate. Existing algorithms for dispersal and seedling growth and survival 

are not well validated  posing uncertainty in their ability to capture tree migration potential, post-

disturbance recovery, and demographic bottlenecks at the seedling stage. 

Reproductive Allocation and Seed Production 

Biases in the representation of RA will bias estimates of biomass accumulation in all forests, 

particularly following landscape-scale disturbance. RA is represented in most of the models reviewed 

here (Table 1), but parameter values do not have strong empirical support (Harper et al., 1977; Wenk 

& Falster, 2015; Wenk et al., 2017). It is likely that RA is being misrepresented in all models for at 

least some biomes and PFTs because all tree PFTs are typically given the same RA parameter and 

maturation size. This uniformity conflicts with empirical evidence showing that RA varies widely 

across biomes, PFTs, and life stages (Thomas et al., 2011; Wenk & Falster, 2015; Visser et al., 2016; 

Ruger et al. 2020). This is problematic for capturing forest function because there is a direct tradeoff 

between RA and growth in most VDMs, with empirical support for this assumption (Thomas et al., 

2011; Berdanier & Clark, 2016; Hacket-Pain et al., 2018).

The lack of empirical basis for current representations of RA schedules or the lack of RA schedules in 

VDMs poses significant uncertainty for estimating range shifts. A tree’s RA schedule guides the 

timing and magnitude of RA over its lifetime (Wenk & Falster, 2015). In LPJ-GUESS, allocation to 

reproduction starts as soon as new trees emerge in a patch (B. Poulter, personal communication, 

2018), which would enable an immediate and unrealistic positive feedback between recruitment, A
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reproductive output (and a commensurate negative bias in biomass accumulation of young trees), and 

subsequent colonization of nearby patches or grid cells. This will result in unrealistically fast 

migration rates as suggested by a parameter sensitivity analysis in LPJ-DISP (Snell, 2014), which is 

consistent with landscape model experiments which show that the age of reproductive maturity affects 

the speed with which populations can migrate across a landscape (Miller & McGill, 2017). 

      

VDMs may struggle to capture climate-driven compositional turnover within forests where climate 

change differentially affects the mass of carbon available for reproduction. This mass influences 

recruitment rates in ED-based models, LM3-PPA, aDGVM, and LPJ-GUESS which positions them 

relatively well to predict how future productivity will affect seed production and recruitment rates. 

For SEIB, recruitment is proportional to adult abundance regardless of  productivity. Wherever 

compositional inertia maintains relative PFT abundances via  proportional propagule production this 

is a safe assumption, but where climate change differentially limits RA and/or production between 

PFTs, PFT-level propagule pressure may no longer reflect adult abundance. Where this is the case, 

models that do not represent recruitment rates as a function of reproductive carbon would 

overestimate compositional inertia and underestimate compositional turnover. 

Dispersal

Aside from ED2, intra-grid cell dispersal (dispersal between patches within the same grid cell) is not 

explicitly represented in any of the main versions of the models discussed here, which hinders their 

ability to represent disturbance-recovery dynamics. Models that implicitly assume unlimited intra-grid 

cell dispersal will overestimate tropical forest regeneration on abandoned agricultural land (as in 

Hooper et al., 2005) and will not accurately capture forest to non-forest vegetation transitions in 

response to increasing fire size, such as in the western United States (as in Tepley et al. 2017; 

Stevens-Rumann et al. 2019). Since mean dispersal distance tends to be short (Clark, 1998), rates of 

post-disturbance regeneration from seed are dependent on the size, shape, and adjacency of the 

disturbed patch to remnant patches (Tepley et al., 2017). The spatially implicit patch structure used by 

most VDMs limits the set of possible representations of patch adjacency necessary for inter-patch (i.e. 

intra-grid cell) seed dispersal.  LPJ-DISP (Snell, 2014) overcomes this constraint by representing the A
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spread of PFTs between patches similar to an infection process where the probability of patch 

adjacency (and transmission) is a function of the number of patches already containing the PFT. LPJ-

GM (Lehsten et al., 2019) spatializes the sub-grid cell patch structure of LPJ-GUESS and represents 

dispersal along transects of adjacent patches. These innovations lay promising groundwork towards 

more realistically limiting recolonization rates in recently disturbed patches and, because they also 

can be applied across grid cells, may enable simulation of long distance tree migration.

The lack of explicit inter-grid cell dispersal in most VDMs hinders their ability to predict persistent 

changes in the geographic distribution of trees (i.e. tree migration). Model testing and theory 

highlights the importance of considering dispersal kernel shape and maturation age in predicting long 

distance tree migration rates (Clark et al., 2001; Nathan, 2011; Miller & McGill, 2017). Both of these 

parameters are represented in LPJ-GM (Lehsten et al., 2019), which best positions it to predict 

migration rates. With the exception of LPJ-DISP and LPJ-GM, models reviewed here do not use 

dispersal kernels to represent how dispersal probability declines with distance from the seed source. 

The use of discrete simulation points in some models (e.g. Sato et al., 2007) introduces a 

discontinuous representation of vegetated space between adjacent grid cells (50-500 km resolution), 

which is incongruous with the standard application of dispersal kernels. Furthermore, the need to 

parallelize computations across grid cells has generally prohibited the inter-grid cell transfer of seed 

(LPJ-GM used a message passing interface protocol to overcome this; Clarke et al., 1994; Lehsten et 

al., 2019). These challenges perhaps explain why it is most common for models to allow PFTs to 

establish in any grid cell for which they are climatically eligible, implicitly assuming that inter-grid 

cell dispersal is unlimited. LPJ-GM has the ability to prescribe dispersal resistance on a landscape, but 

no VDM reviewed here explicitly represents dispersal agents or dispersal mechanism (i.e. animal, 

wind, water, etc.), which may make it hard to assess how topography, land cover (Miller & McGill, 

2017), meteorology, or the abundance of faunal dispersal (Mokany et al., 2014) agents facilitate or 

restrict dispersal depending on the trees’ dispersal mechanism (Nathan et al., 2008). However, it is 

still unclear to what extent including dispersal agents is appropriate, necessary, or possible in global 

scale VDMs. 
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Seed Survival, Germination, and Resprouting

Current model formulations are not well-positioned to capture how interactions between seed traits, 

disturbance regimes, and environmental conditions can drive compositional turnover, but this may 

only be critical in some biomes.  For example, in boreal forests, models without seed traits would not 

capture how establishment of smaller-seeded, broad-leaved deciduous species is limited by access to 

mineral soil until severe fire removes this constraint (Johnstone & Chapin, 2006; Beck et al., 2011). 

Prescribed, environmentally insensitive seed bank parameters in ED-based models are based on 

parameter values for central Europe (Lischke et al., 2006; Fisher et al., 2015), but are applied to 

tropical forests by default (Holm et al., 2020; Koven et al., 2020). This makes it difficult to capture 

how functionally different tropical seeds banks, with recalcitrant seeds, offer limited resilience after 

agricultural land abandonment (Chapman & Chapman, 1999; Martins & Engel, 2007; Lipoma et al., 

2020), potentially leading to changes in forest composition. 

Resprouting is a critical forest regeneration process that is only explicitly represented in aDGVM, 

likely biasing predictions of forest recovery and compositional turnover in disturbance prone regions 

in all other VDMs. Most models prioritize growth to meet allometric targets, which would implicitly 

enable resprouting of leaf or stem biomass if they have formulations that allow for non-lethal damage. 

However, no VDM we reviewed explicitly represents different resprouting strategies, such as bud 

protection and bud location (e.g. from epicormic vs. underground buds; but see Kelley et al., 2014), 

which can promote clonal reproduction, mediate forest compositional response to disturbance 

regimes, and affect biomass loss from fire (Del Tredici, 2001; Clarke et al., 2013; Pausas & Keeley, 

2014; Pausas et al., 2015). aDGVM is best positioned to capture resprouting mediated forest 

responses such as LAI recovery following wildfire in Australian sclerophyll eucalypt forests (Nolan et 

al., 2020), the observed functional turnover between fire-sensitive species and resprouters in response 

to changing fire frequency (Pausas & Keeley, 2014, DeSantis et al. 2011), and the denser, shorter 

forests created via resprouting after hurricanes (Van Bloem et al., 2006). 

Seedling Survival and Growth
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The models reviewed here represent differential seedling survival and growth with bioclimatic 

envelopes (BEs) or by explicitly using a very small (i.e. seedling stage) smallest size class. LPJ-

GUESS and SEIB’s BEs both include PFT-specific PARmin parameters, positioning them relatively 

well to capture how changing disturbance regimes are predicted to differentially affect seedling 

establishment among light demanding and shade tolerant PFTs (Comita et al., 2009). BEs required for 

“establishment” have proven useful for predicting historical PFT distributions and forest succession, 

but have been critiqued for operating in lieu of physiological understanding of climate tolerances 

(Fisher et al., 2015) and for assuming that historical correlations with climate will predict future plant 

distributions subject to novel climates and PFT assemblages (Journé et al., 2019). It is particularly 

unclear if these correlations, used to parameterize BEs in LPJ-GUESS and SEIB (based on Sykes et 

al., 1996), would capture seedling-specific survival and growth responses to changing understory 

conditions. BEs are not well-suited to capture niche differences between seedlings and conspecific 

adults (Dobrowski et al., 2015) making it difficult to predict tree range contractions around favorable 

establishment microsites (Mclaughlin & Zavaleta, 2012). Nevertheless, if these uncertainties can be 

overcome, SEIB and LPJ-GUESS’s BEs may capture the role that future temperature and moisture 

regimes play in changing global forest distribution. 

Models that explicitly represent the seedling stage (aDGVM and LM3-PPA) may be better prepared 

to capture how future understory conditions will impact seedling growth and survival if the associated 

computational burden remains manageable for global scale simulations. Unlike all other models 

reviewed here, recruitment in ED-based models is entirely insensitive to conditions at the forest floor 

where seedling dynamics take place and, in contrast to models that use BEs (e.g. LPJ-GUESS), 

implicitly assume that establishment processes do not contribute to emergent biogeography. Only 

mortality following recruitment and differences in the NPP of reproductive cohorts (which has 

cascading effects on reproductive output) determine biogeography.  This limits their ability to capture 

scenarios where the seedling stage becomes a life history bottleneck (e.g. Mclaughlin & Zavaleta, 

2012; Dobrowski et al., 2015). The convention in ED-based models where reproductive carbon is 

divided by the mass required to produce a new recruit (Z0; Eqn 1) is a particularly unrealistic 
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abstraction (also shared by LM3-PPA to produce seedlings) that hinders algorithm evaluation against 

observations of seed and seedling dynamics.

V. Priorities for advancing prediction

Understanding the strengths and weaknesses of current VDMs is a starting point, but diverse research 

activities are needed to advance the representation of critical regeneration processes.  

Unlike prior efforts to review and recommend improvements to the representation of regeneration  in 

gap models (Price et al., 2001), our recommendations are specific to global scale simulations coupled 

to atmospheric models and therefore account for the unique needs of VDMs to conserve carbon, 

operate with computational efficiency, and use mechanistic process-based representations. For 

processes already included in VDMs, research priorities depend on model sensitivity to associated 

parameters and how well algorithms and parameters have been empirically evaluated. The inclusion 

of new processes does not guarantee improved prediction and could unnecessarily increase model 

complexity (Fisher & Koven, 2020). Therefore, our recommendations prioritize  the processes 

identified in section II (Fig. 1) for which there is clear evidence the process influences forest function, 

composition, or extent at the scale of the ecosystem or PFT in response to global change. 

The incorporation of new regeneration processes will inevitably introduce new PFT-specific 

parameters based on regeneration traits that may not align with the current axes of trait variation used 

to define PFTs (Ruger et al., 2018), potentially necessitating the division of existing PFTs into 

“subclasses” (Neilson et al., 2005). Newer approaches to representing trait diversity, such as flexible 

individual traits (e.g. LPJmL-FIT, Sakschewski et al., 2016 and aDGVM2, Scheiter et al., 2013) may 

be required to avoid exponentially expanding the number of fixed PFTs used. To help manage the 

increasing complexity of VDMs, we recommend employing “modular complexity as a strategy” 

(Fisher & Koven, 2020), where new algorithms are implemented as distinct modules that can be 

turned on or off depending on the goal and spatial extent of the simulation. 
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The trend towards including more mechanistic representations of physiological and demographic 

processes in VDMs can make them difficult to parameterize and evaluate. Inverse modeling, whereby 

parameters are calibrated based on their ability to reproduce empirical observations (Hartig et al., 

2012), shows promise for parameterizing under-observed processes in vegetation models (e.g. Van 

Oijen et al., 2005; Hanninen et al., 2019; Chalmandrier et al., 2021). Data syntheses specifically 

geared towards VDM model development (e.g., Box 2) can constrain parameters and algorithms 

directly or via inverse modeling approaches (e.g., Box 3), such as Bayesian calibration (e.g. Hartig et 

al., 2012).  

Reproductive Allocation and Seed Production

We recommend prioritizing the evaluation of RA algorithms and parameters because a) reproductive 

allocation (RA) is represented in nearly all VDMs reviewed here, b) RA affects forest function 

globally through tradeoffs with growth (Thomas et al., 2011; Wenk & Falster, 2015), c) the size or 

age of reproductive maturity governs forest distribution changes by mediating migration rates 

(Nathan, 2011; Miller & McGill, 2017), and d) RA algorithms are poorly evaluated and the default 

parameter values are uncertain (Harper, 1977; Wenk & Falster, 2015).

Like many physiological processes in VDMs, directly observing RA in the field is challenging.  

Although the most intuitive field measure of RA is the carbon mass of reproductive litter flux (R) as a 

fraction of NPP, field estimates of R/NPP are rare because of the difficulty of sampling all NPP 

components. The mass of reproductive litterfall as a fraction of the mass of leaf litter flux (R/L) may 

offer a more readily available proxy for investment in reproduction (see Box 2). Based on our global 

synthesis of data from forest sites where R, L, and NPP are reported (Box 2), we find that R/L is a 

tractable constraint for RA in VDMs. Therefore, we recommend that R/L is used to constrain RA 

parameters and assess the structure of regeneration algorithms more broadly (Box 3).

Box 2. Global data available to support VDM parameterization of reproductive allocation
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Although measures of reproductive output (R) are relatively extensive (e.g. Qiu et al., 2021), it has 

been unclear whether sufficient data exist to estimate reproductive investment as a fraction of NPP 

and how these data are distributed across biomes. Because NPP is not often reported at fine spatial or 

temporal resolution, estimates of R/NPP are spatially and temporarily limited. We propose that using 

the ratio of carbon allocated to reproductive vs. leaf litterfall, R/L, as a proxy for reproductive 

investment could aid efforts to constrain RA and characterize its environmental sensitivity.

To assess the viability of R/L as a proxy for R/NPP, we first conducted a global data assessment of 

forest sites where R/L, R/NPP and R/ANPP (aboveground NPP) are publicly available (Methods S1). 

We then tested how our proposed proxy, R/L, is correlated with R/NPP (Fig 5a) and R/ANPP (Fig. 

S1). Finally, we calculated R/L at a larger set of sites where R and L are reported for a minimum of 

one year (Fig. 5b). See Tables S2, S3 for data.

We found a strong correlation between R/NPP and R/L (R2 = 0.87; Fig 5a) and between R/ANPP and 

R/L (R2 = 0.86, Fig. S1), suggesting that R/L provides a useful benchmark for reproductive 

investment and could be used to calibrate RA parameters in VDMs (Box 3). Estimates of R/L from 

550 sites ranged from 0 to 3.7 with the lowest variance in tropical rainforests (± 0.012) and the 

highest variance within woodland/shrubland (± 0.25). The correlation between R/L and R/NPP is 

driven in part by the correlation between L and NPP (R2 = 0.57, Fig. S2), consistent with prior 

observations in tropical forests (Malhi et al., 2011).

Figure 5. a) Correlation between observed reproductive litter flux as a fraction of net primary 

productivity (R/NPP) and leaf litter flux (R/L; all fluxes in g C m-2 yr-1) at 61 forest sites (colors 

indicate Whittaker biomes as in panel b; shaded area shows the 95 % confidence interval), and b) the 

magnitude of R/L (shown by point size) and the distribution of R/L observations across Whittaker 

biomes (n = 550);  “N sites” shows the approximate number of distinct measures of R/L at mean 

annual temperature and precipitation coordinates.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Data will be most useful for supporting VDM parameterization and evaluation when they capture a 

functionally and biogeographically broad sample of individuals identified to species, are generated 

with standardized field protocols and have concurrent meteorological observations. Long-term forest 

monitoring plots generally exhibit these characteristics (Anderson-Teixera et al. 2015; Metzger et at., 

2019; Malhi et at., 2021; Davis et al., 2021), highlighting their utility for advancing the representation 

of PFT-specific processes as a function of environmental variables in VDMs. For RA specifically, 

long-term litterfall monitoring at the Center for Tropical Forest Science (CTFS)-ForestGeo network 

sites are useful because sampling protocols call for species-level identification of reproductive and 

leaf material. Similar protocols (although not always including species-level identification) have been 

adopted by GEM, RAINFOR and NEON networks, among others. Although a trend towards open, 

accessible data is apparent,  most of these data are not publicly available, emphasizing the opportunity 

and need for a large-scale collaborative synthesis among data holders. 

Box 3. Evaluating reproductive allocation in FATES at Barro Colorado Island (BCI)

Directly observing RA is challenging, but more observable benchmarks show promise for 

calibrating RA in vegetation models (Box 2). We used observations of R/L, R/ANPP, and 

recruitment rates into the 1 cm size class to evaluate a range of potential parameter values for 

RA in FATES (Methods S1, S2). We ran 7 simulations of a single broad-leaved tropical tree 

PFT using boundary conditions for BCI (Faybishenko et al., 2018) with RA varying from 

0.009 to 0.41, based on a range of empirical estimates for tree species globally (Wenk & 

Falster, 2015). All other parameters were held constant. 

Figure 6. FATES predictions at Barro Colorado Island (circles) of a) reproductive litter flux 

(R; g C m-2 yr-1) as a fraction of leaf litter flux (R/L), b) R as a fraction of above-ground net 

primary productivity (R/ANPP), and c) recruitment rates into the 1 cm size class. Each model 

prediction shows the mean across 18 simulation years run with recycled, observed 

meteorology (2003-2016), initialized with observed stand structure, and using a prescribed 

value of reproductive allocation (RA; ranging from 0.009-0.41). The standard deviation of 

inter-annual variation is smaller than the symbol size for most circles. Triangles show A
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observations (mean and standard deviation among years) at the BCI Forest Dynamics Plot.

The value of RA resulting in the best match to observations of R/L and R/ANPP is 0.15, 

indicating that the default parameter value (0.1) should be raised slightly at BCI. However, 

evaluating RA against observations of recruitment rates indicates that RA should be lowered 

below 0.009. This implies that FATES may allocate too little to reproduction, but 

insufficiently constrains reproductive carbon between RA and recruitment. This could indicate 

inaccurate seed bank parameters for decay and germination (i.e. too much seed may be 

surviving and germinating), and/or larger structural issues related to FATES’s implicit 

assumption that seedling growth and mortality do not constrain carbon available to make new 

recruits. Due in part to the direct trade-off with growth in FATES, lower reproductive 

allocation increases growth (data not shown).

Dispersal

We recommend that VDMs incorporate inter- and intra-grid cell dispersal because these processes 

limit tree migration rates (inter-grid cell scale) and regeneration after landscape-scale disturbance 

(intra-grid cell scale; Clark et al., 2001; Chapman & Chapman, 1999; Nielson et al., 2005; Sato & Ise 

2012; Stevens-Rumann et al., 2019). Dispersal in current VDMs ranges from relatively complex 

(LPJ-GM), to relatively simple (ED2 and SEIB-2012), but it is still unclear what level of complexity 

is required. At a minimum we recommend the incorporation of dispersal kernels that represent both 

short and long-distance dispersal events by incorporating a “long-tailed” dispersal probability kernel 

(Clark et al., 2001). This provides a path towards more mechanistic representations of tree migration 

without necessarily requiring the explicit representation of dispersal agents and may eliminate the 

need for “seed rain” which violates the conservation of carbon. Although parameterizing the 

occurrence of rare, long-distance dispersal events is challenging, it is important because these are 

believed to explain the pace of historical tree migration (Clark, 1998). Pollen records (Solomon & 

Kirilenko, 1997; Clark et al., 1998; Ordonez & Williams, 2013) can be used to calibrate parameters in 

dispersal kernels to constrain tree migration more mechanistically than prior VDM experiments that 

prescribe migration rates without explicit dispersal (e.g. Sato & Ise, 2012). For taxa where pollen A
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records are not available (Nielson et al., 2005) observations of tree invasions (e.g. Hunter and 

Douglas 1984), tree line movement (Kullman et al., 2001), and “signatures of range expansion” 

(Murphy et al., 2010) may be used to calibrate dispersal kernel parameters.

 

The development of intra-grid cell dispersal will enable the simulation of changes in disturbance-

recovery dynamics and these algorithms could tractably be evaluated using data from post-disturbance 

seedling censuses (e.g. Chapman & Chapman, 1999; Nagel & Taylor, 2005; Tepley et al., 2017; 

Young et al., 2019) and “seed shadows” (Clark et al., 1999). Evaluation of dispersal algorithms at 

these smaller spatio-temporal scales is needed to ascertain if relatively simple approaches to intra-grid 

cell dispersal, such as that in ED2, are sufficient to capture secondary forest development after 

megafires and agricultural land abandonment, or if the inclusion of PFT-specific dispersal kernels 

(e.g. LPJ-GM and LPJ-DISP) make meaningful improvements for capturing forest recovery rates after 

landscape-scale disturbance. Models that don’t already represent multiple, coexisting patches per grid 

cell (e.g. SEIB) will have to do so, perhaps following Lehsten et al. (2019).

Seed Survival, Germination, and Resprouting

Resprouting is a well understood process (Clarke et al., 2013, Pausas & Keeley, 2014) that mediates 

forest composition in response to changing disturbance regimes (Saha et al., 2003; Beck et al. 2011; 

DeSantis et al., 2011) and should be prioritized for biomes and PFTs for which this regeneration 

strategy is dominant. Forest landscape models (FLMs) represent resprouting probabilities and 

qualitative fire tolerance scores to capture disturbance-recovery dynamics (Mladenoff, 2004; Scheller 

et al., 2007), but we recommend more mechanistic representations for VDMs. For example, to capture 

the costs of resprouting, Kelley et al. (2014) represented a trade-off between investment in thicker 

bark (conferring resprouting ability after fire) and seedling establishment. We recommend that the 

“buds-protection-resources” (BPR) framework (conceptualized by Clarke et al., 2013) is used as the 

basis for algorithm development where algorithms are designed to include trade-offs within carbon 

allocation schemes and coordination of PFT-level traits such as bud location and degree of protection 

(e.g., via bark thickness). This will help VDMs capture PFT-specific, resprouting-mediated carbon 

stock resilience and LAI recovery in response to changing disturbance regimes where well-protected A
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aerial buds survive fire, resulting in far less biomass loss than where resprouting occurs from basal or 

underground buds (Clarke et al., 2013). TRY, the global database of plant traits (Kattge et al., 2011), 

includes observations of bark thickness, budbank height distribution, and storage organs for thousands 

of individuals which makes it a promising resource for parameterizing BPR-based resprouting 

algorithms in VDMs. 

Seed size and longevity can filter functional composition (e.g. Johnstone & Chapin, 2006; Beck et al., 

2011; Pausas & Keeley, 2014), but may only be necessary in some contexts. For example, in boreal 

forests we recommend representing how seed size mediates seedling establishment success after fire 

because this is important for capturing changes in functional composition across large spatial extents 

(e.g. Beck et al., 2011). For tropical secondary forests it may be necessary to represent seed longevity 

and recalcitrance to capture how tropical seed banks offer limited biomass resilience following 

agricultural land abandonment (Chapman & Chapman, 1999; Martins & Engel, 2007; Lipoma et al., 

2020).

Seedling Survival and Growth

Seedling survival and growth influence recruitment rates, drive compositional turnover across 

moisture gradients (Engelbrecht et al., 2007) and shape biome boundaries (Bond, 2008; Conlisk et al. 

2017; Kueppers et al. 2017). The VDMs reviewed here implicitly represent one or more aspects of 

seedling survival and growth with diverse approaches, but none have evaluated their approaches 

against observations of recruitment rates into the 1 cm size class. Evaluations against recruitment data 

(e.g. Box 3, Fig. 6c) can help determine if current representations sufficiently capture seedling-

specific ecophysiological limits and responses to disturbance regimes, or if current models are 

allowing recruitment to occur where the seedling stage would actually be limiting. 

We used census data to calculate recruitment rates into the 1 cm size class at four sites (Methods S3, 

Tables S4, S5) and compared these observations to predictions in FATES at Barro Colorado Island 

(BCI; Box 3, Fig. 6c), Panama. We found evidence of excessive recruitment in FATES (Fig. 6c) 

which aligns with recent simulations in ED2 showing that excess mortality in the smallest size classes A
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(1-10 cm dbh) appears to compensate for hyperactive recruitment (Fig. 7). These observations 

indicate that the pool of carbon available to produce new recruits in ED-based models is generally too 

large, and that a representation of seedling growth and mortality processes are needed. We 

recommend algorithm development in ED-based models to introduce PFT-specific, environmentally 

sensitive recruitment limitations based on observations of seedling ecophysiology or demography. 

Experiments that track early seedling development under manipulated temperature, moisture, or CO2 

regimes are critical to support this type of algorithm development (e.g. Kobe, 1999; Levy et al., 2000; 

Engelbrecht et al., 2007; Kueppers et al., 2017). However, leveraging these observations will require 

updating the problematic abstraction in ED-based models that all carbon to make new recruits must 

come from reproductive carbon (Eqn 1). This could be achieved by tracking a seedling layer, subject 

to environmentally sensitive mortality, that assimilates atmospheric carbon to produce new recruits.

Additional opportunities to evaluate representations of seedling growth and survival depend on each 

model. For models that represent the seedling stage by having a very small smallest size class, such as 

LM3-PPA, benchmarks should test if representing seedlings with the same parameters as adults, some 

of which interact with size to affect demographic rates, fails or succeeds in capturing observed 

seedling demographic responses to environmental variation. Initial testing in LM3-PPA found that 

tuning seedling mortality rates was required to reconcile abundance differences between the seedling 

stage and larger size classes (Weng et al., 2015), indicating that (similar to our conclusions about ED-

based models) the current formulation is missing seedling-specific constraints to survival.  For models 

that use BEs we recommend testing how contemporary observations of seedling recruitment aligns 

with BEs that were parameterized with historical, adult distributions. This will ensure that, in addition 

to circumscribing the requirements of adult trees for growth and survival, BEs are no wider than the 

set of conditions required for trees to complete their entire life cycle.

VI. Conclusion

Regeneration processes are critical to the future of global forests. To date, even the most advanced 

vegetation schemes emerging for use within ESMs, VDMs, represent regeneration processes with 

relative simplicity compared to growth and mortality processes. Current regeneration formulations A
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may allow most models to maintain the distribution of current vegetation, but they will require 

improvements to capture future functional composition, range shifts, and post-disturbance recovery. 

Reproductive allocation and maturation parameters lack strong empirical support, which is needed to 

avoid biases in migration rates and carbon accumulation rates after landscape-scale disturbance. 

However, our data synthesis finds empirical support for novel RA benchmarks constructed from 

litterfall data, which can be used to better constrain RA parameters in VDMs. Future work should 

leverage spatially extensive and long-running litterfall observations to improve current default RA 

parameters globally. Dispersal is implemented in some VDM versions, but new benchmarking 

approaches are needed to assess how well current algorithms can capture tree migration and recovery 

from landscape-scale disturbance. Algorithms for resprouting lag empirical understanding and 

synthesis, indicating an opportunity for algorithm development to capture how resprouting strategies 

mediate functional turnover and biomass recovery in response to changing disturbance regimes. It is 

unclear how the diverse approaches used to represent seedling survival and growth capture seedling-

stage recruitment bottlenecks. Benchmarking is needed to determine to what degree VDMs currently 

capture how this life stage mediates functional turnover in response to changing environmental 

conditions. More systematic parameter sensitivity analyses (building upon Fisher et al., 2010; Snell, 

2014; Koven et al., 2020) are needed across all processes and models to identify which improvements 

will have the most meaningful impacts. Adding complexity to already complex models doesn’t 

guarantee improved prediction, and can be deleterious if it expands prediction space without adequate 

observational constraints. We recommend incorporating well-understood processes using “modular 

complexity as strategy” (Fisher & Koven, 2020) which shows promise for reconciling the need to 

represent numerous processes mechanistically with the challenges of increasingly complex ESM 

components. Without addressing the key gaps outlined here, VDMs will not fulfill their mandate.

Acknowledgements

We thank M. Billing, E. Weng, E. Joetzjer, R. Knox, C. Koven, R. Fisher, B. Poulter, T. Powell, and 

H. Sato, who clarified details of regeneration algorithms within various VDMs, and anonymous 

reviewers whose comments improved the manuscript. We thank R. Knox and M. Longo for preparing 

files used in the FATES simulations. This work was supported as part of the Next Generation A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Ecosystem Experiments-Tropics (NGEE Tropics), funded by the U.S. Department of Energy, Office 

of Science, Office of Biological and Environmental Research under award number DE-AC02-

05CH11231. A. Hanbury-Brown was also supported in part by the National Science Foundation and 

the National Aeronautics and Space Administration while conducting this research.

Author contributions 

Conceptualization and Investigation A. R. Hanbury-Brown and L. M. Kueppers; Writing-Original 

Draft, A. R. Hanbury-Brown and L. M. Kueppers; Model simulations, A. R. Hanbury-Brown; Data 

synthesis, R. E. Ward; Writing-Review & Editing, A. R. Hanbury-Brown, L. M. Kueppers, R. E. 

Ward.  

Data availability

The data that supports the findings of this study are available in the supplementary material of this 

article.

References

Abatzoglou JT, Williams AP. 2016. Impact of anthropogenic climate change on wildfire across 

western US forests. Proceedings of the National Academy of Sciences 113: 11770–11775.

Alfaro-Sánchez R, Muller-Landau HC, Wright SJ, Camarero JJ. 2017. Growth and reproduction 

respond differently to climate in three Neotropical tree species. Oecologia 184: 531–541.

Anadon-Rosell A, Talavera M, Ninot JM, Carrillo E, Batllori E. 2020. Seed production and 

dispersal limit treeline advance in the Pyrenees. Journal of Vegetation Science 31: 981–994.

Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph 

Wright S, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, et al. 2015. CTFS-

ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change 

Biology 21: 528–549.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Argles APK, Moore JR, Huntingford C, Wiltshire AJ, Harper AB, Jones CD, Cox PM. 2020. 

Robust Ecosystem Demography (RED version 1.0): A parsimonious approach to modelling 

vegetation dynamics in Earth system models. Geoscientific Model Development 13: 4067–4089.

Barlow J, Peres CA. 2008. Fire-mediated dieback and compositional cascade in an Amazonian 

forest. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1787–1794.

Beck PSA, Goetz SJ, Mack MC, Alexander HD, Jin Y, Randerson JT, Loranty MM. 2011. The 

impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and 

albedo. Global Change Biology 17: 2853–2866.

Beckage B, Clark JS. 2003. Seedling survival and growth of three forest tree species: the role of 

spatial heterogeneity. Ecology 84: 1849–1861.

Berdanier AB, Clark JS. 2016. Divergent reproductive allocation trade-offs with canopy exposure 

across tree species in temperate forests. Ecosphere 7: e01313.

Van Bloem SJ, Murphy PG, Lugo AE. 2007. A link between hurricane-induced tree sprouting, high 

stem density and short canopy in tropical dry forest. Tree Physiology 27: 475–480.

Bonan GB. 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of 

Forests. Science 320: 1444–1449.

Bonan G. 2015. Ecological Climatology. Cambridge, UK: Cambridge University Press.

Bonan G. 2019. Climate Change and Terrestrial Ecosystem Modeling. New York, USA: Cambridge 

University Press.

Bond WJ. 2008. What Limits Trees in C 4 Grasslands and Savannas? Annual Review of Ecology, 

Evolution, and Systematics 39: 641–659.

Boulanger V, Baltzinger C, Said S, Ballon P, Picard J-F, Dupouey J-L. 2015. Decreasing deer 

browsing pressure influenced understory vegetation dynamics over 30 years. Annals of Forest Science 

72: 367–378.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Brown CD, Dufour-Tremblay G, Jameson RG, Mamet SD, Trant AJ, Walker XJ, Boudreau S, 

Harper KA, Henry GHR, Hermanutz L, et al. 2019. Reproduction as a bottleneck to treeline 

advance across the circumarctic forest tundra ecotone. Ecography 42: 137–147.

Brown PM, Wu R. 2005. Climate and disturbance forcing of episodic tree recruitment in a 

southwestern ponderosa pine landscape. Ecology 86: 3030–3038.

Caplat P, Anand M, Bauch C. 2008. Interactions between climate change, competition, dispersal, 

and disturbances in a tree migration model. Theoretical Ecology 1: 209–220.

Chalmandrier L, Hartig F, Laughlin DC, Lischke H, Pichler M, Stouffer DB, Pellissier L. 2021. 

Linking functional traits and demography to model species-rich communities. Nature 

Communications 12: 2724.

Chapman CA, Chapman LJ. 1999. Forest restoration in abandoned agricultural land: A case study 

from East Africa. Conservation Biology 13: 1301–1311.

Chazdon RL. 2003. Tropical forest recovery: Legacies of human impact and natural disturbances. 

Perspectives in Plant Ecology, Evolution and Systematics 6: 51–71.

Cierjacks A, Hensen I. 2004. Variation of stand structure and regeneration of Mediterranean holm 

oak along a grazing intensity gradient. Plant Ecology 173: 215–223.

Clark JS. 1998. Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the 

Paleorecord. The American Naturalist 152: 204–224.

Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J. 1999. Seed dispersal near and far: 

patterns across temperate and tropical forests. Ecology 80: 1475–1494.

Clark JS, Fastie C, Hurtt G, Jackson STT, Johnson C, King G a. a, Lewis MA, Lynch J, Pacala 

S, Prentice C, et al. 1998. Reid’s paradox of rapid plant migration - Dispersal theory and 

interpretation of paleoecological records. Bioscience 48: 13–24.

Clark JS, Lewis M, Horvath L. 2001. Invasion by Extremes: Population Spread with Variation in 

Dispersal and Reproduction. The American Naturalist 157: 537–554.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, 

Cleavitt NL, Cohen S, Courbaud B, et al. 2021. Continent-wide tree fecundity driven by indirect 

climate effects. Nature Communications 12: 1242.

Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox 

KJEE. 2013. Resprouting as a key functional trait: how buds, protection and resources drive 

persistence after fire. New Phytologist 197: 19–35.

Clarke L, Glendinning I, Hempel R. 1994. The MPI Message Passing Interface Standard. In: 

Decker KM, Rehmann RM, eds. Programming Environments for Massively Parallel Distributed 

Systems. Basel: Birkhäuser Basel, 213–218.

Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK. 2009. Abiotic 

and biotic drivers of seedling survival in a hurricane-impacted tropical forest. Journal of Ecology 97: 

1346–1359.

Conlisk E, Castanha C, Germino MJ, Veblen TT, Smith JM, Moyes AB, Kueppers LM. 2018. 

Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range 

shifts. Global Change Biology 24: 197–211.

Cooper-Ellis S, Foster DR, Carlton G, Lezberg A. 1999. Forest response to catastrophic wind: 

Results from an experimental hurricane. Ecology 80: 2683–2696.

de Paula Mateus D, Groeneveld J, Fischer R, Taubert F, Martins VF, Huth A. 2018. Defaunation 

impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127: 1526–

1538.

Davies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade 

A, Arellano G, Ashton PS, et al. 2021. ForestGEO: Understanding forest diversity and dynamics 

through a global observatory network. Biological Conservation 253: 108907.

DeSantis RD, Hallgren SW, Stahle DW. 2011. Drought and fire suppression lead to rapid forest 

composition change in a forest-prairie ecotone. Forest Ecology and Management 261: 1833–1840.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Detto M, Wright SJ, Calderón O, Muller-Landau HC. 2018. Resource acquisition and 

reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nature 

Communications 9: 913.

Dirzo R, Dirzo R, Young HS, Galetti M, Ceballos G. 2014. Defaunation in the Anthropocene. 

Science 345: 401–406.

Dobrowski SZ, Swanson AK, Abatzoglou JT, Holden ZA, Safford HD, Schwartz MK, Gavin 

DG. 2015. Forest structure and species traits mediate projected recruitment declines in western US 

tree species. Global Ecology and Biogeography 24: 917–927.

Dunne JP, Horowitz LW, Adcroft AJ, Ginoux P, Held IM, John JG, Krasting JP, Malyshev S, 

Naik V, Paulot F, et al. 2020. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): 

Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling 

Earth Systems 12: e2019MS002015.

Dupuy JM, Chazdon RL. 2008. Interacting effects of canopy gap, understory vegetation and leaf 

litter on tree seedling recruitment and composition in tropical secondary forests. Forest Ecology and 

Management 255: 3716–3725.

Engelbrecht BMJ, Kursar TA. 2003. Comparative drought-resistance of seedlings of 28 species of 

co-occurring tropical woody plants. Oecologia 136: 383–393.

Engelbrecht BMJ, Kursar TA, Tyree MT. 2005. Drought effects on seedling survival in a tropical 

moist forest. Trees 19: 312–321.

Engelbrecht BMJ, Comita LS, Condit R, Kursar T, Tyree MT, Turner BL, Hubbell SP. 2007. 

Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80–82.

FAO. 2010. Global Forest Resources Assessment. Rome: FAO.

FATES Development Team. 2018. FATES Technical Documentation. [WWW Document] URL 

https://fates-docs.readthedocs.io/en/latest/fates_tech_note.html#seed-dynamics-and-recruitment 

[accessed 18 June 2019].A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Faybishenko B; Paton S; Powell T; Knox R; Pastorello G; Varadharajan C; Christianson D; 

Agarwal D. 2018. QA/QC-ed BCI meteorological drivers. 1.0. NGEE Tropics Data Collection. 

[dataset] http://dx.doi.org/10.15486/ngt/1423307 [accessed 28 February, 2022].

Fisher RA, Christoffersen O, Longo M, Viskari T, Koven CD, Anderegg WRL, Dietze MC, 

Farrior CE, Holm JA, Hurtt GC, et al. 2018. Vegetation demographics in Earth System Models : A 

review of progress and priorities. Global Change Biology 24: 35–54.

Fisher RA, Koven CD. 2020. Perspectives on the Future of Land Surface Models and the Challenges 

of Representing Complex Terrestrial Systems. Journal of Advances in Modeling Earth Systems 12: 

e2018MS001453. 

Fisher R, Mcdowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P, Ian 

Woodward F, Woodward FI, et al. 2010. Assessing uncertainties in a second-generation dynamic 

vegetation model caused by ecological scale limitations. New Phytologist 187: 666–681.

Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, 

Holm J, Rogers BM, et al. 2015. Taking off the training wheels: The properties of a dynamic 

vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development 8: 

3593–3619.

Fulton MR. 1991. Adult Recruitment as a Function of Juvenile Growth Rate in Size-Structured Plant 

Populations. Oikos 62: 102–105.

Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. 2015. Boreal forest 

health and global change. Science 349: 819–822.

Girardin CAJ, Malhi Y, Doughty CE, Metcalfe DB, Meir P, del Aguila-Pasquel J, Araujo-

Murakami A, da Costa ACL, Silva-Espejo JE, Farfán Amézquita F, et al. 2016. Seasonal trends 

of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Global 

Biogeochemical Cycles 30: 700–715.

Greene DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ. 1999. A review 

of the regeneration dynamics of North American boreal forest tree species. Canadian Journal of 

Botany/Revue Canadienne de Botanique 29: 824–839.A
cc

ep
te

d 
A

rt
ic

le

http://dx.doi.org/10.15486/ngt/1423307


This article is protected by copyright. All rights reserved

Grubb PJ. 1977. the Maintenance of Species-Richness in Plant Communities: the Importance of the 

Regeneration Niche. Biological Reviews 52: 107–145.

Hacket-Pain AJ, Ascoli D, Vacchiano G, Biondi F, Cavin L, Conedera M, Drobyshev I, Liñán 

ID, Friend AD, Grabner M, et al. 2018. Climatically controlled reproduction drives interannual 

growth variability in a temperate tree species. Ecology Letters 21: 1833–1844.

Hänninen H, Kramer K, Tanino K, Zhang R, Wu J, Fu YH. 2019. Experiments Are Necessary in 

Process-Based Tree Phenology Modelling. Trends in Plant Science 24: 199–209.

Harper JL. 1977. Population biology of plants. London, UK: Academic Press.

Harrison RD, Tan S, Plotkin JB, Slik F, Detto M, Brenes T, Itoh A, Davies SJ. 2013. 

Consequences of defaunation for a tropical tree community. Ecology letters 16: 687–94.

Hartig F, Dyke J, Hickler T, Higgins SI, O’Hara RB, Scheiter S, Huth A. 2012. Connecting 

dynamic vegetation models to data – an inverse perspective. Journal of Biogeography 39: 2240–2252.

Haverd V, Smith B, Nieradzik LP, Briggs PR. 2014. A stand-alone tree demography and landscape 

structure module for Earth system models: Integration with inventory data from temperate and boreal 

forests. Biogeosciences 11: 4039–4055.

Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter 

TR, Cramer W, et al. 2012. Projecting the future distribution of European potential natural 

vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology 

and Biogeography 21: 50–63.

Holm JA, Knox RG, Zhu Q, Fisher RA, Koven CD, Nogueira Lima AJ, Riley WJ, Longo M, 

Negrón-Juárez RI, de Araujo AC, et al. 2020. The Central Amazon Biomass Sink Under Current 

and Future Atmospheric CO2: Predictions From Big-Leaf and Demographic Vegetation Models. 

Journal of Geophysical Research: Biogeosciences 125: e2019JG005500.

Hooper E, Legendre P, Condit R. 2005. Barriers to forest regeneration of deforested and abandoned 

land in Panama. Journal of Applied Ecology 42: 1165–1174.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Hunter GG, Douglas MH. 1984. Spread of exotic conifers on South Island rangelands. New Zealand 

Journal of Forestry 29: 78–96.

Ibáñez I, Clark JS, LaDeau S, Hille Ris Lambers J, Ibanez I, Clark JS, LaDeau S, Hille Ris 

Lambers J. 2007. Exploiting temporal variability to understand tree recruitment response to climate 

change. Ecological Monographs 77: 163–177.

Joetzjer E, Maignan F, Chave J, Goll D, Poulter B, Barichivich J, Maréchaux I, Luyssaert S, 

Guimberteau M, Naudts K, et al. 2018. The importance of tree demography and root water uptake 

for modelling the carbon and water cycles of Amazonia. Biogeosciences Discussions 2018: 1–33.

Johnstone JF, Chapin FS. 2006. Effects of Soil Burn Severity on Post-Fire Tree Recruitment in 

Boreal Forest. Ecosystems 9: 14–31.

Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, 

Meentemeyer RK, Metz MR, Perry GL, et al. 2016. Changing disturbance regimes, ecological 

memory, and forest resilience. Frontiers in Ecology and the Environment 14: 369–378.

Journé V, Barnagaud J, Bernard C, Crochet P, Morin X. 2020. Correlative climatic niche models 

predict real and virtual species distributions equally well. Ecology 101: e02912.

Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, 

M., Reich, P. B., Wright, I. J., et al. 2011. TRY - a global database of plant traits. Global Change 

Biology 17:2905-2935.

Kelley DI, Harrison SP, Prentice IC. 2014. Improved simulation of fire–vegetation interactions in 

the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1). 

Geoscientific Model Development 7: 2411–2433.

Kobe RK. 1999. Light Gradient Partitioning among Tropical Tree Species through Differential 

Seedling Mortality and Growth. Ecology 80: 187–201.

Körner C. 2021. Alpine treelines. In: Körner C, ed. Alpine Plant Life: Functional Plant Ecology of 

High Mountain Ecosystems. Cham: Springer International Publishing, 141–173.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Kueppers LM, Conlisk E, Castanha C, Moyes AB, Germino MJ, de Valpine P, Torn MS, 

Mitton JB. 2017. Warming and provenance limit tree recruitment across and beyond the elevation 

range of subalpine forest. Global Change Biology 23: 2383–2395.

Kulakowski D, Matthews C, Jarvis D, Veblen TT. 2013. Compounded disturbances in sub-alpine 

forests in western Colorado favour future dominance by quaking aspen ( Populus tremuloides ). 

Journal of Vegetation Science 24: 168–176.

Kullman L. 2001. 20th Century climate warming and tree-limit rise in the Southern Scandes of 

Sweden. Ambio 30: 72–80.

Lamont BB, Pausas JG, He T, Witkowski ETF, Hanley ME. 2020. Fire as a Selective Agent for 

both Serotiny and Nonserotiny Over Space and Time. Critical Reviews in Plant Sciences 39: 140–

172.

Langan L, Higgins SI, Scheiter S. 2017. Climate-biomes, pedo-biomes or pyro-biomes: which world 

view explains the tropical forest–savanna boundary in South America? Journal of Biogeography 44: 

2319–2330.

Lantz TC, Moffat ND, Fraser RH, Walker X. 2019. Reproductive limitation mediates the response 

of white spruce (Picea glauca) to climate warming across the forest–tundra ecotone. Arctic Science 5: 

167–184.

Lawrence DM, Fisher RA, Koven CD, Oleson KW, Swenson SC, Bonan G, Collier N, Ghimire 

B, van Kampenhout L, Kennedy D, et al. 2019. The Community Land Model Version 5: 

Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of 

Advances in Modeling Earth Systems 11: 4245–4287.

Lehsten V, Mischurow M, Lindström E, Lehsten D, Lischke H, Lindstrom E, Lehsten D, 

Lischke H. 2019. LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model. 

Geoscientific Model Development 12: 893–908.

Levy PE, Lucas ME, McKay HM, Escobar-Gutierrez AJ, Rey A. 2000. Testing a process-based 

model of tree seedling growth by manipulating [CO2] and nutrient uptake. Tree Physiology 20: 993–

1005.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Lipoma ML, Fortunato V, Enrico L, Díaz S. 2020. Where does the forest come back from? Soil 

and litter seed banks and the juvenile bank as sources of vegetation resilience in a semiarid 

Neotropical forest. Journal of Vegetation Science 31: 1017–1027.

Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ. 2006. TreeMig: A forest-

landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecological 

Modelling 199: 409–420.

Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F. 2012. Extreme climatic 

events and vegetation: The role of stabilizing processes. Global Change Biology 18: 797–805.

Longo M, Knox RG, Medvigy DM, Levine NM, Dietze MC, Kim Y, Swann ALS, Zhang K, 

Rollinson CR, Bras RL, et al. 2019a. The biophysics, ecology, and biogeochemistry of functionally 

diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, 

version 2.2 – Part 1: Model description. Geoscientific Model Development 12: 4309–4346.

Longo M, Knox R, Medvigy DM, Levine NM, Dietze M, Swann ALS, Zhang K, Rollinson C, 

Brugnera M di P e, Scott D, et al. 2019b. Ecosystem Demography Model, version 2.2 (ED-2.2). 

https://doi.org/10.5281/zenodo.3365659 [accessed 28 February, 2022].

Loranger H, Zotz G, Bader MY. 2016. Early establishment of trees at the alpine treeline: 

idiosyncratic species responses to temperature-moisture interactions. AoB Plants 8: plw053.

Malhi Y, Doughty C, Galbraith D. 2011. The allocation of ecosystem net primary productivity in 

tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences 366: 3225–

3245.

Malhi Y, Girardin C, Metcalfe DB, Doughty CE, Aragão LEOC, Rifai SW, Oliveras I, Shenkin 

A, Aguirre-Gutiérrez J, Dahlsjö CAL, et al. 2021. The Global Ecosystems Monitoring network: 

Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation 

253: 108889.

Martínez-Vilalta J, Lloret F. 2016. Drought-induced vegetation shifts in terrestrial ecosystems: The 

key role of regeneration dynamics. Global and Planetary Change 144: 94–108.A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.5281/zenodo.3365659


This article is protected by copyright. All rights reserved

Martens C, Hickler T, Davis-Reddy C, Engelbrecht F, Higgins SI, von Maltitz GP, Midgley GF, 

Pfeiffer M, Scheiter S. 2021. Large uncertainties in future biome changes in Africa call for flexible 

climate adaptation strategies. Global Change Biology 27: 340–358.

Martins AM, Engel VL. 2007. Soil seed banks in tropical forest fragments with different disturbance 

histories in southeastern Brazil. Ecological Engineering 31: 165–174.

McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, 

Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, et al. 2020. Pervasive shifts in forest 

dynamics in a changing world. Science 368: eaaz9463.

McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from 

functional traits. Trends in Ecology and Evolution 21: 178–185.

Mclaughlin BC, Zavaleta ES. 2012. Predicting species responses to climate change: Demography 

and climate microrefugia in California valley oak (Quercus lobata). Global Change Biology 18: 

2301–2312.

Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR. 2009. Mechanistic scaling of 

ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. 

Journal of Geophysical Research: Biogeosciences 114: 1–21.

Metzger S, Ayres E, Durden D, Florian C, Lee R, Lunch C, Luo H, Pingintha-Durden N, 

Roberti JA, SanClements M, et al. 2019. From neon field sites to data portal: A community resource 

for surface-atmosphere research comes online. Bulletin of the American Meteorological Society 100: 

2305–2325.

Miller KM, McGill BJ. 2018. Land use and life history limit migration capacity of eastern tree 

species. Global Ecology and Biogeography 27: 57–67.

Mladenoff DJ. 2004. LANDIS and forest landscape models. Ecological Modelling 180: 7–19.

Mokany K, Prasad S, Westcott DA. 2014. Loss of frugivore seed dispersal services under climate 

change. Nature Communications 5: 1–7.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Moorcroft PR, Hurtt GC, Pacala SW. 2001. A method for scaling vegetation dynamics: The 

ecosystem demography model (ED). Ecological Monographs 71: 557–586.

Murphy HT, VanDerWal J, Lovett-Doust J. 2010. Signatures of range expansion and erosion in 

eastern North American trees. Ecology Letters 13: 1233–1244.

Nagel TA, Taylor AH. 2005. Fire and Persistence of Montane Chaparral in Mixed Conifer Forest 

Landscapes in the Northern Sierra Nevada, Lake Tahoe Basin, California, USA. The Journal of the 

Torrey Botanical Society 132: 442–457.

Nathan R, Horvitz N, He Y, Kuparinen A, Schurr FM, Katul GG. 2011. Spread of North 

American wind-dispersed trees in future environments. Ecology Letters 14: 211–219.

Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. 2008. Mechanisms of 

long-distance seed dispersal. Trends in Ecology & Evolution 23: 638–647.

Neilson RP, Pitelka LF, Solomon AM, Nathan R, Midgley GF, Fragoso JMV, Lischke H, 

Thompson K. 2005. Forecasting regional to global plant migration in response to climate change. 

BioScience 55: 749–759.

Nolan RH, Rahmani S, Samson SA, Simpson-Southward HM, Boer MM, Bradstock RA. 2020. 

Bark attributes determine variation in fire resistance in resprouting tree species. Forest Ecology and 

Management 474: 118385.

Ordonez A, Williams JW. 2013. Climatic and biotic velocities for woody taxa distributions over the 

last 16 000 years in eastern North America. Ecology Letters 16: 773–781.

Pausas JG, Keeley JE. 2014. Evolutionary ecology of resprouting and seeding in fire-prone 

ecosystems. New Phytologist 204: 55–65.

Pausas JG, Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S, 

Kaneakua-pia IN, Davis SD. 2015. Towards understanding resprouting at the global scale. New 

Phytologist 209: 1–10.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Ponge JF, André J, Zackrisson O, Bernier N, Nilsson MC, Gallet C. 1998. The forest regeneration 

puzzle: Biological mechanisms in humus layer and forest vegetation dynamics. BioScience 48: 523–

530.

Powell TL, Koven CD, Johnson DJ, Faybishenko B, Fisher RA, Knox RG, McDowell NG, 

Condit R, Hubbell SP, Wright SJ, et al. 2018. Variation in hydroclimate sustains tropical forest 

biomass and promotes functional diversity. New Phytologist 219: 932–946.

Price DT, Zimmermann NE, Van Der Meer PJ, Lexer MJ, Leadley P, Jorritsma ITMM, 

Schaber J, Clark DF, Lasch P, Mcnulty S, et al. 2001. Regeneration in gap models: Priority issues 

for studying forest responses to climate change. Climatic Change 51: 475–508.

Qiu T, Aravena M-C, Andrus R, Ascoli D, Bergeron Y, Berretti R, Bogdziewicz M, Boivin T, 

Bonal R, Caignard T, et al. 2021. Is there tree senescence? The fecundity evidence. Proceedings of 

the National Academy of Sciences 118: e2106130118.

Roland CA, Schmidt JH, Johnstone JF. 2014. Climate sensitivity of reproduction in a mast-seeding 

boreal conifer across its distributional range from lowland to treeline forests. Oecologia 174: 665–

677.

Rüger N, Comita LS, Condit R, Purves D, Rosenbaum B, Visser MD, Wright SJ, Wirth C. 2018. 

Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. 

Ecology Letters 21: 1075–1084.

Rüger N, Condit R, Dent DH, Dewalt SJ, Hubbell SP, Lichstein JW, Lopez OR, Wirth C, 

Farrior CE. 2020. Demographic trade-offs predict tropical forest dynamics. Science 368: 165–168.

Saha S, Howe HF. 2003. Species composition and fire in a dry deciduous forest. Ecology 84: 3118–

3123.

Sakschewski B, Von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, Joshi J, Thonicke K. 

2016. Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change 6: 

1032–1036.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Sato H, Ise T. 2012. Effect of plant dynamic processes on African vegetation responses to climate 

change: Analysis using the spatially explicit individual-based dynamic global vegetation model 

(SEIB-DGVM). Journal of Geophysical Research: Biogeosciences 117: G03017.

Sato H, Itoh A, Kohyama T. 2007. SEIB-DGVM: A new Dynamic Global Vegetation Model using a 

spatially explicit individual-based approach. Ecological Modelling 200: 279–307.

Scheiter S, Higgins SI. 2009. Impacts of climate change on the vegetation of Africa: an adaptive 

dynamic vegetation modelling approach. Global Change Biology 15: 2224–2246.

Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global vegetation models: 

learning from community ecology. New Phytologist 198: 957–969.

Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ. 

2007. Design, development, and application of LANDIS-II, a spatial landscape simulation model with 

flexible temporal and spatial resolution. Ecological Modelling 1: 409–419.

Schoennagel T, Turner MG, Romme WH. 2009. The Influence of Fire Interval and Serotiny on 

Postfire Lodgepole Pine Density in Yellowstone National Park. America 84: 2967–2978.

Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, 

Petr M, Honkaniemi J, et al. 2017. Forest disturbances under climate change. Nature Climate 

Change 7: 395–402.

Sirois L. 2000. Spatiotemporal variation in black spruce cone and seed crops along a boreal forest - 

Tree line transect. Canadian Journal of Forest Research 30: 900–909.

Smith B, Prentice IC, Sykes MT. 2001. Representation of vegetation dynamics in the modelling of 

terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global 

Ecology and Biogeography 10: 621–637.

Snell RS. 2014. Simulating long-distance seed dispersal in a dynamic vegetation model. Global 

Ecology and Biogeography 23: 89–98.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Snell RS, Huth A, Nabel JEMS, Bocedi G, Travis JMJ, Gravel D, Bugmann H, Gutiérrez AG, 

Hickler T, Higgins SI, et al. 2014. Using dynamic vegetation models to simulate plant range shifts. 

Ecography 37: 1184–1197.

Solomon AM, Kirilenko AP. 1997. Climate Change and Terrestrial Biomass: What if Trees do not 

Migrate? Global Ecology and Biogeography Letters 6: 139–148.

Stevens-Rumann CS, Morgan P. 2019. Tree regeneration following wildfires in the western US: a 

review. Fire Ecology 15: 15.

Swenson NG. 2012. Temporal turnover in the composition of tropical tree communities: functional 

determinism and phylogenetic stochasticity. 93: 490–499.

Sykes MT, Prentice IC, Cramer W. 1996. A bioclimatic model for the potential distributions of 

north European tree species under present and future climates. Journal of Biogeography 23: 203–233.

Tepley AJ, Thompson JR, Epstein HE, Anderson-Teixeira KJ. 2017. Vulnerability to forest loss 

through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global 

Change Biology 23: 4117–4132.

Thomas SC. 2011. Age-Related Changes in Tree Growth and Functional Biology: The Role of 

Reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE, eds. Size- and Age-Related Changes in 

Tree Structure and Function. Dordrecht: Springer Netherlands, 33–64.

Del Tredici P. 2001. Sprouting in temperate trees: A morphological and ecological review. Botanical 

Review 67: 121–140.

Trumbore S, Brando P, Hartmann H. 2015. Forest health and global change. Science 349: 814–8.

Turnbull LA, Crawley MJ, Rees M. 2000. Are plant populations seed-limited? A review of seed 

sowing experiments. Oikos 88: 225–238.

Turner MG, Romme WH, Gardner RH. 1999. Prefire heterogeneity, fire severity, and early 

postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. 

International Journal of Wildland Fire 9: 21.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

[UN-CBD] United Nations Convention on Biological Diversity. 2006. Definitions. [WWW 

document] URL https://www.cbd.int/forest/definitions.shtml [accessed 13 Oct 2021].

Uriarte M, Clark JS, Zimmerman JK, Comita LS, Forero-Montaña J, Thompson J. 2012. 

Multidimensional trade-offs in species responses to disturbance: implications for diversity in a 

subtropical forest. Ecology 93: 191–205.

Urza AK, Sibold JS. 2017. Climate and seed availability initiate alternate post-fire trajectories in a 

lower subalpine forest (F Gilliam, Ed.). Journal of Vegetation Science 28: 43–56.

Burns RM, Honkala BH. 1990. Silvics of North America: Volume 1. Conifers. Washington D.C., 

USA: United States Department of Agriculture.

Van Oijen M, Rougier J, Smith R. 2005. Bayesian calibration of process-based forest models: 

bridging the gap between models and data. Tree Physiology 25: 915–927.

Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. 2011. Climate change and plant 

regeneration from seed. Global Change Biology 17: 2145–2161.

Walden LL, Fontaine JB, Ruthrof KX, Matusick G, Harper RJ, Hardy GESJ. 2019. Carbon 

consequences of drought differ in forests that resprout. Global Change Biology 25: 1653–1664.

Weng ES, Malyshev S, Lichstein JW, Farrior CE, Dybzinski R, Zhang T, Shevliakova E, Pacala 

SW. 2015. Scaling from individual trees to forests in an Earth system modeling framework using a 

mathematically tractable model of height-structured competition. Biogeosciences 12: 2655–2694.

Wenk EH, Abramowicz K, Westoby M, Falster DS. 2017. Coordinated shifts in allocation among 

reproductive tissues across 14 coexisting plant species. BioRxiv. doi: 0.1101/141473

Wenk EH, Falster DS. 2015. Quantifying and understanding reproductive allocation schedules in 

plants. Ecology and Evolution 5: 5521–5538.

Wramneby A, Smith B, Zaehle S, Sykes MT. 2008. Parameter uncertainties in the modelling of 

vegetation dynamics-Effects on tree community structure and ecosystem functioning in European 

forest biomes. Ecological Modelling 216: 277–290.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Wramneby A, Smith B, Samuelsson P. 2010. Hot spots of vegetation-climate feedbacks under 

future greenhouse forcing in Europe. Journal of Geophysical Research 115: D21119.

Wright SJ, Calderón O. 2006. Seasonal, El Nino and longer term changes in flower and seed 

production in a moist tropical forest. Ecology Letters 9: 35–44.

Wright SJ, Hernandéz A, Condit R. 2007. The bushmeat harvest alters seedling banks by favoring 

lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 39: 363–371.

Young DJN, Werner CM, Welch KR, Young TP, Safford HD, Latimer AM. 2019. Post-fire forest 

regeneration shows limited climate tracking and potential for drought-induced type conversion. 

Ecology 100: 1–13.

Zalamea P-C, Turner BL, Winter K, Jones FA, Sarmiento C, Dalling JW. 2016. Seedling growth 

responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytologist 212: 400–

408.

Gallego Zamorano J, Hokkanen T, Lehikoinen A. 2018. Climate-driven synchrony in seed 

production of masting deciduous and conifer tree species. Journal of Plant Ecology 11: 180–188.

Zeppel MJB, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, 

Medlyn BE, Palmer A, et al. 2015. Drought and resprouting plants. New Phytologist 206: 583–589.

Supporting Information 

Table S1. The representation of key forest regeneration processes among leading Vegetation 

Demographic Models.

Table S2. Estimates of ecosystem-level mean annual reproductive litter flux (R), leaf litter flux (L), 

aboveground net primary productivity (ANPP), NPP, and benchmarks R/L, R/ANPP, and R/NPP for 

forest sites. 

Table S3. Metadata for Table S2.

Methods S1. Synthesis methods for Table S2.

Methods S2. Data preparation for model-data comparison at Barro Colorado Island, Panama. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Methods S3. Synthesis methods for Table S4.

Figure S1. Correlation between R/L and R/ANPP

Figure S2. Correlation between L and NPP

Table S4. Estimates of area-based, species-level recruitment rates into the 1 cm size class for four 

forest dynamics plots in the CTFS-ForestGeo network. 

Table S5. Metadata for Table S4.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure 1. Forest regeneration is a series of environmentally sensitive processes, each represented by a 

sieve. Environmental variables act as filters (depicted as varying sieve mesh sizes, with the small red 

arrow setting the mesh size) that impose constraints on each process. Each plant functional type (PFT; 

colored seeds) is uniquely sensitive to environmental constraints, which may limit the number of 

individuals and PFTs progressing to the next stage. Only the PFTs that make it through all sieves will 

recruit into post-seedling size classes, which along with growth and mortality, determines the 

structure, distribution, and functional composition of the mature forest. Thick arrows represent 

pathways addressed in this review. “NPP” is net primary productivity.

Figure 2. Obligate postfire seeders occur where fire return intervals are between maturation age and 

plant longevity. Changes to the fire regime risk regeneration failure through “immaturity risk” (a) and 

“senescence risk” (b). Non-serotinous species (i.e. where seeds are stored in a seed bank) have a 

wider window of viability because they can wait in the seed bank for suitable conditions even if plants 

reduce seed production. “SBL” is seed bank longevity. Reproduced from Pausas & Keeley (2014).

Figure 3. Experimental warming (“Heat” treatment) reduces seedling germination and initial survival 

(mean ± SE) beyond the local elevation limit of lodgepole pine (a), an upper montane-lower subalpine 

species, preventing population establishment (b). Supplemental summer water (“Heat-water” 

treatment) improves first-year seedling establishment (a), which, along with greater survival of older 

seedlings, facilitates population establishment (b). The black line in panel b is the “Control” group; all 

other line colors match panel a. Remade from Conlisk et al. (2017) without error bars on panel b. 

Figure 4. Differential seedling survivorship under manipulated drought (a) is well correlated with 

compositional turnover over an aridity gradient on the isthmus of Panama (b). In panel b, each point is 

a species. The “Drought sensitivity” axis quantifies survivorship under manipulated drought 

compared to control conditions (higher values are more drought sensitive). The y-axis is each species’ 

occurrence probability in dry sites as a fraction of its occurrence probability in relatively wet sites, log 

transformed (low value indicates preference for wet areas). GAR = Garcinia intermedia; POU = 
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Pouteria unilocularis; SWA = Swartzia simplex; VIR = Virola surinamensis. Panel a is remade from 

Engelbrecht et al. (2005); panel b is remade from Engelbrecht et al. (2007).

Figure 5. a) Correlation between observed reproductive litter flux as a fraction of net primary 

productivity (R/NPP) and leaf litter flux (R/L; all fluxes in g C m-2 yr-1) at 61 forest sites (colors 

indicate Whittaker biomes as in panel b; shaded area shows the 95 % confidence interval), and b) the 

magnitude of R/L (shown by point size) and the distribution of R/L observations across Whittaker 

biomes (n = 550);  “N sites” shows the approximate number of distinct measures of R/L at mean 

annual temperature and precipitation coordinates.

Figure 6. FATES predictions at Barro Colorado Island (circles) of a) reproductive litter flux (R; g C 

m-2 yr-1) as a fraction of leaf litter flux (R/L), b) R as a fraction of above-ground net primary 

productivity (R/ANPP), and c) recruitment rates into the 1 cm size class. Each model prediction 

shows the mean across 18 simulation years run with recycled, observed meteorology (2003-2016), 

initialized with observed stand structure, and using a prescribed value of reproductive allocation (RA; 

ranging from 0.009-0.41). The standard deviation of inter-annual variation is smaller than the symbol 

size for most circles. Triangles show observations (mean and standard deviation among years) at the 

BCI Forest Dynamics Plot.

Figure 7. Simulated mortality rates from ED2-hydro (“Model”) are positively biased in the smaller 

size classes at Barro Colorado Island (BCI), Panama, indicating compensating errors for hyperactive 

recruitment (Powell et al., 2018). “Obs” show field observations.
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Model CLM(ED) / 
FATES

ED2 LPJ-GUESS 
(cohort mode)

LPJ-DISP 
(version of 
LPJ-
GUESS) 

LPJ-GM 
(version of LPJ-
GUESS) 

LM3-PPA SEIB-DGVM SEIB-
DGVM-
2012 
(version of 
SEIB-
DGVM)

aDGVM/aDGVM2

Reproductive 
Allocation & 
Seed 
Production

Cohorts 
allocate a 
fixed 
fraction 
(Frepro,pft) of 
carbon for 
growth and 
reproduction 
(Cg+r,pft)  to 
reproduction 
(Crepro,pft). 
Cohorts 
above a size 
threshold 
can allocate 
additional 
Cg+r,pft to 
reproduction. 
This is added 
to external 
seed rain 
(SRpft).

Crepro,pft = 
(Cg+r,pft) 
(Frepro,pft) + 
SRpft

Cohorts above a 
size threshold 
allocate a fixed 
fraction (Frepro,pft) 
of carbon for 
growth and 
reproduction (Cg+r)  
to reproduction 
(Crepro). This is 
added to external 
seed rain (SRpft).

Crepro,pft = (Cg+r,pft) 
(Frepro,pft) + SRpft

More recent code 
developments in 
ED2 give the option 
to have Frepro,pft vary 
as a function of size 
(see Table S1).
 

Cohorts 
allocate a fixed 
fraction 
(Frepro,pft) of 
NPPpft to 
reproduction 
(Crepro,pft).

Crepro,pft = 
(NPPpft) 
(Frepro,pft)

Same as 
LPJ-GUESS

Reproductive 
allocation is not 
explicitly 
represented, but the 
number of seeds 
produced (Spft) is 
calculated as a 
function of LAI 
and a maximum 
fecundity 
parameterpft. 

Trees in the 
canopy 
allocate a 
fixed fraction 
(Frepro,pft) of 
carbon for 
growth and 
reproduction 
(Cg+r)  to 
reproduction 
(Crepro). 

Crepro,pft = 
(Cg+r,pft) 
(Frepro,pft)

Trees above a 
biomass 
threshold 
allocate a 
fixed fraction 
(Frepro,pft) of 
carbon for 
growth and 
reproduction 
(Cg+r,pft) to 
reproduction 
(Crepro,pft). 

Crepro,pft = 
(Cg+r,pft) 
(Frepro,pft)

Reproductive 
carbon is sent 
to litter and 
does not 
influence 
recruitment 
rates.

Same as 
SEIB-
DGVM

Trees above an age 
threshold produce 
seeds. The number 
of seeds produced 
(Spft) by each tree is 
a function of 
carbon for growth 
and reproduction 
(Cg+r,pft) on the 
first day of each 
month, i (to 
represent 
stochasticity of 
environmentally 
sensitive seed 
production), and 
the mass of carbon 
in one seed 
(Bseed,pft).

Crepro = Cg+r,i,pft / 
Bseed,pft

Table 1. The representation of key forest regeneration processes among seven leading Vegetation Demographic Models.
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Model CLM(ED) / 
FATES

ED2 LPJ-GUESS 
(cohort mode)

LPJ-DISP 
(version of 
LPJ-
GUESS) 

LPJ-GM 
(version of LPJ-
GUESS) 

LM3-PPA SEIB-DGVM SEIB-
DGVM-
2012 
(version of 
SEIB-
DGVM)

aDGVM/aDGVM2

Dispersal Crepro mixes 
evenly 
among 
patches 
within a grid 
cell. 
Additional 
“seed rainpft” 
can be added  
to all patches 
in all grid 
cells. 
Therefore,  
inter- and 
intra-grid 
cell dispersal 
is assumed 
to be non-
limiting 
despite no 
transfer of 
seed mass 
between grid 
cells.

A prescribed 
fraction of Crepro 
(i.e. “seed”) may 
leave its origin 
patch. Additional 
“seed rainpft” is 
added to all PFTs in 
all grid cells. 
Therefore, inter-
grid cell dispersal 
is implicitly 
assumed to be 
non-limiting 
despite no transfer 
of seed mass 
between grid cells.

Crepro,pft mixes 
evenly among 
patches within 
a grid cell. 
Therefore 
intra-grid cell 
dispersal is 
implicitly 
assumed to be 
non-limiting. 
PFTs can 
establish in any 
grid cells in 
which they are, 
or become, 
climatically 
eligible. 
Therefore 
inter-grid cell 
dispersal is 
implicitly 
assumed to be 
non-limiting 
despite no 
transfer of seed 
mass between 
grid cells.

Dispersal is  
explicitly 
represented. 
Dispersal 
kernelspft 
and the 
number of 
patches 
containing a 
PFT are used 
to 
approximate 
inter- and 
intra-grid 
cell transfer 
of Crepro (see 
Table S1 for 
more 
details). 

Dispersal is  
explicitly 
represented 
between 1km2 
patches. Dispersal 
rates between cells 
are calculated from 
dispersal kernelspft 
and seed production 
rates of neighboring 
cells. All seeds 
share a common 
seed bank within 
cells, so dispersal is 
assumed to be 
unlimited within 
grid cells (see Table 
S1 for more 
details). 

Seeds mix 
evenly within 
a grid cell, 
therefore 
intra-grid 
cell dispersal 
is implicitly 
assumed to 
be non-
limiting. 
There is no 
inter-grid cell 
dispersal. 

PFTs can 
establish in 
any grid cell 
for which they 
are or become 
climatically 
eligible, 
therefore, 
inter-grid cell 
dispersal is 
implicitly 
assumed to 
be  non-
limiting 
despite no 
transfer of 
seed mass 
between grid 
cells.

Intra-grid 
cell dispersal 
is implicitly 
assumed to 
be non-
limiting 
because one 
patch per grid 
cell is 
simulated.

Climatically 
eligible 
PFTs can 
establish in 
10 % of 
neighboring 
grid cells. 
The 
frequency 
at which 
PFTs can 
jump 
between 
grid cells 
(i.e. inter-
grid cell 
dispersal) 
is tuned to 
paleo 
records. 
Intra-grid 
cell 
dispersal is 
implicitly 
assumed to 
be non-
limiting.

PFTs can establish 
in any grid cell, 
therefore inter-
grid cell dispersal 
is implicitly 
assumed to be 
non-limiting.

Intra-grid cell 
dispersal is 
implicitly 
assumed to be 
non-limiting 
because one patch 
per grid cell is 
simulated (similar 
to SEIB-DGVM).
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Model CLM(ED) / 
FATES

ED2 LPJ-GUESS 
(cohort mode)

LPJ-DISP 
(version of 
LPJ-
GUESS) 

LPJ-GM 
(version of LPJ-
GUESS) 

LM3-PPA SEIB-DGVM SEIB-
DGVM-
2012 
(version of 
SEIB-
DGVM)

aDGVM/aDGVM2

Seed 
Survival & 
Germination

Seed bank is 
tracked

Crepro,pft 
becomes the 
Seedin,pft flux 
to a seed 
bank 
(Seedspft) 
which is 
reduced by 
prescribed 
fractions of 
seeds 
germinating 
(Seedgerm,pft) 
and 
decaying 
(Seeddecay,pft)

dSeedspft / dt 
=
Seedin,pft - 
Seeddecay,pft - 
Seedgerm,pft

There is an 
upper limit to 
the 
germination 
flux to avoid 
excessive 
dominance of 
a PFT (see 
Table S1).

Seed bank is not 
explicitly 
represented.

Seed bank is 
not explicitly 
represented.

Same as 
LPJ-GUESS

Seed bank is 
tracked.

PFT-specific seed 
banks grow with 
inputs from 
dispersed and 
produced seeds that 
stay in their grid 
cell of origin. Seed 
banks are reduced 
by prescribed 
fractions of seeds 
germinating and 
decaying (similar 
to 
CLM(ED)/FATES).

Seed bank is 
not explicitly 
represented. 

Crepro,pft is 
reduced by a 
prescribed 
germination 
rate, Pgerm,pft 
(see row 
“Seedling 
Growth & 
Survival / 
Recruitment”, 
column 
“LM3-PPA”). 

Seed bank is 
not explicitly 
represented.

Same as 
SEIB-
DGVM.

Seed bank is 
tracked.

As in CLM(ED)/ 
FATES Crepro 
becomes Seedin,pft  
to a seed bank 
(Seedspft), which is 
reduced by 
prescribed 
fractions of seeds 
germinating and 
decaying.
Seed germination 
only occurs after 3 
consecutive days 
with soil moisture 
of the upper soil 
layer at field 
capacity.

In aDGVM2 seed 
banks are 
represented as 
community trait 
pools where 
genetic crossover 
(between 
individuals with the 
same species label) 
and mutation can 
occur, giving rise 
to new trait 
combinations.
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Model CLM(ED) / 
FATES

ED2 LPJ-GUESS 
(cohort mode)

LPJ-DISP 
(version of 
LPJ-
GUESS) 

LPJ-GM 
(version of LPJ-
GUESS) 

LM3-PPA SEIB-DGVM SEIB-
DGVM-
2012 
(version of 
SEIB-
DGVM)

aDGVM/aDGVM2

Seedling 
Growth & 
Survival / 
Recruitment

Carbon 
germinating 
out of the 
seed bank 
(Seedgerm,pft) 
becomes 
carbon to 
make new 
recruits 
(Crecruit,pft) at a 
rate 
proportional 
to the 
amount of 
carbon 
required to 
make 1 new 
recruit 
(Z0,pft)

Nrecruit,pft = 
Crecruit,pft / 
Z0,pft

A prescribed 
seedling mortality 
rate (Mseedling) 
reduces Crepro,pft 
such that the 
amount available 
for recruitment 
(Crecruit,pft) is  

Crecruit,pft = (Crepro,pft) 
(1 - Mseedling)

The number of new 
recruits is then 
calculated as in 
FATES/CLM(ED).

Bioclimatic 
envelopes 
(GDDmin,pft, 
Tcmin,pft, 
Tcmax,pft), 
PARmin,pft and 
fAWCpft 
determine 
establishment 
eligibility. 
Recruitment 
rate is based on 
maximum 
establishment 
rates (estmax,pft), 
the potential 
productivity at 
the forest floor 
(f, a fraction of 
the maximum), 
and shade 
tolerance αpft. 

Nrecruit,pft ~ 
Pois(ƛpft) 

ƛpft = µ(fpft) 
(estmax,pft) ( 
(kreprod)(Crepro,pft) 
+ kbgestab )

µ(fpft) = 
exp[αpft(1 - 1 / 
fpft)]

Same as 
LPJ-GUESS

Bioclimatic 
envelopes, 
PARmin,pft, and ƛpft 
limit recruitment as 
in LPJ-GUESS. 
Additionally, a n 
establishment 
probability (Pest,pft) 
reduces recruitment 
rates. Pest,pft is 
calculated as a 
function of the 
number of seeds in 
the seed bank 
(Seedspft), the 
prescribed 
germination 
probability 
(Pgerm,pft), and px 
which takes the 
area of each patch 
into account such 
that

Pest,pft = (Seedspft) 
(px)  (Pgerm,pft)

Crepro,pft is  
reduced by a 
prescribed 
establishment 
probability 
(Pest,pft) such 
that 
Cseedling,pft = 
(Crepro,pft) 
(Pgerm,pft) 
(Pest,pft)
New 
individuals 
emerge as 
seedlings (i.e., 
Z0,pft is set 
very small) at 
a rate 
proportional 
to the 
amount of 
carbon 
required to 
make 1 new 
seedling 
(Z0,pft)

Nseedling,pft  = 
Cseedling,pft / 
Z0,pft.

Seedling 
mortality is a 
function of 
size.

Bioclimatic 
envelopes 
(GDDmin, 
Tcmin, 
Tcmax) and 
PARmin,pft 
determine 
establishment 
eligibility. 
Additionally, 
total 
precipitation 
in the current 
year (in mm) 
must exceed 
20 times the 
annual mean 
temperature 
(in °C; 
Köppen, 
1936). 
Recruitment 
rates are 
assumed to 
be a function 
of space in 
the 
understory 
(see Table S1) 
and a 
prescribed 
establishment 
probability 
(Pest,pft).

Same as 
SEIB-
DGVM

The number of new 
seedling recruits is 
determined from 
prescribed 
germination 
probability 
(Pgerm,pft) out of the 
seed bank 
(Seedspft), and a 
stochastic fraction 
of seed available 
to germinate 
(Psprout,pft):

Nseedling,pft = 
(Seedspft) (Psprout,pft) 
(Pgerm,pft)

Seedlings 
explicitly compete 
with grasses and 
taller trees, 
increasing the 
chance of 
mortality. 
Seedlings can be 
disproportionately 
killed by fire due 
to a size-dependent 
“top kill” 
probability, but 
stems are not 
killed, allowing 
them to resprout.
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Model CLM(ED) / 
FATES

ED2 LPJ-GUESS 
(cohort mode)

LPJ-DISP 
(version of 
LPJ-
GUESS) 

LPJ-GM 
(version of LPJ-
GUESS) 

LM3-PPA SEIB-DGVM SEIB-
DGVM-
2012 
(version of 
SEIB-
DGVM)

aDGVM/aDGVM2

References Fisher et al. 
(2015); 
FATES code 
(see Table S1 
for specific 
lines of code)

Medvigy et al. 
(2009); ED2 code 
(see Table S1 for 
specific lines of 
code) 

Smith et al. 
(2001);   Fulton 
(1991); see 
Table S1 for 
more details

Snell (2014)  Lehsten et al. 
(2019)

Weng et al. 
(2015)

Sato et al. 
(2007)

Sato & Ise 
(2012)

Scheiter et al., 
2009; Scheiter et 
al., 2020

; “PFT” indicates plant-functional-type-specific parameters; Cg+r = Carbon for growth and reproduction (typically net primary productivity 

(NPP) remaining after tissue replacement and allocation to storage); GDDmin = minimum number of growing degree days for reproduction; 

Tcmax = the maximum mean temperature of the coldest month (a chilling requirement); Tcmin = the minimum temperature of the coldest 

month required for establishment and survival; PARmin = minimum photosynthetically active radiation at the forest floor required for 

establishment; fAWC = fraction of plant-available water holding capacity in the top soil layer; kreprod and kbgestab are constants (see 

Supporting Information Table S1) 
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Figure 2

Tansley Review 36908
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Figure 3

Tansley Review 36908
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Figure 4

Tansley Review 36908
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Figure 5

Tansley Review 36908
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Figure 6

Tansley Review 36908
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Figure 7

Tansley Review 36908
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