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Thermal and Statistical Properties of Nuclei and Nuclear Systems*
L. G. Moretto and G. J. Wozniak .

Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

1. Introduction

The term statistical decay, statistical or thermodynamic equilibrium, thér_malization, temperature,
etc. haue_been used in nucléar physics since the introduction of the compound nucleus (CN)
cunuepi, and tiiey aire still used, perliaps even murc frequently, in the context of inteririediate- and
vliigh-vent‘argﬂy heavy-ion reactions. | | |

| Unfcirtunately, ihe increaseci populariiy of these terms has nut made them ainy ciearer, and more

often than not one encounters sweeping statements about the alleged statisticity of a nuclear process

where the "statistical”" connotation is a more apt description of the state of the speaker's mind then

| of the;.r‘luclear reaction;
It 1s our goal, in this short set of lecturus, to set at least some ideas stiaight oii thisb broad and
beuuiiful subject, ou the one hand by’)clarifying some iundamental concepts, on the other by
‘presenting some interesting applications to actual physical cases.
Let us start by distinguishing between statistical decay rates and statistical equilibrium.
Statistical decay rates do not imply the existence of an actual équilibrium. They apply to the decay

of a nearly stationary state according to time-dependent first-order perturbation theory or golden



rule #2.
The golden rule states that if a system in a state A decays to a system B with degeneracy pg the
transition rate is:

ASB ?ﬁll HAB|2PB : (1)

If the system A, rather than being in a single state, has a degeneracy p,, the "average" decay

probability can still be written down as above, by simply averaging over the transition matrix

elements:

Pyp = 2ﬁ_nlﬂ'“‘l2 Pp - &)

Thus the rule that one averages over intial states and sums over final states. Thcsc transition rates
do not require nor do they imply that the systems A andB are in statistical equilibrium With each
other, as, in general they are not. A typical case is the beta decay of a ground-sfate nucleus to a
specific state of the daughter nucleus. This decay is statistical in that the momentum distn'Bﬁtion of
the emitted electron and (anti)neutrino is in accordance with their corresponding phase space.

The case of a CN has to be dealt with with some care, as it is the case most subjected to
improper statements. We mﬁsf distinguish first betweén the forfnation of aCN aﬁd its decay. One

frequently hears that a certain reaction gives rise to an equilibrated, or thermalized system called a

CN. This means that one can describe the system in terms of an Hamiltonian H, which gives rise
to a set of eigenstates that would be stationary if it were not for the perturbation Hamiltonian H,

responsible for their decay. The only statistical parameter is the level density p, or the number of

eigenstates per unit energy at a given energy E which are assumed to be "equally” populated.

The statistical or thermal decay of this CN means that each state decays according to Eq. 1, or

Vi
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better that the system A with an energy E and density of states p, has an average decay rate

~according to Eq. 2.

In summary, we have first the formation of a quasi-stationary system whose states in a given

energy interval AE are equally represented. This system then proceeds to decay in accordance to the

.. phase space associated with each final state, as described by Eq. 2..

Incidentally, the fact that H , 5 is Hermitian allows us to write: -

2n H 2
‘PAB=_ﬁ—I ABI Pg &)
n H 2 |
Pga= 'ﬁ"l ABI Pa - ) C
P p S
. “AB B N : :
T3— = — or pAPAB = pBPBA . ’ (5)
Ba  Pa _ | _

ol

The latter equation is the "detailed balance" equation that is frequently used in compound nuclear

theory to express the unknown decay probability in terms of the "allegedly” known "inverse”

probability, This inverse probability is often expressed 1n terms of an inverse-cross section which
is unwittily identified with experimental quantities that have nothing to do ‘_with it, to the great
confusion of us all. Bui this is another story!

Statistical equilibrium is something altogether different. If a nuclear reaction is interpreted in
terms of statistical or thermal equilibrium of the kind:

AoB R S O ®

one expects that a stationary regime is attained, whereby A and B are confined in a Gvell spécified
volume and do in fact interact freciﬁéﬁtly, so that their population can"be'wr:itt!en in terms of their

respective partition functions:

P(A) =

q R q - - S
A and  P@B)=———m~ |, )
q, +9g | q, +p -



where

qA=Ze{'fr and q8=2e{'ﬂ. | ®

- " As the system separates or expands beyond the freeze-out volume, A and B become decoupled and

reflect in their distribution the original equilibrium. There ideas will be explored in the following
two sections. The last two sections will be devoted to experimental evidence, the emission of rare

~ particles and energy fluctuations.

2. - Compound Nucleus Decay.

2.1. Transition Rates. - "Particle” evaporation traditionally includes neutron, proton and

. o-particle emission. Alpha-particle emission did not appear strange despite the complex nature of
the particle, becausé the lack of easily excited internal degrees of freedom made “He look truly like
an "elementary" particle. The similarity in mass may have lcd't'c; the incorporafion of the somewhat
rarer emissions of 2H, 3H and 3He under the "evaporation" label. In its simplest form, the decay
width is typically written down in terms of the inverse cross section and of the phase space of the

system with the particle at infinity as:

_ 8mgm eo(e) . _
TEe)de = P70 E) ———h2 p(E -B -£)de )

where p(€) énd p<E -B -g) are the level :densities of the CN and residual nucleus, respectively; m, €,
g are the mass, kinetic energy and spin degeneracy of the emitted particle; and o(¢) is the inverse
cross section, 14

On the otiler hand, fission involves the emission of fragments with approximately one half the

mass of the CN. The identification of fission as an independent process is based upon the vast

separation in mass between the observable yields of fission fragments and of the evaporated

L



particles (and evaporation residues).
- The fission decay width is traditionally evaluated by following the Bohr-Wheeler formalism
.- which makes use of the transition-state method. In this approach, the reacﬁon (fission) coordinate
is determined at a suitable point in coordinate space, (typically at the saddle point) and the decay rate
is identified with the phase-space flux across a hyperplane in phase space passing through the
saddle point and perpendicular to the fission direction. The decay width is written as:
1

. 'VI‘F = m]p (E-BF-G)dS, 7 . (10)

where p(E) and p*(E - Bg -€) are the level densities of the CN and of the saddle point; € is the

kinetic energy along the fission mode; and Bp, is the fission barrier. As it can be seen, the

B Elichotomy between fission and evaporétién is emphasized even in the expressions for the
.correspondingldeca)" rates. ' | o
It was ob;erved somé time ago Athat 1his dichotomy is dccepti_w:.ﬁ*7 The separation between
evéporafion and .ﬁssi'on, it wa.s‘ claiméd, was an optical illusion due to thc very low créss section of
f;;‘odu;:ts with masses intermediate between “He and fission fragments. If the exﬁission bf any
fragment is not énergetically forbidden, the mass distribution should be continuoﬁs ffom nucleons
to syinmetric prbduéts. Thus, there is no need to consider tﬁe two extfemes éf tﬁis distribution as
two independent processes. Rather, one would conclude, fission and .cvaporation are
the two, particularly (but accidentally) obvious extremes of a single statistical
decay process, the connection being provided in a very natural way by the mass
. asymmetry coordinate.

As it turns out, it is indeed possible to bring out the yield of intermediate mass fragments from

the abyss. In fact, experimental mass or charge yields from CN decay going continuously from



4He to symmetry have now been obtained.8-10

In order to demonstrate the inherent unity of fission and evaporation through complex fragment
emission, it is useful to consider the potential-energy landscape as a function of a suitable set of

collective coordinates, among which the mass asymmetry plays a dominant role.

2.2. The Potential Energy: Absolute and Conditional Saddle Points. - The potential-energy surface

V(a) -as a function of a set of deformation coordinates a has been studied in.detaii first within the
framework of the liqnid-drop model,17f19 and more recently the finite-range medel.zo'21 The -
liqurd—drop model caleulates the macroscopic nuvclear energy fora giVenl shape by evaluating the
corresponding shape-dependent Surface and Coulomb energies plus the volume and‘symmetry
terms, which are shape independent The finite-range model starts from a sharp-surface nucleus
and spreads out the density by folding its shape w1th a Gauss1an plus exponentxal functlon In this
way the dlffuseness of the surface is dealt thh together with those proxmuty effects arising whenv

| pertions of the nuclear surface happen to be close to each other as in strongly indented shapes.

The statlonary points of the potentlal energy surface, obtamed by solvmg the set of equations

| a\;;?)=-o | o | | - an

comprise the ground state minimum, and one to three saddle points, of which the saddle point with
degree of instability one, if it exists, is known as the "fission" saddle point becauée of its relevance
to the fission process. In general, only the points of the potential-energy surface corresponding to

the solutions of the above equation are of intrinsic physical significance, because they are invariant

under a canonical transformation of the coordinates.
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Saddle-point shapes for fissility parameter values of x < 0.7 are strongly constricted at the

neck, so that the nascent fission fragments are already well defined in mass. Thus one can assign a
physical significance to the mass-asymmetry parameter A;/(A; + A,). Then it is possible to

consider a cut in the potential energy along the mass-asymmetry/ coordinate passing through the

fission saddle point, with the property that at any point the potential eﬁergy is stationary with

~ respect to all the other degrees of freedom. Each point is then a "conditional saddle point" §vith the

constraint of a fixed mass asymmeﬁy. This line has been called®’ the "ridge line" in analogy with

the term "saddle point". The shape of the ridge line depends on whether the fissility parameter lies

~.above or below the Businaro-Gallone point.22 This point corresponds to the fissility parameter

value at which the symmetric saddle point gains/loses stability against the mass-asymmetry

.. coordinate. . For-the liquid-drop model, this point occurs at xgg = 0.396 for zero angular

momentum. The properties of the ridge line above and below the Businaro-Gallone point are
illustrated in Fig. 1.
Below the Businaro-Gallone point, the ridge line shows a maximum at symmetry. This is a

saddle point of degree of instability two (the system is unstable both along the fission mode and the
mass-asymmetry mdde). As the fissility parameter x increases above Xgg- this saddle point splits

into three saddle points. The symmetric saddle point is stable with respect to the mass-asymmetry
mode (degree of instability one) and iS tile ordinary fission saddle point. The other two saddles, of
degree of instabih"ty two, are also called Businaro-Gallone mountains, and flank symmetrically the
fission saddle point. The incorporation of angular momentum maintains_essentially the same

topology. Its main effect is to decrease the overall heights of the barriers and to displace the

Businaro-Gallone point towards lower values of the fissih’ty parameter.



2.3. - Complex Fragment Decay Width. - The role of the ridge line on the emission of complex
fragments can be appreciated by observing that for x < 0.7 at all asymmetries and for x > 0.7 over a
progressively reduced range of asymmetries, the nuclear shapes at the ridge line are so profoundly
_necked-in that the ridge and scission lines approximately coincide. This means that, as the system
- reaches a given point on the ridge line, it is, to a large extent, committed to decay with the
. corresponding saddle asymmetry. On the basis of the transition-state theory one can write, for the

partial decay width:”

1
2np(E)

I'(Z)dz = jp”[E - B(Z) —€]dedZ | . (12)

where p(E) is the CN level density, and p**[E -B(Z) - €] is the level density at the conditional
saddle of energy B(Z), which thev system is transiting with kinetic energy €.

The units and the number of degrees of freedom associated with the various level densities are

clarified by the following relations :

1 [ 3 " o
L@ 5|0 E@B@ ot = o BB e

1
~ 2np(E)

~

0" E-B@) . | (13)

2p(E)

Well above the Businaro-Gallone point, one can expand the potential energy as:
B(Z) = B + bZ2, 14)

This gives rise to a fission peak whose integrated yield is:

TP (E-BYp 2 32 172
2np(E)

%

T

n

mp(E)b 2

where we have set

T | _
J B0 EBY) = pE-BY. | (16)

Alternatively,

W



- 1 *x 2 1 BT [ *+ . ,
Iy = o |76 B b2 ezde - o5V o & B, -ee an

— T J——‘ ** | -B . N 18
= @ PU(E-Bp = (E)p( F) (18)

These results allow us to make qualitative predictions on the shape of the mass/charge distributions.

- ‘Equation 13 can be further simplified as follows:

, Q‘*[ -B(Z)] - B(2)T .
z p(E)

where T. represents the nuclear temperature calculated at an excitation energy

E, = E- B(Z) = aT? . | (20)
This means that the mass or charge yield mirrors the ridge line, being characterized by high
emission probabilities in the regions of low potential energy and vice-versa. This is illustrated in

Fig. 1 for two systems, one below the Businaro-Gallone point, and the second above it. In the

u former case, the yield has a characteristic U-shape, where the light wing is associated with very

light particle emission, and the complementary heavy wing with the corresponding evaporation

residues. In the latter case, besides the light and heavy wings observed in the former case, one

observes also a peak at symmetry which becomes more and more prominent with increasing

fissility parameter X, and which can be identified as the fission peak.

. In the limit in which the conditional saddle and scission points can be considered degenerate,

.one can also develop a theory of the complex-fragment kinetic eriergy and angular distributions.

2.4. - Multifragmentation and Nuclear Comminution..- The previous discussion illustrates the

emission of complex fragments through binary CN decay. If there is enough exejtation energy
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available, the primary binary-decay products are also very excited and have a significant probability
of decaying in turn into two fragments. In this very conventional way, one can foresee the
possibility of several fragments in the exit channel (multifragmentation), due to several sequential
binary decays. At .high energies, these rﬁulﬁfragment events may be responsible for a substantial
backgroupd to other predicted multifragmentation mechanisms.

This process of sequential binary decay, controlled at each stage by the CN branching rati.os,
we call "nuclear comminution”.23 The limitations of this process are of two kinds: extrinsic and
intrinsic.

The most obvious extrinsic limitation is the ability .of the syétem to form a CN. In. other words,
the relaxation times associated with the CN formation may bé too long when compared to the
dynamical times leading the system to a different fate. Limitations of this sort are of course shared
by all other multifragmentation modes involving an intermédiate relaxed system.

The intrinsic limitations are associated with the aspect of sequentiality. Should two scéucntial
binary decays occur too close in spaceétimc, they would interact to an extent incompatible with the
definition of sequentiality. In this case one may be led to favor models in which fragments é.re
formed simultaneously. Nonetheless, it may be possiblé to extend the sequential binary mbdel to
situations in which the intcréction between two successive decays is only stron g enough to i)érturb
the angular distributions. The decay probabilities are overwhelmingly affected by the level densities
of the corresponding final states. These level densities arise almost completely from the intrjnsic
degrees of freedom. The collective degrees of freedom on which the angular distributions depend
hardly contribute to the level densities. Therefore, one can observe a multifragment pattern, whose
branching ratios are still clearly binary, while the angular distributions may be substantially

perturbed.

W



11

The lesson to be learned from these considerations is that the best way to establish the

. underlying mechanism of a multifragmentation process is to study the excitation functions of
_binary, ternary, and quaternary events, which of course reflect the energy dependence of the
.., branching ratios, and not to be troubled too much, should the angular distributions indicate

- multifragment interaction.

The calculations of the resulting mass distributions are trivial, although tedious and time -

consuming. We have tried to simulate the process by assuming a potential energy curve vs mass
. . .asymmetry (ridge line) with a maximum value of 40 MeV for symmetry and 8 MeV for the

. extreme asymmetries. The primary yield curve is taken to be of the form:

- Y(A) = Kexp[ -V(A)T(A)]. - (1)
Each of the resulting fragments is assumed to have a similar ridge line, a properly scaled

temperature, and is allowed to decay accordingly, until all the excitation energy is exhausted. For a

... series of initial excitation energies, the resulting mass distributions are shown in Fig. 2. The

-log-log plots show an exquisite power-law dependence for the low mass fragments. At excitation

energies of about 400 MeV, the exponent (see Fig. 3) is around 2.3 - 2.4 which, incidentally, is

very close to the value expected for the liquid-vapor phase transition at the critical temperature.
This result shows that a power-law dependence is not a unique diagnostic feature of liquid-vapor

equilibrium, but rather is an apparently "generic" property arising even from sequential-binay decay

or comminution. A more realistic calculation with the statistical code GEMINI!3 leads to similar
results.23

.The code GEMINI generatés complete éventé on the basis o.f stéﬁdalrd CN .b;anching"ratios.
Examples of events with three and four complex fragments plus a multitude of Hgﬁtér pafticles are

illustrated in Figs. 4a&4b.v Of course, the analysis of individual complete events does not



12

reveal the "statistical” nature of the branching ratios. Little can be said concerning the fact that the
first "binary" decay is in one case occuring at the beginning of the cascade and in another quite late
in the cascade after the emission of a multitude of light particles. Nor is the selection of these
"partiCular" events among a plethora of ordinary binary decays conducive to an appreciation of the
underlying statistical processes. These can be éppreciated more directly in the excitation functions
for events with one, two, three, etc. fragments in the exit channel, like those plotted in Fig. 5. Here
one can get, at a glance, a "qualitative" feeling of the statistical éompetition beside the direct
' quantitative predictions. In view of the uncertainies in the barriers used in the calculations, plus
the fact thaf the temperature dependence of the barriers themselves has not been included, the
qualitative dependence of the branching ratios upon energy may be the most important lesson to be

derived from this exercise.

2.5 - Gamma, Pion, and Antiproton Emission - The y-ray decay rate can be written down quite

-easily in terms of the inverse (absorption) cross section and the photon phase space. The

probability of emission of a photon of energy &y is

- Te) 8n | 2 -

P(e,) = s c3h3p(E) o(e,) p(E»- eJE, (22)
_ 8n 2 -&T
= —c3h3 ole)ee ' . o (23)

The inverse cross section is fairly well kndwn experimentally. In the energy region below 20
MeV, it is dominated by the giant dipole resonance while, above that energy the quasi-deuteron
mechanism prcvaﬂs.

Similarly, the thermal emission of fancier particles can be written down just as eésily. For

instance for the pion evaporation we can write:

iy



13

ep(E-m, -¢€) S 7 (29

where m, € are the pion mass and kinetic energy, respectively, o, the inverse cross section and the

other quantities are the same as in the previous equations.

The integrated cross section is:
, -mg/T
_ '1‘281rm1t o, p(E-m) ~ 4’1‘2rn7t c, €

Y Tm® T g ¢ )

For any other particle, one can use the same equations, provided that the proper spin degeneracies
-are taken into account. Attention must be paid to the case in which a particle must be produced with
its own antiparticle.

A rather spectacular example?? of the exponential dependence prediéted by Eq. 25 is shown in
.I‘:ig. 6 In this figure the invariant cross section for the p_roduction n, Kt K" aﬁd p— for the
reaction 28Si + 28Si at 2.0 Gev/u is plotted as a fqnction of thevthreshold energy (Egnre) plus
) center-of-mass (c.m.) kinetic energy (KE_ ;). The exponential dependence is seen to extend over

almost nine orders of magnitude with an effective temperature of ~ 87 MeV. As to the meaning of
this result, the best comment may well be a prudent silence. Yet the temptation of saying that a
rather extended source with T ~ 87 MeV is responsible for the emission of all those particles is

easy to succumb to.
3. - Two or More Fragments in Equilibrium.

Although it may not be easy to determine whether, how (and where!), a system may have

achieved equilibrium, it is nonetheless a useful exercise to calculate some relevant distributions
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which may be used as minimal hypotheses in the analysis of an experiment.
We are going to consider here three kinds of equilibria which have been discussed in the
literature with some degree of attention: 1) the chemical equilibrium; 2) the thermal equilibrium;

and 3) the angular momentum equilibrium.

3.1. The Cﬁcmical Equilibrium. - A fundamental problem in nuclear physics is the aggregation of

nucleons to form nuclei. An associated question is the relative abundance of nuclei of any given

size. Statistical mechanics shows us how to calculate equilibria of the general kind:
aA+bB+cC+... © tL+mM+nN +...... , ' (26)

or

T al=0. 27)
Fora system at equilibrium, the free energy F must be a minimum with respect to an infinitesimal

displacement SA along the reaction coordinate A defined by:

© dN; = a; dA. | (28)
Therefore |
dF=(Zajp) dA=0 | | 1 (29)
or
Za =0, (30)

where |; are the chemical potentials of the ith species, that can be written as

H; = -T In gi/N; ' (31)

where again q; is the partition function of the i th component. Substituting, one obtains
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| =0 ‘ . (32)
or
t..m
Nl. Nm ..... . 9, 9, . o . : .o (33)
NaNb T ab )
NNy e qaqb. -

As an example, let us calculate the equilibrium:

p+n=d. .. _ » . . - (34)
For this we need the three partition functions: 9p = 4n> 94- Assuming for the moment that we

- “are dealing with classical ideal behaviour:

2 32
21rmnT : 2rm, T

~q =2 V; =3 Ve 35

where A = 2.2 MeV is the deuteron binding energy,

» 2 T2 4 ' o - '
Ny '_ 3 h 'eM’. Np 3N, | b AT 36
NN, “#|mT| Vi Tw|myc - 09

P n

This shows that for any finite volume there will be no deuterons at high temperature, but also, and
- perhaps more surprising, that, at any non-zero temperature, there will be no deuterons at high
dilutions when V — o, We have here, the first lesson to be learnt. If there is any chemical
equilibrium at all in any nuclear reaction, it is certainly not an equilibrium at infinite dilution. At
best it is an equilibirum that is established at some freeze-out volume. Aftcr that, one must assume
that the prodﬁct distribution remains uﬁaltered as thé éysterri keeps e);panding. Tﬁus the freéze-out
volume, or the freeze-out concentration become inherent parameters of this kind of theofy.
‘A similar exercise can be performed for the reaction

2n + 2p & “He. - EY)
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The following ratio is easily calculated

-2
N 23 NN | 2om T A A
L) ST (38)

o
< 2
N, 1 v? h

~ which, incidentally can be used to determine the freeze-out concentration after the big bang.

The problem of nucleation in a nuclear vapor near saturation and/or criticality may be of
potential interest. The average nucleon-nucleon interaction is composed of a very short range
repulsive core gnd of a short range attractive part. In this it mimics the Van der Waals force
between monoatomic gases which leads fo the homonymous equation of state. In fact
Fermi-Thomas2>27 and Harttce-Fock calculations28-30 for ﬁuclear matter lead to isotherms which
are quite similar to those of the'Van der Waals equation. In particular, there is a critical isotheﬁn
along which the two phaseé, liquid.and vapor, identified through the Machll construction, lose
their identity.

It is well known that, at the critical point, density fluctuations acquire infinite range, and
manifest themselves through the spectacular phenomenon of critical opalescence. The distribution
in cluster size can be derived in the following simple way.31:32 The whole gas or vapor is an
imperfect gas, but can also be considered as an ideal gas mixture of clusters in equilibrium with

each other. The condition of equilibrium between clusters of different size is:

W = | | (39)
where H; is the chemical potential of the clusters of size j and | is tﬁe ;hemical potentiai of the
clusters of size one.

Let Jj be the partition function of a cluster of size j. Then the partition function Aj of the m;

clusters of size j is:
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A =—Jd" B S GV

and the total partition function is:

Q = Il A; | (41)

The chemical potentials are:
K dinA
-———=z=—2Ll=-nJ -Inm . (42)
T amj j J
and |
~=mj =Jj.eT. S o . S (43)

" “The free encfg); of a cluster can be written as:
R =-Tind = juy A ' o (44)
where Ky is the chemical potential of the liqﬁid and the term in j%3 is a surface contribution which

' takes care of the finite size of the cluster. By substitution in Eq. 42 we obtain:

m=ye " ' v (45)
where
(e -1y)
or
. .28
m = y X (47)
where :
x=eT. ' - : - (48)

‘Below the critical temperature and when the gas phase is stable [t < 1, ¥ < 1, the contribution of
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- large clusters is exponentially unimportant. On the other hand, if the liquid phase is stable, then [

2, and the vapor is supersaturated. In this case the first factor increases with j and the second

decreases with j. Therefore there is a value of j for which m; is a minimum. This is given by

i
dlnm,
it N (49)
dj
or

2%
lny = __*TE . (50)

3Tj

Clusters of this size represent a maximum in free energy. Thus the size j* defined by Eq. 50
represents a hurdle to be overcome before entering the region of runaway condensation.
At the critical temperature, y = 1 and x = 1 (the latter because the surface-energy coefficient ¢ in

Eq. 44 goes to zero at the critical temperature where no distinction exists between liquid and vapor).

Eq. 45 would then predict a constant distribution in mj.b However, it has been pointed out33 that in

Eq. 45 the factor y j should be multiplied by a quantity a(j) such that a(j) is of order jand In a(j) is
of the order In j. This factor, that arises from the energy independent statistical weight of the
cluster of size j, has been estimated3435 to be of the form j~¥ where 7 is a critical exponent which

depends on the dimensionality of the cluster. Then, revision of Eq. 45 gives:

4'2/3j
m = mg] )3_ y . (51)

At the critical temperature the cluster distribution assumes a power law:

m o i (52)

It is this power-law distribution that some authors believed to have identified, in a variety of

inclusive experiments.

The finite nuclear size and the role of the Coulomb interactions,36:37 not to speak of the shell
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structure of the individual fragments set serious limitations to the applicability of the liquid-vapor
- -equilibrium theory.

' Several authors38-44 have tak'eh up these problems with a different emphasis. The general
‘approach is to assume a critical freeze-out volume within which a chemical equilibrium between all
the possible fragments is established. It is in this chemical equilibrium aspect that these theories
- differ somewhat from the lower-energy transition-state theory. The latter does not require that
chemical equilibrium is established, rather it approximates the decay rate with the phase-space flux
across a hyper surface perpendicular to a previously identified reaction coordinate, located at a point
where multiple crossing of phase-space trajectories is expected to be at a minimum. The presence
* of a saddle point leading to a binary decay provides a natural setting for the application of the
transition-state theory. Unfortunétely, no ternary- or quaternary-saddle points have been found that
~ could provide a similar setting for multifragmentation. Conéequcntly, all of these theories must
require a "deus ex machina" that somehow guarantees statistical-chemical equilibrium at some stage
that cannot be characterized within the theory itself.

Some attempt has been made recently?> to represent nuclear fragmentatidn in terms of
percolation theories. In this approach the nucleus is irnaginéd to be composed of nuclcoﬁs located
in a crystal lattice. In a cold nucleus all the sites are occupied. In an excited ﬁucle;us one can define
" dn average probability p < 1 that thé lattice sites are occupied. Depending on the value of p, one
observes connected clusters of nucleons which are assumed to be the observed fré'gmcnts. For an
infinite system there is a critical value of p above which a cluster extending throughout the system
exists (percolating cluster). In a nucleus one can sirﬁﬂ_arly define a critical value of p above which
one major fragmént is formed and below which many fragments are produced. The similarity of

this result with the behavior of systems exhibiting 2nd order phase transitions, like liquid-vapor
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systems at the critical temperature, has led to the use of percolation theories to model these
transitions. The mass distributions of the clusters near the percolation threshold is given, not
surprising, by a power law. Thus it seems that the predictive potential of percolation theories is

limited to very generic statistical properties, which are associated with many other models as well.

Nonetheless, the analysis of the experimental (and theoretical!) distributions by means of the

. percolation theory may be of some benefit in helping to discriminate between generic and specific

properties of these distributions.

3.2. Statistical Shattering. - A bold, different assumption has been proposed by Aichelin and
Hiifner?0. They envisage a brittle kind of nuclei that shatter under a sufficiently hard impact like
two glass balls thrown at each other. The physics of shattering of fragile material, let alone nuclei,
is poorly understood. However, it has been found empirically that the resulting distribution of:
fragments, or shards is rather simple, approaching a power-law dependence on the fragment size.
The same authors proposed to derive such a distribution from a maximum likelihood or minimum
bias principle. Sobotka and Moretto?’ showed that their formulation corresponds to a saddle-point

~ approximation to the Euler problem of number partition (i.e. all the possible ways in which an

integer A can be split into integers under the constraint that their sum be A). Incidentally, these-

partitions multiplied by a temperature-dependent statistical weight, appear also in some of the

statistical multifragmentation theories.38-40

Despite the lack of theoretical justification for such an ansatz, it is interesting to speculate -

further on possible improvements which could accomodate a modicum of physical input.

3.3. The Role of Surface in Nuclear Shattering. - Among the many shortcomings of this approach
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_ is its lack of an energy dependence and its inability to connect the mass distributions to other

observables. A ‘possible way to introduce an energy dependence in this broblem is suggested by
the fact that it takes energy to produce the extra surface associated with fragment formation. In
what follows, a way is shown to evaluate the mass distribution with the constraint of a fixed
amount of generated surface.48 |

N SMgrly t§ Aichelin,?6 we deﬁne a probability P(m,a) of producinlg a fragment of mass a with

multiplicity m. The constraints are:
Z P(m,a) = 1 ] (53)
m ' . : : . :

'for each a,

z 2 ma P(m,a) = N, o : (54)

N being the mass of the object being fragmented, and
Z z kma'" P(m,a) = S, | | | (85)
a

m
S being the surface produced. The information I, associated with P modified by the constraints is:

1=, Y P(ma)inP(ma) - K(a P(m.a) + Dma P(m.a) + AmaZ* P(m.a)  (56)

where K(a), D, and A arise from the introduction of the constraints.

Minimization of the information I gives

23 2/3
(K@) 1] [-m(Da+Aa”) ol M2+ A (57)

P(ma) = e = C(a)

Applying Eqgs. 53, 54 and 55 to Eq. 57, one obtains:

23 ) .
Cla) = 1-¢ P*A) | (58)

a

a exp[Da+ Aam] -1
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2/3 '
» C = s - -~ (60)
a exp[Da+Aa ] -1

Summing P(m,a) over m one has:

P@a) = ! . (81)

exp [Da + Aa> ] -1

By solving Eqs. 59 and 60 simultaneously for D and A and substituting the values so obtained in

Eq. 61, one arrives at the desired distribution. If no restriction is imposed upon the surface, then A
= 0, which defines the unconstrained surface S;,. If a restriction is imposed by fixing S near S, one

can linearize the problem and obtain an analytical result:
2/3

AA = T(5/3)4(5/3) DOS AS )
2 0
-4/3 T(413)4(4/3) + [583 TGRIEE/3)] |
' 2r(2)52)
AD = - DASBTERYEN) | | .
r2)5Q2) | ‘
%=V | e
Numerically, one has
1.618305 D~ AS
e | (65)
S, :
AD = -0.971156 AA o)
o . 12825 | o

0 JN' :
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As an example, Fig. 7 shows the resulting mass distribution assuming N = 200. The three
curves correspond to AS/S, = 0; 0.2; -0.2. One can readily see that, by requiring more surface

area, one favors the formation of light fragments and by requiring less surface area one enhances
the production of heavy fragments.

Lastly, it remains to be established how much energy is invested in surface production in any

given reaction. This may not be easy to determine. However, it may be possible to infer that from

the determination of the total fragment kinetic energy in the center of mass of the fragmenting

 nucleus. If the virial theorem can be applied, then a relation should exist between the average total

' kinetic energy and the average potential energy which is approximately proportional to the average

produced surface.

3.4. Thermal Equilibrium, or the Energy Partition Between Fragments. - The most trivial case is, of
course, that of two fragments in contact. For a given total energy E we can define a partition by
giving an amount of energy x to one fragment and the complementary energy E - x to the other.

The statistical weight for this partition is:

P(x) = p; (x) pp (E-x) (68)
where p;, p, are the level densities associated with the two fragments. We can approximate the
distribution as a Gaussian, in other words we can expand the logarithm of P up to second order
about the maximum x:

‘WP =Inp, (x)+InpE-x)=-(x-x,)%20%. : (69)

The maximum probability is defined as:
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= + 0 (70)
ox ox ox
or
oS oS 1
2o b0 an
T, =T, ' v ' 72)

where we have used In p = S and dS/0E = 1/T.
Thus the parameter characterizing the equilibrium between the fragments is their common
temperature. If the specific heat of the nuclear stuff is the same in both fragments, the energy of

each fragment is, on the average, proportional to its mass

0 1
Eox = A (73)
The fluctuations are easy to calculate
1 81/’1‘1_81/'1‘2 1 _}_+_l_
LI , St | «_ (74
or
c,C _
ol = T —2, (75)
c,+¢,
where ¢; ¢, are the heat capacities of the fragments. For a Fermi gas nucleus ¢ = 2aT, so
02 =273 aja,/(a; + a,) (a= A/8). (76)

This shows that the fluctuations are largest when the two fragments are equal. It is also obvious
that the fluctuations are fully anticorrelated, because of energy conservation. Furthermore, the

fluctuations are typically rather large because the fragments are rather small and obey the Fermi
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statistics.

The generalization to more than one fragment is almost straightforward. A partition is defined

by:

E=xi+x2+vx3 ;..=in. . a7
Its probability is:

P(x;) o Py(X1) Po(Xp) e =TT p(xy). | (78)

The maximum probability can be obtained by searching for the stationary point with respect to

variations in the x; 's with the constraint:

E=Xx; \‘ o (79)
In order to do that, we introduce the auxiliary distribution:

P'(x{) = P(x;) exp[ -B Z x;] . (80)
or

InP'(x) = Zinpx)-BZx; . (81)
The maximum is given by:.

a—lna-i-:(—)-(l—)- =0 or alna:(xi) -B =0, v (82)

which can be written as:

UT; = B = 1T | o Ti=T. | | (83)

In other words, all the fragments are at the same temperature T = 1/B, which can be defined as the

temperature of the system.

The most probable fragment excitation energy is then approximately proportional to its mass.



26

For the fluctuations, one can proceed by taking the second derivative to obtain:
0-2i = Tzci. (84)

If the fragments are many, the fluctuations are approximately uncorrelated.

3.5. Angular Momentum Equilibrium. - Because of the vectorial nature of angular momentum, the
thermodynamic description is somewhat more complicated. We begin with the problem of two

spherical fragments, which we shall generalize later to the case of many fragments. |

3.5a. The Dinuclear System: Its Degrees of Freedom and Statistical .Mechanics. - If the nucleus at

| the saddle point (or for that matter, at the scission point) is considered as a single rigid body, it can
be characterized by a total of six degrees of freedom: three translational modes associated with the
motion of the ceﬂter of mass, and three rotational modes. Furthermore, if the nucleus is axially
symmetric, as it is commonly assumed, the three rotational degrees of freedom can be reduced to a
rotatiori about‘the syinmetry axis, plus a (doubly degenerate) rotation about an axis perpendicular to
the symmetry axis. ‘This requires that the component K of the angular momentum along the
symmetry axis be a éonstant of motion. Thus, the angle between the angular momentum and the
symmetry axis is conserved; because of its relevance, such an angle is called the "tilting" angle.

The experimental measurements of fragment angular momentum#®-5%, and its alignment,
suggest that the rigid body condition must be relaxéd, and that intrinsic angular-momentum—bear_ing
modes characteristic of a dinuclear system> must be introduced. These modes are easily visualized
for a symmetric dinuclear system constituted by two equal spheres in contact, although the
generalization to an asymmetric system of two touching, unequal spheroids is rather

| straightforward.
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The -enumeration of the degrees of freedom of a dinuclear system is immediate: two rigid
bodies require 6+6 = 12 degrees of freedom. The condition of contact removes one, which leaves
eleven. Of these, three are translational degrees of freedom, so there are eight angular-momentum-
beaﬁng modes left. Of these, thfee are associated with the "rigid" rotation of the dinuclear system.
- : The remaining five degrees of ‘freedomzire "intrinsic" angular-momentum-bearing modes. These
‘modes are associated with rotations of one nucleus with respect to the other in such a way that

the whole system need not carry a net amount of angular momentum. The five normal modes (plus
the tilting mode) are illustrated in Figure 8. They are: two degeneratc"'bcnding" modes, two
degenerate "wriggling" modes and one "twisting" mode. These names have been chosen to
- correspond with the normal modes at the saddle point as described by Nix!?61.62_ although the
correspondence is not corhpletely onious. |

The bending mode consists in the rotation of one sphere about an axis perpendicular to the

symmetry axis, and in the corresponding counterrotation of the other sphere. This mode is doubly
. degenerate.

The twisting mode consisté in the rotation of one sphere about the symmetry axis, and in the
corresponding counterrotation of the other sphere. This mode is not degenerate.

The wriggling mode is somewhat more complicated. Both spheres corotate about paralle] axes
perpendicular to the symmetry axis, and simultaneously counterrevolve about each other about an
axis parallel to the rotation axes. This mode is doubly degenerate.

In. the bending and twisting modes, the spin of one sphere is compchsated by that of the other,
so that the net angular momentum is always zero. In the wriggling modeé, the spins of the two
spheres are equal and paiallel, and they are exactly compensated by the orbital angular momentum

associated with the revolution which is antiparallel to the fragment spins. Therefore, the excitation
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of the bending and twisting modes produces fragment spins which are antiparallel, while the

excitation of the wriggling (and tilting) modes produces fragment spins that are parallel.

3.5b. Statistical Coupling Between Orbital and Intrinsic Angular Momenta: The Wriggling Modes.

As we have mentioned above, the coupling between orbital and intrinsic angular momentum is v
mediated by one wriggling mode. This is illustrated in Figure 9 where it is shown that the addition
of orbital motion to an excited wriggling mode leads to a decrease of the orbital and to an increase

of the intrinsic angular momentum. If the total angular momentum is I and the fragment spin is s,

the energy for an arbitrary partition between orbital and intrinsic angular momentum is:

E(s)—(I 23) [—+—]s2—2—12s+—li-2-. ~ O (@85)

pr 2ur

The first term is the orbital and the second is the intrinsic rotational energy, 3 being the moment of

inertia of one of the two equal spheres. The partition function is:

| 2
-E 2 1
7 o je ©/T 42 l”iS_T_exp -—. (86)
23 +ur2 2T (23 + )

The average spin for both fragments is given by:

2Js e-E(s)/T ds

23 2 ' :
= 1= 51=2L. (87

Z urz +23

This is, of course, the rigid-rotation limit. The second moment s? is given by: -

3 2u’ ST \ ar g

4s 2 2 2 (88) »
pro + 23 (e + 29) ‘
From this we obtain the standard deviation:
2 v
.403=M=$3T, (89)

urz + 23
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The result in Eq. 87 is temperaturé independent, as one should expect from the fact that Eg. 85 is

quadratic in s. This result could be obtained by solving the equation:

dE :
== 0. (90)

This result corresponds to the mechanical limit of rigid rotation when the orbital and the intrinsic
angular velocities are matched.
The result in Eq. 89 could have been obtained also by appreciating that the thermal fluctuations

about the average in Eq. 87 are controlled by the second derivative of Eq. 85 at the minimum, or:

402 = 4TH o1

where:

IE
B | | » ©2)

b

In the case of I=0, the fragments are still going to acquire angular momentum as shown by Eq.

~ 89:
S 1 u?3T 5
._s=5_“;_.=_ﬁsr. , - 93
pr o+ 23 |

Since there are two wriggling modes, the mean square angular momenturn of each fragment is:

_— _— 2 .
ur + 23

3.5¢. The Bending and Twisting Modes. - These three degrees of freedom are illustrated in Figure
8. They are degenerate in our two-equal-sphere model. A splitting of the degeneracy could easily
occur in the case of fragment deformation. We shall not consider this important possibility at the

moment, although it is completely trivial, because of the arbitrariness in the choice of deformation.
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The partition function for these three degenerate modes can be written as:

R |
- : 1
ZocJRze ST 4R, 0Z=A- o (95)
2 3T - | , )
from which : _ _
_ / T — ¥
R-2 [3T , RE.-9RZ _3q4p | (96)
T 1 2. '
I3t

or ‘1 /v2 ST> per .degree of freedom. |

Notice that R is the angular momentum of each fragment and that, for each mode, the angular
momenta of the two fragments cancel out pairwise. Furthermore, for each fragment the resultihg
angular momentum is randomly oriented. It is worth stressing again that, as for the wriggling
modes, this angular momentum can exist even when thé total angular momentum is zero because of
the i)ajrwise cancellation mentioned above. |

At this point the (frequently asked) question may arise: "The bending and twisting modes 'in the
two sphere model have no restoring force. Wouldn't the results be differenf if we were to introduce
them?" The answer is no. Neglecting the degeneracy for the moment, the Hamiltonian would look
like:

2 v '
H=§—+ K o2 ©7)

B =

where @ is the conjugate angle and k is the stiffness. The partition function thus factors the kinetic

and potential energy components: “
Z = Je STYdR J‘e T do. , | 08

As a consequence, any moment of R is strictly independent of the value of the stiffness k.
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3.5d. The Tilting Mode. - This mode is unlike the other five "intrinsic” modes in the sense that it
cannot confer angular momentum to the fragments, while keeping the total angular momentum
equal to zero. However, we treat its statistical mechanics here Because of 1ts importanée.

In their most stable configuratiohv, the tWo touching ffagments are aligned with their common
axis perpendicular to the total angular momentum. Because of thermal fluctuations, this condition

. - can be relaxed. If we now assume that the two fragments are rigidly attached one to the other, the
energy is given by:

K2
+

r-K’ 2
B, 8y

1 I

. E= 99)

K
23

~where 3, =23 +pr?, §= 23 and 3 1=3 i - 311 Kis the projection of the angular

momentum I along the line of centers. The partition function is: . *

2 I
1 —_—
Z = Ir exp [—2—5‘;] 28T erf[ f__'zscﬁT] 3 o (100)

L

from which:

K"'=3_ T - (101)
ff
‘ Jr =
TN 28T {
Fbr small I we have:
K2-L1p, : | (102)
while for large I we have:
= 14 | "
K’ = ST = £ST. (103)
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The total fragment spin is given by:
2 4 [ 2 2]' ' '
2s \/E * I I'-K (104)

and the averaged square quantity is:

2 3 4 473 4535 4 " | o
SP_ SR -2 L (05
45 =K'+ T - 5K = 2K+ T | )

and for large I: -

= 18 4 |
4s —7—3T+EIZ. , (106)

3.5e. Summary and Generalization to Asymmetric Dinuclear Systems. - The overall statistical
- treatment of the angular-momentum-bearing modes allows us to describe the angular momentum

_distribution of one of the two fragments as a tridimensional Gaussian distribution in the angular

momentum components 1,1, L:

X? y’
Lo Lo 6D
P(I) = exp —|— + =% +———| | | (107)
20, 20y 20,
where [ is the rigid rotation component:
— 3
[ =——1I-= %I (108)
pr+ 23, -
for equal touching spheres, and:
2 _ 2 2 _ 1 Tgr._ 58
O, = O+ Opy, = 2SST+ 1OST_ EST (109)
2 262 4+ =sST+>ST=28T (110)
c)-y = Opend Gwrig -7 14 -7
2 g2 +6? =lgr+3gro857 | (111)
G, = Obend cSwrig -7 14 =7 .

In the case of an asymmetric system, the results are qualitatively similar. The three variances in
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dimensionless units are shown in Figure 10 as a function of mass asymmetry for two touching
spheres. The most remarkable feature of this figure is the rapid increase of the variance 0,2 with

increasing asymmetry. This effect is almost exclusively due to the softening of the tilting mode.

As one of the two spheres becomes smaller, the rotational-energy increase associated with an
increasing projection K becomes smaller. The corresponding K,? increase for the very asymmetric

configurations associated with the emission of an o particle, a proton, or a neutron is responsible
for the small anisotropy in the angular distributions of these particles in comparison with those for

symmetric fission.

3.6. Angular Momentum and Multifragmentation. - Let us now consider a collision giving rise to n
fragments. In the "expansion” phase, we assume statistical equilib;'ium, until beyond a critical
shape, or mass distribution, the fragments decouple from each other and the equilibrium remains
frozen in.

For simplicity, let us suppose that the critical shape is approximately spherical. Then, it is
completely general to choose the z axis to coincide with the direction of the angular momentum.
Also, for simplicity, let us assume tlv1at> each fragment is spherical. The Hamiltonian of the system

‘can be written as follows:

G S G |
X y z z 2 2
H = ZHi = 2 >3 + - +-§-r5(pr +p)l> (112)

where the sum X is to be carried over the fragments (the corresponding index is omitted for

~

simplicity); Iy, Iy, and I, are the intrinsic components of the angular momentum for a given

fragment with moment of inertia 3; 2, is the z component of the orbital angular momentum of a
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fragment of mass m and distance r from the z axis; and p, and p, are the other two generalized

momenta for the translational motion of a fragment in cylindrical coordinates. The choice of
cylindrical coordinates for the relative motion has the advantage of nicely isolating the z component
of the orbital angular momentum.

The generalized grand partition function can now be calculated:

Z=Iexp-[ z-{- L q, +nz)] d1,dI, I 4t dp dp, (113)

where the constraint of the total angular momentum I = 2 (I, +%,) (remember the choice of the z

axis) has been introduced by means of the Lagrange multiplier . This guarantees that the total

angular momentum will be conserved, at least on the average. More explicitly,

Z = HJ‘ex C— p[ ""—(P,+P) exp-[—-ul

23T ZST

"2

Xexp - -, |d1,dl dT.de dpdp,, | (114)

2mr T

where the terms in I, £, have been grouped together. Integration yields

2 -TI[ Josr [ Vo] Jamt &7 o 115)

or
1 uz 1 2 uz 2
= : - LAl —] —mr T§. 116
InZ Z 1n23T+1n2mT+21r127t3T+23T+2ln21tmrT+2mr (116)

The value of the Langrange multiplier y is determined by the equation:

L =p ), GT+mdD) (117)



35

L

b= (118)
T Z S + mr)
By differentiating once more with respect to |1, one obtains
| ) o
— =0, = TX(S+mr). | | (119)
ou ST .

These are the "spli'rious" fluctuations in Iy introduced by the graﬁd-canonical approach and can be
used to estimate the reliability of the theory in any given situation. Differentiation of the logarithm

of the partition function with respect to B = 1/T yields the total energy,

aan_ _y3 3 u22 2
T _E_EET +ZET+—2-TZ(S+mr) | (120)
or
2
E = -g-nT + 3nT + -—IT—Z- ’ (121)
2 22(5+mr)

where n is the number of fragments, the first term refers to the intrinsic rotation energy, the. secoﬁd
" to the translational energy, and the third to the rigid .rotation of fhe system at the critical shape.
Again, the first two terms arise from the classical energy-equipartition tﬁeorem, while the third
should be interpreted as the energy of a rigidly-rotating body whose moment of inertia is defined by
* the mass distribution associated with the critical shape. The latter is a distinctly interesting but not
altogether unexpected result. It may be worth noticing for the last time how convenient the
expression of the translational ﬁloﬁon in cylindrical coordinates has fumcd out to bé. The in&insic

spin of each fragment can also be obtained by differentiation:

2 : !
S M2 P g7 T+ Eoagir? (122)
9(1/23T) 4 e - o

or
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2
g 33T+[ﬁ:u3; L. | - (23)
This equation says that the fragment angular momentum arises from two contributions: the first' is
purely statistical and would exist also for zero angular momentum; the second is the share of the
total angular momentum going to the fragment under study, dictated by the rigid—rotation condition.
The two contributions are added in quadrature. From the structure of Eq. 123, one would also infer

that
6 =0 =0 = 3T, (124)

the average for I, and Iy beipg zero and for I, being

[ T

. I . (125)
' Z(S+mr2) T

The latter inference can be verified directly. By isolation of the factor containing I, in the partition

function, one has

2
I .
Z].L=Hexp- BZ-T--uIZ - (126)
Thus,
' aanI
[ = —2=uST = —3 (127)
2 — I
al’_l ' E(S +mr)

as expected. Consequently, -

6’ =0 =0 =9T. (128)

x y X
The results obtained so far allow us to describe the fragment-spin alignment through the
relevant components of the polarization tensor:

2 2
P, <0 -0, =0, : (129)
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1 1 ,
o = 62 = > - (130)
1+ 3—5- 2 S+ mrz)
i 1+38T| ————
z SIT
For small fluctuations, one has
_ . 2 )
> S +mr)
P, = 1-33T S (131)
For large fluctuations, one has
1 31, 2
= . (132)

P
“ 33T 23+ mr2)

The great simplicity and transparency of the above treatment is marred by the difficulty that one

encounters when trying to produce some predictions. The first difficulty is associated with the

evaluation of the total moment of inertia X (3 + mr2). This is defined for the critical shape and
mass distribution when the decoupling occurs. In the case of the deep-inelastic process, it was not
too difficult to guess the critical shape as that of two touching fragmerits, either spherical or
somewhat deformed. In the case of three or more fragments, the problem is much less defined; in
fact, the critical shape, even for the same number of fragments, may vary dramatically in going from
moderately low-energy collisions to nearly relativistic collisions. Perhaps, with some optimism,
one could turn the problem around and, after having looked for good signs of thermalization (see
Eq.- 121 for inspiration), one might try to infer the critical shape from the observed angular
momenta and polarization.

Another difficulty, which is now associated with the entrance channel, is the definition of the
angular-momentum window to be considered in analyzing data within the framework of this theory.

Some idea may be obtained from the elaborate analyses done for other variables in relativistic
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- collisions, but at lower energies it is still an unknown.

A comforting last observation arises from Eq. 123. Sizable angular momenta can still be
expected even for a "central collision"” for which It = 0. In fact, one might venture to guess that in

many instances this will be the case, especially at the lower energy end. The angular momentum
~may then be directly related to the temperature which can perhaps be inferred from other
observables such as the internal and translational energy of the fragments. If this were fortunately

to be the case, the picture should be reasonably easy to unscramble.

4. Experimental Evidence For Statistical Decay" |

4.1 Compound Nuclcus EmisSion of Complex Fragments at Low Energies. - In the midst of a
confusing experime'ntal sitﬁation at iniermediate energies, made even less clear by a variety of
theoretical claims and counterclaims, a descent to lower encrgies helped to clarify at least one point,
namely the CN emission of complex frégments. The reaction chosen for this purpose, *He + Ag,
presented several advantages.8:64 On the one hand, the very lightness of the projectile eliminated a
source of complex fragments otherwise present with heavier projectilhes‘,» namely projectile
fragmentation. On the other hand, the reaction Q-value helped to introduce a good amount of
excitation energy with a moderate bombarding energy.

The. excitation energy of the CN ranged from 50 MeV to 130 MeV, the lower limit being
barely 10 MeV above the highest barriers. Complex fragments were detected with cross sections
dropping precipitously with decreasing energy. Their kinetic energy spectra resembled closely the
shapes predicted by the theory illustrated above. In particular, the shapes evolved from

Maxwellian-like for the lowest Z values to Gaussian-like for the highest Z values.-

A very effective way to appreciate the nature of the emission and the possible source of these
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- fragments is to plot their invariant cross section in velocity space. The invariant cross section plots
in the V- vy plane shown in Fig. 11, for a variety of fragments at 70 MeV bombardihg energy,

demonstrate striking Coulomb rings which are the paradigms of many more to follow in the next
pages. The essentially binary nature of the decay, its angular isotropy, and the extent of energy
relaxation speak suggestively of CN decay. However, the crucial proof is given by the
measurement of excitation functions extending down almost to the threshold. These excitation
functions, shown in Fig. 12 demonstrate, with their rapid rise with increasing energy, that these

fragments originate from CN decay and compete, in their emission, with the major decay channel,

namely neutron emission.

The CN fits shown in the same figure, demonstrate quanti:tatively the agreement with the CN
hypothesis, and allow one to extract the conditional barriers. The extracted barriers are presented in
Fig. 13 tégether- with two calculations.?? The standard liquid-drop model fails dramatically in
reproducing the barriers, while the finite-range model, accounting for the surface-surface interaction

| (so important for these highly indented conditional saddle shapes) reproduces the experimental
values almost éxactly. This is a most important result, since it determines with great precision
crucial points in the potential-energy surface and lends confidence to a model that can be used to
calculate the same potential-enérgy landscape. The oscillations seen in the data are bigger than the
experimental errors and are believed to be due to shell effects associated with the conditional saddle
shapes.

Additional studies at low energies demonstrated the role of the potential energy along the ridge

line. The charge distribution is U-shaped or has an additional maximum at symmetry depending
on whether the system is below or above the Businaro-Gallone point. The three reactions 74Ge,

93Nb and 13%La + °Be studied at 8.5 MeV/u produce CN well below, near, and well above the
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Businaro-Gallone point, respectively.. The observed fragments are emitted from a source with CN
velocity and are characterized by center-of-mass Coulomb-like energies. Their charge distributions
are shown in Fig. 14 together with the corresponding CN calculations. As expected, the U-shaped
| distributions prevailing at or below the Businaro-Gallone point as ¢xcmplified by the 76Ge + °Be ‘
and 2Nb + °Be reactions, develop in the case of 13°La + °Be a central peak, characteﬂétic of
systems above the Businaro-Gallone point. The solid curves in the same figure represent

calculations based on the CN hypothesis.

4.2. Compound Nucleus Emission of Complex Fragments at Intermediate Energies. - The
verification of CN emission of complex fragments at low energy cafries in itself the unvoidable
consequence of an e.venv more abundaﬁt emission at higher energies, provided that CN are indeed
forméd. | | |

Part of the initial confusion about complex fragment emission at iritermediatg energies may
have been due to the broad range of compound and non compound npcleus sources associated with
the onéet and establishment of incomi)lete fusion. This problerﬁ can be minimized to some extent
by the choice of 'rathcr asymmetric systéms. In such systems, the range of impact parametgrs is
geometrically hrmtcd by the nuclear sizes of the reaction partners. ' Furthermore, the projectile-like
spectator, if any, is confined to very small masses, and does not obscure other sources of complex
fragments.

With this in mind, we are going to follow the CN emission of complex fragments, as well as
other proces.ses, from the lowest energies up to 50 MeV/u. The reactions studied were 63Cu, 23N,
1391 4 4 9Be, 12C, 27A1 from 8.5 MeV/u up to 100 MeV/u.lOv'16 These reacpions were étudied in

reverse kinematics in order to facilitate the detection of fragments over most of the c.m. angular
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range. The use of reverse kinematics is particularly useful because it carries a most powerful
- signature for binary decays producing fragments with Coulomb-like energies. Figure 15 gives an
example of such asignature,as it appears on-line from the output of a AE-E telescope. For each
- atomic number, characterized by its own hyperbola, two energy components are clearly visible.

The explanation of these components is given in Fig. 16. In this figure we show a schematic
diagram of the invariant cross section in the vi- V1 plane for the CN binary emission of a given

fragment. The circle represents the expected Coulomb ring associated with binary isotropic CN
'“c':'mii‘ssion in the center of mass. The radius of the circ.le decreases monotonically with inéreasing
'fragment charge. A given angle in the lab system intersects each circle in two points. In other
words, a given lab angle corresponds to two c.m. angles, one forward, and the other backward. .
This explains thé two compor_xents' observed in Fig. 15. As the radius of the Coulomb circle
| decreases, the two solutions progressively come closer together, until they coincide and eventually
disappear altogether. |

As can be readily séen, the presence of the two components in the AE-E plane suggests
immediately a variety of conclusions: 1) The fragments are emitted from a source with a well
defined velocity; 2) The fragments are emitted in a binary decay; 3) the fragment's Coulomb
.' .energy indicates a complete thermal felaxation characteristic of a CN decay or completely damped
.deep-inelasticnz reaction. In this sense we believe that plots like those of Fig. 15 represent a
powerful signature for CN emission. As we mentioned above, reverse kinematics allows one to

cover a large c.m. angular range with only a moderate coverage of lab angles. Consequently, it is

possible to reconstruct invariant cross sections in the V|- VL plane for each atomic number rather

readily. A few examples are shown in Figs. 17 -19. For all the reactions studied so far one has

observed beautifully developed Coulomb rings which indicate that, up to the highest bombarding
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energies, the fragments do in fact arise from binary CN decay. Only the fragments in the
neighborhood of the target atomic number show the presence of an additional component at
backward angles (big foot), that can be attributed to quasi-elastic and deep-inelastic processes,
~and/or to the spectator target-like fragment in the incomplete fusion reactions prevailing at higher
_ bombarding energies.

The centers of these rings provide us with the source velocities for each Z value. Fpr a yariety
of reactions, these source velocities are shown in Figs. 20 & 21 as a function of the fragment's
atonﬁc number. For all bombarding energies ﬁe source velocity is independent of the fragments' Z
value. Upto 18 MeV/A, one can conclﬁde that a single source with CN velopity is responsible for
th;a émission of all the fragments. -

The radii of the Couloﬁlb rings g~ivc the.emission velocities in the center of mass. These mean
velocities with their standard deviations are shown a;s a function of Z value in Figs. 20 & 21 for a
variety of reactions. Thé almost linear dependence of these velocities upon fragment Z value is a
_ clear indication of their Coulomb origin. This is al.so supported by their independence on
bombarding energy, as shown in the same figures. The Coulomb calculations (lines), which well
reproduce the data, further i;lusUate the dggree of relaxation of the ¢.m. kinetic energy. The
~variances of the velocities arise from a variety of causes, among which the inherent Coulomb

energy fluctuation due to the shape fluctuations of the "scission point”, and the fragment recoil due

to sequential evaporation of light particles.

4.3. Angular Distributions. - The most important feature of the angular distributions providing
diagnostic information regarding CN emission is their symmetry about 90° in the center of mass.

Because of the rather large angular momenta involved in these reactions_., one also expects the
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- angular distributions to be of the form do/dQ = 1/sin@ or do/d6 = constant. In contrast, the angular
distributions of projectile-like fragments and target-like fragmenté produced in quasi- or deep-
inelastic processes should show a backward and a forward peaking, respectively.

The available data are sufficiently complete to provide information on the angular distribution
of individual fragments. Some of these angular distributions are ShOWI"l in Fig. 22a&b. In
general, one observes angular distributions with a 1/sin6 dependence (do/de = constant), except in
the vicinity of the target or projectile Z value where quasi-elastic, deep-inelastic and target-spectator
fragments manifest themselves with a forward or backward peaking.

The backward peaking of the target-like fragment is quite visible in the case of 13°La + 12C at
18 MeV/u, where it is most prominent for Z = 4,5 and vanishes for‘Z > 10. In the reaction 13%La +
27A1 at 18 MeV/u, the backward peaking extends up to Z = 16 due to the larger atomic number of
the target (Z = 13). Thus the use of a higher Z target tends to mask the CN component of a larger
. number of products with quasi-elastic and deep-inelastic products. Substantial contributions of the
quasi-elastic and deep-inelastic components at atomic numbers near that of the projectile are visible

in the reaction 13%La + 27Al for the highest Z-values.

-4.4. Cross Sections. - All of the evidence presented so far for the intermediate-energy complex
fragment emission points rather convincingly towards a CN process. However, the most
compelling evidence for this'CN mechanism lies in the statistical competition between complex
fragment emission and th¢ major decay channels, like n, p, and 4He emission. The simplest and
~ most direct quantity testing this hypothesis is the absolute cross section.

Absolute cross sections as a function of Z value are shown in Figs. 23 & 24. At first glance

_one can observe a qualitative difference between the charge distributions from the Nb-induced and
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the La-induced reactions. The former distributions portray a broad minimum at symmetry whereas
the latter show a broad central fission-like peak that is absent in the former distributions.. This
difference can be traced to the fact that the former systems are below or near the Businaro-Gallone
point, while the latter systems are well above.

In general, for a given system, the cross sections associated with the charge distributions ,
increase in magnitude rapidly at low energies, and very slowly at high energy, in a manner
coﬁsistent with Eq. 19 ‘However, the shape of the distributions is rather insensitive to the
bombarding energy over the energy range exploréd, although one observes a flattening of the
distributions with increasing bombarding energy as predictcd by Eq. 19.

| As was said above, the most important information associated with these cross sections is their
absolute value and their energy dependence. Through them, thq competition of complex fragment
emission with the major decay channels, like n, p, and a decay is manifested. This is why we
attribute a great deal of significance to the ability to fit such data. Examples of these fits are shown

-in Figs. 23&24. The calculations are performed with an evaporation code GEMINI!3 extended to
incorporate complex fragment emission. Angular-momentum dependent finite-range barriers are
_ used.2! All the fragments produced are allowed to decay in tﬁm both by light particle emission or
by complex-fragment emission. In this way highef chance emission, as well aé sequential binary
emission, are accounted for. The cross section is integrated over £ waves uptoa maximum £ value

that provides the best fit to the experimental charge distributions. In all cases shown here, the
quality of the fits is exceptionally' good and the fitted values of 2 . correspond very closely to

those predicted by the Bass model® or by the extra push model.87 In similar reactions, but with
27 Al targets, the calculation falls short of the experimental cross section even when one reaches the

¢ wave at which the lowest barrier (at symmetry) goes to zero. In this case, one may have to
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advocate fast fission to complement the CN emission.

These calculations allow one to evaluate the contribution to the charge distributions of the pure
evaporation residues arising solely from the emission of fragments with mass A < 4. This
contrib_utipn is shown in Figs. 23 & 24 by the dashed curves. One should note that for these
asymmetric reactions below 20 MeV/u, evaporation residues are predicted to be the dominant
products of the CN decay.

This remarkable success in reproducing the absolute charge distributions demonstrates that the
CN mechénism characterized at the lowest energies dominates the picture at intermediate energies.
| It seems fair to say that, for atomic numbers between projectile and target, the CN mechanism
accounts for all of the fragment emission, while for the remaining Z range it constitutes an
important component, tégcther with the quasi-elastic and deep-inelastic processes which are
abundantly represented in this region. As we have seen, in the fange of reactions considered so far,
bvinary decay is dominant. However, it is an easy prediction that, even when we gnter the energy
_range where ternary ané higher multiplicity events dominate, the CN mechanism will account for a
great deal if not all of the fragment emission through sequential-binary decay. This will be shown

below.

4.5. Coincidence Data. - If any doubt still remains concerning the binary nature of the decay

involved in complex fragment production, it can be removed by the detection of binary

coincidences. Examples of Z, - Z, correlations are shown in Figs. 25 & 26. The corresponding

- Zy + Z, spectra are also shown in Fig. 27. One can observe the binary band in the Z; - Z,

correlation as a general feature for all systems. The binary nature is proven by the correlation

angles as well as by the sum of the fragments' atomic numbers which accounts for most of the
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target + projectile charge. The missing charge can be accounted for by the extent of incomplete
fusion and by the sequential evaporation of light charged parﬁcles (A £ 4). A particularly
interesting example of this verification is shown in Fig. 28 for the reactions %Nb + °Be, 2’Al. In
this figure, the average charge sum Z; + Z, is shown as a function of Z,. The dashed lines
indicate the charge of the CN obtained in an incomplete fusion process as calculated from the
measured source velocities. The solid lines show the reduction in charge brought about by
evaporatioh from the hot primary fragments formed in the binary decay. The excitation energy of
the fragments was evaluated on the basis of the source velocity, which tells about the extent of
incomplete fusion. The remarkable agreement of these calculations with the data, which is retained

over a large range of excitation energies speaks for the internal consistency of such an analysis.

4.6. Complcx Fragment Emission at Iﬁgbcr Energies. - As we have seen above, the evidéﬁce for
the CN origin of complex fragments at low and intermediate energies is extensive. As the
bombarding energy is increased above 18 MeV/u up to 100 MeV/u, new features come into play.
First of all, incomplete fusion replaces complete fusion. Despite that, the incompiete fusion product
seems to decay like a CN, so that the "binary" signature for complex fragment emission is still

retained, at least for a while. In singles, the only noticeable feature due to the onset of incomplete
fusion is the source velocity. The invariant cross section plots in v - v, space still show well
developed Coulomb rings like those shown in Figs. 17-19.

Also the coincidence data give a strong indication of "binary" decay. In Fig. 29 the Z; - Z,
correlation diagrams are shown as they evolve from 18 MeV/u to 100 MeV/u for the reaction 139La

+12C. At 18 MeV/u the "bihary" band is narrow and near the value of Z; + Z, = Zp,,. As the
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bombarding energy increases, the binary band remains visible but broadens substantially and shifts
to the left, indicating less and less charge associated with the "binary" event. The progessively

higher abundance of events outside the ';binary" band indicates the increasing presence of ternary,
quaternary, etc. events. These features can be better appreciated in Fig. 30 where the Z; + Z,

spectra are given for the same bombarding energies as in Fig. 29. The sum peak is very sharp at 18

 MeV/u and close to the total charge of the CN, while it shifts down and becomes quite broad at 100

" MeVi

‘While the majority of events are still binary, can they still be interpreted as due to the decay of a
CN? The an“gular distributions shown in Fig. 31 are not symmetric about 900, rather they evolve

very smoothly from backward to forward peaked, as the atomic number of the fragment increases.

This suggests that at least part of the cross section is not purely statistical. On the other hand, Fig.

32 shows that the 90° symmetric component of the cross section as a function of Z-value is well

reproduced by the Gemini code at 50 and 80 MeV/u, and even at 100 MeV/u, except for the cross

section associated with the lowef atomic numbers. These very preliminary observations are very

suggestive, but the exact nature of the non-equilibrium component is not clear.

At 80 and 100 MeV/u a sizeable number of ternary and quaternary events are observed. Fig.
33 shows the spectrum of the sum charge for binary, ternary and quatem'ary events. The
astounding conclusion is that these spectra are ess‘entially the same, és if there were only one class
of objects decaying into two, or three, or four fragments. This would suggest a statistical process
whereby binary, ternary and quatei‘nary events compete statistically among each other, either in a
process of sequential statistical decay or of statistical multifragmentation. Figure 34 gives the
rapidity distribution of the centers Qf mass of binary, ternary, and quaternary events. Again, these

distributions are essentially identical and reinforce the suggestions mentioned above. But this may
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be a long story of which the data have given us so far but a glimpse.

5. High-Energy Yy-Ray Emission
High-energy 7y rays associated with intermediate-energy heavy-ion reactions were studied
initially in order to observe the theoretic;ally‘predictcd69’70 "coherent bremsstrahlung" associated
with the collective deceleration of the two parmcﬁ in the collision. Nature's lack of cooperation
forced the interpretation of the data ‘back to the less exalted "incoherent nucleon-nucleon
brcmsstrahlung"ﬁ.9 which had at least the glamour of being associated with the entrance channel.
_ ’Ihis interpr;:tation is probably correct in many cases. Howeve:_, in reviewing the data available in
the literature, we were struck by the possibility that some of the high energy 7y rays could come
from the excited CN preser;t in the c_xit channel. Unfortunately in all of these cxperirx_lénts the exit
chanﬁels were too poorly characterized to permit.any serious analysis of this sort.

Eventually we found an cxpen'meﬁt, 92Mo‘ + 92Mo at 19.5 A MeV71, where the exit channel
was well chmacteﬁzed. In this reaction the two nuclei urgdergo a deep-inelastic collisioﬁ. The
dissipated energy which may amount to as much as 800 MeV (400 MeV/fragment!) is disposed of
maigly by sequential light-particle emission. This emission is a true evaporation from the two deep
inelastic fragments and has been studied in detail as a function of exit—channel kinetic energy.72 At
times these excited fragments emit complex fragments giving rise to a 3-body and a 4-body exit
, channel.”3 This emission is also statistical and is in competition with the main decay channels of n,
D and o-particle emission. This can be inferred from the probability of 3-body decay as a function
of dissipated energy. All this is to prove that there are honest-to-goodness CN in the exit channel
which decay as such, not only insofar as the common n, p, and o-particle channels are conpemed,

but also with respect to the more exotic complex fragment emission as well.
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Coming back to y rays, the experiment measured them up to EY = 60 MeV for 10 bins of

. total-kinetic-energy loss (TKEL). The ungated 7y rays look very much like those measured in other

. reactions, which have been interpreted in terms of nucleon-nucleon bremsstrahlung. However,
when these spectra are gated with different bins of TKEL, a very differgnt picture emerges,
suggcéting an exit-channel rather than an entrance-channel origin.

In Fig. 35 three spectra are shown covering the TKEL range of the experiment. Notice how the
high excitation energy bin is associated with the stiffest y-ray tail while the low excitation energy
* bin is associated with the softest. In Fig. 36a this is shown more clearly by plotting the slope

-parameters vs TKEL. The square root;like dependence of these two quantities is very suggestive
- and one is tempted (and should be!) to interpret the slope parameter as a temperature. When, the
integrated multiplicities with lower bounds of 15 and 30 MeV are plotted versus the fragment
excitation energy (s¢e Fig. 36b), they reveal a dependence typical of CN decay.

This evidence does not come totally unexpected. We know that there are two CN in the exit
channel. We also know that they decay as such by light-particle emission and by complex fragment
emission. Why should they not decay by y-ray emission? Perhaps there are additional sources for

the y rays, like incoherent bremsstrahlung, etc., but we know for sure that those compound nuclei

must emit yrays. So let us calculate this emission probability. We can calculate the Y—ray decay

""width in an "almost" model independent way from detailed balance and the inverse cross section:

P B F(Sy) B 81 E ) . ' (133)
€) = o ZhoE) o) pE-¢ e |
8n —€/T 4
=23 o )ere . | (134)

The inverse cross section is fairly well known experimentally. In the low energy region between 6

- 20 MeV, it is dominated by the giant dipoie resonance, while above this energy the quasideuteron
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mechanism prevails. The temperature T can be calculated from the excitation energy as E, = aTz_

In the actual decay, y-ray emission competes with n, p and a-particle emissions which can be
calculated in a similar fashion. In this way we can generate the "first chance" y-ray emission

probability vs. excitation energy:

e ) e ) ,
PE)=—"= Y (135)
Y Y T T +T +T +...
T np o .

At this point one proceeds trivially to calculate the 2nd 3rd ete. chance emission probability. The
_over_all sum can be compared with experiment. In Fig. 35 we see that this calculation reproduces
almost perfectly the y-ray energy spectra from 15 MeV up to 60 MeV for all the TKEL bins, both
qualitatively and quantitatively. The slope parameters of the calculated spectra can also be
_ compared with the data. This is shown in Fig. 36a and again the fit is essentially perfect. The solid
line in the figure represents the initial calculated temperature. The actual slope parameter is
somewhat smaller due to the substantial presence of higher chance emission at the highest energies.
Similarly the integrated y-ray multiplicities are equally well reproduced by the calculation, (see Fig.
36b). We are left with the inescapable conclusion that all of the ¥ rays observed experimentally
actually come from the statistical emission of the fragments. No room is left here for any other
mechanism, or if anything else is there, it must be buried deep!

Somebody might object by saying, and perhaps by showing, that "cher" theories fit the data
almost as well and that there is no reason to choose one "theory" over another. The point is that our
calculation is really no theory to speak about. We know that there are two CN in the exit channel,
. emitting light particles and complex fragments, becaus¢ their decay products have been measured
and their statistical properties verified. Therefore, we know that these CN must also emit ¥ rays.

All we have done is to calculate, as it were, the "background" Y rays coming from CN decay. Any
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other "theory" should be.tested only after this "background" has been subtracted. In this case

nothing noticeably above "background” seems to be visible.

5.2. Pion Emission and Energy Fluctuations. - It would be interesting to check how much of the
n0, ot production in intermediate-enefgy heavy-ion reactions can be explained in terms of emission
from the CN present iﬂ the exit channel. Unfortunately, this will have to wait for more complete
- experiments, although it is an easy guesé that, in certain low energy reactions, the CN contribution
may not be negligible and must be evaluated.

In the case of y-ray emission discus.sedv above, two hot fragments are assumed to be present in
the exit channel. The calculation was performed by assigning to each fragment one-half of the
available energy. This may be correct on the average,'buf ﬂuctuations may be present, thermal or
othérwise, that may have surprising effects. In general, the role of the fluctuations in the energy
. distribution between two or more fragments becomes more important as the barrier or negative Q
value for the decay under consideration becomes bigger. Such would be the case in pion emission

where the emitter must invest an energy at least equal to the pion mass in order to emit it. Let us

consider the case of two nuclei in the exit channel with mass A1 = Ay = A and with average

Lo

excitation energy Eq = E9 =E. The probabiliry'of emitting a pion ié given by:

r
n (136)

I‘n+1‘p+I‘a+...

~ which is controlled by the ratio of the width T, to that of the most probable channel like I,

The integrated neutron decay width can be written as:

) 8mtm n

T =
" 2mp(E) h?

o, T2 p(E-B,) (137)
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where m, and B, are the neutron mass and binding energy respectively, G, is the inverse cross
section; p(E), p(E - B,,) are the level densities of the CN and of the residual nucleus, respectively,

and T}, is the temperature of the residual nucleus at excitation energy E - B,.

The differential pion decay width is:

&ftm o

N _ 1 T T _ _ '
Fn (e) = 270E) h2 epE m1t €) _ (138)

where my, € are the pion mass and kinetic energy, respectively, On the inverse cross section and the

other quantities are the same as in the previous equation.

For the ratio we have:

————— z X | (139)

‘Now let us suppose that a fluctuation in the energy partition occurs such that fragment 1 has energy

E + x and fragment 2 has energy E - x. The emission probability per fragment becomes:

TEY |
I = = +
r 2 T, |expxT, exp T,

n

r ® | exp xT exp -x/1‘1t r €
z o 1= 1;“ cosh X/T,,, . (140)

n

where T, is the temperature calculated for an energy E - m -€ and

T =T -T . - (141)

eff T

If the fluctuations are distributed as:

P(x) = exp X202 , (142)

27t(52

the average emission probability becomes:
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re T © 5
m— J.exp -X'/20° cosh /T dx (143)
n
r (e) , T (® |
—exp—>- = —F(c, T, . . : (144)
r. 212 ° |

eff n

For thermal fluctuations the variance is:

a, a,

a, +a2

= 273 (145)

where T is the common temperature of the fragments before any emission has occurred, and ajy, ap

are the level density parameters of the fragments. For a symmetric system

o = aT’ (146)

and
3
F=exp at

2
2Teff

(147)

In Fig. 37, we have plotted the thermal enhancement faetor in pion emission as a function of the
total excitation energy of the fragments. The enhancement, of course, rapidly increases with
decreasmg exc1tat10n energy Smularly in Fig. 38 we have plotted the expected pion spectra if two
fragments of mass A = 100 each share a total of 800 MeV excitation energy. In one case we have
assnmed an ex(atct partition of the energy and in the other we have allowed for thermal energy
ﬂuctuations; the t\yo slope pnrameters are quite different, the fluctuations allowing for a

substantially larger spectral temperature.

: : D _
The rather spectacular increase in spectral temperature appears less spectacular when one.

considers that its origin lies mainly in the error introduced by the sharp energy partition. Should

one consider the combined system on one hand and the two fragments in contact on the other, one

has the obvious equality:
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P.s B) = J p,(X) p, (E=x)dx, | (148)

where p,. ¢ (E) is the level density of the two fragments considered as one combined system. In

other words the folding of the level densities of the two fragments calculated over the whole range
of energy fluctuations is equal to the level density of fhe combined system at the fixed total energy
E. This means that it does not matter if one has one, two, or more fragments in thermal equilibrium.
Therefore, the spectral temperatﬁre of the pions emitted by the two fragments cannot exceed the
spectral temperature that would arise if the pions were emitted by the combined system. This is true
orﬂy if the energy ﬂuctuations are thermal. If the fluctuations are 'd-ynamical in nature and larger
than the corresponding thermal fluctuations, then the spectral temperature can indeed be larger than
the upper limit described above.

These general consideration cast some doubts on thermal models that rely on exit channel

clusterization to achieve high pion emission probabilities.

6. Conclusions

It is always preferable to draw none, but to let the audience draw theﬁ own. But if something
must be said anyhow, then, in a valedictorian spirit, one cc;ulci suggest that it pays to know
thermodynamics and statistical met.':hanvics.. This is for £§vo reasons, one subjective, the other
objective. The first is that these disc‘iplfnés are relaiively easy and their application requires little
specific knowledge abbut the system. The second is the strong penchant of Nature towards
- equilibrium, so that, if She is not quite there yet, She vwill get there pretty soon and us with Her. So
- cheer up! Post iucundam inventutem, post molestam senectutem, nos habebit humus!
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Figure Captions

Fig.

Fig.

- Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

- Fig.

Fig.
. and C) for the reaction indicated above ‘The diameter of the dots is proportional to the

. spheres represents the orbital angular momentum vector

1 Sehematic ridge line potentials (solid curve) and calculated yields (dashed curve) for: a)a
heavy CN above the Businaro-Gallone point; and b) a light CN below the Businaro-Gallone

~ point as a function of the mass-asymmetry coordinate (Zasy)._

2 . Theoretical mass distributions from comminution calculations of the deexcitation of a CN
with mass 100 at several excitation energies. Notice the power-law behavior at small masses.

‘3 - Exponent 1T of the power-law dependence as a function of excitation energy." See Fig. 2.

4 Examples of the production of a)-4—body and b) 3-body events from the sequential decay
- of the compound nucleus 145Eu (o

max = 00f) at 600 and 900 MeV excitation energy,

respectively, as calculated by the statistical model code GEMINI. Evaporated neutrons and

light charged particles (Z <2) are shown by the filled and open circles, respectively. Residue
nuclei and complex fragments are labelled by their mass and charge numbers.

5 Probability of producing exactly one, two, three, four fragments' a) with A>4, b) A>10 as
a function of excitation energy for 145Eu @ max = 600).

6 Invariant cross sections?4 for -, K-, K* and p_production as a function of the "channel”

* -
energy E* = Egpreg - KEg .-

48

7  The predicted mass distribution assuming N = 200. The three curves*® correspond to

AS/Sy=0;0.2;-0.2.

8 (Left) Schematic illustrating the twisting and the doubly degenerate bending modes for a
two-equal-spheres model. In each case the spin vectors of the fragments (symbolized by the
shorter arrows) are of equal length but point in opposite directions. (Right) Schematic
illustrating the tilting mode and the doubly degenerate wngghng modes for a

two-equal-spheres model. The long arrows originating at the point of tangency of the two
60
S

9  Schematic showing how the addition of orbital angular momentum (symbolized by the
Jong arrow) to an excited wriggling mode leads to a decrease of the orbital angular momentum
and an increase of the intrinsic angular momentum.

10 The heavy fragment spin variances for a dinuclear complex are shown as a function of

mass asymmetry The variances are shown i in dlmensmnless units after division by Ssym

the moment of inertia of a mass symmetnc sphencal fragment times the temperature63

11 Invanant cross section plots ~V V2 526/0Q0V) for representative ejectiles (Li, °Be, B,

logarithm of the cross section and the x's indicate the peak of the veloc1ty distributions. The
large arcs are sections of circles centered on the c.m. velocity (center arrow) ap g)ropnate for
complete fusion. The beam direction (0°) is indicated by the c.m. velocity vector.
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Fig.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

of the contour levels indicated are relat1ve

60

12 Dependence of the total integrated cross sections (symbols) for emission of complex
fragments on the center-of-mass energy, E in the reaction He + "Ag. The curves are

CN fits to the data.®4

c.m.’

13 Calculated?0 and experimental® conditional fission barriers as a function of the lighter
fragment charge for the fission of 111In, The experimental values are obtained from the fits in
Fig. 12. The calculated curves for the liquid drop and Yukawa plus exponential models are
shown. The dotted portions of the curves are extrapolations.

14 Center-of mass cross sections’ for products from the 74Ge, 93’Nb, 1391 a + 9Be systems
detected at 6, = 7.5°. The solid line is a CN calculation of the fragment yield at 6, . =30°.

The arrows indicate the entrance-channel asymmetry. Data below Z, . = 0.15 were not

asy
obtained for the 139La +9Be system because of the limited dynamic range of the telescope.

15 Density plot of AE-E for the reaction 18 MeV/u 93Nb + 21 Al for fragments detected from
49 to 10°. Notice the two kinetic energy components associated with each element
characterized by a hyperbolic ridge in the distribution.13

16 Schematic representation of reverse kinematics for the emission of a complex fragment in
a CN binary decay. Vj is the lab source velocity, V, is the Coulomb-like velocity of the

fragment in the source frame, while V, and Vi, are the two velocity components at the
laboratory angle 6.

17. Contours of the experimental cross section (BZG/BV“aV 1) in the V|-V, plane for

representative fragments detected in the reaction E/A = 12.6 MeV 63Cu + 12C. The beam
direction is vertical towards the top of the figure. The dashed lines show the maximum and

minimum angular thresholds and the low velocity threshold of the detectors The magnitudes
14

18 Contours of the exper1menta1 cross section (E)ZG/BV”E)V 1) in the V|-V plane for
representative fragments detected in the 18.0 MeV/u 23Nb + 27Al reaction.!3 See Fig. 17.

19. Contours of the experimental cross section (a%/avnav ) in the V|-V plane for
representative fragments detected in the 18.0 MeV/u 13%La + 12C reaction.16

20 Source velocities extracted from the Coulomb velocity rings for each Z-species produced
in the 12.6 MeV/u 93Cu + 12C & 27 Al reactions.!3 The small error bar on each point
indicates the statistic error associated with the extraction process. The single large error bar for
each data set indicates the possible systematic error due to the mass parameterization and
energy calibrations. The velocities corresponding to the beam and complete fusion are shown
as horizontal lines. In the lower portion of the figure, are shown the extracted Coulomb
velocities and widths. For comparison a calculation based on the Viola systematics65 without
(dashed line) and with angular momentum effects (solid line) is shown.

21 Source velocities extracted from the Coulomb velocity rings for each Z-species produced

&
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-detectors at equal angles on opposite sides of the beam.

61

in the 18.0 MeV/u 139La + 12C & 27 Al reactions.16

22. Angular distributions (d6/d@) in the source frame for reprcsentative‘ Z values from the
14.7 &18.0 MeV/u 139La + a) 12C and b) 27Al reactions.1® The backward rise at low Z

~ values is attributed to target-like and projectile-like quasi and deep inelastic products. Note

that the cross sections are flat for a large range of Z values intermediate between the target and

. the projectile. The solid lines are to guide the eye.

23 Angle-integrated charge distributions of complex fragments associated with fusion-like
reactions of 23Nb and 12C at three bombarding energies.1? The experimental data are

- indicated by the solid circles and the values calculated with the code GEMINI are shown by
- the histograms. The dashed curve indicates the cross section associated with classical

evaporation residues which decay only by the emission of light particles (Z < 2). Note the
value of the excitation energy (E*) corresponding to complete fusion and the value of Jmax

' assumed to fit the data.

24 Angle-integrated cross sections (solid circles) plotted as a function of the fragment

* Z-value for the 14.7 & 18- MeV/u 13%La + 12C reactions.1® See Fig. 23.

25 'Representative'Zl-Zz contour plots for coincidence events from the reactions I3Nb +%Be
& 27Al at 11.4 and 18.0 MeV/u. Z, and Z, refer to the Z-values of fragments detected in two
detectors at equal angles on opposite sides of the beam.13

26 Representative Z,-Z, contour plots for coincidence events from the reactions 13912 + 12C

& 27Al at 14.7 and 18.0 MeV/u. Z, and Z, refer to the Z-values of fragments detected in two
16 :

27 The relative yield of coincidence events plotted as a function of the sum of the atomic
charges of the two coincident fragments for the 13%La + 12C & 27Al reactions at 18 MeV/u.16

28 The mean sum <Z; + Z,> of coincidence events plotted as a function of Z, for the PNb +

9Be & 27 Al reactions at 25.4 and 30.3 MeV/u. The dashed lines indicate the average charge
of the source system estimated from the mass transfer. The charge loss for binary events due

to sequential evaporation was estimated using the evaporation code PACE, and the residual Z,

+ Z, values are indicated by the solid curves. 11

29 Contour diagrams of the experimental Z, - Z, correlation for coincident fragments

detected at symmetric anFIes on opposite sides of the beam in the 13La + 12C reactions at 18,
50, 80, and 100 MeV/u.12,16,68

30 The relative yield of coincidence events plotted as a function of the sum of the atomic
charges of the two coincident fragments for the 1391 2 + 12C reactions at 18, 50, 80 and 100
MeV /u,12:16,68

31 Angular distributions in the c.m. system for the representative Z-values from the 80 &
100 MeV/u 139La + 12C reactions.%®



Fig.
' Fig.

Fig.

Fig.

62

32 Angle-integrated charge distributions for the 50, 80 & 100 MeV/u 139La + 12C reactions.
The hlstograms represent calculatlons with the statistical code GEMINL13 : :

33 The extracted summed charge d1str1but10ns for b1nar (sohd ternary (dashed) and
quaternary (dotted curve) events from the 80 & 100 MeV/u ! La + 12C reactions.®

34 The extracted rapidity distributions for bm (soli % ternary (dashed) and quaternary
(dotted curve) events from the 80 & 100 MeV/u ! La + C reactions.®8 The vert1ca1 arrows
denote the beam and complete fus1on velocrtles

35 y—ray spectra for three d1fferent bins in total kinetic enegy loss (TKEL) for the reaction
100Mo + 199Mo at 19.5 MeV/u. The solid curves represent statistical model calculations. The
dotted curve is obtained in the same ‘way as the solid curve except for the elimination of the
quasideuteron component in the y-ray cross section.’!

F1g 36 a) "Temperatures” of Boltzman fits to measured (open circles) and calculated (stars) y-ray

spectra. The solid line denotes the primary temperature of the fragments which has been
calculated from the energy loss. b) Experimental and theoretical multiplicities of hard photons
with energies = 15 (squares) and = 30 MeV (circles), respectively. The different lines are the
result of a statistical model calculation and show the first chance contribution (dotted line), the

~sum over all generatlons (solid line) and the effect of the experimental binning of the excitation

energy (dashed line).”1

Fig. 37 Thermal- fluctuatlons enhancement factor in the emission of p1ons as a function of the total

Fig.

eXC1tat10n energy

'38 Pion spectra calculated with and without' the enhancement factor due to thermal
fluctuations.”

[
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