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Discrete False-Discovery Rate Improves
Identification of Differentially Abundant
Microbes

Lingjing Jiang,a,b Amnon Amir,a James T. Morton,a,c Ruth Heller,d

Ery Arias-Castro,e Rob Knighta,c,f

Department of Pediatrics, University of California San Diego, La Jolla, California, USAa; Department of Family
Medicine and Public Health, University of California San Diego, La Jolla, California, USAb; Department of
Computer Science and Engineering, University of California San Diego, La Jolla, California, USAc; Department of
Statistics and Operations Research, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israeld;
Department of Mathematics, University of California San Diego, La Jolla, California, USAe; Center for
Microbiome Innovation, University of California San Diego, La Jolla, California, USAf

ABSTRACT Differential abundance testing is a critical task in microbiome studies
that is complicated by the sparsity of data matrices. Here we adapt for microbiome
studies a solution from the field of gene expression analysis to produce a new
method, discrete false-discovery rate (DS-FDR), that greatly improves the power to
detect differential taxa by exploiting the discreteness of the data. Additionally, DS-
FDR is relatively robust to the number of noninformative features, and thus removes
the problem of filtering taxonomy tables by an arbitrary abundance threshold. We
show by using a combination of simulations and reanalysis of nine real-world micro-
biome data sets that this new method outperforms existing methods at the differen-
tial abundance testing task, producing a false-discovery rate that is up to threefold
more accurate, and halves the number of samples required to find a given differ-
ence (thus increasing the efficiency of microbiome experiments considerably). We
therefore expect DS-FDR to be widely applied in microbiome studies.

IMPORTANCE DS-FDR can achieve higher statistical power to detect significant find-
ings in sparse and noisy microbiome data compared to the commonly used
Benjamini-Hochberg procedure and other FDR-controlling procedures.

KEYWORDS differential abundance, discrete test statistics, FDR, high dimension,
microbiome, multiple comparison, multiple testing, sparse, statistics

An important goal of many microbiome analyses is to identify key microbes that
explain differences between groups of samples. This differential abundance testing

is used in numerous applications, such as pinpointing pathogens and beneficial agents
that differentiate healthy and disease states (1). This problem is complicated by the fact
that microbial communities are extremely complex, with as many as thousands of
species within samples, leading to the need for multiple-hypothesis correction.

In the era of big data, and especially in microbiome studies, adjusting for multiple-
hypothesis testing is necessary. The multiplicity problem was first encountered in
highly multivariate data sets in the social sciences, and it was regarded by Wilkinson as
the “curse of social sciences” (2). This is because the probability of a type I error (a single
hypothesis incorrectly yielding a positive result) increases dramatically with the large
numbers of hypotheses. Performing differential abundance analysis in microbiome
studies often requires thousands of multiple-hypothesis tests, greatly increasing the risk
of misidentifying differentially abundant microbes.

To better understand the multiple-comparison problem, consider the following two
scenarios. In Fig. 1a, we simulate two groups of samples collected from a sick cohort
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and a healthy cohort. In this case, the signal is extremely obvious—the healthy control
cohort has a completely different set of microbes compared to the sick cohort. This
difference is so strong that the healthy and sick cohorts have no common microbes.
According to the P values from the Mann-Whitney U tests, the vast majority of the
microbes have a P value of less than 0.05 (Fig. 1b). In Fig. 1c, there are no signals that
differentiate sick and healthy patients, but there are still about 50 microbes that have
P values of less than 0.05 (Fig. 1d) according to individual Mann-Whitney U tests. These
P values do not reflect a true signal differentiating the sick and healthy patients, and in
this case we know they arose purely by chance in the simulations. This is not only
apparent for the Mann-Whitney U test but for any statistical test.

One of the underlying issues is the inflated type I errors. Multiple testing correction
is used to obtain thresholds that lower the inflated type I, or false-positive, errors.
Bonferroni’s correction is a simple and popular method to control the family-wise error
rate (FWER), or the probability that at least one test out of the entire set will incorrectly
yield a positive result. Bonferroni’s correction provides strong control of type I errors
(incorrectly rejecting the null hypothesis when it is true) but often results in a high rate
of type II, or false-negative, errors (incorrectly accepting the null hypothesis when it is
false). As a result, the power of the study sharply decreases as the number of tests
increases. This is especially a problem for microbiome studies, because the strict FWER

FIG 1 Illustration of the multiple-hypothesis testing problem. (a) A heatmap of the simulated microbial abundances with 1,000 differentially abundant microbes
from 50 sick patients and 50 healthy patients. (b) The sorted P values for the microbes shown in panel a from a Mann-Whitney U test. (c) A heatmap of the randomly
simulated abundances with 1,000 microbes and 100 samples. (d) The sorted P values for each of the microbes from a Mann-Whitney U test from panel c.
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thresholds required to reject the null hypothesis for each microbe becomes extremely
small, thus erasing evidence of many differentially abundant taxa and incorrectly
leading to conclusions that there are no differences in the microbiome. As shown in
Fig. 1d, Bonferroni’s correction may guard against false-positive errors, but in Fig. 1b,
the same Bonferroni’s correction will miss many differentially abundant species.

Especially in early stages of analysis, it is often preferable to tolerate false-positive
results in order to identify interesting cases that would generate hypotheses for further
investigation, as long as the proportion of false-positive results is maintained at a
relatively low and well-defined level. Consequently, in microbiome applications, it is
preferable to apply a multiple-comparison procedure that controls the false-discovery
rate (FDR), defined as the expected proportion of false-positive findings among all the
findings (i.e., rejected hypotheses) (3). The procedure introduced by Benjamini and
Hochberg (3) (henceforth, the BH procedure) is the first multiple testing procedure for
controlling the FDR and remains very popular. For independent continuous test
statistics, the FDR of the BH procedure at level q (controlled level of false-discovery rate)

is exactly
m0

m
q, where m and m0 are the number of hypotheses and the number of true

null hypotheses, respectively (3). However, for discrete test statistics, as their tail
probabilities can be smaller than those of continuous test statistics from the null

distribution, the FDR of the BH procedure may be much smaller than
m0

m
q, resulting in

overconservative control of the FDR and reduced power in detecting significant
findings (4).

Two features of microbiome data could easily produce discrete test statistics and
possibly highly conservative FDR control: one is the low number of samples, and the
other is the underlying sparsity of the data. The typical number of samples in a
microbiome experiment ranges from ten to a few thousand, and when the sample sizes
are around ten, discreteness becomes a concern. Sparsity (the proportion of nonzero
values in the data) is typically on the order of 1% to 10%, indicating that most taxa are
present only in a very small number of samples, and this leads to discreteness of the
resulting test statistics and overconservative FDR control. To overcome this conserva-
tism, we introduce the discrete FDR (DS-FDR) method. This procedure coincides with
the permutation-based FDR estimation procedure of Li and Tibshirani (5). By permuting
the labels, this nonparametric method exploits the discreteness of the test statistics and
achieves better power than the BH procedure. It also achieves better power than the
procedure that first filters out hypotheses that have no power to be rejected at the
nominal level, the filtered BH (FBH) method (which is similar to one of the variants
suggested in reference 6). We demonstrate in both simulations and experimental
microbiome data that DS-FDR is able to detect a larger number of significant findings
than the BH and FBH procedures under the same FDR control level or, conversely,
detect the same findings using a smaller sample size.

RESULTS AND DISCUSSION
Simulations. The ideal FDR control method should return the maximal number of

significant taxa, while returning as few falsely identified taxa as possible. However, in
most cases, removing false-negative results also results in removal of more true-
negative results (since we are decreasing the P value threshold), leading to a type I/type
II error balance. Given that the tolerable FDR level is defined by the researcher, we
therefore measure the performance of the FDR methods by comparing the number of
true significant taxa detected, as long as the FDR is controlled at or below the desired
level.

To test the validity and performance of the FDR control methods, we first used
simulated communities, which provide a known ground truth, and enable changing
relevant parameters to test the effect on the performance of the method. Simulations
were composed of two groups (sick and healthy groups), each composed of multiple
samples drawn from a multinomial distribution of the group. In each simulation, 100
taxa were drawn from a different distribution between the sick and healthy groups (i.e.,
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truly different), an additional 100 originating from the same distribution (i.e., not
different), and the rest were introduced as a set of rare taxa, which were the same
across groups yet present in a very small number of samples (see Text S1 and Table S1
in the supplemental material for simulation details). Unless otherwise stated, in the
following simulations, sample size varies from 10 to 100 per group, the difference of the
mean rank is used as the test statistic, q � 0.1 is chosen as the threshold for FDR, and
1,000 permutations are performed in FDR calculation.

In the first simulation, we test the effect of the number of samples on the perfor-
mance of the Benjamini-Hochberg (BH) procedure, the proposed filtered BH (FBH), and
DS-FDR method (Fig. 2a and b). Specifically, we simulate 100 truly different taxa, 100
taxa coming from the same distribution, and 800 rare taxa coming from the same
distribution. While all methods safely control the FDR at the desired level (less than
10%), the BH procedure is the most conservative, obtaining an FDR of ~1% (compared
to ~2.5% in FBH and ~5% in DS-FDR) (Fig. 2a). As expected by the lower conservatism,
DS-FDR yields increased power to detect statistically significantly differing taxa. As
shown in Fig. 2b, DS-FDR outperforms FBH and BH in identifying the differentially
abundant taxa between two groups despite changes in the sample size: on average,
DS-FDR is able to detect at least 15 more significant taxa than BH and 6 more than FBH
(recall that the total number of truly differing taxa in these simulations is 100).
Moreover, the advantage of DS-FDR over the other two procedures is greater when the
sample size is small. For example, when the sample size is at most 20, DS-FDR identifies
24 more taxa than BH, and 16 more than FBH, on average. This is because smaller

FIG 2 Comparison of FDR methods on simulated data sets. (a) Average FDR for the DS, FBH, and BH procedures (red, orange, and blue
lines, respectively) as a function of the number of samples per group in simulation I. The green line indicates the prespecified FDR control
level (0.1) used for the tests. (b) Number of differentially abundant taxa identified by the three methods in panel a with 100 truly different
taxa and 900 truly nondifferent taxa. (c) Average FDR for DS, FBH, and BH procedures as a function of the number of rare taxa in simulation
II (50 samples per group). The green line indicates the prespecified FDR control level (0.1) used for the tests. (d) Number of differentially
abundant taxa identified by the three methods in panel c.
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sample size leads to more discrete test statistics (see Fig. S1 in the supplemental
material). Therefore, under these simulated conditions, DS-FDR has more power to
detect significant taxa than BH and FBH, while also controlling the FDR under the
desired level.

In the second simulation, we increase the sample size to 50 per group to alleviate
the discrete effect caused by small sample size but add more rare taxa (500 to 10,000
more rare taxa) to check the effect of discreteness resulting from sparsity. This is a
relevant question for microbiome analysis, because sparse abundance matrices are
common in microbiome experiments, due to both noise in the OTU (operational
taxonomic unit) picking method and the real low-abundance taxa. Figure 2c and d
show the effects of such sparse taxa on the performance of the different FDR methods.
As in the previous simulation, BH is the most conservative, with the lowest FDR
dropping to almost 0% when the number of rare taxa increases to 10,000. Affected by
such a highly conservative FDR control, the number of significant taxa that BH can
detect is always lower than the numbers detected by DS-FDR and FBH, and its
deteriorating performance becomes most obvious when the number of rare taxa goes
beyond 8,000 (Fig. 1d). In contrast, FBH and DS-FDR yield stable performance in
detecting differentially abundant taxa despite the increasing noise, while controlling
the FDR below the threshold, with DS-FDR consistently finding more taxa than FBH.
This shows that DS-FDR has an advantage in finding differentially abundant taxa in
sparse data. This is due to the fact that the sparser the data, the more severe the
discreteness problem, and thus the more power DS-FDR gains (Fig. S2).

Data-driven simulations. To provide more-comprehensive simulations using real-
microbiome read distributions, we generated data-driven simulations based on the
following two real-microbiome data sets: DIBD (gut microbiome in dog and human
inflammatory bowel disease) (7) and CS (microbial communities in the upper respira-
tory tract of cigarette smokers) (8) (see Text S1 for data-driven simulation details).

In the global null setting, we want to use data-driven simulations to demonstrate
that the DS-FDR controls the FDR when there are in fact no differentially abundant taxa
at all in the study. Under the global null setting, the FDR will be equal to the FWER, the
probability of at least one false-positive result. To simulate the data, in each real data
set, we choose N samples (the desired number of samples per group in the simulated
data) from the same group, split them randomly into healthy and sick groups, apply the
FDR methods at a prespecified level of 0.1, and then count the number of times of
making at least one false-positive error. By randomly taking samples from the real data
set, the dependence across taxa in the simulated data is the same as in the real data.
We repeat each simulation a large number of times to calculate the average number of
making at least one false-positive error, until the standard error is less than 0.001. In
scenario I (Fig. 3a to d), we set the samples to be 20 in each group and then increase
the filter level from 0 to 2,000, where we throw away taxa with a total abundance less
than the desired threshold. In scenario II (Fig. 3e and f), we vary the sample size (from
10 to 90 samples in each group) with a fixed filter level of 1,000 in the simulated data
to generate different discreteness levels. The results (Fig. 3c to f) show that all three
methods safely control the FDR in this global null setting, i.e., the probability of at least
one false-positive result is at most 0.1 when there are no differentially abundant taxa
in the data set.

Next, we introduce signals into the simulations. Similar to the global null setting, we
choose N samples from the same group and then split them randomly into healthy and
sick groups. Then, we add signals to a specific number of taxa to make them truly
different between the healthy and sick groups (see supplemental material and Ta-
bles S2 and S3 for details). Finally, we apply the FDR methods at the prespecified level
of 0.1 and calculate the average FDR and number of true signals detected by three
methods. Each simulation was repeated for a large number of times until the standard
error is less than 0.001. In scenario I (Fig. 4a to f), we set the sample size to be 15 in each
group, the proportion of true signals at 10%, and the filter level varying from 0 to 100.
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In scenario II (Fig. 4g to j), we vary the sample size (from 10 to 90 samples in each
group) at the fixed filter level of 10 and the proportion of true signals at 10%. The
results (Fig. 4c to j) show that all methods control the FDR below the threshold (Fig. 4c
and d and Fig. 4g and h), with DS-FDR detecting the largest number of significantly
different taxa across all conditions compared to the other two methods (Fig. 4e and f

FIG 3 Comparison of FDR methods on data-driven simulations with no signals. (a) Number of hypotheses remained after filtering in the DIBD
simulation, where the initial (nonfiltered) number of hypotheses is 867, for 20 samples per group. (b) Number of hypotheses after filtering in the
CS simulation, where the initial (nonfiltered) number of hypotheses is 2,817, for 20 samples per group. (c) Estimated FDR equals FWER for the DS,
FBH, and BH procedures (red, orange, and blue lines, respectively) as a function of the filter level in the DIBD simulation (20 samples per group)
in panel a. The green line indicates the nominal FDR control level (0.1). (d) Same as panel c for the CS simulation. (e) Estimated FDR equals FWER
for the DS, FBH, and BH procedures (red, orange, and blue lines, respectively) as a function of the number of samples in each group in DIBD
simulation (20 samples per group and filter level at 1,000). The green line indicates the nominal FDR control level (0.1). (f) Same as panel e for
the CS simulation.
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FIG 4 Comparison of FDR methods on data-driven simulations with signals. (a) Number of hypotheses after
filtering in the DIBD simulation, where the initial (nonfiltered) number of hypotheses is 867, for 15 samples per
group and 10% true signals. (b) Number of hypotheses after filtering in the CS simulation, where the initial
(nonfiltered) number of hypotheses is 2,817, for 15 samples per group and 10% true signals. (c) Estimated FDR for

(Continued on next page)
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and Fig. 4i and j). Also, DS-FDR is least affected by the severe discreteness shown in low
filter level and small sample size. As the filter level or sample size increases (Fig. 4e and
f and Fig. 4i and j), the simulated data become less discrete, and the other two methods
are able to catch up with DS-FDR at a high filter level or large sample size, which
coincides with previous simulation results in Fig. 2b and d.

We are interested in the procedure that maximizes the expected number of true
discoveries, while still controlling the FDR at level at most q. Our empirical studies show
that all the procedures considered have FDR at most q. Therefore, among all procedures
considered, we would like to select the procedure with the greatest average number of
true discoveries. This procedure is clearly DS-FDR. This is our preferred procedure
despite the fact that the FDR level of DS-FDR is higher than that of the competing
methods, since it is still below the nominal level we are willing to tolerate.

Real data applications. To validate the advantage of DS-FDR over the classical BH
procedure in microbiome studies, we compared the three FDR methods using the
following nine real microbiome data sets: CFS (gut microbiome in individuals with
chronic fatigue syndrome) (9), MLT (gut microbiota in mice lacking Toll-like receptor 5
[TLR5]) (10), DME (delivery mode shapes the initial microbiota in newborns) (11), CD
(gut microbiome in new-onset Crohn’s disease) (12), UKT (human fecal microbiome in
the TwinsUK cohort) (13), DIBD (gut microbiome in dog and human inflammatory
bowel disease) (7), CS (microbial communities in the upper respiratory tract of cigarette
smokers) (8), AGP (American Gut Plant Number subset) (The American Gut Project), and
AGA (American Gut Antibiotic History subset) (The American Gut Project). These data
sets have different characteristics of microbiome data, covering a wide range of sample
size, total number of taxa, and sparsity rate (number of nonzero entries in the entire
data set) (Table S4). We will demonstrate how DS-FDR can help alleviate the effect of
arbitrary filtering in microbiome analysis and its advantage in identifying similar
numbers of differentially abundant taxa as the BH procedure does, yet with much
smaller sample size.

Application I: alleviating the effect of arbitrary filtering. One common dilemma
in initial processing of microbial abundance tables is choosing the proper parameters
to clean up the data. In standard experiments, many external factors introduce noise
into the data set, such as contamination or sequencing error. These errors, together
with real, rare microbes present only in a small fraction of the samples, are not
informative for studying the variables of interest, and they reduce our ability to identify
differential abundance because of the additional multiple-hypothesis testing burden
they introduce. A common approach to overcome this problem is to filter out low-
abundance taxa (i.e., taxa with total prevalence or abundance less than some desired
threshold). However, this filtering can also remove biologically relevant taxa. Therefore,
choosing the correct threshold is important for differential abundance testing. Figure 5a
to d (blue line) shows the effect of minimal abundance filtering on the number of
significant differential taxa detected using BH.

To demonstrate how DS-FDR can alleviate the effect of arbitrary filtering, we
compared the FDR methods in the following two experiments on chronic fatigue
syndrome (CFS) and mice lacking Toll-like receptor 5 (MLT). In both data sets, we drop
samples with reads of less than 1,000 in each taxon. This is done to alleviate the
possible effects of technical artifacts on our analysis. Hence, our CFS data set has 5,812

FIG 4 Legend (Continued)
the DS, FBH, and BH procedures (red, orange, and blue lines, respectively) as a function of filter level in the DIBD
simulation (15 samples per group) in panel a. The green line indicates the nominal FDR control level (0.1). (d) Same
as panel c for the CS simulation. (e) Number of truly differential OTU discoveries for the DS, FBH and BH procedures
(red, orange, blue, respectively) as a function of filter level in panel a. (f) Same as panel e for the CS simulation. (g)
Estimated FDR for the DS, FBH and BH procedures (red, orange, blue, respectively) as a function of number of
samples in each group in the DIBD simulation (15 samples per group, filter level at 10). Green line indicates the
nominal FDR control level (0.1). (h) Same as panel g for the CS simulation. (i) Number of truly differential OTU
discoveries for the DS, FBH, and BH procedures (red, orange, and blue lines, respectively) as a function of number
of samples in each group in panel g. (j) Same as panel i for the CS simulation.
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FIG 5 Performance of FDR methods on filtered microbiome data. (a) Number of differentially abundant taxa detected as a function of the taxon filtering level
based on the CFS data set. Results for the DS, FBH, and BH procedures using an FDR threshold of 0.1 are shown by red, orange, and blue lines, respectively.
(b) Number of differentially abundant taxa detected as a function of the taxon filtering level based on the MLT data set. Results for the DS, FBH, and BH
procedures using an FDR threshold of 0.1 are shown by red, orange, and blue lines, respectively. (c) Expanded view of panel a for a filtering level of 0 to 100
on the CFS data set. (d) Expanded view of panel b for a filtering level of 0 to 100 on the MLT data set. (e) Heatmap displaying the additional taxa detected
with DS-FDR (filtering threshold of 5) compared to FBH in CFS data. CFS data for healthy controls and patients are shown. Each row represents a unique taxon,
and each column depicts a sample, with colors showing the relative abundance. Taxa are sorted according to the value of the statistic used (mean rank
difference). (f) Same as panel e but for the MLT data. MLT data for the TL5 knockout mice and wild-type mice are shown.
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taxa present in 87 samples for 48 patients and 39 control participants, and the MLT data
set contains 908 taxa in 5 TLR5 knockout mice and 3 wild-type mice. These two data
sets were chosen because they display two different characteristics that can possibly
cause discrete P values: large number of rare taxa or small sample size. The CFS data set
is sparse with only 5.16% nonzero entries, whereas the MLT data set, which has about
33% nonzero values, has no more than five samples in each group.

As can be seen in Fig. 5a and b, low (or no) filtering can lead to a highly reduced
detection power, whereas a high filtering level again can reduce the power (probably due
to filtering of real relevant taxa). Due to the discrete nature of low-abundance taxa, DS-FDR
can naturally alleviate this problem, thus enabling higher power even at low filtering levels
(Fig. 5a to d, red lines), while reducing the need for arbitrary filtering criteria. Additionally,
DS-FDR consistently detects more taxa as significantly different in both data sets. This is due
to the fact that DS-FDR is a less conservative method compared to the other two methods.
The extent of the increased number of significant taxa identified by DS-FDR compared to
the other methods varies and depends on the underlying distribution of microbes and the
number of samples. For example, in Fig. 5b, DS-FDR detects up to 40 taxa that are different
between TLR5 knockout mice and wild-type mice, whereas BH and FBH detect between 3
(when no filtering is applied) and 15 (at higher filtering level) taxa. Additionally, note that
while the performance of BH and FBH improves at higher filtering levels (due to removal
of low-abundance taxa, which leads to a smaller number of hypotheses), DS-FDR shows a
decrease in the number of taxa detected at higher filtering levels, indicating that many
differentially abundant taxa have low abundance, and thus are thrown away when the
filtering is applied. When investigating CFS instead, the increase in detected differentially
abundant microbes between different methods is much less pronounced, probably be-
cause the discreteness problem is less severe (making this factor easier to pick up by less
powerful methods).

To further validate that DS-FDR is detecting truly differential taxa, we show in Fig. 5e
and f heatmaps of additional differentially abundant taxa detected by DS-FDR com-
pared to FBH (using a filtering threshold of 5) for the two experiments. The significantly
differential taxa found by DS-FDR in MLT are highly abundant in wild-type mice yet
hardly exist in TLR5 knockout mice (Fig. 5f). Figure 5e also shows some taxa high in the
controls while low in the patients or vice versa. This clear distinction between the two
groups in both data sets indicates that DS-FDR is finding potentially interesting bacteria
that merit further investigation.

In summary, filtering low-abundance taxa is necessary if performing BH; however,
this procedure incurs the price of losing interesting behavior in the low-abundance taxa
and introducing an arbitrary threshold that is typically not empirically justified. Using
FBH partially solves this problem by removing taxa that cannot reach the minimal
P value. However, DS-FDR requires neither this arbitrary threshold in BH nor the
partially subjective filtering criterion in FBH, and it is much less sensitive to the filtering
level, allowing the researcher to keep more taxa while paying a small price for multiple
testing on the rare taxa.

Application II: reducing the cost of additional samples in differential abun-
dance identification. DS-FDR has more statistical power than BH and FBH when the
test statistics have different discrete null distributions. Therefore, fewer samples are
required to identify differentially abundant microbes than when using the other two
methods. This pattern is consistent across multiple experiments, including comparing
vaginal births versus Caesarean section babies (Fig. 6a), obese versus lean twins
(Fig. 6b), healthy dogs versus dogs with IBD (inflammatory bowel disease) (Fig. 6c),
healthy subjects versus Crohn’s disease patients (Fig. 6d), subjects eating more than 30
types of plants per week versus eating less than 5 types (Fig. 6e), and subjects who have
not taken antibiotics in the past year versus subjects who have taken antibiotics within
a week (Fig. 6f). Figure 6 and Table 1 demonstrate that DS-FDR can detect the same
number of bacterial OTUs with at least 15% fewer samples than needed for BH.
However, the amount of improvement varies across these studies, ranging from a
decent amount of 16% (CD data set) to as high as 60% (AGA data set) compared to BH
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FIG 6 Performance of FDR methods on subsampling of microbiome data. (a) Number of differentially abundant taxa detected as a function of the sample size
in each group on the DME data set. Results for the DS, FBH, and BH procedures using an FDR threshold of 0.1 are shown by red, orange, and blue lines,
respectively. The green line represents the maximum number of differentially abundant taxa identified by BH, and the length of the green line shows the
samples saved by DS-FDR for identifying similar number of taxa compared to the other two methods. (b) Same as panel a on the UKT data set. (c) Same as
panel a on the DIBD data set. (d) Same as panel on the CD data set. (e) Same as panel a on the AGP data set. (f) Same as panel on the AGA data set.
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and only 3% (AGP data set) to 22% (DME data set) compared to FBH. This could be due
to a number of factors, such as the underlying microbial distribution and sparsity and
the effect size of the sample groups. Note that a high reduction in sample size for DS-FDR
compared to BH does not necessarily indicate that such a huge gap still exists between
DS-FDR and FBH. For example, DS-FDR could use 52% fewer samples than BH on the AGP
data set yet only 3% lower than FBH. The relatively close result of FBH to DS-FDR occurs in
DIBD (7%), CD (4%), and AGP (3%) data sets, which share similar characteristics of having
high sample size and low sparsity. This indicates that FBH could be competitive with
DS-FDR in data sets with such discrete features. Overall, DS-FDR is shown to require the
smallest number of samples to detect the same effect, which can reduce the cost of
additional samples required for differential abundance identification.

Conclusion. In both simulations and real data sets, we have shown that DS-FDR
improves the power of statistical tests, especially compared to the traditional BH
procedure, while controlling the FDR at the desired level. This has important practical
consequences, such as alleviating the effects of arbitrary filtering in microbiome
experiments or halving the required sample size for a given level of statistical power to
detect differences in some cases. We note that this improvement is achieved although
no additional assumptions are used in DS-FDR compared to BH or FBH. Moreover,
future work can be done to exploit the dependency between tests, such as incorpo-
rating existing information about the grouped or hierarchical dependence between
hypotheses under consideration when controlling the FDR (14, 15).

The application of DS-FDR is not limited to the multiple testing at the taxon level as
mostly shown in this study; tests at higher taxonomic rank, such as family or phylum,
are also applicable, although the advantage may be smaller in this case because fewer
tests are performed and the data are less sparse. Because metabolomic data share
similar characteristics of small sample size and sparsity with microbiome data sets,
DS-FDR could also be applied to these and other omic data sets to improve the multiple
testing procedures more generally. Moreover, DS-FDR can be combined with compo-
sitional tools, such as balances (16), ANCOM (17), and SparCC (18) to alleviate the
compositional problem in numerous microbiome data analysis tasks.

MATERIALS AND METHODS
In the BH procedure, how close the FDR control is to the nominal level depends critically on the

distribution of P values under the null hypothesis. If a null hypothesis is simple (uniquely specifies the
population distribution) and the corresponding test statistics are continuous, then the P values are
uniformly distributed in [0, 1] under the null hypothesis, and therefore, the FDR is controlled at the exact

level
m0

m
q. However, if the test statistics are discrete, the null distribution of the P values is stochastically

larger than the uniform distribution, and thus, the FDR could be much smaller than
m0

m
q. This is because

the expression for the FDR of the BH procedure involves sums with the term PrHi�pi �
k

m
q�, where

PrHi
indicates the probability computed under the true null hypothesis Hi, pi is the P value of a true null

hypothesis Hi, and k � 1, . . ., m. If the null distribution of the P value is uniform, then PrHi�pi �

k

m
q � �

k

m
q. However, for the discrete test statistics, PrHi�pi �

k

m
q� may be less than

k

m
q, and the greater

the gap between them, the smaller the true FDR level of the BH procedure. Thus, the BH procedure can

TABLE 1 Summary of subsampling comparisons in Fig. 6a

Data set
No. of bacterial
taxa detected

% fewer samples
(DS vs BH)

% fewer samples
(DS vs FBH)

DME 72 56 22
UKT 61 17 11
DIBD 86 35 7
CD 717 16 4
AGP 215 52 3
AGA 102 60 11
aDS, discrete-FDR method; BH, Benjamini-Hochberg FDR method; FBH, filtered Benjamini-Hochberg FDR
method.
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be conservative for discrete test statistics, in the sense that its actual FDR level may be smaller than
m0

m
q.

Moreover, such conservatism does not decrease as the number of hypotheses increases or with
modifications of the original BH procedure that can provide higher power by incorporating an estimate
of the number of null hypotheses (19).

Several other approaches that take the discreteness into account for FDR control have been
suggested in the literature. Kulinskaya and Lewin (20) suggested an FDR-controlling procedure using
randomized P values to account for the discreteness of the null distribution, thus guaranteeing that the
P values are uniformly distributed under the null hypothesis and that the FDR is controlled exactly at the
desired level when the P values are independent. However, due to the randomness of the P values,
interpretation of the results is not straightforward. Gilbert (6) proposed a two-step FDR-controlling
procedure for discrete data. First, remove the null hypotheses with test statistics that are unable to reach
the level of significance necessary if in the second step the Bonferroni procedure is applied, as suggested
by Tarone (21). Second, apply the BH procedure to the remaining hypotheses. Although this approach
reduces the essential dimensionality of the multiplicity problem and therefore can be more powerful
than the BH procedure on all hypotheses, it does not exploit the discreteness of the test statistics that
are not removed in the first step. Recognizing this limitation, Gilbert suggested that the BH procedure
at level q* � q should be applied in the second step. However, there is no theoretical guarantee that the
FDR is controlled (6), even if the P values are independent. Another limitation of Gilbert’s procedure is
that the filtering step, which uses a Bonferroni-like threshold, may be too aggressive, as it filters out
hypotheses for which the P value cannot reach a lower bound which is potentially much lower than the
actual P value threshold using the BH step at the second step.

Motivated by the formulation of the BH procedure, Heyse (4) suggested a discrete BH procedure that
exploits more fully the discrete null distributions of the test statistics and demonstrated in simulations
that it controls the FDR at the prespecified level and has power equal to or greater than both the BH and
Gilbert methods. Let p�1� � . . . � p�m� be the sorted P values (subscript parentheses indicate sorted P
values, and raw P values are without parentheses), then the BH-adjusted P values are p�j�

BHadj �

mini �j

m

i
p�i�, and the BH procedure at level q is equivalent to rejecting all hypotheses with BH-adjusted

P values of �q. Heyse suggested a procedure that adjusts P values as p�j�
Heyse.adj � min

�p�j�1�
BHadj,

� l�1
m PrHl

�pl �p�j��
j �, and the procedure at level q is equivalent to rejecting all hypotheses with

Heyse-adjusted P values of �q. The procedure by Li and Tibshirani (5) can be expressed as the DS-FDR

procedure that adjusts P values as p�j�
DS-FDR.adj � mini�j

� l�1
m

PrHl
�pl � p�i��

i
, where the null probabilities are

estimated using permutations of the labels (see supplemental material for the proof and see the detailed
algorithm below). These adjusted P values are at least as small as Heyse’s adjusted P values (when the
probabilities are computed by permutations); thus, the DS-FDR procedure is potentially more powerful
than Heyse’s procedure. The gain from using this procedure over the BH procedure comes from the fact
that PrHl

�pl � p�i�� � p�i�. If hypothesis Hl cannot achieve a P value below p(i), then PrHl
�pl � p�i�� � 0 and

the dimensionality of the multiple comparisons problem is reduced. If hypothesis Hl can achieve a P value

below but not equal to p(i), then PrHl
�pl � p�i�� � p�i� and a smaller quantity adds to P�j�

DS-FDR.adj. On the

other hand, if all the null distributions are identical, then there is no gain in using the DS-FDR procedure
over the original BH procedure. Therefore, DS-FDR procedure rejects at least as many null hypotheses as
the BH procedure. However, if all null distributions are the same, then the DS-FDR procedure rejects
exactly the same null hypotheses as the BH procedure does.

In microbiome data, the null distribution of test statistics is unknown, and therefore, it is often
inappropriate to make parametric assumptions. The discrete (DS) FDR procedure, an application of Li and
Tibshirani’s FDR method (5) to microbiome data analysis, generates the null distribution of the statistic
using permutations, and therefore is potentially very useful. Even though Li and Tibshirani’s FDR method
was not developed specifically for discrete test statistics, we find that it yields a useful procedure for
discrete data. The DS-FDR algorithm follows.

1. Compute the test statistics for the original labeling of observations from m taxa T1, . . .,Tm.
2. Permute the labels B times, and recalculate all the test statistics each time. In the bth permu-

tation, denote the computed statistics Tj
*b,j � 1, . . .,m.

3. For a range of values of the cut-point C, compute V̂ �
� j�1

m �b�1
B I � |Tj

*b| � C��I �|Tj| �C�
B�1

and

R̂ � �
j�1

m

I �|Tj| � C�.

4. Estimate the FDR at the cut-point C by FDRc
ˆ �

V̂

R̂
.

5. Find Ĉ � argminc� FDRc
ˆ � q�. If no solution exists, set Ĉ � infinity.

6. Reject all hypotheses with |Tj| � Ĉ.

Here we compare the performance of DS-FDR with the BH procedure and the filtered BH (FBH)
procedure on simulated and real microbiome data. The FBH procedure is analogous to Gilbert’s (6)
two-step procedure, and it is preferred over Gilbert’s method as it is theoretically guaranteed that the
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FDR is controlled and is less aggressive in removing potentially interesting taxa: first, reduce the number
of tests by eliminating hypotheses whose minimal achievable P value cannot reach the nominal
unadjusted q level of statistical significance, and second, apply the BH procedure to the reduced set of
microbes. In the first step, we calculate the smallest P value achievable for each hypothesis test,
determined by computing a P value for the most extreme possibility that all of the observed responses
occurred in the same group, and then remove those microbes whose corresponding minimal P value
cannot reach the prespecified q level. This approach reduces the dimensions of multiple testing and
increases our power to detect differentially abundant microbes. As shown in the simulations (Fig. 2 to 4),
FBH alleviates the conservatism in BH procedure, but it is still inferior to the DS-FDR procedure, because
FBH does not exploit the discreteness of the test statistics that are not removed in the first step.
Therefore, we recommend the DS-FDR, since it has the advantage of not deteriorating in handling
discrete data and not requiring any type of predefined filtering threshold like FBH to reduce the number
of hypotheses. We expect that DS-FDR will be a valuable tool for microbiome analysis to discover
additional microbes that would not be discovered by the BH and FBH procedures. Since further
investigations on these additional microbes may be costly, it is important not to launch investigations
into too many false leads. We have shown in simulations and applications to real data that the DS-FDR
procedure has higher power to discover truly differentially abundant microbes than other FDR-
controlling procedures, while guaranteeing that only a well-defined fraction of the discovered associa-
tions are false-positive results.

To facilitate its adoption by the microbiome community, DS-FDR is available in Calour (https://github
.com/biocore/calour), an exploratory and interactive tool for microbiome analysis, as well as a standalone
python module (https://github.com/biocore/dsfdr) and a QIIME-2 plugin (https://github.com/serenejiang/
q2_dsfdr). Also, the Ipython notebooks and python scripts used to perform all the analyses and
simulations can be found in https://github.com/knightlab-analyses/dsfdr-analyses.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00092-17.
TEXT S1, DOCX file, 0.1 MB.
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