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ARTICLE

Single-nuclei RNA-seq on human retinal tissue
provides improved transcriptome profiling
Qingnan Liang 1,2,3,9, Rachayata Dharmat1,2,8,9, Leah Owen4, Akbar Shakoor4, Yumei Li1, Sangbae Kim1,

Albert Vitale4, Ivana Kim4, Denise Morgan4,5, Shaoheng Liang 6, Nathaniel Wu1, Ken Chen 6,

Margaret M. DeAngelis4,5,7* & Rui Chen1,2,3*

Single-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by

generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-

seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of mul-

tiple cell types with distinct functions. Six samples from three healthy donors are profiled and

high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are

observed and marker genes for each cell type are identified. The gene expression of the

macular and peripheral retina is compared to each other at cell-type level. Furthermore, our

dataset shows an improved power for prioritizing genes associated with human retinal dis-

eases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In

conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen

tissues can provide insight missed by either human bulk RNA-seq or animal models.
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The retina is a heterogeneous tissue and is composed of
multiple neuronal and non-neuronal cell types1. In the
human retina, there is an ordered array of ~70 different

cell types across five major neuron classes: photoreceptors (rods
and cones), retinal ganglion cells (RGCs), horizontal cells (HC),
bipolar cells (BC), amacrine cells (AC), and a non-neuronal
Müller glial cell (MG), each playing a unique role in processing
visual signals1,2. The transcriptome of the human retina has been
reported using bulk tissue RNA-seq3,4, and the overall gene
expression profiles from different retinal regions (macular and
peripheral region) were compared to each other5. These studies
provided general transcriptomic information of the retina as a
whole tissue, but they could not reveal the entirety of the retina’s
complexity because it lacks individual cell-type resolution. In
addition, transcriptomic studies of selected cell types of the
human and primate retina were performed but were not sufficient
in obtaining the complete profile of all major cell types6,7. The
profiles of individual cell types, particularly rare types that
account for a small portion of the retina, will offer important
insights to the scientific knowledge of biology and disease. For
example, particular cell types, such as the cone cells in the cone-
rod dystrophy (CRD) and the retinal ganglion cells in glaucoma,
are the first targets of the diseases8,9. However, both cell types are
found in low proportions in the human retina and their tran-
scriptome profiles have not been well studied. Given the great
benefit of obtaining the transcriptome at the individual cell type
or at the individual cell level, single-cell RNA-seq on human
retina tissue is an area of great interest.

Recently, single-cell RNA-seq studies have been performed on
mouse retina, both within the whole retina10 and within specifi-
cally sorted cell types11,12. These studies provided unprecedent-
edly high-resolution transcriptomic data of each cell types and
allowed for novel cell subtype discovery. However, usage of
mouse datasets could be limiting given the considerable differ-
ences between the human and mouse retina. For example, the
mouse retina lacks the macula region of the retina that is found in
humans and primates13,14, a structure that is essential for both
high visual acuity and color vision perception in the retina.
Mouse cone cells are also different from those of humans in their
wavelength-sensitive opsin expression patterns. Thus, we propose
that single-cell transcriptomic study on human retinal tissues will
expand our knowledge of the retina and become a rich resource
for related research, such as human disease-related studies.

Unlike model-organism-based studies, more factors are
needed to be taken into consideration for human tissue studies
in order to provide reliable results. One of the major concerns
in profiling the transcriptome of post-mortem human tissues is
RNA integrity. This issue worsens in single-cell-level studies
because the dissociation of tissue occurs for an extended period
of time after the retina is dissected. Thus, the dissociation itself
could also lead to changes in transcription due to damage of the
retina that might have occurred during the waiting period.
Another concern is the health condition of the human tissue,
since studies using multiple individuals with differing health
conditions could potentially add complexity in proper inter-
pretation of the data. Here, we report a single-cell tran-
scriptomic study on healthy human retina tissues using snRNA-
seq. We tackle the potential issues by two approaches. The first
consisted of using snRNA-seq instead of single-cell RNA-seq
(scRNA-seq) to profile tissues confirmed as healthy by a strict
post-mortem phenotyping. The second approach involved
snRNA-seq, where tissues were flash-frozen immediately after
dissection to preserve RNA integrity, minimizing the variation
due to differences in tissue dissociation conditions. With the
extensive post-mortem phenotyping, we can ensure only heal-
thy tissues are used in our study.

Using the snRNA-seq approach, a total of 5873 nuclei are
profiled from both the peripheral and macular region of three
frozen human donor retina samples. Through unsupervised
clustering of the gene expression profiles, clusters corresponding
to all seven major cell types in the human retina (rod, cone, MG,
HC, AC, BC, and RGC) are identified. Differentially expressed
genes from each cell type are obtained. We compare the gene
expression profile between macular and peripheral region for
each cell types. Significantly higher expression of mitochondrial-
electron transport genes is found in macular rod cells compared
to the expression of the peripheral ones, which may indicate that
comparatively higher levels of oxidation stress exists in the
macular, providing a potential explanation of higher vulnerability
of macular rod cells during aging. In addition, as expected,
compared to the published mouse single-cell data, the single-
nuclei human data show stronger predictive power in prioritizing
genes associated with human disease. Finally, we find that pho-
toreceptor DEGs significantly enrich inherited retinal disease
(IRD) genes, indicating that they can serve as a prioritization tool
for novel disease gene discovery and cell-specific pathway ana-
lysis. Overall, our study reports a transcriptome profile of all
major cell types of the human healthy retina at the resolution of
the individual cell, which would serve as a rich resource for the
scientific community.

Results
The generation of the snRNA-seq data of human retina. To
generate transcriptome profiles for human photoreceptor cells,
retinae from three separate, healthy donors were obtained (n= 3
donors). All three donors were Caucasian, ages between 60 and
80 years old (Table 1), and were thoroughly examined as pre-
viously described in the methods. Figure 1 shows an example of
the donor tissues used for this study. There was no visible
pathogenic indication found, not even macular drusen, a hall-
mark of age-related macular degeneration commonly found in
this age group, according to the fundus images15. Two-sample
punches from each retina (n= 6), one from the macula region
and the other from the peripheral region, were collected and
subjected to single-cell nuclei RNA-Seq. After dispensing, nano-
wells were imaged and only wells with single nuclei were selected.
cDNA library construction and sequencing were performed for a
total of 6542 individual nuclei. Distribution of the number of
nuclei from each sample is listed in Table 2. To exclude low-
quality data, several QC steps were conducted (described in the
methods). As a result, 669 nuclei were filtered out, leaving a total
number of 5873 nuclei for downstream analysis. On average,
31,186 mapped reads were obtained per nucleus, with the median
number of genes detected at 1044. To further evaluate the quality
of snRNA-Seq data, bulk RNA-seq from the corresponding
sample was performed. Good correlation between the bulk gene
expression (FPKM, paired-end seq) and single-nuclei gene
expression (average of normalized read count after transforma-
tion and 3′ end seq, see methods) was observed with positive
correlation coefficient ranges from 0.66 to 0.71 (all genes with
non-zero expression were used with gene numbers ranging from
12163 to 13657, among six samples. Spearman correlation coef-
ficient was used).

Table 1 Medical information of the sample donors.

Donor number Globe Age Sex Race

12–887 OS (left eye) 78 F Caucasian
13–0025 OD (right eye) 78 M Caucasian
13–0347 OS (left eye) 83 M Caucasian
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Identification of major cell types in the human retina. To
identify individual retinal cell types, we performed unbiased
clustering on the gene expression profiles of 5873 human retinal
nuclei. Seven clusters were identified, each of which contained
cells from all six samples (Fig. 2a, Supplementary Fig. 1), sug-
gesting relatively low sample bias. Based on the expression pat-
tern of cell-type-specific marker genes in the cluster, each cluster
is mapped to individual cell types (Supplementary Data 1). As
shown in Fig. 2b, markers for known retinal cell types, such as
PDE6A for rod cells, NETO1 for bipolar cells (BC), SLC1A3 for
Müller glial cells (MG), GAD1 for amacrine cells (AC), SEPT4 for
horizontal cells (HC), ARR3 for cone cells and RBPMS for retinal
ganglion cells (RGC), showed cluster-specific expression pattern.
Thus, each cluster could be assigned to a known retinal cell type.
Based on the number of nuclei in each cluster, we were able to
quantify the proportion of each cell type in the sample. As shown

in Fig. 2c and Table 3, the composition of different cell types from
the human peripheral retina was generally consistent with that
from previous mouse studies, with the exception of a higher
percentage of MG cells and a lower percentage of AM cells
observed in the human retina10,16, a piece of information that
would require further experimental validation. This trend is
consistent with the results reported from a previous study in
monkey, in which the relative ratio of BC: MG: AC: HC is close to
40:28:22:916,17. As expected, a lower rod proportion and higher
BC, HC, and RGC proportions were observed in the human
macular sample compared to the human peripheral retina. Fur-
thermore, we noticed that the cone proportion in the macula
region was only slightly higher than that of the peripheral, which
was because that the macula samples collected for this study did
not contain the fovea, where cone cells have a much more
increased proportion. Since snRNA-seq is less biased in sampling
in comparison to single-cell sequencing, a better estimation of cell
proportion can be obtained. By comparing the transcriptome of
cells in each cell type with all other cells, a total of 139, 101, 147,
167, 174, 255, and 249 cell type differentially expressed genes
(DEGs) was identified for rod, BC, MG, AC, HC, cone, and RGC,
respectively (here, DEGs are defined by transcriptome compar-
ison between one cell type and all other cells, e.g., rods vs. non-
rods; see methods; Supplementary Data 2). Gene ontology
enrichment analysis of biological process terms was performed
with these DEGs (Fig. 2d, Supplementary Data 3). Top GO terms
enriched by each DEG lists were consistent with our previous
knowledge for each cell type, such as visual perception term for
photoreceptor cells18, ion transmembrane transport term for
retinal interneurons19–21, and neuron migration term for Müller
glia cells. These results indicated that our result faithfully repre-
sented the transcriptome profiles of major cell types of the human
retina.

a

b
37/73

200 µm200 µm

Fig. 1 Analogous color fundus and OCT images demonstrating normal findings for post-mortem eyes. a Color fundus imaging of post-mortem retina
showing a normal phenotype. b OCT image of post-mortem retina showing a normal phenotype.

Table 2 Basic sample information showing nuclei numbers
and correlation with bulk RNA-seq of the same sample.

Donor Region Number
of nuclei

Number of
nuclei
after QC

Correlation
with bulk

12–887 Macular 1621 1428 0.68
12–887 Peripheral 415 388 0.66
13–0025 Macular 1613 1458 0.69
13–0025 Peripheral 424 391 0.67
13–0347 Macular 1805 1669 0.69
13–0347 Peripheral 664 539 0.71

Calculation of correlation was performed between the single-nuclei RNA-seq and bulk RNA-seq
of the same samples. For single-nuclei RNA-seq (3′-end seq), the gene expression data from
each nucleus were gene-filtered, normalized, and log-transformed (method) before averaging.
For bulk RNA-seq (paired-end seq), FPKM was used
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Regional gene expression variation revealed for human retina.
The macula is a structure unique to human and other primates.
Several studies aimed at identifying genes that are differentially
expressed between macular and peripheral retina have been
conducted. For example, using a SAGE approach, Sharon et al.
reported 20 genes with high expression in the macula and 23
genes with high expression in the peripheral region in the retina
(referred as SAGE gene list)22. Based on bulk RNA-Seq, Li et al.
reported 1239 genes with high expression in macular and 812
genes with high expression in the peripheral region5. To compare
our data against these published data, we generated the virtual
bulk macular and peripheral RNA-Seq data by in silico

combining snRNA-Seq from each region. As a result, we obtained
a list of 234 genes that were highly expressed in the macular
region and 214 genes that were highly expressed in the peripheral
region (Fig. 3a, Supplementary Data 4). Significant overlapping
between the SAGE gene list and our list was observed. Specifi-
cally, for the SAGE gene list, 13 out of 21 macular genes
(SLC17A6, SNCG, NEFL, NEAT1, STMN2, YWHAH, UCHL1,
DPYSL2, APP, NDRG4, TUBA1B, MDH1, EEF2) and 11 out of 24
peripheral genes (SAG, RCVRN, UNC119, GPX3, PDE6G, ROM1,
ABCA4, DDC, PDE6B, GNB1, NRL) were also observed in our
gene list. However, most of the genes reported by the SAGE list
but not included in ours (14 out of 21) also showed a consistent
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Fig. 2 Unsupervised clustering identifies seven major cell types in the human retina. a Clustering of 5873 human retina single-nuclei expression profiles
into seven populations (right) and representation of the alignment of six datasets from three donors (left). b Profiles of known markers (PDE6A, NETO1,
SLC1A3, GAD1, SEPT4, ARR3, RBPMS) in each cluster. c The proportion of the seven cell types (rod, BC, MG, AC, HC, cone, RGC) in the macular and
peripheral samples (bar graph shows the mean of the proportion; single data points are visualized in dots, N= 3). d Heatmap of DEGs in each cell type and
the gene ontology term enrichment by each set of DEGs. For visualization, top 50 DEGs with least FDR q-value and top five terms under the biological
process category with least p-value were used. Each column represents a cell while each row represents a gene. Gene expression values are scaled across
all the cells.

Table 3 Comparison of proportion of major cell types of mouse and human retina.

Cell type Mouse retinal cell proportion
(%) (Jeon et al.16)

Mouse retinal cell proportion (%)
(Macosko et al.10)

Human macular cell
proportion (%)

Human peripheral cell
proportion (%)

Rod 79.9 65.6 44.81 53.29
Cone 2.1 4.2 4.81 4.61
MG 2.8 3.6 11.92 14.08
BC 7.3 14.0 20.12 15.60
AC 7.0 9.9 7.11 7.74
HC 0.5 0.6 5.33 3.61
RGC 0.5 1.0 4.15 1.07
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trend, with fold-change or expression proportion under our
selected threshold. Similar GO terms, such as ion transport in
macular genes and visual perception in peripheral genes (Sup-
plementary Data 4), are enriched in both our dataset and the Li
dataset (gene set not publicly available). Consistent data com-
pared to previous studies further supports that our data are high
quality and could be used for further analysis, such as macular-
peripheral comparison within individual cell types.

In both the previous reports and our data, although the
macular and the peripheral region consists of the same types of
cell, the proportion of cell types are different between the macular
and peripheral human retina (Fig. 2c, d). As a result, genes that

exhibit different expression levels between the macular and
peripheral regions in bulk transcriptome profiling experiments
might be due to the differences in cell proportion instead of true
expression level differences. In the 244 macular DEGs (‘virtual
bulk’, compared with peripheral), 71 were also found in DEG lists
that contained highly expressed genes of RGC, BC, or HC
(comparison between the cell type with all other cells) (Fig. 3a, b).
These cell types were found to be in a much higher proportion in
the macular region (Fig. 2c, d). Consistently, out of 214 peripheral
DEGs, 85 are found as rod DEGs (Fig. 3a, b), while rods were
found to be in higher proportion in the peripheral region. These
results suggested that the virtual bulk RNA-seq data tended to be
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affected by cell population variations in different regions in the
retina and provided a general estimation of the limitations in the
data found caused by small nuances in the population. Thus,
single-cell level study is required for revealing genuine macular-
peripheral similarities and differences. The snRNA-seq data
overcome the constraint of the bulk RNA-seq data and allow a
direct comparison of gene expression between macular and
peripheral retina for the same cell type. Correlation of averaged
gene expression patterns of four cell types (rod, MG, BC, and AC)
from each sample were calculated (Fig. 3c). For all the four cell
types, all samples showed reasonably high mutual correlation to
each other, but the macula samples possessed a tighter cluster,
indicating that differences do exist within the same cell type
depending on the region. Within each cell types (rod, MG, BC,
and AC) in the macular cells and peripheral cells, we performed
differential expression analysis and found cell-type DEGs
(Supplementary Data 4). Among the DEGs, it is interesting to
note that some mitochondrial-electron-transport-related genes
showed higher expression in macular rod cells compared to
peripheral ones (Fig. 3d). Rod photoreceptor cells have large
numbers of mitochondria packed in the inner segment23, because
they require a higher amount of energy to maintain the high
turnover rate of the outer segment and support phototransduc-
tion24. The comparatively higher expression level of these genes
indicates higher oxidative stress, which is linked to photoreceptor
death25. Mitochondria is a major source of retinal oxidative stress,
which accumulates as the organism ages26. Mitochondrial
dysfunction in retinal pigment epithelial cells (RPEs) has been
associated with retinal diseases, like age-related macular degen-
eration (AMD), while its specific effect in photoreceptor cells
remains relatively unknown24. Our finding might offer a potential
explanation as to why macula photoreceptors are more vulnerable
than peripheral ones. However, it is worth mentioning that the
detected expression level of mitochondria-related genes could be
affected by experimental conditions or sample biases. We
confirmed that our findings were consistent with sample pairs
from all three donors (Supplementary Fig. 2). In conclusion, the
cell-type-based macular-peripheral comparisons reveal regional
variances that bulk RNA-seq cannot find. Macular-peripheral
differences within the same cell types were not studied with cone,
HC, or RGC, because there was limited quantity of these cell types
in the dataset.

DEG analysis reveals human cone-rod differences. More than
half of the retina cell population is composed of photoreceptor
cells. By combining rod and cone photoreceptor cells, a list of 177
genes that are highly expressed in photoreceptors was obtained
(PR cells compared with all other cells, Supplementary Data 2).
These genes show significant enrichment of biological process GO
terms of phototransduction, sensory perception, response to light
stimulus, etc. (Fig. 4a). This is mostly consistent with the known
functions of photoreceptor cells, which further validate our
cluster assignment and DEG analysis.

In photoreceptor cells, cones are important for
function1,18,27,28 but poorly studied. During retina development,
photoreceptor precursors first commit to their photoreceptor cell
fate and then differentiate into subtypes, namely rods and
cones29. Thus, cone cells and rod cells are closely related in
development and share similarities in functions. Comparison of
transcriptomes between cone cells and rod cells would provide
informative insights to cone-specific functions. Genes with higher
cone expression compared to rod expression may be relevant in
determining cone-specific functions. We identified 212 genes that
were highly expressed in human cone cells compared to rod cells
(human cone-over-rod gene list, referred to as hCOR list,

Supplementary Data 5, Supplementary Fig. 3). GO analysis on
biological process terms revealed that these genes enrich terms
such as visual perception, GTP metabolic process, phototrans-
duction, response to stimulus, and regulation of ion transmem-
brane transport (Supplementary Data 5). Using published single-
cell RNA-seq data of mouse retina10, rod and cone cells were
identified with a method similar to what is used for human data.
Two hundred thirty three genes that were highly expressed in
cone cells compared to rod cells were identified (mouse cone-
over-rod list, referred to as mCOR list, Supplementary Data 6).
Interestingly, this mCOR list shared less than 10% similarity to
the hCOR list (Fig. 4b), indicating considerable differences
between human and mouse cone cells. Excluding the 15 shared
genes by hCOR and mCOR, the rest of the genes in hCOR enrich
biological process GO terms, such as GTP metabolic processes,
visual perception, and regulation of ion transmembrane trans-
port, while the top terms enriched by the mCOR list were not
phototransduction-related. This result indicated more insights of
cone cell functions could be potentially obtained within our
dataset. Indeed, in the hCOR list (excluding shared genes), 7
genes (AHI1, ATXN7, KCNV2, PROM1, RD3, RPGRIP1) have
been linked to human CRD or Leber’s congenital amaurosis
(LCA) diseases, while mCOR list only contains one such gene
(GUCA1A). As an example, RPGRIP1 and RD3, both are known
human IRD genes30–39, are expressed at a significantly higher
level in human cones compared to rods, as is shown in Fig. 4c.
Consistent with the expression pattern found, patients with
mutations in RPGRIP1 and RD3 show LCA and CRD phenotype,
where more severe defects are found in cones than rods. In
contrast, these two genes show no differential expression in rod
and cone cells in the mice dataset (Fig. 4c). In live animals, KO
mouse models of these two genetic defects are reported to display
retinitis pigmentosa (RP)-like phenotypes39–41, which are the
result of early defects in rod cells. With immunofluorescence
staining, we confirmed our findings that the expression level of
RPGRIP1 and RD3 was higher in human cone cells compared to
human rod cells (Fig. 4d, e). Additionally, the expression pattern
of RPGRIP1 in macaque photoreceptor cells reported by Peng
et al.42 is consistent with our finding (RD3 was not well detected
in the macaque data, Supplementary Fig. 4). Therefore, the
differences in mouse and human phenotype are at least partially
due to differences in cell-specific expression of the gene. The
human cone profile would serve as an informative resource to
better understand mechanisms behind human retinal biology and
diseases.

Retinal disease genes are enriched in photoreceptor DEGs.
With the expression profile for each retinal cell type generated in
this study, we sought to examine its potential utility in identifying
genes associated with human retinal diseases. A gene list of 246
genes that include known IRD genes for retinitis pigmentosa
(RP), Leber’s congenital amaurosis (LCA), cone-rod dystrophy
(CRD), and other retinopathies was obtained from the retnet
(RetNet, http://www.sph.uth.tmc.edu/RetNet/) (Supplementary
Data 7). As expected, robust expression of most of these known
IRD genes (233 of the 246) could be detected in our dataset
(Supplementary Data 7). Additionally, the detected IRD genes
were expressed at a significantly higher level than the average
(Fig. 5a, p-value= 1.22e-08, two-sample t-test). Since the vast
majority of known IRD-associated genes affects photoreceptor
cells exclusively, we believed that significant overlap should be
detected between the IRD genes and the photoreceptor-enriched
gene set. We investigated the PR DEG list (Supplementary
Data 2), which includes 177 genes that exhibit significantly higher
expression in photoreceptor cells than other cell types (may not
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be rigorously exclusive). Indeed, 48 IRD genes are among the 177
PR DEGs, representing a significant enrichment over background
(odds ratio= 27.06, p-value < 2.2e-16, fisher’s exact test) (Fig. 5b,
Supplementary Data 8). This result outperforms previous reports
using bulk RNA-seq data. Pinelli et al. generated an RNA-seq of
50 retina samples and used co-expression analysis to predict
potential IRDs4 and only 56 known retinal disease associated

genes are obtained from a list of 472 genes, an odds ratio of 154.
Due to its higher performance quality, we propose that the PR
DEG list can be potentially used as a gene prioritization tool for
novel IRD gene discovery.

Depending on the timing and severity of rod and cone
photoreceptors defects, IRDs can be classified into different
subtypes clinically. For example, although cone photoreceptor cell
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degeneration is observed as the disease progresses, RP is primarily
due to a defect in rod photoreceptors43–45. In contrast, CRD and
LCA mostly result from cone degeneration from the very
beginning8,9. Among the 48 IRD genes that show photoreceptor
cell-specific expression, 23 have been associated with RP, while 12
have been associated with CRD or LCA. This is consistent with
the clinical phenotype where, on average, RP-associated genes
have higher expression in rod cells while CRD- or LCA-associated
genes show higher in cone cells (Fig. 5c). It is worth noting that

six of the 23 RP genes actually showed higher expression in cone
cells, which are ‘counter examples’. This indicates that the
tolerance of malfunction of some gene products by rods and
cones- though the products are required by both cell types- could
be different. One possible reason could be that the difference of
the rod and cone transcriptome could lead to different redundant
features.

Given the significant enrichment of IRD-associated genes in
the cell-type DEG set, it can be potentially used to prioritize

Fig. 4 Differentially expressed genes are revealed in rod and cone photoreceptors. a Gene ontology networks demonstrate the biological process GO
terms enrichment by photoreceptor cell DEGs. All photoreceptor cell DEGs (177 genes) were used as input for the online software NetworkAnalyst76 and
only the terms with FDR adjusted p-value less than 0.05 were visualized. Terms were colored according to the p-value from low (red) to high (yellow).
b Overlap of the hCOR (human cone-over-rod) and mCOR (mouse cone-over-rod) gene list and biological process GO term enriched in non-overlapping
part. c Demonstration of the expression of CRD/LCA genes in the non-overlapping part of hCOR (AHI1, ATXN7, KCNV2, PROM1, RD3, RPGRIP1) and mCOR
(GUCA1A). In the box plots, bounds of the box spans from 25 to 75% percentile, center line represents median, and whiskers visualize 1.5 times inter-
quartile range less than quartile 1 or 1.5 times inter-quartile range more than quartile 3 of all the data points. d Immunofluorescent staining for RD3 and
RHO on human retina cryosections. White triangles and arrows highlight the fluorescent signal of the cones and rods, respectively, in the top and bottom
panel. Retinal cell layers are labeled in the bottom panel (OS outer segment, IS inner segment, ONL outer nuclear layer, OPL outer plexiform layer, INL inner
nuclear layer, IPL inner plexiform layer, GCL ganglion cell layer). Scale bar is 20μm. e Immunofluorescent staining for RPGRIP1 and RHO on human retina
cryosections. White triangles and arrows highlight the fluorescent signal of the cones and rods, respectively, in the top and bottom panel. Retinal cell layers
are labeled in the bottom panel. Scale bar is 20μm.

IRD

2.0

1.5

1.0

0.5

0.0

A
ve

ra
ge

 e
xp

re
ss

io
n 

le
ve

l

P
er

ce
nt

ag
e

Gene index

A
ve

ra
ge

 d
iff

er
en

tia
l e

xp
re

ss
io

n

H
ig

he
r 

co
ne

 e
xp

re
ss

io
n

H
ig

he
r 

ro
d 

ex
pr

es
si

on

R
H
O

P
D
E
6G

S
A
G N
R
2E

3 R
P
1L

1

FA
M
16

1A
R
B
P
3

N
R
L

P
D
E
6B

C
N
G
B
1

U
S
H
2A

N
E
U
R
O
D
1

IM
P
G
2

R
P
1

P
R
C
D

T
M
E
M
23

7

P
D
E
6A R
O
M
1

C
N
G
A
1

R
E
E
P
6

E
Y
S

G
U
C
A
1B

M
A
K

C
A
B
P
4

U
N
I1
19

A
T
X
N
7

C
A
C
N
A
2D

4

K
C
N
V
2

A
H
I1

G
U
C
A
1A

A
IP
L1

R
A
X
2

C
D
H
R
1

R
P
G
R
IP
1 P

D
E
6H

ba

c
RP genesCRD/LCA genes

Non-IRD

100

27.12%

11.3%

23.16%

38.42% 44.22%

27.21%

24.49%

4.08% 2.97% 0.59%
15.38%

42.6%

41.42%
49.43% 52.61%

36.55%
32.76%

17.24%
0.57% 0.4%

10.44%
18.81%

38.61%

39.6%

0
PR

Category

Known human disese gene

Others

Related to mouse eye phenotype (no human disease reported)

Known expression in mouse retina (no mouse eye phenotype reported)

BC AC HC RGCMG

25

50

75

1.0

0.5

0.0

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0

2 4 5 10 15 206

Gene index

8 10 12

Fig. 5 Photoreceptor DEGs enrich human IRDs. a IRD genes generally show higher expression level than the rest of genes in the human retina. Expression
values for each gene were normalized by cell total reads, multiplied by 10,000 and then log-transformed (natural logarithm), before averaging. In the box
plots, bounds of the box spans from 25 to 75% percentile, center line represents median, and whiskers visualize 1.5 times inter-quartile range less than
quartile 1 or 1.5 times inter-quartile range more than quartile 3 of all the data points. b Distribution of human retinal disease genes, mouse eye phenotype
genes (but no human disease discovered), mouse retinal expressing genes (but no eye phenotype found) in DEGs of all cell types. c RP genes and CRD
genes show different expression trend in rod and cone photoreceptors. The y-axis is representing the differential expression of each gene in cone cells
compared with rod cells (cone expression level minus rod expression level). Expression values for each gene were normalized by cell total reads, multiplied
by 10,000 and then log-transformed (natural logarithm), before averaging within cell types (rod, cone).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12917-9

8 NATURE COMMUNICATIONS |         (2019) 10:5743 | https://doi.org/10.1038/s41467-019-12917-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


candidate IRD disease genes. For the 129 photoreceptor DEGs
that have yet to be associated with human retinal diseases, 61 has
already shown expression in mouse retina (MGI gene expression
data). Furthermore, viable knock-out mice have already been
obtained for 93 genes. Among these 93 genes, phenotypes in the
visual system have been observed in 20 genes (MGI database;
Supplementary Data 8), such as GNGT1, RDH8, and RCVRN.
The protein encoded by GNGT1 is known to be located in the
outer segment of photoreceptor cells and plays an important role
in phototransduction46,47. RDH8 gene encodes a human retinol
dehydrogenase, and a mutation of its mouse ortholog causes
delayed rod function recovery after light exposure and an
accumulation of all-trans-retinal in the rod outer segment48.
RCVRN is a calcium-binding protein, a regulator of rod
sensitivity of dim lights, and it is also found to be an auto-
antigen of cancer-associated retinopathy49. Although this list
proves itself useful, the power of this list for prioritizing candidate
IRD genes could be underestimated because some genes could
have mutations that would cause an eye phenotype in mice but
might not be reflected in the MGI data. For example, Top2b
conditional knock-out mice have been reported to show severe
photoreceptor cell loss during eye development50; however, this
phenotype was not captured by the MGI data. In summary, our
photoreceptor cell DEG list would serve as a useful prioritization
tool for novel diseased gene discovery.

Retinal disease genes in other retinal cell types. In contrast to
the significant overlap between IRD genes and photoreceptor
(PR) DEGs, no significant enrichment is observed in DEGs for
other retinal cell types. Although rare, it has been shown that
defects in cell types in the neural retina other than PR can also
lead to IRD. Indeed, 12 known IRD genes show enriched
expression in cell types not restricted to photoreceptor cells
(Supplementary Data 8). For example, RDH11 is highly expressed
in Müller Glia cell, which plays an important function in the
retinoid cycle, and mutations in RDH11 lead to RP51. GRM6 and
TRPM1 are bipolar DEGs and their mutations could cause a
recessive congenital stationary night blindness (CSNB), a condi-
tion due to abnormal photoreceptor-bipolar signaling52–58. In
addition, 36, 30, 26, 26, and 19 genes that are highly expressed in
MG, HC, RGC, AC, and BC, respectively, showed mouse eye
phenotypes (Supplementary Data 8). These genes are likely
associated with human diseases.

Discussion
Studying the cell-type specific transcriptome expands our
understanding of the cell function within heterogeneous tissues,
including the retina. The retina contains seven major cell types in
differing proportions: rod cells consist of over half while other
types, such as amacrine cells and RGCs, are much rare. All the
cell types have distinct functions and coordinate to allow for
visual perception and regulation. Under pathological conditions,
not all the cell types are affected equally at the early stage of cell
development8,43,59. Thus, understanding the transcriptome at the
cell type or the single-cell level will expand disease-related studies.
In the retina, transcriptome profiles of many cell subtypes,
especially rare ones, are usually masked in bulk RNA-seq. Cell-
surface-marker-based sorting and purification methods have not
been developed to enrich all cell types. Thus, single-cell RNA-seq
stands out as the most effective and unbiased method for
obtaining the transcriptome of each cell types in the retina.

Efforts have been made to obtain single-cell level transcriptome
profiles of human or primate retina42,60. Here, we report a
transcriptome profiling of the human retinal major cell types at
the single-cell level from 5873 nuclei with the snRNA-seq

method. These nuclei were from six samples, obtained from three
donor retinae. It is worth emphasizing that the donors had a
similar genetic background, all underwent post-mortem pheno-
typing, and were confirmed to has normal retina. OCT images are
used to resolve the appearance of subretinal drusen, fluid, atro-
phy, and fibrosis, and to differentiate artifact from pathology.
These images (Fig. 1) demonstrate the usage of a combination of
fundus and OCT imaging techniques for examining post-mortem
eye common in clinical practice and in accordance to the Utah
Grading Scale for Post-mortem Eyes61. All major cell types were
found in every sample within a reasonable proportion and
expected marker expression. Thus, the transcriptome profiles we
demonstrated here are reproducible and reliable.

The use of snRNA-seq method especially ensured the quality of
our dataset, as the RNA integrity of the samples could be well
preserved with a much-reduced death-to-preservation time
compared to other methods that used cell dissociation. Another
advantage of the snRNA-seq is that the sampling bias could be
minimized, which is an issue for profiling complex tissue. Thus,
our estimation of cell proportion is likely to be more accurate
compared to previous results. In terms of faithfully representing
the transcriptome, Gao et al. reported that, in breast cancer cells,
the snRNA-seq could be representative of single-cell RNA-seq62.
To corroborate these previous findings, our single-nuclei profiles
showed a reliable correlation to bulk RNA-seq of the same
sample, and the cell-type profiles are also consistent with pub-
lished human retinal cell markers.

Regional transcriptomes for tissues are of great interest for
researchers while single-cell level studies could provide insight to
future research questions. Here, we demonstrated that, for het-
erogeneous tissue, single-cell studies out-perform bulk studies in
regional specific transcriptome profiling. We concluded that bulk
studies are limited by variations of the cell population in different
regions, where findings with variable expression levels in genes
may be due to changes in cell proportions, rather than true
changes in expression in genes. Single-cell studies, on the other
hand, allows for comparisons between each cell types to eliminate
this source of error. Interestingly, based on our dataset, it is
observed that genes related to mitochondrial-electron transport
showed higher expression in macular rod cells compared to
peripheral ones, suggesting that the macular rod cells may have
higher oxidative stress. In a recent article, Voigt et al.63 reported a
dataset of human retina using single-cell RNA-seq and identified
genes that showed differential expression when comparing the
corresponding cell type from the foveal and peripheral retina. By
comparing our results to the Viogt dataset, we found that these
two datasets are largely consistent. For example, among the top
20 DEGs between foveal and peripheral cones in the Voigt
dataset, 17 were detected in our dataset, with 10 showing con-
sistent trend with both the ‘Voigt dataset’ and the dataset
reported by Peng et al.42 (Supplementary Fig. 5).

The transcriptome profiles of all major cell types, especially
cone cells, in the human retina are also important findings in our
study. Mice, the most studied animal model for retinal degen-
eration, are not an ideal model for studying cone biology since its
cones are significant different from those in humans. For exam-
ple, in the human retina, cone cells are highly rich in a region
called the fovea near the central macula, which is absent in the
mouse retina13,64. In addition, mice have two types of cone-
opsins, namely Opn1sw for short-wavelength sensing and
Opn1mw for middle- and long-wavelength sensing. Some mouse
cone cells express only one type of opsin but a considerable
proportion (40% for C57/BL6 mice) express both65. In contrast,
humans have three types of cone-opsins, OPN1SW, OPN1MW,
and OPN1LW, and each cone cell only expresses one type of
opsin29. Mustafi et al. previously compared the transcriptomes
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between the cone-enriched macular region and rod-enriched
peripheral region in monkey to analyze rod and cone signatures7.
They found known cone makers, such as SLC24A2 and
OPN1MW; however, they also found other genes, including NEFL
and NEFM, which were actually highly expressed in RGCs. This
finding had limited sensitivity and might be driven by the uneven
proportion of RGCs. Welby et al. developed a sorting method to
specifically select fetal cones in human and reported the tran-
scriptome of these fetal cone cells6. Their findings identified the
cone signature during the development (9–20 weeks post con-
ception), which could be useful in recapitulating some aspects of
the human adult cone. Our study took advantage of in silico
sorting to separate cones from other cell types and reported the
human cone cell transcriptome profile, which could be a useful
resource in future studies. With this cone profile, we were able to
perform a cone-rod comparison to gain insight into cone function
and investigate discrepancies between phenotype in patients and
phenotype of genetic mouse models of cone diseases.

The rich single-cell transcriptome profiles could be a useful
resource for the research community. For example, we observed
significant enrichment of IRD genes among the genes with high
specificity in photoreceptor cells. In addition, the list also contains
multiple genes that lead to eye defect in mice when knocked out.
Thus, we could use this list to prioritize novel IRD gene discovery.
Additionally, it is worth noting that a list of genes specifically
expressed in cells other than PR was also found to cause retinal
phenotype in human and/or mice when mutated. Besides the uses
that were described, this dataset can be informative for many
other studies. For instance, the cell-type-specific markers reported
in our data would facilitate general cell-type-specific studies.

As a proof of concept study, this dataset has certain limitations.
The complexity of the retina could not be fully solved with the
number of nuclei we sequenced. For example, due to the modest
number of nuclei profiled in this study, this dataset is under-
powered and cannot be used to classify subtypes of cells in the
retina. Recognizing this limitation, we mainly focused on the
profiles of the major cell types in the retina in this study.
Nevertheless, given the robustness of snRNA-Seq, it is feasible to
scale up the current study to provide much improved resolution
in future studies.

Methods
Macular and peripheral sample collection. As previously described in detail61,
human donor eyes were obtained in collaboration with the Utah Lions Eye Bank.
Only eyes within 6 h post-mortem were used for this study. Both eyes of the donor
underwent rigorous post-mortem phenotyping, including spectral domain optical
coherence tomography (SD-OCT) and color fundus photography. Most impor-
tantly, these images were taken in a manner consistent with the appearance of the
analogous images utilized in the clinical setting. Dissections of donor’s eyes were
carried out immediately according to a standardized protocol to reliably isolate the
RPE/choroid from the retina and segregate the layers into quadrants61,66. After the
eye was flowered and all imaging was complete, macula retina tissue was collected
using a 6 mm disposable biopsy punch (Integra, Cat # 33–37) centered over the
fovea and flash frozen and stored at −80 °C. The peripheral retina was collected in
a similar manner for each of the four quadrants. To determine precise ocular
phenotype relative to disease and healthy aging, analysis of each set of images was
performed by a team of retinal specialists and ophthalmologists at the University of
Utah School of Medicine, Moran Eye Center and the Massachusetts Eye and Ear
Infirmary Retina Service. Specifically, each donor’s eye was checked by an inde-
pendent review of the color fundus and OCT imaging; discrepancies were resolved
by collaboration between a minimum of three specialists to ensure a robust and
rigorous phenotypic analysis. This diagnosis was then compared to medical records
and a standardized epidemiological questionnaire for the donor. For this study,
both eyes for each donor were classified as AREDS 0/1 to be considered normal.
Only one eye was used for each donor. Donors with any history of retinal
degeneration, diabetes, macular degeneration, or drusen were not used for this
study. Institutional approval for the consent of patients to donate their eyes was
obtained from the University of Utah and conformed to the tenets of the
Declaration of Helsinki. All retinal tissues were de-identified in accordance with
HIPAA Privacy Rules.

Preparation of single-nucleus suspensions. Nuclei from frozen neural retinal
tissue was isolated using RNase-free lysis buffer (10 mM Tris-HCl, 10 mM NaCl,
3 mM MgCl2, 0.1% NP40). The frozen tissue was resuspended in ice-cold lysis
buffer and triturated to break the tissue structure. The tissue aggregates were then
homogenized using a Wheaton™ Dounce Tissue Grinder and centrifuged (500 g) to
pellet the nuclei. The pellet was resuspended in fresh lysis buffer and homogenized
to yield clean single-nuclei suspension. The collected nuclei were stained with
DAPI (4′,6-diamidino-2-phenylindole, 10 ug/ml) and were diluted to 1000 μl of
3E4/ml with 1 × PBS (without Ca and Mg ions, pH 7.4, Thermo Fisher), RNase
inhibitor (NEB, 40 KU/ml) and Cell Diluent Buffer.

The ICELL8™ single-cell-based single-cell capture. Single nuclear capture and
sequencing were performed on the ICELL8 single-cell platform (Wafergen Biosy-
tems). ICELL8 platform comprised of a multi-sample nano-dispenser that precisely
dispensed 50 nl of the single-nuclei suspension into an ICELL8 nanowell
microchip-containing 5184 wells (150 nl capacity). Assuming a Poisson distribu-
tion frequency for the number of cells per well, about 30% of the nanowells were
expected to contain a single nucleus under optimal conditions. Automated scan-
ning fluorescent microscopy of the microchip was performed using an Olympus
BX43 fluorescent microscope with a robotic stage to visualize wells containing
single nuclei (see Table 1 for single-cell capture number across different experi-
mental repeats). The automated well selection was performed using the CellSelect
software (Wafergen Biosystems), which identified nanowells containing single
nuclei and excluded wells with >1 nuclear, debris, nuclei clumps or empty wells.
The candidate wells were manually evaluated for debris or clumps as an
additional QC.

Single-cell RT-PCR and library preparation. The chip was subjected to freeze-
thaw in order to lyse the cells and 50 nl of reverse transcription and amplification
solution (following ICELL8 protocol) was dispensed using the multi-sample nano-
dispenser to candidate wells. Each well had a preprinted primer that contains an
11-nucleotide-well-specific barcode. This barcode was added to the 3′ (A)n RNA
tail of the nuclear transcripts during reverse transcription and cDNA amplification,
the latter of which was performed on candidate wells using SCRB-seq chemistry.
After RT, the cDNA products from candidate wells were pooled, concentrated
(Zymo Clean and Concentrator kit, Zymogen) and purified using 0.6× AMPure XP
beads. A 3′ transcriptome enriched library was made using Nextera XT Kit and 3′-
specific P5 primer, which was sequenced on the Illumina Hiseq2500.

Immunofluorescence (IF). Healthy human donor retinal tissue was dissected and
fixed in 4% PFA for 48 h, cryo-protected with 30% sucrose overnight in 4 degrees,
and then embedded in OCT to be flash-frozen. Cryosections from a peripheral
region of the human retina with 10 μm thickness were used for the IF.

For the IF, sections were fixed with 4% PFA for 5 min at room temperature.
They were then blocked for 3 h with blocking buffer (10% normal goat serum in
PBS+ 0.1% Triton X-100) in room temperature. Sections were then incubated
overnight at 4 °C with primary antibodies (anti-RD3: Thermo Scientific PA583118;
anti-RPGRIP1: gift from Dr. Tiansen Li’s lab; anti-RHO 1D4: Santa Cruz 57432)
diluted in blocking buffer (1:150 for anti-RD3 and anti-RHO 1D4; 1:50 for anti-
RPGRIP1). Species-specific fluorophore conjugated secondary antibody in blocking
buffer (1:200) was applied for 120 min in room temperature, followed by DAPI
staining for 10 min. The sections were washed with PBS (three times, 5 min each)
between every buffer change. The sections were then mounted with AquaMount
Slide Mounting Media (Thermo Scientific 13800).

Data analysis. Generation of human snRNA-seq expression matrices and quality
control. FASTQ files were generated from Illumina base call files using bcl2fastq2
conversion software (v2.17). Sequence reads were aligned to the human genome
hg19 (GRCh37), and aligned reads were counted within exons using HTseq-count
using default parameters67 to generate the expression matrices of raw read counts.
Quality control of the expression matrices of six samples (macular region and
peripheral region for each of the three tissues) were performed separately before
they were merged together. For quality control of each matrix, genes that were not
detected in at least 0.5% of all cells were discarded. Cells were filtered based on a
minimum number of 500 and a maximum number of 3000 expressed genes per
cell, and a minimum number of 6000 and a maximum number of 100000 tran-
scripts per cell.

Data alignment and unsupervised clustering. For all six expression matrices, the
expression value of each gene in each cell was normalized by the following
conversions: total read counts of that cell multiplied by 10,000 and then log-
transformed (natural logarithm, ln (value+ 1)). Using the Seurat v3 package68,
variable genes were detected in each matrix and were used as input for the
‘FindIntegrationAnchors’ function, and thus the six matrices were integrated with
the ‘IntegrateData’ function. The integrated data were then clustered with principal
component analysis (PCA; top 10 principal components were used) and the
clusters were visualized in two dimensions with UMAP. All the data alignment,
integration, and clustering were performed under standard Seurat workflow.

Detection of differentially expressed genes (DEGs) for each cluster. Raw read
count was used as input for DEG analysis with the VGAM R package implemented
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by the Monocle 3 R package69. For obtaining the DEG list of each cluster, only the
genes expressed in more than 20% of that cluster were taken. For each gene, the
expression level of all other clusters was used as background for comparison. DEGs
were defined as genes that had a 1.5-fold expression over the background with a q-
value (FDR) less than 0.05. For calculating the fold-change, we used the raw read
counts normalized with total read counts in each cell and averaged by cluster (or
background). DEGs between two clusters were obtained in similar methods, where
all the genes with more than 20% detection in either cluster were used. With the
gene lists, functional enrichment analysis was performed using DAVID70.

For bulk RNA-seq on the same samples, FASTQ sequences were mapped to
human genome hg19 (GRCh37), which was downloaded from UCSC genome
browser website and aligned using STAR71. Transcript structure and abundance
were estimated using Cufflinks72–75.

For mouse single-cell RNA-seq, the expression data was obtained from
GSE6347310. Matrices from seven P14 mice, GSM1626793-1626799, were used for
analysis. The major analysis pipeline, including data normalization, integration,
clustering, and DEG detection, was the same as the one used for human data. The
only differences were in data QC. For mice data, cells were filtered based on a
minimum number of 400 and a maximum number of 3000 expressed genes per
cell, and a minimum number of 800 transcripts per cell.

Data availability
All relevant data are available from the authors. snRNA-seq data could be accessed by
GEO series number GSE133707.

Code availability
The Seurat v3 and monocle 3 R packages are major tools for the single-cell RNA-seq data
analysis and standard workflows are used. All relevant code is available from the authors.
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