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ABSTRACT OF THE THESIS 
 

Security Analysis of Multi-Sensor Fusion based Localization in Autonomous Vehicles 
 

By 
 

Jun Yeon Won 
 

Master of Science in Computer Science 
 

 University of California, Irvine, 2019 
 

Assistant Professor Qi Alfred Chen, Chair 
 
 

  
 Autonomous vehicles (AVs) have become close to our life. Many modules are included 

in AVs such as localization, perception, and planning. Among them, the localization that 

estimates the current location of AV is one of the most important modules. To make an AV 

more secure, localization results should be robust. To achieve robustness, localization uses 

multi-sensor fusion (MSF). MSF uses the Kalman filter to make a result robust. Also, outlier 

detection is added to MSF to improve results. It filters out the abnormal data from sensors. 

For sensors, GPS, IMU, and LiDAR are used in MSF. Among sensors, GPS is vulnerable to the 

spoofing attack. GPS spoofing attacks send fake signals to GPS receivers to deceive them. As 

a result, it is an on-going problem as to whether MSF can retain robustness when GPS is 

attacked. We propose an effective GPS spoofing attack method that can affect MSF result. To 

achieve this, we divide our attack into two steps, profiling and attack application. Also, we 

introduced two attack parameters, initial spoofing distance and scaling factor. We can 

calculate optimal and common attack parameters from profiling. We apply the common 

attack parameter to AVs and define success with a different threshold. To evaluate our attack, 

we use the data set provided by Baidu. It is a sensor-trace data set for testing MSF. By using 
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the data set, we achieve an 100% success rate in 150 seconds and more than 66% success 

rate in 2 minutes. Also, we introduce possible solutions to our attack. 
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CHAPTER 1. INTRODUCTION 

  

 Nowadays, Autonomous Vehicles (AVs) are more popular and more accessible to 

everyone. Many companies have developed AVs at a fast pace. Waymo started a self-driving 

taxi service in Phoenix, AZ. Baidu collaborated with car manufacturers to deploy their open-

sourced AV platform called Apollo [1]. 

 

 The localization module, which estimates the current location of AV, is one of the most 

important modules within the AV system. The localization module serves as the basis for 

other modules in the system to decide a driving strategy. For instance, the AV will determine 

an obstacle's location based on the localization result. An incorrect localization result will 

cause the obstacle's location to be inaccurate as well. Also, to plan for the next trajectory that 

an AV will follow, an accurate localization result is required. In order to achieve a robust 

localization, AV systems commonly use a Multi-Sensor Fusion (MSF) algorithm in the 

localization module. In MSF, multiple sensors are combined to provide more accurate 

estimation of the location of AV. The state-of-the-art MSF designs perform the fusion using 

the Kalman filter (KF) or its variants (e.g., unscented Kalman filter, extended Kalman filter, 

etc.) [16]. Multiple sensors such as Inertial Measurement Units (IMU), Global Positioning 

System (GPS) and Light Detection And Ranging (LiDAR) are used in AV's MSF algorithm. 

 

 While MSF can effectively improve robustness against sensor noises, it is still unclear 

how robust it is under deliberate sensor attacks. It is well known that sensors are vulnerable 

to spoofing attacks. IMU readings can be affected by sound waves at the resonant frequency 
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of the device [15]. LiDARs are vulnerable to laser injection and blinding attacks [11]. 

However, such attacks to IMU and LiDAR are not yet proven practical in real-world settings. 

For example, it is hard to aim at a moving LiDAR for a laser injection attack; IMUs are isolated 

in thick materials which can dampen the external sound waves. However, GPS spoofing is a 

classic attack method but still a practical attack vector compared to other sensors. Due to the 

lack of cryptographic protection in GPS infrastructure, it is fundamentally difficult to fully 

prevent GPS spoofing attacks today [10]. 

 

 In this thesis, we perform the security analysis of MSF-based AV localization under 

the GPS spoofing attack. We discovered that carefully controlled GPS spoofing attacks can 

corrupt localization estimation in the MSF algorithm when a specific condition with the 

sensor property is present. We introduce related work in Chapter 2. We will briefly explain 

each sensor's characteristic and the Kalman filter used in the MSF in Chapter 3. The threat 

model is presented in Chapter 4. Next, we explain the attack methodology in Chapter 5 and 

evaluate the attack in Chapter 6. In particular, we use the Baidu Apollo [1] data set to 

evaluate our proposed attack methodology. In Chapter 7, we propose and discuss possible 

defenses to prevent such GPS spoofing attacks on AVs. We conclude the thesis and discuss 

the future work in Chapter 8. 
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CHAPTER 2. RELATED WORK 

 

 

 GPS spoofing attack. Although GPS spoofing attacks have been studied for a long time 

[8], it is still practical attack method nowadays. In GPS spoofing, the attacker fabricates or 

relays GPS satellite signals to inject a falsified location into the victim’s GPS receiver. 

Generally, two steps are involved in a GPS spoofing attack [10]. The first step is commonly 

referred to as the takeover step. The attacker starts by sending fake signals which contain a 

location information similar to that of the legitimate GPS satellite signal. The attacker then 

gradually increases the strength of the fake signal and causes phase lock in the victim 

receiver that locks onto the fake signal instead of the legitimate signal. When the power of 

spoofed GPS becomes same as original satellite signal, the attacker can take over the GPS 

receiver from the original signal. In the second step, the attacker sends fake signals that 

indicate the location she defines to manipulate the victim receiver’s location measurement. 

Prior work demonstrated that even high-end GPS receivers can be spoofed by a dedicated 

attacker [12].  

  

 Defense to GPS spoofing and its limitation. Due to the severity of GPS spoofing, 

various defense mechanisms are proposed [17, 5]. One of the defenses is using cryptographic 

mitigation techniques [9, 18]. This cryptographic mitigation can defend against a GPS 

spoofing attack. However, we have to modify both the satellite infrastructure and GPS 

receiver. Such modifications are unrealistic in the near future. Also, the computation 

overhead is another problem. The GPS receiver has to decrypt the encrypted signal. It will 
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increase the computation time. Another possible solution is using signal-geometry based 

defense [5]. However, the cost of the AV would increase since at least three antennas are 

required to calculate the signal arriving angle. Also, the attacker can simply spoof from an 

aerial route using drones. So far, it is still an open question as to whether GPS spoofing 

attacks can affect the MSF algorithm adopted in AV localization.  

 

 Attacks built upon GPS spoofing. Recently, Zeng et al. [19] demonstrated that 

mobile navigation systems can be easily manipulated using GPS spoofing. However, this 

attack is unlikely to work in AVs because 1) LiDAR provides an accurate secondary 

localization source, and 2) the outlier detector can easily detect naive GPS spoofing attacks 

where the spoofed location deviates from the Kalman filter’s prediction significantly. Narain 

et al. [10] leveraged the IMU bias and used GPS spoofing to fit within the common bias 

pattern to prevent the GPS signal from being detected by an Inertial Navigation System (INS) 

aided GPS tracker. However, they only considered a single localization source (GPS) for 

localization and the attacked INS system is not directly used for navigation.  

 

 To the best of our knowledge, this is the first work to study the security vulnerability 

of MSF-based localization algorithms in AVs. 
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CHAPTER 3. BACKGROUND 

 

 In this Chapter, we introduce different sensors used in the MSF algorithm. In 

particular, the state-of-the-art MSF algorithm uses the GPS, IMU, and LiDAR. The concepts of 

Kalman filter and outlier detection will also be explained. 

 

3.1 Sensors in MSF 

3.1.1 Global Positioning System 

 Global Positioning System (GPS) is the satellite-based navigation system used 

worldwide. Currently, there are more than 24 satellites in service. Each satellite broadcasts 

unique signals constantly to the earth. The GPS receiver collects the available satellite signals 

and calculates the distances to the source satellites of those signals based on time-of-flight. 

The GPS receiver then calculates its current location via triangulation, since the ground truth 

locations of the satellites are publicly known. Figure 3.1 illustrates how a GPS receiver in an 

AV resolves its location using four satellites. 

 

Figure 3.1: A GPS receiver in the AV resolves the location using four satellites 
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 The GPS receivers resolve location information at a low frequency. Typical GPS 

frequency used in AV systems is 1 Hz [1]. GPS suffers from signal blockage, multi-path, and 

ionospheric delay during transmission. Despite the inaccuracy from those error sources, GPS 

provides some unique advantages in AV localization. The affordable price of GPS receivers is 

one advantage. Another advantage is that GPS can be used in harsh weather conditions (e.g., 

rain or snow), while LiDAR generally performs poorly under such conditions. 

 

3.1.2 Inertial Measurement Unit 

 An Inertial Measurement Unit (IMU) is a device that measures angular velocity and 

acceleration at a high frequency, typically in the range between 100 Hz to 200 Hz. Based on 

real-time angular velocity and acceleration, the position of an AV can be predicted via the 

kinematics model of the car. However, IMU readings often contain noises and biases because 

of sensor dynamics and the MEMS structural imperfection. To the best of our knowledge, 

there is no IMU that can achieve 100% accuracy of angular velocity and acceleration 

measurements. As a result, IMU biases accumulate over time without the correction from 

other sensors, and hence cause drift in localization estimations. Consequently, some location 

measurement sensors (e.g., GPS and LiDAR) are used to correct localization estimation drift. 

 

3.1.3 LiDAR 

 Light Detection and Ranging (LiDAR) sensor scans the surrounding environment of 

an AV. The ranging process starts by shooting lasers at different vertical and horizontal 

directions. When the lasers are blocked by obstacles, they are reflected back to the LiDAR. 

Based on the duration between shooting and receiving the lasers, LiDAR calculates the 
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distances to the obstacles around the AV. Eq. 3.1 shows how to calculate the distance. The 

time represents the laser’s traveling time and c is the speed of light (2.99 ∗ 108 m/s). 

 

                                                            (3.1) 

 

 The reflected lasers, which form a point cloud, effectively create a mapping of the 

surrounding area. As shown in Fig. 3.2, the LiDAR locator searches the point cloud in a high-

definition map (HDMap) to find the best matching position and orientation. Such an HDMap 

is built offline before operating the AV. Currently, the HDMap can be provided either by the 

AV developing company (e.g., Waymo and Baidu) or some mapping services (e.g., DeepMap). 

When the weather is clear, LiDAR is generally much more reliable than GPS. Also, the LiDAR 

locator operates at a higher frequency (5 Hz in Apollo). 

 

 

Figure 3.2: LiDAR process 

 

3.2 Kalman filter and outlier detection 

 In MSF, the Kalman filter (KF) [18] is used for integrating different sensors. KF is 

commonly used for guidance, navigation, and control of vehicles. It defines a state model for 

the system (position, velocity, and attitude, i.e., PVA). A KF operates recursively between two 

steps. The first step is the prediction. IMU’s acceleration and angular velocity are integrated 
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for predicting the next PVA state. The other step is the update, in which GPS and LiDAR 

update the state model asynchronously with the measurements of the PVA. Different kinds 

of kinematic models are used in both the prediction and update steps [13, 16]. 

 

 Apart from the KF state estimation, outlier detection techniques (e.g., Chi-squared 

test) are often used before feeding the measurements to the KF [3] in MSF. Such an outlier 

detector filters out abnormal measurements to prevent inaccurate sensor inputs. It increases 

the robustness of the result. The Chi-squared test is a widely used method for outlier 

detection in the KF [2, 14]. The Chi-squared test is a statistical method for determining the 

outlier measurement based on its Chi value, which reflects the measurement deviation from 

the state prediction. When the LiDAR and GPS try to update the KF, the KF will discard or 

perform a smaller update if the measurement Chi is larger than a statistical threshold (3.841 

for the Chi distribution). 

 

 Fig. 3.3 shows an overview of the MSF components. With the outlier detector and 

multiple localization sources, the localization estimation from the MSF can be more robust. 

Consequently, it makes traditional sensor spoofing attacks hard to succeed. 
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Figure 3.3: MSF algorithm using Kalman filter and outlier detection. The sensors on the left 
from top to bottom are IMU, GPS, and LIDAR 
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CHAPTER 4. THREAT MODEL 

 

 We assume that the attacker has a precise knowledge of the victim AV’s real-time 

location. This can be achieved in two scenarios. The first scenario is when the victim AV is a 

taxi. The attacker can track the location of the AV by putting a suitcase that possesses the 

GPS device into the victim’s trunk or backseat. To achieve this, the attacker simply takes the 

AV taxi and leaves the spoofer in the AV. In the second scenario, we assume that the attacker 

is driving a car and following a victim AV while launching the GPS spoofing attack. The 

attacker does not need to follow the victim AV closely. Zeng et al. [19] reported that the 

effective spoofing range can be as far as 50 meters. The attacker drives the car with the same 

speed as the victim’s AV. Using the same speed is realistic because normally AVs drive at a 

constant speed and, nowadays, many cars are equipped with adaptive cruise control 

systems, which can maintain the same speed. After calculating the attacker car’s current 

location, the attacker calculates the distance between the attacker’s car and the victim AV. 

Affordable laser ranging sensors can be used for calculating distance precisely. To calculate 

the distance, Eq. 3.1 can be used again. In addition, we assume that the spoofed GPS signals 

can be as stable as natural signals. This is realistic since the spoofed signals are directly sent 

from the spoofer and thus, are free of the error sources that would occur in natural satellite 

signal propagation. We used the GPS data set provided by Apollo [1] and profiled the 

standard deviation of GPS. Then, we use the median value as the standard deviation for the 

spoofed GPS locations. Similar to prior work, we assume the attacker can spoof arbitrary 

locations to the victim’s GPS receiver. Please note that we do not assume GPS spoofing can 

directly change the output of the MSF algorithm. 
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 As the first step towards understanding the security properties, in this work, we 

assume that the attacker has the implementation of the MSF algorithm used in the victim AV. 

This is possible when 1) the victim AV adopts a representative algorithm implementation 

that is publicly available, such as Baidu Apollo MSF, or 2) the attacker owns an AV of the same 

model as the victim and can reverse engineer it to analyze the binary of the MSF. However, 

we do not assume the attacker can access the real-time state (e.g., localization estimation in 

MSF) and sensor readings of the AV during the attack. As a result, the attacker has to infer 

the state during the attack. 

 

 The last assumption is that the attacker possesses the same IMU used in the victim 

AV. With the IMU, the attacker can collect IMU traces by driving the car offline. Meanwhile, 

the attacker measures the trajectory during the trace collection. The trajectory can be 

calculated precisely using some post-processing software such as GrafNav, which can reach 

< 5 cm positioning accuracy. 
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CHAPTER 5. METHODOLOGY 

 

 In this Chapter, we will present a systematic methodology for conducting security 

analysis on MSF designs.  

 

5.1 Analysis Methodology Overview 

 At first, we explain the spoofing parameters, spoofing distance and spoofing degree, 

that are used in a GPS spoofing attack. By using the spoofing parameters, we can spoof a 

faked location to GPS. We apply exhaustively spoofing distance and spoofing degree to the 

data set provided by Baidu Apollo. That is, we apply every possible spoofing parameter to 

two GPS points. The purpose of this analysis is to try to see the MSF trend and compare the 

results between the two points. Based on the analysis, we find that even though we use the 

same spoofing distance, the deviation size is different. Since we align GPS close to LiDAR 

measurement location to get reliable result in this experiment, the IMU is likely the cause of 

the different size of the deviation. This phenomenon is called IMU drift. It is hard to predict 

IMU drift because of its nature. Because of its unpredictability, we propose practical attack 

design to filter out the point which has a large IMU drift. In our practical attack design, we 

introduce two attack parameters, initial spoofing distance and scaling factor. Initial spoofing 

distance is used for finding large IMU drift and scaling factor is used for making a larger 

deviation when large IMU drift is detected. To get a promising combination of initial spoofing 

distance and scaling factor, we use a profiling-based attack methodology. In the profiling, we 

apply every possible combination of two parameters and find the most common 
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combination. After we get the most promising combination, we have to determine realistic 

goals that the attacker wants to achieve, such as the deviation size.  

 

 We will introduce spoofing parameters in §5.2. Next, we explain point-based analysis 

and its observation in §5.3. The IMU drift will be introduced in §5.4. Our practical attack 

design and profiling-based attack methodology are introduced in §5.5 and §5.6, respectively. 

Lastly, we introduce the goal of the attacker in §5.7. 

 

5.2 Spoofing parameters and problem formulation 

 We define two spoofing parameters in GPS spoofing. The first parameter is the 

spoofing degree of the spoofed GPS location from the original GPS location. Another is the 

incremental spoofing distance along the degree. We represent parameter pi as a pair (θi, Di) 

for the spoofing point i. The θi represents the spoofing degree and Di represents the 

incremental spoofing distance. The deviation devi presents the deviation size caused by 

spoofing point i. To calculate devi, it is defined as the lateral deviation of the fused location to 

the ground truth trajectory. Since we use the deviation size as lateral direction, we use θi 

as 90 or 270.   

 

Figure 5.1: Description of spoofing distance D and degree 270 or 90. 
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 Fig. 5.1 shows the example of applying spoofing parameters. The D represents the 

spoofing distance. The two red circles are the spoofed GPS locations and the two dotted 

circles are the original non-spoofed GPS locations. As a result, using different spoofing 

distance Di and Di+1, the attacker can change the GPS location from the dotted circle to the 

red circles. 

 

5.3 Point-based analysis by using spoofing parameters 

 AV systems make driving decisions by using real-world sensor data. So, we apply the 

spoofing parameters introduced in §5.2 to the real-world sensor data set provided by Baidu 

Apollo. Since the data set has noise, we align the GPS location close to the LiDAR 

measurement location. After every location of two sources are closely aligned, we choose 

two GPS data. We fix the spoofing degree as 270 and change the spoofing distance with fine 

granularity. 

  

 

Figure 5.2: Deviation size on two points with different spoofing distance. 
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 Fig. 5.2 shows the deviation size on two points with different spoofing distance. Based 

on Fig. 5.2, we can see that even though we use the same spoofing distance, the size of  the 

deviation is different. For point 1, it achieves the highest deviation when the spoofing 

distance is close to 0.4m. But for point 2, it achieves the highest deviation when the spoofing 

distance is close to 0.45m. Since we align the GPS close to the LiDAR, the reason why such 

difference happens is very likely because of IMU. So, we will explain IMU drift as the reason 

of such difference in §5.4. 

 

 Another thing we have to analyze in Fig. 5.2 is when the spoofing distance is large. 

The deviation size decreases when the spoofing distance becomes larger than the specific 

distance. This specific distance varies on the point. For example, at point 1 in Fig. 5.2, the size 

of the deviation decreases when the spoofing distance is larger than 0.45m. Such decreasing 

happens because of an outlier detector. The outlier detector will filter out or make small 

updates to the Kalman filter when the spoofing distance is too large. As a result, the attacker 

has to choose the spoofing distance very carefully so as not to be detected by the outlier 

detector. 

 

5.4 IMU drift 

 Inertial Measurement Unit (IMU) has a known property called drift, which is the 

difference between the real-world senor measurement and the ideal measurement. This is a 

result of the noises and biases in the raw IMU readings. For example, when the car drives 

with constant speed, the acceleration reading must be zero in an ideal case. However, in the 

real world, the acceleration reading is not exactly zero. This trend happens to the angular 
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velocity as well. One source of the IMU bias is the manufacturing process. There are many 

related works to deal with IMU drift [7, 2]. In MSF, such IMU drift will be translated to the 

localization drift between the estimated location and the ground truth location. We find that 

this drift in localization estimation is a key for achieving large deviations in GPS spoofing. 

Since LiDAR localization is quite accurate in normal weather conditions and has been used 

as the ground truth in much researches, we measure the drift by calculating the distance 

between the localization estimation and the LiDAR location. We call this distance LiDAR 

disagreement. When the LiDAR disagreement is large, the Chi-value of the LiDAR becomes 

large. As a result, the LiDAR will provide a small update in the KF because of its large Chi-

value. To show the LiDAR disagreement, we use the KAIST data set [6]. The KAIST data set 

provides the ground truth obtained by the LiDAR SLAM algorithm, so we set the LiDAR and 

the GPS location to the ground truth and compare the localization estimation from MSF to 

the LiDAR location. 

 

 

Figure 5.3: LiDAR disagreement in the KAIST dataset 
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 Fig. 5.3 shows that the size of the LiDAR disagreement is large in some ranges. The 

spoofed GPS location is close to the localization estimation when the size of the LiDAR 

disagreement is large, and the direction is the same as the GPS spoofed location. This means 

that when the LiDAR disagreement increases, the distance between spoofed GPS and 

localization estimation decreases. Thus, the GPS can provide a larger update to the KF 

compared to the LiDAR because of the Chi-value. However, the IMU drift is unpredictable, so 

it is hard to calculate the exact timing of the GPS spoofing attack. 

 

5.5 Practical Attack Design 

 Based on §5.3 and §5.4, the attacker has to choose the spoofing distance carefully. To 

achieve this, we introduce two parameters used in the attack. The first parameter of the 

attack is the initial spoofing distance. Whenever the attacker starts the GPS spoofing attack, 

the attacker changes the GPS location with a predefined initial spoofing distance with a 

spoofing degree 270 or 90. Since IMU drift is unpredictable, the attacker has to wait until the 

IMU drift happens. The initial spoofing distance helps the attacker predict when the IMU drift 

will happen. The valid initial spoofing distance can cause LiDAR disagreement to be larger. 

This is because when IMU drift causes a larger LiDAR disagreement, the spoofed GPS will be 

close to the localization result. Therefore, the initial spoofing distance helps the attacker 

filter out or detect the points that have a large IMU drift. 

 

 The second parameter is the scaling factor. The scaling factor applies to the spoofing 

distance. 

 spoofing distance = previous spoofing distance × scaling factor (5.1) 
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 Eq. 5.1 shows how to apply the scaling factor to the spoofing distance. The scaling 

factor is always larger than 1. The scaling factor is applied when the attacker discovers 

vulnerable points. We define vulnerable points as whenever the AV behaves incorrectly 

while applying the initial spoofing distance. We will define this odd behavior in §5.7. We use 

the scaling factor when the localization estimation is getting close to the spoofed GPS. It 

means that the distance between LiDAR and localization estimation is large and the 

localization estimation is closer to the spoofed GPS location. Therefore, we can increase the 

spoofing distance. However, the proper scaling factor has to be chosen such that the spoofed 

GPS will not be detected by the outlier detector and, at the same time, achieve a large 

measurement update. 

 

 

Figure 5.4: Examples for using initial spoofing distance and applying scaling factor 

 

 Fig. 5.4 represents how to apply the initial spoofing distance and scaling factor to the 

attack. The attacker starts the GPS spoofing on the red circle with number one. The attacker 

spoofs the GPS with the initial spoofing distance. Then, the attacker keeps using the same 

initial spoofing distance. Whenever the attacker discovers the AV’s odd movement, he starts 

to apply the scaling factor to initial spoofing distance. In Fig. 5.4, the attacker discovers the 
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AV’s odd behavior between red colored number 2 and 3 circles. Then, he applies the scaling 

factor to the red circle with number 3. He keeps applying the scaling factor. However, if the 

AV stops its invalid behavior or is going back to the original location, the attacker resets the 

scaling factor and restarts GPS spoofing with the initial spoofing distance. Fig. 5.5 shows an 

overview of the attack process.  

 

 

Figure 5.5: Control flow of using initial spoofing distance and scaling factor 

 

 The attacker keeps applying the scaling factor to the spoofing distance if the car goes 

in the wrong direction. Otherwise, the attacker stops applying the scaling factor and begins 

applying the initial spoofing distance again. 

 

5.6 Offline profiling-based attack methodology 

 Based on §5.3 and §5.4, it is very important to choose the proper initial spoofing 

distance and scaling factor. If not, the location of the spoofed GPS will be considered as an 

outlier and LiDAR will correct the localization estimation. Due to the nature of IMU bias and 

noise, the drift in MSF is hard to predict. Thus, we propose a profiling-based attack method 



20 
 

to predict the scaling factor and initial spoofing distance. The intuition is that the similar 

drift, which appears in the profiling segment, will likely appear in other segments as well. 

We apply every possible initial spoofing distance and scaling factor to the profiling segment. 

From the offline profiling, we obtain the most common spoofing parameters, initial spoofing 

distance and scaling factor, which can cause large deviation. In this process, we have to 

decide the profiling duration. 

 

 The attacker can conduct a profiling-based attack using his own IMU sensor. In 

Chapter 4, the attacker can collect IMU measurement data with the car’s trajectory. Hence, 

the attacker can profile and find the initial spoofing distance and scaling factor from the 

collected data. 

 

5.7 The attacker’s goal 

 The attacker’s goal is to make a larger deviation than the threshold from the ground 

truth. We define this threshold as the desired deviation. The possible desired deviation moves 

the AV to the adjacent lane or disturbs other cars driving in the adjacent lane. In this case, 

the attacker has to consider the lane width, AV’s width and, other car’s width. From the U.S 

Transportation Department, the width of the typical lane is 2.7m and the width of the 

highway is 3.6m. The width of an AV varies depending on the model of the car. In Baidu 

Apollo, they use the 2019 Lincoln MKZ model as an AV and its width is 2.11m. For bothering 

the car, the AV partially goes to the next lane and causes a crash. In this case, we assume that 

the car in the next lane drives very close to the line of the lane to avoid being hitted by the 

AV. The average width of car is 1.905m. So, the way to calculate the desired deviation for 
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making a crash is following Eq. 5.2. As a result, when the AV’s width is 2.11m, the car’s width 

is 1.905m and the lane width is 2.7m, the desired deviation is 1.09m. Also, the attacker has 

to choose the duration. It means that the attacker achieves the desired deviation in the 

defined duration. 

 

 

(5.2) 

 The last thing the attacker has to define is the pattern of the AV’s odd behavior or 

movement. In §5.5, the attacker applies the scaling factor when the AV moves incorrectly. 

Such an odd movement is defined differently based on the AV system. However, the AV 

follows the center of the lane in a normal case. The attacker can observe the AV when it 

touches the line of the lane. Hence, the attacker can calculate the minimum deviation that 

makes the car move towards the boundary of the lane. We define this minimum deviation as 

the observation deviation threshold. 

 

                            (5.3) 

 Eq. 5.3 shows how to calculate the observation deviation threshold. For example, if 

the AV’s model is 2019 Lincoln MKZ and drives in the typical road that the width is 2.7m, the 

observation deviation threshold is 0.295m. So, when the attacker moves the AV to 0.295m, 

the AV will touch the line of the lane and the attacker starts to multiply the scaling factor to 

the initial spoofing distance, or previous spoofing distance. 



22 
 

 

CHAPTER 6. ATTACK EVALUATION 

 

 We use the production-grade open-source AV system, Baidu Apollo, in our analysis. 

In Apollo, MSF is implemented by the error-state Kalman filter, which fuses the sensor data 

from IMU, GPS, and LiDAR. In our evaluation, we use the MSF sensor trace data provided by 

Baidu. Baidu provides this MSF sensor trace data for testing the localization module so that 

the data is much reliable and accurate than other data sets. And our attack goal is that we 

achieve a deviation to specific threshold in the duration defined by the attacker. 

 

 At first, we will introduce the way to calculate the ground truth on Apollo’s MSF 

sensor data set. Next, we will show the result of offline profiling. Lastly, we will evaluate our 

attack method by applying the most common combination of the initial spoofing distance 

and scaling factor. 

  

6.1 Ground truth for evaluating the attack 

 The sensor trace data set provided by Baidu is approximately 3 minutes (exactly 219 

seconds). We apply every possible combination of the initial spoofing distance and scaling 

factor to every segment. In this case, we vary the time to start applying the initial spoofing 

distance, the time to apply the scaling factor and initial spoofing distance. One segment 

consists of duration defined by the attacker. When at least one combination of the initial 

spoofing distance and scaling factor makes deviation, which is larger than the desired 

deviation threshold (e.g., 2.7m and 1.09m), we define the segment as a vulnerable segment. 
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 We use 4 different durations, 60, 90, 120, and 150 seconds. Table 6.3 shows the 

number of segments on the different duration. We calculate the ground truth for all segments 

except the segment that the starting point is included in the offline profiling segment 

introduced in §6.2. After we apply every possible combination to every segment on different 

duration, we find that every segment is vulnerable to the attack with the specific initial 

spoofing distance and scaling factor. 

 

6.2 Offline profiling result 

 We choose one segment from the Apollo MSF sensor trace data set. This segment 

consists of 1 minute. The driving scenario of the segment we chose is that the car drives in a 

curvy road, which is a very common case in the real world. We apply every possible 

combination of the initial spoofing distance, scaling factor and vary the time to start spoofing. 

Since it is 60 seconds duration, the attacker has 59 choices to choose the time to apply the 

scaling factor. The range of the initial spoofing distance we used is from 0.1m to 2.0m with 

0.1m granularity. Also, the range of the scaling factor is from 1.1 to 2.0 with 0.1 granularity. 

Next, we calculate the frequency of the combination of the scaling factor and initial spoofing 

distance that achieves a larger deviation than the desired deviation threshold (e.g.2.7m and 

1.09m). As a result, the possible maximum frequency of a combination is 59 and the 

minimum frequency is 0. If the frequency is 59, it means the attacker can always achieve the 

desired deviation threshold when the attacker applies specific initial spoofing distance and 

scaling factor regardless of the time applying the scaling factor. 
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  Table 6.1 and Table 6.2 show the profiling results with different desired deviation 

threshold. We set two desired deviation thresholds, 2.7m and 1.09m. Based on profiling 

results, 0.6m initial distance and 1.4, 1.3 scaling factor are the most common combinations. 

Also, 0.5m initial distance and 1.4 scaling factor is the common combination from the 

profiling result.  

 

Initial distance (m) Scaling factor Frequency 

0.6 1.3 30 

0.6 1.4 23 

0.6 1.2 20 

0.6 1.5 18 

0.5 1.4 15 

0.5 1.5 15 

Table 6.1: The result of offline profiling when desired deviation threshold is 1.09m 

 
 

Initial distance (m) Scaling factor Frequency 

0.6 1.4 13 

0.6 1.3 13 

0.5 1.4 11 

0.6 1.2 11 

1.0 1.3 10 

1.1 1.2 10 

Table 6.2: The result of offline profiling when desired deviation threshold is 2.7m 

 

6.3 Attack evaluation 

 Based on the most frequent combination of the initial spoofing distance and scaling 

factor calculated on offline profiling, we apply those combinations to the Apollo MSF sensor 

trace data set. We vary the duration of the attack and exclude the profiling segment in the 



25 
 

data set for the evaluation. The durations we used in the attack evaluation are 60, 90, 120, 

and 150 seconds. Also, we set the observation deviation threshold as 0.295m. 

 

 Table 6.3 shows the number of segments based on different durations. It means there 

are 99 segments the attacker can explore when the attack duration is 60 seconds. When the 

duration is 150 seconds, the number of segments is small because the data set we used is 

approximately 3 minutes (exactly 219 seconds). Then, there are 69 segments, but we have 

to exclude segments with starting time overlapped with the profiling period. That is why 

there are only 29 segments left. 

 

Duration (s) Number of segments 

60 99 

90 69 

120 39 

150 29 

Table 6.3: The number of segments based on the different duration 

 

 We apply three different combinations of attack parameters, the initial spoofing 

distance and scaling factor; 1) initial spoofing distance: 0.6m, scaling factor: 1.3, 2) initial 

spoofing distance: 0.6m, scaling factor: 1.4, 3) initial spoofing distance: 0.5m, scaling factor: 

1.4. Those combinations are most common cases from the profiling result when the desired 

deviation is 2.7m and 1.09m. 
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 Table 6.4 and 6.5 show the success rate on different desired deviations. Table 6.5 is 

the result of success rate from 1.09m desired deviation and Table 6.4 shows the result of 

success rate when desired deviation is 2.7m. As the attack duration increases, the success 

rate increases as well. The combination of 0.6m initial spoofing distance and 1.4 scaling 

factor has larger success rate than others based on the result of success rate. The success 

rate in Table 6.5 is larger than Table 6.4 because the desired deviation is smaller. However, 

the difference of success rate is trivial. That is, when the attacker achieves 1.09m deviation, 

he can easily achieve 2.7m deviation as well. In both 2.7m and 1.09m desired deviation cases, 

the attack achieves 100% success rate when the duration becomes 150 seconds. 

 

Duration (s) Initial distance (m) Scaling factor Success rate (%) 

60 

0.6 1.3 45.45 

0.6 1.4 45.45 

0.5 1.4 44.44 

90 

0.6 1.3 62.31 

0.6 1.4 62.31 

0.5 1.4 60.86 

120 

0.6 1.3 64.1 

0.6 1.4 66.66 

0.5 1.4 66.66 

150 

0.6 1.3 100 

0.6 1.4 100 

0.5 1.4 100 

Table 6.4: The success rate with different attack parameters. The desired deviation is 2.7 m. 
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Duration (s) Initial distance (m) Scaling factor Success rate (%) 

60 

0.6 1.3 45.45 

0.6 1.4 47.47 

0.5 1.4 45.45 

90 

0.6 1.3 62.31 

0.6 1.4 65.21 

0.5 1.4 62.31 

120 

0.6 1.3 69.23 

0.6 1.4 76.92 

0.5 1.4 74.35 

150 

0.6 1.3 100 

0.6 1.4 100 

0.5 1.4 100 
Table 6.5: The success rate with different attack parameters. The desired deviation is 1.09 m. 

 

 However, when the duration is 60 seconds, it has lower success rate which is slightly 

larger than 45%. But, in §6.1, we showed that all segments we explored are vulnerable to the 

attack. We try to find the reason why our attack cannot achieve higher success rate in 60 

seconds duration. We apply different possible parameter combinations to the failed segment. 

Each segment has its own characteristics because the degree of IMU drift is usually unique. 

That is, the combination of initial spoofing distance and scaling factor that makes larger 

deviation in the vulnerable segment varies between segments. For example, the attacker has 

to use 0.9m initial distance to attack the specific segment. As a result, the combinations used 

in the evaluation cannot make the segment being attacked. But, when the duration is getting 

longer, it normally covers the segment which is attack-able by attack parameters we used in 

Table 6.4 and 6.5. It means that similar IMU drift, which is explored in profiling segment 

appears frequently. 
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CHAPTER 7. DISCUSSION OF THE POTENTIAL DEFENSES 

 

 There are possible ways to prevent GPS spoofing attack on the localization module of 

AV. The first possible defense is using the other car’s location or infrastructure’s location. In 

the near future, it will be possible for an AV to communicate with other vehicles including 

AVs and normal cars. It is called vehicle-to-vehicle communication. Also, the communication 

between the infrastructure and AV can be used. The infrastructure includes traffic signal. It 

is called vehicle-to-infrastructure communication. Based on this communication, the AV can 

receive the location of another car or infrastructure. The AV can compare its own perception 

result and the received location from the communication. It can detect the problem of 

localization since the perception result comes from localization estimation. So, if 

incompatibility exists between perception or localization estimation and the received 

location, the AV can detect that an attack happens on the localization module. 

 

 The second possible solution makes MSF algorithm to trust more on LiDAR than GPS. 

Attacking LiDAR is more difficult compared to GPS in the current stage. So, when 

incompatibility between GPS and LiDAR exists, trusting more on LiDAR will render the GPS 

spoofing attack ineffective. That is, LiDAR becomes the main source of localization and GPS 

is used for compensating the LiDAR. However, when the attacker can achieve a deliberate 

attack on LiDAR, such defense method will be ineffective. To the best of my knowledge, 

attacking moving LiDAR elaborately is hard to achieve in the current stage. 
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 The last possible solution is about the IMU. When the IMU has no bias and drift, it can 

automatically solve the GPS spoofing attack. In current state, it is impossible to make 

completely perfect IMU. But, in the near future, the perfect IMU could be made and it would 

prevent GPS spoofing attacks. When the IMU becomes perfect, there won’t be larger LiDAR 

disagreement, which is the main cause of GPS spoofing attack. 
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CHAPTER 8. CONCLUSION AND FUTURE WORK 

 

 To calculate the current location of AV and robot is challenging. This task is 

implemented by using different kinds of sensors. This process is the basic function for 

making the AV secure. To achieve this functionality, AV uses MSF algorithm which fuses 

different sensors such as GPS, IMU, and LiDAR. However, GPS, a source of localization, is 

vulnerable to spoofing attacks. Based on our analysis, the GPS spoofing attack still makes 

localization precariously. Even though it is difficult for the attacker to attack MSF using GPS 

spoofing, the attack is still valid. We also find a possible reason why the GPS spoofing attack 

still works on MSF. It is very likely because of IMU drift. We apply our attack methodology to 

data set provided by Baidu Apollo. We achieved 100% success rate within 150 seconds. Also, 

we make a deviation which is larger than 2.7m within 2 minutes with 66% success rate. 

 

 Because of the lack of time, we evaluate our methodology on only one data set. In the 

future, we will apply our most common attack parameters in Table 6.1 to different data sets 

such as KAIST [6] and KITTI [4]. After that, we will calculate the success rate on those data 

sets and evaluate our attack more precisely. 

 

 Also, we will choose different segments to get a profiling result and compare the 

result to our current result. Since each segment has its own characteristics, profiling results 

could differ between segments. After getting a new profiling result, we will apply it to data 

sets. 
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 Apollo’s MSF localization is a closed source so that there is a difficulty on analyzing 

the cause why MSF is affected by GPS spoofing attacks. We will do reverse engineering on 

Apollo’s MSF algorithm to do cause analysis. If we can know the direct cause why the GPS 

spoofing attack works on MSF, we can devise the advanced attack method and achieve higher 

success rate. We will run different experiments to verify the reason. 

 

 Finally, we will explore other possible attack vectors. Different kinds of attack exist in 

each sensor such as the IMU and LiDAR. Even though they need complicated attack methods 

than GPS, attacks on the IMU and LiDAR can cause huge effect on MSF because IMU and 

LiDAR make greater data contribution than GPS. 
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