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Consensus prediction of cell type labels in 
single-cell data with popV

Can Ergen    1,2, Galen Xing1,3,7, Chenling Xu1, Martin Kim2, Michael Jayasuriya2, 
Erin McGeever3, Angela Oliveira Pisco    3,8, Aaron Streets    1,3,4 & Nir Yosef    1,2,5,6 

Cell-type classification is a crucial step in single-cell sequencing analysis. 
Various methods have been proposed for transferring a cell-type label 
from an annotated reference atlas to unannotated query datasets. Existing 
methods for transferring cell-type labels lack proper uncertainty estimation 
for the resulting annotations, limiting interpretability and usefulness.  
To address this, we propose popular Vote (popV), an ensemble of prediction 
models with an ontology-based voting scheme. PopV achieves accurate 
cell-type labeling and provides uncertainty scores. In multiple case studies, 
popV confidently annotates the majority of cells while highlighting  
cell populations that are challenging to annotate by label transfer.  
This additional step helps to reduce the load of manual inspection, which is 
often a necessary component of the annotation process, and enables one 
to focus on the most problematic parts of the annotation, streamlining the 
overall annotation process.

Cell-type annotation is a crucial task in analyzing single-cell RNA 
sequencing (scRNA-seq) data. The quality of the annotations has a 
direct impact on downstream analyses such as the comparison of cell 
type composition as well as the analysis performed on a per-cell-type 
basis1. Manual annotation is highly time-consuming and requires bio-
logical context-specific and sequencing technology-specific domain 
knowledge. Thus, as scRNA-seq becomes an increasingly standard lab 
technique, there is a growing need to generate automated annotations. 
We propose here the use of a collection of cell-type prediction models 
to provide not only automated annotations but also well-calibrated 
measures of uncertainty. This enables the user to streamline the anno-
tation process.

Automated cell type annotations encounter several challenges2. 
There is no gold standard ground truth for cell type annotation within 
a specific dataset. Biology is complex, and when cell states vary con-
tinuously, delineations between cell types are imprecise, and even 
human experts may disagree on the exact phenotype of a specific 
cell. Therefore, it is essential that annotation methods highlight areas 

of uncertainty that require expert knowledge input. The continu-
ous nature of cell states3, along with stochasticity in the sequencing 
process, as well as the domain knowledge of the person manually 
annotating the dataset, can lead to cells being annotated at varying 
levels of specificity even within the same dataset. Across multiple 
datasets, factors, like identification of new cell subtypes or redefinition 
of marker genes, lead to discrepancies in cell type identification. There 
are a plethora of automated cell-type annotation methods4. However, 
differences in cell type granularity, experiment-specific nuisance 
factors and technology-dependent sparsity of gene expression lead 
to no clear ‘best method’ for automatic annotation. Based on these 
factors, we propose that it is crucial for automatic cell-type annotation 
pipelines5 to highlight areas of uncertainty that may require manual 
scrutiny, balance the specificity of predictions with accuracy and be 
easily accessible and usable.

To address these challenges, we developed popular Vote (popV), 
a flexible and scalable automated cell-type annotation framework that 
takes in an unannotated query dataset from a scRNA-seq experiment, 
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this prediction. We estimate the consensus annotation using a simple 
majority vote procedure, counting for each annotation label the num-
ber of algorithms that support it. In this procedure, all algorithms get 
a single ‘vote’, except for OnClass, which received several votes. The 
reason for that is that OnClass is the only method in our collection of 
methods that is capable of predicting cell types that do not exist in the 
reference dataset. It does so through a two-step process—first selecting 
an annotation out of the collection of labels in the reference dataset 
and then propagating it to identify a potentially more refined label in 
the Cell Ontology (even if this label is absent from the reference). To 
account for these ‘out of sample’ cell type annotations, we consider 
every label that is on the path from the root of the ontology down to 
the OnClass-predicted label as a predicted label (Extended Data Fig. 1). 
We then perform majority voting with OnClass having multiple ‘votes’ 
at different levels of hierarchy. We have attempted using a simple 
majority vote with the ‘within sample’ annotation from the first stage 
of OnClass and with no propagation along the Cell Ontology. In most 
of our analyses, we found our first strategy to outperform the simple 
strategy (Supplementary Fig. 1).

A potentially useful property of many of the algorithms included 
in popV is an ‘algorithm-intrinsic’ estimation of prediction certainty. 
This could, in principle, be leveraged to compute a weighted consensus. 
However, we found that the certainties are calibrated differently for the 
different methods, which makes this approach futile as it will weigh 
more on the predictions of classifiers with higher estimated certainties.

After calculating the consensus score, popV generates a sample 
report that includes prediction summaries as well as integrated views 
of the query and reference datasets. For the latter, it displays Uniform 
Manifold Approximation and Projections (UMAPs) for the joint visu-
alization of the reference and query datasets for the four methods that 
perform data integration (Fig. 1), as well as a bar plot comparing cell 
type frequencies in the reference and query dataset to highlight the 
differential abundance of various cell types. One set of summaries in the 
report is confusion matrices between the consensus predictions and 
each individual method to indicate which cell types were confused with 
another cell type for any particular method. The report also includes 
a per-cell-type display of the consensus score (that is, the number of 
agreeing methods—between 1 and 8) to highlight which cell types are 
overall difficult to predict. Complementing this ‘algorithm-extrinsic’ 
estimation of certainty, we also output the intrinsic uncertainty (that is, 
classifier score) of each of the eight methods (these scores are defined 
in the Methods). We emphasize that intrinsic and extrinsic uncertainty 
are two complementary measurements essential to quantifying the 
performance of a set of cell annotation tools.

transfers labels from an annotated reference dataset and generates 
predictions with a predictability score indicating the confidence of the 
prediction. We pose here that various prediction methods will disagree 
in their prediction if an annotation is not accurate, whereas they will 
tend to agree if the predicted cell type is the correct one. We named our 
method popV because instead of relying on the predictions of a single 
classifier, popV takes a consensus approach and incorporates the pre-
dictions from eight automated annotation methods. PopV also takes 
into account annotations at different levels of granularity by aggregat-
ing results over the Cell Ontology6, an expert-curated formalization of 
cell types in a hierarchical structure with a standardized vocabulary.

PopV is available as an easy-to-install, open-source Python pack-
age and is designed to be a flexible framework for incorporating future 
cell-type classification methods. We provide a notebook that allows 
the prediction of new datasets and provides pretrained models for 20 
different organs based on the Tabula Sapiens dataset7.

Results
Overview of popV
PopV takes a consensus of experts’ approach to the task of automated 
cell type annotation. The input is an unannotated query dataset 
together with an annotated reference dataset (Fig. 1a). Both datasets are 
expected to contain raw count data and demonstrate that popV can be 
applied to unique molecular identifier as well as non-unique molecular 
identifier-based technologies. PopV then runs the following eight differ-
ent annotation methods: random forest (RF)8, support vector machine 
(SVM)8, scANVI9, OnClass10, Celltypist11 and k-nearest neighbors (kNN) 
after batch correction with three single-cell harmonization methods—
scVI12, BBKNN13 and Scanorama14 (Fig. 1). The eight prediction algo-
rithms were chosen because they were shown to have good prediction 
accuracy15 and/or good harmonization performances16. These methods 
encompass supervised methods that are trained only on labeled data 
(RF, SVM, OnClass, Celltypist and kNN) after applying unsupervised 
harmonization methods that are agnostic to label information during 
training (BBKNN, Scanorama and scVI) and a semi-supervised method 
trained with both labeled and unlabeled data (scANVI). However, we 
emphasize that popV offers an intuitive application interface (API) for 
the rapid inclusion of additional annotation methods. We demonstrate 
this capability through a code snippet for adding a new classifier (kNN 
after batch correction with Harmony17) in the Methods.

After applying each of these methods separately, popV proceeds 
to aggregate the resulting predictions for two purposes (Extended 
Data Fig. 1). The first is to designate a single ‘consensus’ annotation 
for every query cell. The second purpose is to quantify our certainty in 
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Fig. 1 | Framework of popV for automatic cell type annotation. PopV takes 
an unannotated query dataset and an annotated reference dataset as input. 
Each expert algorithm predicts the label on the query dataset to yield a cell-type 

annotation. The certainty of the respective label transfer can be quantified by 
scoring the agreement of those methods. The workflow yields a sample report to 
provide the user with insights into the annotated labels.
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To allow for fast annotation of new query datasets, we provide 
pretrained models for all 20 organs present in Tabula Sapiens18. Pre-
training is possible for all methods except Scanorama and BBKNN, 
which compute a joint embedding of reference and query datasets and 
make pretraining infeasible. For scVI and scANVI, we provide pretrained 
embeddings of the reference dataset and map the query dataset to this 
embedding using scArches19. PopV has the following three different 
modes of cell type prediction: in retrain mode, all classifiers are trained 
from scratch, which requires an hour for 100k cells in a Google Colab 
session; in inference mode, models previously trained for the reference 
dataset are used where applicable, which requires 30 min for 100k cells; 
in fast mode, only pretrained models are used and only cell types in 
the query dataset are predicted, which requires 5 min for 100k query 
cells. PopV is available as an open-source Python project and includes 
an online Google Colab notebook with free computing resources. The 
codebase enables the addition of new reference datasets (in addition 
to Tabula Sapiens) through a simple API and can be invoked from the 
same notebook environment. We recommend that in any newly added 
reference datasets, the annotations should be consistent with Cell 
Ontology, either by matching terms in the ontology or by hierarchi-
cally assigning new terms to existing terms in the ontology. To this end, 
we provide scripts to add custom cell type labels to the Cell Ontology 
before processing by popV (where it is used for running OnClass and 
calculating our consensus scores).

PopV prediction score discriminates high- and low-quality 
annotations
We evaluated the performance of cell-type annotation using popV with 
a Human Lung Cell Atlas as the query dataset20 and the lung tissue of 
Tabula Sapiens as a reference dataset. The Lung Cell Atlas is carefully 
annotated to a high level of granularity. It contains a wide variety of cell 
types across immune cells, epithelial cells, endothelial cells and stromal 
cells and is therefore well suited for studying tissues with diverse labels. 
To make the labels comparable across both datasets, we translated the 
Lung Cell Atlas labels to the corresponding terms in the Cell Ontology 
(Supplementary Fig. 2).

PopV achieves high accuracy on the Lung Cell Atlas. We visualize 
the popV predictions against the manual annotations in the Lung Cell 
Atlas and see a strong agreement between the prediction and the origi-
nal annotation, as well as a good integration between the query and the 
reference cells (Fig. 2a). We decided here to use scANVI integration as it 
showed the highest performance in scIB metrics, which measure data 
integration and biological conservation16 (Extended Data Fig. 2a). To 
evaluate the quality of our predictions, we compute accuracy terms 
based on the Cell Ontology tree (Methods). An exact match, as the name 
implies, means that the predicted cell type is exactly the same as the 
manual annotation. Furthermore, intuitively, a prediction algorithm 
that predicts one cell type as another similar cell type performs bet-
ter than a prediction algorithm that predicts the cell is of an unrelated 
type. The parent match, child match and sibling match take this into 
account and measure if the predicted cell type is the parent, child or 
sibling in the Cell Ontology tree compared to the ground truth annota-
tion. This measure is especially useful if a cell type label exists only in 
the query and not in the reference dataset. Every prediction that did 
not match any of these relationships was classified as no match. PopV 
overall achieves high accuracy for most cell types (Fig. 2b and Extended 
Data Fig. 2c). Except for scANVI and OnClass, all methods have com-
parable performance in this dataset. Furthermore, we compared the 
performance of popV with the label transfer provided in Seurat, which 
is another popular tool for cell type annotation transfer21, and found 
that Seurat performs worse than most methods used in popV. We also 
included OnClass predictions after step one (OnClass_seen), where 
OnClass only predicts cell types that were present in the reference data-
set, and found this to perform similarly to the good-performing annota-
tion tools, so that the lower performance of OnClass here is solely due 

to the prediction of unseen cell types. Overall, popV performed best 
for the number of exact matches and was comparable in the number 
of cells with no match, highlighting that the popV prediction is more 
accurate than any of the single methods. For a better insight into the 
prediction, we display bar plots in the report for popV, highlighting 
the abundance of cell types in query and reference datasets, as well as 
prediction accuracy (Extended Data Fig. 2), and display confusion of 
cell types using alluvial plots (Supplementary Fig. 3).

When checking the popV prediction scores, we found that the 
accuracy of the prediction is highly correlated with the prediction 
score (Fig. 2c). For scores of 6 and higher, we found that more than 
90% of the annotations were exact matches with the ground truth. 
For scores of 8, which is a perfect agreement between all methods, 
98% of the predictions were exact matches. For scores of 3 and lower, 
the prediction accuracy was lower than 50%, highlighting that the 
popV consensus score is a valuable metric to reflect the classifica-
tion accuracy and points to groups of cells that should be further  
(and manually) scrutinized.

When considering cells that were assigned with a low consensus 
score, we found three possible reasons that may explain the disagree-
ment between the different methods (Fig. 2d). The first is that the 
distinction between certain cell subsets with different labels is unclear. 
This often arises in cases of a continuum of cell states with no clear deci-
sion boundary in transcriptome space. In such cases, the boundaries 
determined by different algorithms may vary (because they depend 
on different objectives or techniques), leading to low consistency. It 
is, however, exactly those cases that merit closer (and often manual) 
inspection and—if needed—assignment of multiple optional labels. 
As an example, we found several areas of low consensus score in the 
various lung endothelial cells (Fig. 2e). Most endothelial cells with 
a low consensus score arise between capillary endothelial cells and 
alveolar capillary type 2 endothelial cells. In this region, the various 
algorithms disagree on the correct boundary, but all algorithms predict 
those cells with either of those labels. We found that alveolar capil-
lary type 2 endothelial cells express EDNRB and HPGD, and capillary 
endothelial cells express FCN3 and IL7R. Cells between both cell types 
are double positive in both markers, while they do not show any specific 
marker gene. Therefore, we conclude that neither the term capillary 
endothelial cell nor the term alveolar capillary type 2 endothelial cell is 
adequate to describe these cells, but their phenotype is between both 
cell types. Thus, it is a region that requires manual scrutiny to determine 
the correct label of those cells. In fact, such scrutiny was applied in the 
original annotation of the Lung Cell Atlas—annotations not provided 
to popV—which labeled these cells as capillary intermediates 1 and 2. 
Therefore, this example demonstrates that a low consensus score can 
help identify areas that require a refined label, possibly extending the 
vocabulary available in the reference atlas.

The second reason for a low consensus score in this case study 
occurs when the query dataset contains subsets of cells that are absent 
from the reference atlas. As an example, while the Lung Cell Atlas (which 
we use as the query) includes a subset of endothelial cells that were orig-
inally labeled bronchial vessel 2, this subset (and its respective label) 
seems to be absent from our reference atlas. Indeed, when checking 
marker genes for these cells, their expression was high in PLVAP and low 
in the vein endothelial marker ACKR1 (Supplementary Fig. 4), which can 
be interpreted as an intermediate stage between capillary endothelial 
cells (negative for both markers) and lung microvascular endothelial 
cells (positive for both markers). This combination of marker gene 
expression was not observed in Tabula Sapiens and therefore marks a 
cell type not present in the reference dataset.

The third possible reason we find for the low consensus is inac-
curacy in the reference annotation. As an example, we found a subset 
of T cells with a low consensus score (Extended Data Fig. 3). All cells of 
this group in the query dataset were originally labeled (by the authors 
of the Lung Cell Atlas) as effector CD4+ αβ T cells, while similar cells 
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cells labeled with predicted label. b, Ontology accuracy (Methods) for the 
various methods computed on the query cells. c, Ontology accuracy for the 
prediction scores in popV. d, Highlighted cells with a consensus score of 4 or 

less (low consensus). e, Zoomed-in view of endothelial cells in the LCA with 
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originating from the Tabula Sapiens reference were labeled as a mixture 
of CD4 and CD8 T cells. Consequently, most algorithms in popV labeled 
this low consensus group as a mix of CD4 and CD8 T cells with different 
decision boundaries. Manually following up on this low-scoring group, 
we checked the marker gene CD8A and found a clear decision bound-
ary that distinguishes the CD4+ (TH) and CD8+ (cytotoxic) subsets in a 
manner consistent with the (hidden) query annotation. Despite this 
clear delineation, we found that many CD8− cells are labeled in the 
reference atlas as CD8+ T cells. A low consensus score in this group of 
cells helped to identify wrongly annotated cells in the reference dataset, 
and we highlight that manual scrutiny can clean up these wrong labels.

PopV uses a diverse set of underlying classifiers. The heuristic is 
that including methods with varying bias allows us to detect uncer-
tain predictions. We studied whether distinct classifiers are essential 
by comparing popV against majority voting between eight different 
SVM algorithms with different kernels and cost parameters. We find 
the popV consensus score to better correlate with accuracy than this 
simplified algorithm (Extended Data Fig. 4a,b,d). Indeed, we find higher 
diversity in the predicted cell-type labels in the predictors underlying 
popV and find no pair of predictors with a Hamming similarity above 
0.9 (Extended Data Fig. 4c). While popV highlighted problems with 
annotating different subsets of T cells, majority voting after SVM shows 
high uncertainty for cells predicted to be natural killer (NK) cells. 
However, for these cells, we found marker gene expression that aligns 
with those cells being NK cells highlighting an accurate prediction by 
popV. Taking together, using a diverse set of algorithms enables popV 
to highlight cell types with wrongly predicted labels, while a more 
simplified algorithm using only predictors based on SVM does not 
provide a calibrated classifier.

We have demonstrated here that the consensus score can highlight 
regions that require manual scrutiny and that reannotation in those 
regions can be performed using marker gene expression. This leads to 
new delineation of cell types not discovered in the reference dataset, 
detection of query-specific cell types and correction of the cell type 
label of wrongly assigned reference cell type labels.

PopV provides useful label transfer in case of drastic 
differences in cellular composition
After highlighting that popV is capable of detecting query-specific cells 
and that the consensus score is capable of highlighting these cells, we 
studied whether this can also be achieved when we have very different 
query and reference datasets. To this end, we studied the annotation of 
thymus cells using Tabula Sapiens as a reference dataset and a second 
study, which profiled thymi from different age groups (fetal, child-
hood, adolescence and adulthood) as query22 (Supplementary Fig. 5). 
In particular, the thymus undergoes involution with age, and the adult 
thymus, which we use here as reference, does not accurately represent 
the structure and function of the thymus in younger individuals. In 
particular, we anticipate that the reference sample will not provide 
ample representation of the developing T cell population, which is 
prevalent in our query data.

UMAP embedding of the two harmonized datasets clearly high-
lights the subsets of query cells that are represented in the reference 
dataset, while as expected by the age of the donors in the Tabula Sapiens 
project, the compartments of thymocytes and developing T cells are 
almost absent from the reference dataset (Fig. 3a and Supplementary 
Fig. 6). Indeed, we find a high consensus score and accuracy in regions 
well represented in the reference dataset, while the consensus score for 
query-specific cell types is lower (Fig. 3b,c). We find a high prediction 
accuracy for query cells from the adult thymus that are similar to the 
cells from the reference dataset (Fig. 3d and Supplementary Fig. 7). 
Reassuringly, popV assigned low consensus scores to the majority of 
cells from compartments that are absent in adult humans, highlight-
ing them for manual annotation (Fig. 3e and Extended Data Fig. 5), 
while for cells isolated from an adult thymus, we overall find very high 

accuracy across all algorithms and a high consensus score with popV 
outperforming the single methods in accuracy (Fig. 3f and Supplemen-
tary Fig. 8). We found for the underlying algorithms that their internal 
certainties do not correlate well with the accuracy and find a lower area 
under the precision–recall curve for these algorithms compared to 
popV (Extended Data Fig. 6 and Supplementary Fig. 9).

We identified two other cell populations that are underrepre-
sented in Tabula Sapiens compared to the query dataset, which are 
cortical thymic epithelial cells (also associated with involution23) and 
plasmacytoid dendritic cells. Similarly to our previous examples, we 
find that the consensus score associated with cortical epithelial cells 
is indeed low, with a variety of annotations assigned to these cells by 
the different algorithms, including fibroblasts and medullary epithe-
lial cells (Supplementary Fig. 10). The low consensus score suggests 
that manual curation of this group of cells is needed. In this case, the 
manual assignment of the correct out-of-reference label is relatively 
straightforward using PSMB11, an established marker of cortical thymic 
epithelial cells that is not expressed in any cell-type in the Tabula Sapi-
ens reference.

For plasmacytoid dendritic cells, all algorithms except Scano-
rama + kNN predicted that those cells are B cells or plasma cells. Scano-
rama+ kNN predicted that those cells are dendritic cells. Even OnClass, 
which can predict cells not present in the reference dataset, predicted 
those cells as antibody-secreting cells or lymphocytes of B lineage, with 
not a single cell correctly predicted as a plasmacytoid dendritic cell. 
However, these query cells expressed high levels of CLEC4C and IL3RA 
and were therefore correctly labeled as plasmacytoid dendritic cells. 
As two-thirds of plasmacytoid dendritic cells have a score of 5 or lower, 
manual identification of these cells is possible, and the user can identify 
those confidently wrongly annotated cells using these marker genes.

The only cell fraction that had a high consensus score but low 
accuracy is a group of cells labeled as endothelial cells by popV, while 
annotated as lymphocytes in the original (hidden) annotation of the 
query dataset. However, these cells express CAVIN2, TFPI, which fits 
well with an annotation as endothelial cells. We found that their gene 
expression aligns well with lymphatic endothelial cells. Therefore, it 
suggests a wrong annotation in the query dataset and a correct predic-
tion by popV.

Overall, this demonstrates that the consensus score yields an 
interpretable metric for prediction accuracy and that it helps handle 
cases of discrepancies between the query and reference dataset.

Creating consensus cell-type labels across different sequencing 
technologies is important with the advent of large integration efforts. 
We applied popV to this scenario by transferring labels from the Lung 
Cell Atlas (Fig. 2) to two lung datasets, one sequenced using Drop-seq 
technology and the other using nuclei sequencing24,25. We find an accu-
rate transfer of labels for both datasets (Extended Data Fig. 7). The popV 
consensus score again provides a metric that was better correlated with 
accuracy compared to the intrinsic certainty metrics of the underly-
ing algorithms (Supplementary Figs. 11–14). Thus, it allows detecting 
cells that require manual scrutiny in these more challenging scenarios.

PopV relies on using a Cell Ontology to aggregate votes across 
the ontology. For some reference datasets, cells are not annotated 
according to an existing Cell Ontology. We therefore tested the impact 
when no matching ontology is provided. For this case, we disable the 
use of OnClass, which requires an ontology (Supplementary Note and 
Extended Data Fig. 8). We find popV to perform well in this scenario. 
Additionally, this dataset allowed us to study the effect of different 
cell-type granularities on cell-type prediction. The prediction score 
highlights high granularity annotations as less confidently transferred 
and thereby requiring more manual scrutiny to perform annotation at 
this very fine level.

Finally, we performed ablation studies to test whether algo-
rithms can be removed from popV while maintaining accurate and 
well-interpretable results (Extended Data Fig. 9). After dropping three 
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Fig. 3 | PopV identifies thymocytes as query-specific cell types and yields 
highly interpretable consensus scores. a, UMAP embedding after scANVI 
integration of reference cells (TS) and query cells (thymus cells across different 
age groups) labeled by popV prediction and original annotation. b, PopV 
prediction score overlaid on the UMAP plot. The prediction score is low for 
thymocytes and higher for most other cell types. c, The prediction accuracy  
of the popV prediction highlights the low accuracy in developing thymocytes.  

d, The prediction accuracy of the popV prediction in adult thymus cells in the query 
shows high accuracy except for CD8 T cells. e, Left, PopV accuracy and consensus 
score are well correlated in all thymus cells with high accuracy for predictions 
with a consensus score of 7 and 8. Right, All methods show a low accuracy on fetal 
cells. f, Left, PopV accuracy and consensus score are also well correlated when 
subsetting to cells from adult donors. Right, PopV shows the highest accuracy 
when subsetting to adult cells; most methods show similarly high accuracy.
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of the eight algorithms, we found that the accuracy remains stable in the 
tested cases. However, we find a decrease in the ability to distinguish 
predictions with low accuracy. We, therefore, conclude that the num-
ber of algorithms is essential to be able to highlight low-confidence 
predictions.

Discussion
We have developed popV, an ensemble method for cell type annotation, 
to yield an interpretable certainty quantification for the task of cell type 
annotation. We have demonstrated throughout this manuscript that in 
various scenarios with different sequencing technologies, various cell 
type resolutions and various overlaps of reference and query datasets, 
popV yields a confidence score that is well correlated with the actual 
accuracy of cell type transfer. We demonstrated that the prediction 
score can predict cell types that are specific to the query dataset (mid-
dle temporal gyrus (MTG)-specific neurons), incorrectly annotated 
in the reference (CD4 T cell subsets in Tabula Sapiens) or in the query 
dataset (lymphatic endothelial cells in the thymus) or cell types that are 
not annotated in the reference dataset while present in both datasets  
(lung intermediate capillary endothelial cells in Tabula Sapiens).

PopV is implemented as an easy-to-install, open-source Python 
tool. The codebase is designed so that adding additional cell type clas-
sification algorithms is straightforward, thereby allowing researchers 
to mitigate the risk of choosing a single algorithm (that is, circumvent 
the no ‘one size fits all’ problem). We expect future annotation tools to 
be developed and popV to be used as a tool to handle various biases in 
these tools and to help quantify certainty in automatic prediction. As 
an example, upon user request, we included Harmony + kNN, which 
was not part of the initial release and therefore not used throughout 
the manuscript, as a classification model and found popV’s flexible 
framework to be straightforward in implementing new predictors.

PopV’s performance is limited by the performance of the under-
lying predictors. We showed throughout the manuscript that overall 
popV performed equally well as the single-best method in terms of 
accuracy. However, the aim of popV is not to improve the accuracy of 
cell-type annotation over the single predictors but to yield a metric of 
certainty that is easy to interpret and well-calibrated. In fact, we found 
that algorithm-intrinsic certainties tend to be poorly correlated with 
the accuracy of cell-type annotation. While single methods provide 
similar calibration as popV, no other method provides throughout all 
case studies similar performance. Other methods therefore provide 
no reliable calibration. This is also reflected in a recent study that high-
lights the low calibration of conventional tools for cell-type transfer26. 
Conversely, we demonstrated that the popV consensus score is highly 
associated with accuracy and that it helps identify cases where manual 
involvement is required. A future focus in the development of cell-type 
annotation tools will be on providing better internal certainty meas-
urements. Including these algorithms in popV will provide even more 
interpretable results for label transfer, as, for example, in the case of 
several algorithms having low internal certainty but agreeing on the 
most probable label. Label transfer enables harmonizing cell-type 
annotations across different datasets and streamlines data analysis. 
However, we recommend validating the transferred labels by check-
ing the expression of canonical marker genes because cell-type label 
transfer can fail. For example, for plasmacytoid dendritic cells in the 
thymus dataset, for which the corresponding cell type was missing from 
the reference dataset, these cells were incorrectly annotated as B cells.

We included eight different algorithms in popV and developed 
popV in a way that allows the inclusion of new algorithms in a straight-
forward manner. We performed ablation studies and found that remov-
ing algorithms led to less interpretable consensus scores and made 
distinguishing low-confidence predictions harder. In the future, these 
metrics will allow us to scrutinize, including additional algorithms or 
remove existing ones. Across the case studies here and in applications 
to other datasets, we find an accuracy greater than 95% for scores of 

seven and eight out of eight predictors, while we recommend manually 
scrutinizing predictions with a consensus score of six out of eight and 
less. We highlighted that the good calibration in popV is dependent 
on a diverse set of predictors. These predictors have different biases 
(integration methods with kNN classifier versus supervised classifier 
in gene expression space). PopV is a flexible framework that can easily 
be extended to new classifiers. To make popV a valuable resource for 
the community, we provide a Google Colab notebook with pretrained 
models for every tissue in the final Tabula Sapiens publication.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01993-3.
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Methods
PopV is a Python package available via the Python Package Index. Fur-
ther details on popV, the source code and a model tutorial are available 
at https://github.com/YosefLab/popV. This research complies with all 
applicable ethical regulations. No primary data were generated. All 
software versions were used as described in our reproducibility GitHub 
repository (https://github.com/YosefLab/popv-reproducibility). 
Specifically, popV (v0.2.2), AnnData (v0.8.0), BBKNN (v1.5.1), Cell-
typist (v1.6.0), Harmony-Pytorch (v0.1.7), Onclass (v1.3), Scanorama 
(v1.7.3), Scanpy (v1.9.3), scikit-learn (v0.24.2) and scvi-tools (v1.0.3)  
were used.

Datasets
Tabula Sapiens. Tabula Sapiens was used throughout the manu-
script as the reference dataset. It was downloaded from CELLxGENE 
(https://cellxgene.cziscience.com/collections/e5f58829-1a66-
40b5-a624-9046778e74f5). The expression data were set to the raw 
object of the h5ad object, which contains count data for all cells and 
genes. This yields 483,152 cells and 58,559 genes. We filter every cell 
type that has less than ten cells in a respective tissue as the kNN used 
in popV cannot predict cells with less than eight examples (15 nearest 
neighbors by default; Supplementary Table 1). We confirmed that 
all cell types are present in the recent version of the Cell Ontology 
downloaded from https://github.com/obophenotype/cell-ontology/
tree/v2023-02-19. Furthermore, we validated that the cell type anno-
tation was not donor-dependent in Tabula Sapiens. Tabula Sapiens 
was annotated on a per-donor basis, and for early donors, cell type 
labels have different names for the same cell type compared to later 
donors. To reduce the effect of this inconsistency, we excluded sev-
eral samples (Supplementary Table 2). Additionally, we found a 
strong batch effect between some 10× samples. After contacting 
the original authors, we found that the 10× chemistry was the reason 
for this and created a new metadata column containing the correct 
assay. The corrected assay can be accessed through https://doi.
org/10.5281/zenodo.7587774. All models were trained seperately for 
each tissue using a batch covariate of concatenated donor and assay 
(Supplementary Tables 3 and 4).

Lung Cell Atlas. Data were downloaded from CELLxGENE 
(https://cellxgene.cziscience.com/collections/5d445965-6f1a-
4b68-ba3a-b8f765155d3a). We relabeled the cell types to attain con-
formity with the Cell Ontology (Supplementary Table 6). Additionally, 
we filtered all blood samples collected for the construction of the Lung 
Cell Atlas. We created a concatenated column of sample ID and assay 
and used this concatenated metadata as the query_batch_key in popV 
(Supplementary Table 5). Throughout this manuscript, the query 
dataset label was not used as input to scANVI because the general 
application of popV is intended for an unlabeled query dataset. The 
Lung Cell Atlas contains 75,071 cells in total, and 39 unique cell types 
were used as Cell Ontology labels of 59 unique cell types in the original 
Lung Cell Atlas.

Brain dataset. Data were downloaded from CELLxGENE (https://
cellxgene.cziscience.com/collections/283d65eb-dd53-496d-adb7-
7570c7caa443). We downloaded the dissection of cerebral cortex (Cx)–
precentral gyrus (PrCG)–primary motor cortex-M1C and the dissection 
of Cx-middle temporal gyrus (MTG) as the two cortical regions with 
the largest number of cells (Supplementary Table 7). Original cell type 
labels were used for this dataset, and we used, respectively, cluster_id 
and supercluster_term as the cell type key. We removed cells labeled 
with the supercluster terms splatter as well as miscellaneous, as these 
likely contain low-quality cells where manual annotation was failing. For 
all downstream metrics, we removed cell types with less than ten cells 
in each cell type label, as we found those to be reflective of nuclei from 
distinct brain regions (medium spiny neuron, hippocampal dentate 

gyrus, hippocampal CA1–3 and amygdala excitatory). We decided 
against using labels that conform to the Cell Ontology, as all neurons 
in the original data set were labeled with the same Cell Ontology term 
neuron, which does not reflect the heterogeneity of these cells. The 
cell-type labels termed subcluster_id were the finest level of annotation. 
However, we found little evidence for these labels in the transcriptome 
of nuclei and excluded those from the analysis.

Thymus dataset. Data were downloaded from https://cellxgene.
cziscience.com/collections/de13e3e2-23b6-40ed-a413-e9e12d7d3910 
and were analyzed using the same CELLxGENE access link. We labeled 
cell types to achieve granularity comparable to the reference dataset 
(Supplementary Table 9). For subset analysis, fetal samples were 
filtered to every development stage containing a week number  
(for example, 4th week) as a substring, and adult samples were filtered 
to the human early adulthood stage. We use the donor ID and assay as 
the query_batch_key in popV (Supplementary Table 8). The thymus 
dataset contains 255,901 cells in total, and 28 unique cell types were 
used as Cell Ontologies of 31 unique cell types in the original thymus 
dataset. All cells in this dataset were labeled according to the Cell 
Ontology. However, we decided to summarize all CD4+, as well as all 
CD8+ T cells, into a common cell type to make the annotation granular-
ity comparable between reference and query datasets (Supplementary 
Fig. 7). We additionally summarized all B cells in the query and refer-
ence dataset to be annotated as B cells, as the label of B cells in Tabula 
Sapiens showed strong donor inconsistencies and summarized all 
endothelial cells to be labeled as endothelial cells to harmonize the 
granularity of cell type labels.

Nucleus sequencing and Drop-seq dataset. Data were downloaded 
from the extended set of the Human Lung Cell Atlas (https://cellxgene.
cziscience.com/e/9f222629-9e39-47d0-b83f-e08d610c7479.cxg/). 
For nuclei sequencing, we selected the study_id Sun_2020, and for 
Drop-seq, we selected the study_id Schiller_2020. We used donor_id 
as the query_batch_key and used no query_labels_key. The models 
were trained from scratch using 4,000 highly variable genes com-
puted on the reference cells after subsetting to common genes in the 
query and reference datasets, respectively. Cell types provided in 
original_ann_nonharmonized were used as ground truth labels based 
on the manual labels in the original manuscripts24,25. We relabeled the 
cell types to achieve granularity comparable to the reference dataset 
(Supplementary Tables 10 and 11).

Model parameters
We use eight different cell-type annotation algorithms, and in the fol-
lowing, we explain our parameters for those annotation algorithms as 
well as the data preprocessing pipeline that we use for popV. For UMAP 
embedding, we used scanpy default parameters except for a min_dist 
of 0.3. For the kNN classifier, we use uniform weights and n_neighbors 
equal to 15 in sklearn.neighbors.KNeighborsClassifier. The classifier is 
first trained on all reference cell labels and is then applied to all query 
cells in prediction mode. To increase the performance of this classifier, 
we use a sklearn pipeline and PyNNDescent for neighbor computation27. 
All default parameters for the underlying methods can be changed 
using a dictionary method_kwargs upon calling popv.annotate_data.

Several algorithms in popV use a graphics processing unit (GPU) to 
accelerate training. We highly recommend using popV with a GPU. All 
experiments highlighted here were performed on a workstation with 
128 GB of RAM, an Intel Core i9-12900KF desktop CPU and an NVIDIA 
3090 GPU. All case studies performed throughout the manuscript 
were computed on this workstation, and cell-type prediction took less 
than an hour per dataset. We have applied popV to a dataset of roughly 
2 million cells, which takes less than 12 h. We recommend disabling kNN 
on Scanorama for large datasets, as it does not scale well with a large 
number of experimental batches28.
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Preprocessing. Every dataset was preprocessed using the Process_
Query function in popV. The input parameters of Process_Query are 
explained in the popV documentation. If using a pretrained model 
folder, both reference and query datasets are subsets of the same genes. 
It is validated that both datasets contain raw counts. The cell type labels 
in the reference dataset are subsampled to 300 labeled cells by default 
to reduce the runtime of the underlying methods. The intersection of 
genes between the query dataset and the reference dataset is taken, 
and both datasets are concatenated. We remove all batches in the query 
and the reference dataset that contain less than nine cells in total, as 
otherwise BBKNN is failing and no further filtering was performed. 
Highly variable genes are computed using seurat_v3 flavor in scanpy29, 
and by default, 4,000 genes are selected. Count data are stored, and 
additionally counts are normalized to 10K counts. The log1p function 
is applied for methods that require normalized data and are stored in 
a separate layer. For the computation of principal components, the 
count data are scaled to unit variance. These principal components 
are used for Spanorama and BBKNN. All keys used to set up the model 
are stored in the uns field of the anndata object30.

PopV has the following three different modes:

	1.	 retrain—it trains all methods from scratch and stores the classi-
fier to reuse them on other datasets. This hugely benefits from 
a GPU to train the scVI and scANVI algorithms as well as the 
OnClass algorithm.

	2.	 inference—it uses pretrained methods to classify query and ref-
erence cells; computes a joint UMAP embedding of query and 
reference cells and by default uses all eight methods; and trains 
scVI and scANVI models for 20 epochs using scArches query 
embedding19.

	3.	 fast—it uses pretrained methods to classify only query cells; 
computes a UMAP embedding of query cells if enabled; skips 
Scanorama and BBKNN data integration as those recompute an 
embedding instead of projecting cells into an existing embed-
ding; and trains scVI and scANVI models for 1 epoch using 
scArches query embedding.

BBKNN. Batch-balanced kNN is a data integration method. To integrate 
the datasets, BBKNN takes the nearest neighbors from each batch to 
construct a balanced neighborhood graph. This nearest-neighbor 
graph can then be used as a batch-corrected graph embedding of 
the data13. The default settings for popV and those used throughout 
the manuscript are 50 principal components, 8 neighbors_within_
batch and the angular metric. We found that the angular metric 
outperforms a standard Euclidean metric in our use case. We use 
the implementation of BBKNN in scanpy.external.pp.bbknn. The 
batch-balanced nearest neighbors are used as a precomputed metric 
in sklearn.neighbors.KNeighborsClassifier and used as input for UMAP  
dimensionality reduction.

Spanorama. Scanorama is a data integration method. It searches for 
the mutual nearest neighbors across datasets and uses panoramic 
stitching. Cells are then integrated in PCA space using those mutual 
neighbors. By default in popV and throughout the manuscript, 50 
principal components are used. We compute a new joint embedding of 
the query and the reference dataset using scanorama.integrate_scanpy 
function. This joint embedding is used for the kNN classification and 
UMAP embedding.

scVI. ScVI is a variational auto-encoder that incorporates batch keys 
as latent variables and provides data integration in its latent space. We 
use the following nondefault parameters for scVI: dropout_rate = 0.05,  
n_layers = 3, n_latent = 20, gene_likelihood = nb, encode_covariates =  
True and use_layer_norm = both. The reason for these nonstandard 
parameters is to facilitate the integration of a query dataset using 

scArches. For the training parameters, we use by default scVI with 
n_epochs_kl_warmup = 20 epochs. We compute the joint latent rep-
resentation of query and reference data, and this joint embedding is 
used for the kNN classification and UMAP embedding.

scANVI. In addition to scVI, a classifier is trained during the training of 
the auto-encoder on the positions in latent space to classify cells into 
the provided reference cell type labels. We continue training based 
on the trained scVI model to reduce the overall training time. For the 
classifier in scANVI, we use n_layers = 3 and dropout_rate = 0.1. Subsam-
pled labels are used as discussed above. We use as training parameters 
batch_size = 512 and n_samples_per_label = 20 to stabilize the training 
of the classifier. Subsequently, the built-in classifier is used to predict 
cell type labels in the query dataset.

RF. RF uses an ensemble of classification trees together with random 
feature subsetting to regularize the classification trees. The final pre-
diction is the majority vote across the tree ensemble. We use nor-
malized counts (see above) as input for RF and sklearn.ensemble.
RandomForestClassifier as the classifier. We use nondefault parameters 
as max_features = 200 and class_weight = balanced_subsample as we 
found the best performance using this parameter combination. For 
training the classifier, subsampled cell type labels are used as described 
above, as this improves prediction speed.

SVM. SVMs find the hyperplane that best separates the data. We use 
sklearn.svm.LinearSVC as the classifier. We use nondefault param-
eters as C = 1, max_iter = 5,000 and class_weight = balanced as we 
found the best performance using this combination of parameters. 
For training the classifier, subsampled cell type labels are used as 
described above for RF, as this improves prediction speed. To allow 
computation of prediction probabilities, we use sklearn.calibration.
CalibratedClassifierCV.

Celltypist. Celltypist uses a logistic regression framework. We use 
nondefault parameters check_expression = False and max_iter = 500 
to allow for faster model training. During celltypist.annotate, we use 
majority_voting = True except in fast mode where we set it to False. As 
intrinsic probabilities, we use predictions.probability_matrix as the 
majority voting purity and not the initial logistic regression probabili-
ties. This is similar to the probabilities used in the Celltypist tutorials.

OnClass. OnClass first computes an embedding of the Cell Ontology 
using natural language processing (NLP) on the cell type names and 
then applies random walks. This can be embedded using singular value 
decomposition31. Then a bipartite neural network was optimized to 
allow classification of the reference cells. The network is then applied 
to unannotated cells. By design, this allows the classification of unseen 
cell types in the Cell Ontology term-based low-dimensional embed-
ding. We downloaded the Open Biological and Biomedical Ontology 
Foundry (OBO) Ontology files in version releases/2023-01-09. To allow 
fast retraining of sentence embedding, we use sentencetransformer.
SentenceTransformer(‘all-mpnet-base-v2’) as the NLP model. This 
is a newer NLP model than in the original OnClass publication but 
allows in our hands for faster convergence. We encode all descrip-
tions or cell-type labels in the OBO file. We provide notebooks for 
retraining with newer releases of ontology files or different species. 
We provide several ontology files in our GitHub repository; these 
are cl.obo, which is the downloaded file from https://github.com/
obophenotype/cell-ontology. Cl.ontology is a file containing only the 
is_a cell type relationships from the cl.obo file, and cl.ontology.nlp.
emb contains the embeddings of the cl.obo file. As count data, we use 
normalized data (see above) and disable the options to recompute this 
normalization in OnClass. OnClass provides the option to use batch 
integration using Scanorama. We disabled this option to not bias the 
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prediction based on the performance of Scanorama. We found no sign 
of a strong batch effect in cell-type prediction. For OnClass, we provide 
two different cell-type labels. OnClass_seen is the prediction of all cells 
limited to the cell types in the reference dataset, while OnClass_predic-
tion contains for each cell type the final output of the OnClass model. 
OnClass currently only outputs predictions after step 2 for 10% of the 
cells, although it computes those on all cells. We found this procedure 
wasteful and implemented our own version that outputs labels after 
step 2 on all cells.

Harmony. Harmony was not used throughout the manuscript. How-
ever, we found it to scale better to large-scale datasets (more than a mil-
lion cells and 50 batches) than Scanorama. Harmony uses soft K-means 
clustering and shifts the centroids of those K-means clusters to allow 
batch correction17. We used 50 principal components as default input 
to Harmony. We used an efficient GPU-enabled version of Harmony 
(https://github.com/lilab-bcb/harmony-pytorch). We computed a 
new joint embedding of the query and the reference dataset using 
harmony.harmonize function. This joint embedding is used for the 
kNN classification and the UMAP embedding.

Seurat label transfer. Seurat uses canonical component analysis and 
nearest-neighbor matching to first integrate the reference dataset and 
then map the query dataset to this integrated dataset21. Seurat is not 
part of popV, as copying a data frame to R can be a time-consuming 
step for large data. However, we compared the performance of popV 
with Seurat for the Lung Cell Atlas. We computed 2,000 genes using 
FindVariableFeatures with vst transformation in Seurat. We used Find-
IntegrationAnchors using 30 CCA components. Subsequently, we 
scaled the corrected counts and calculated 30 principal components. 
Those components were used in FindTransferAnchors, and afterward, 
TransferData was called to transfer the labels from the reference dataset 
to the query dataset.

Consensus voting. As described in the manuscript, we tried majority 
voting as well as Cell Ontology-based aggregation of OnClass results 
(Extended Data Fig. 1). We found the Cell-Ontology-based aggrega-
tion to outperform majority voting (Supplementary Fig. 1). For this 
voting strategy, we take the majority vote (counting all predictions) 
for all predictors except OnClass. For OnClass prediction, we use the 
predicted cell type and, in addition, every cell type along the path 
from this cell type to the root node of the Cell Ontology graph and 
increase the score of those ancestors by 1. We take as consensus score 
the score at each cell type level node and take as popV prediction the 
cell type node with the highest score. For majority voting, we use the 
prediction in OnClass_seen and count the predictors who agree on a 
certain cell type node. The node with the majority of votes is used as 
the majority-voted cell type label. If there is a tie between two nodes 
in the number of votes, we use the cell type label that is further down 
the Cell Ontology tree, meaning the more granular cell type. If there 
is still disagreement, we use the cell type that is later in the alphabet 
to have a deterministic mapping and not rely on the order of cell types 
in the prediction matrix.

Evaluation metrics
All code for creating evaluation plots is available in the popV package 
as a _reproducibility module. We will discuss those metrics here. For 
displaying the translations of cell type terms, we use alluvial plots that 
highlight the corresponding cell types before and after translation to 
a Cell Ontology conform term.

Accuracy metrics. If no Cell Ontology graph is available, we use F1 
metrics to quantify accuracy. The micro-F1 accuracy computes the 
number of exact matches across the whole dataset and is a global 
metric, whereas the macro-F1 score computes a per-cell-type accuracy 

and averages this across all cell types. The macro-F1 accuracy therefore 
better represents the performance across rare cell types. We found 
agreement between both metrics in their evaluation of performance, 
but the macro-F1 accuracy is more sensitive as rare cell types are harder 
to predict.

If a Cell Ontology is available, we reasoned that the performance 
of a predictor is preferable if it predicts a closely related cell type. We 
therefore computed different matching scores. We computed an exact 
match similar to the F1 score as cell types that are correctly predicted. 
Parent match means that the predicted term is a node that is one step 
closer to the root of the Cell Ontology graph, while child match means 
that the predicted term is one step further away from the root. Sibling 
match means that the cell type is two steps away from the correct cell 
and has the same depth as the original cell type in the Cell Ontology 
tree. We also experimented with more fine-grained metrics quantifying 
the distance in the Cell Ontology tree between two cell types. However, 
after manually checking the corresponding cell types, we found that 
the nearest matches were the correct metric to evaluate classification, 
as cell types that are further apart tend to be distinct cell-types.

Confusion matrix. We use scikit-learn.metric.confusion_matrix and 
normalize those entries. We compute these matrices between all algo-
rithms and the ground-truth label but also between the different algo-
rithms and the consensus label.

Differential expression analysis. We use scanpy.tl.rank_genes_groups 
with default parameters to yield differentially expressed genes and 
scanpy.pl.rank_genes_groups_dotplot to plot those results.

Precision–recall curves. We are evaluating whether a decision bound-
ary exists to distinguish between inaccurate predictions and accurate 
predictions. To this end, whether a prediction is an exact match is used 
as the label, and the prediction certainty is used as the class probability. 
Precision–recall curves are computed based on these two values. The 
area under the precision–recall curve is computed using sklearn.met-
rics.average_precision_score and the F1 score at the decision boundary 
using sklearn.metrics.f1_score. To calculate the best decision boundary, 
we compute the point with the highest F1 score. As some probabilities 
are discrete, like the popV consensus score, we include all cells at the 
decision boundary as positive cells. We provide the ratio of cells equal 
to or above the boundary, the accuracy of those cells and the boundary 
value in the respective plots.

Ablation experiment. We are evaluating whether removing predictors 
leads to a reduction in accuracy or calibration for popV. We study this 
for the thymus case study as well as the scRNA to snRNA label transfer 
case study. We first remove OnClass from the popV algorithms. After 
removing, simple majority voting and the popV consensus voting yield 
the same results. Afterward, we remove all pairs of the seven remain-
ing predictors and compute the majority voting result of these five 
predictors as well as the consensus score. We compute the weighted 
F1 score and the area under the precision–recall curve for each set of 
five predictors. In the title of these plots, we present the value in the 
original popV algorithm, while in each field of the resulting heatmaps, 
we present the difference in the respective score between the full popV 
algorithm and the set of five predictors.

Comparison to majority voting of SVM classifiers. We are evaluating 
whether majority voting after predicting cell types with a set of SVM 
classifiers is similar in performance to popV. For this comparison, we 
use the implementation of SVM in cuML and set up a multiclass classi-
fier using scikit-learn’s multiclass.OneVsRestClassifier. We train eight 
different SVM algorithms that differ in their kernel (sigmoid, polyno-
mial, linear and radial basis function) and the respective cost param-
eters (0.1 and 1.0). We otherwise used the default hyperparameters in 
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cuML. After predicting the labels for every cell in the Lung Cell Atlas 
case study, we perform majority voting between the predictions of 
the underlying SVM predictors and subset the resulting dataset to 
all query cells. We compute the Hamming similarity by computing 
1 − HammingDistance and display the results as the upper triangle 
comparing all pairs of algorithms against each other. All other metrics 
in Extended Data Fig. 4 are described in other parts of the Methods and 
are applied here similarly to the results of both algorithms. We do not 
display the results of OnClass in Extended Data Fig. 4e to reduce the 
amount of colors in the resulting plot.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No 
data were excluded from the analyses except as highlighted in the Meth-
ods. The experiments were not randomized, and the investigators were 
not blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Lung Cell Atlas was downloaded from CELLxGENE (https://cellxgene.
cziscience.com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a). 
The thymus dataset was downloaded from https://cellxgene.cziscience.
com/collections/de13e3e2-23b6-40ed-a413-e9e12d7d3910. The brain 
dataset was downloaded from CELLxGENE (https://cellxgene.czisci-
ence/com/collections/283d65eb-dd53-496d-adb7-7570c7caa443). 
Human Lung Cell Atlas was downloaded from CELLxGENE (https://
cellxgene.cziscience.com/e/9f222629-9e39-47d0-b83f-e08d610c7479.
cxg/). A minimal dataset to reproduce the code is available as a tutorial 
at https://github.com/YosefLab/popV. All datasets were used from  
the CELLxGENE census accessed on 9 June 2023. After the correction  
of metadata (Methods), Tabula Sapiens was deposited on Zenodo 
(https://doi.org/10.5281/zenodo.7587774)32.

Code availability
The code to reproduce the experiments of this paper is available at 
https://github.com/YosefLab/popv-reproducibility (ref. 33). The popV 
package can be found on GitHub at https://github.com/YosefLab/
popV. Documentation and tutorials can be found at https://github.
com/YosefLab/popV (ref. 34).
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Extended Data Fig. 1 | Comparison of majority voting and popV prediction 
score. A single cell is annotated by eight different algorithms. OnClass uses 
a two-step annotation procedure, in which the second can predict cell types 
that are not part of the reference dataset (here CD4+ CD25+ Treg cell). For simple 
majority voting, we use the prediction of OnClass at step 1, where it is bound to 
the cell types observed in the reference dataset (OnClass_seen) and count the 
predictions of each algorithm. For popV scoring, we propagate the prediction 

of OnClass along the Cell Ontology graph (shortest path to the root node). Every 
cell along the path from the root term to the predicted term receives a score of 
1, and majority voting is performed for these propagated votes. In the case here, 
using majority voting, we would classify the cell as a CD8+ T cell with a score of 4, 
while using the popV consensus score, we would classify the cell as a CD4+ T cell 
with a score of 4.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | scANVI shows the highest integration of query cells, 
and popV shows low confidence for lowly abundant cell types. a, ScIB metrics 
comparing integration scores after integrating query and reference dataset 
showed the best integration using scANVI and improvement over uncorrected 
data. Labels from the original Lung Cell Atlas paper were used to compute 
cell type-dependent scores, and scores were computed only on query cells. 

b, Displayed is the number of each predicted cell type in query cells and the 
accuracy for each annotated cell type. c, Absolute accuracy corresponds to 
exact match, while neighbor-only accuracy corresponds to all adjacent cell types 
(all accuracy terms except no match). Cells that were rarely predicted (smooth 
muscle cells and blood vessel endothelial cells showed the lowest accuracy).  
Most cell types have an accuracy greater than 0.9.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Analysis of T cell sub-clustering in Lung Cell Atlas and 
Tabula Sapiens. a, UMAP of cells from the reference dataset labeled with Tabula 
Sapiens cell type labels highlights the overlap of these labels in integrated space 
without a clear distinction between CD4 and CD8 T cells. Differential expression 
analysis identifies surfactant protein genes as markers for annotated effector  
T cells, which is likely due to ambient counts and no strong marker gene 

expression in CD4 T cells. b, UMAP of cells from the query dataset labeled with 
cell type labels from the Lung Cell Atlas shows a clear distinction between 
different cell types. Differentially expressed genes for those cell types align well 
with the respective literature. c, Canonical marker genes for various subtypes 
show a clear split between T cells and NK cells, as well as CD8 and CD4 T cells. 
GZMA but not GZMB is also expressed in CD4 T cells.
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Extended Data Fig. 4 | Comparison of popV against majority voting of 
multiple SVM classifiers. All plots are displayed for query cells of the lung cell 
query dataset. We compare popV against majority voting after SVM, for which 
different kernels (radial basis function, polynomial, linear and sigmoid) and 
the cost were varied (0.1 and 1.0). a, UMAP-highlighting cells with a consensus 
score of 4 or less (low consensus). We compare popV here with the majority vote 
of eight distinct SVM classifiers, which differ in their choice of the kernel and 
c parameters. b, Accuracy versus consensus score (left) and majority voting 
score (right) for both consensus algorithms colored by ontology accuracy terms 
(Methods). c, Hamming distance between the underlying classifiers of popV and 
SVM majority voting. d, Precision–recall curves for both algorithms. We used all 

exact match as the label for the metric calculation. In the legend, area under the 
precision–recall curve is given (AUPRC). In addition, the F1 score at best decision 
boundary is given, along with the confidence level at the decision boundary as 
well as the ratio of cells annotated above this threshold. popV shows the higher 
AUPRC and F1 scores at the decision boundary. e, Focus on T cells and NK cells 
(circle in a). UMAP of the consensus voting as well as underlying classifiers. Top, 
PopV classifiers are displayed. The main disagreement is between CD8 and CD4 
T cells. Middle, Majority voting after SVM shows disagreement between NK and 
CD8+ T cells. Bottom right, Original annotation of query cells shows agreement 
for NK cells and no clear separation between different T cell labels.
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Extended Data Fig. 5 | Calibration of certainty and accuracy for all methods 
evaluated on all query cells from the thymus. Displayed is the accuracy for bins 
of internal classification certainty. X-axis labels highlight the number of cells in 
each bin. PopV, OnClass_seen and random forest show the strongest correlation 
between exact match and certainty. PopV shows the highest number of high-

confidence predictions. Several methods show a high number of incorrect 
results for predictions with confidence above >87.5%. The coloring of the bars 
is calculated for the prediction of the respective algorithm, standardized to a 
height of one per confidence level.
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Extended Data Fig. 6 | Precision–recall curves for all classifiers evaluated 
on all query cells from the thymus. Precision–recall curves are evaluated for 
all query cells. We used all exact match as the label for the metric calculation. In 
the legend, area under the precision–recall curve is given (AUPRC). F1 score at 

best decision boundary is given, along with the confidence level at the decision 
boundary as well as the ratio of cells annotated above this threshold. PopV shows 
the highest AUPRC and F1 score at the decision boundary. The decision boundary 
corresponds to a consensus score of 7 and above.
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Extended Data Fig. 7 | Predictions of cell-type labels across different 
technologies. Confusion matrix of cell-type labels for (a) nucleus as well as (b) 
Drop-seq query cells using cells sequenced with 10× from Fig. 2 as the reference 

dataset. Matrix is column normalized on the respective y-axis; the predicted label 
from popV is given, and on the x-axis, the original label is provided. Displayed is 
the ratio of predicted cell types with popV for each ground truth cell type.
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Extended Data Fig. 8 | PopV accurately performs labeling of cell types across 
different brain regions and highlights region-specific neurons. a, UMAP 
embedding after scANVI integration of reference nuclei (motor cortex, M1G) 
and query nuclei (medial temporal gyrus, MTG) labeled with consensus score, 
brain region (ROI), popV prediction and original annotation (supercluster term). 
b, Confusion matrix for the cell types predicted by popV and their respective 
manual annotations highlights the agreement between both annotations. 

Displayed is the ratio of predicted cell types with popV for each ground truth cell 
type. c, Mean agreement score per cell type shows that confused cell types also 
exhibit a lower agreement score and can be detected based on their score.  
d, Differentially expressed genes for cluster ID for upper-layer intratelencephalic 
neurons. Highlighted are cluster IDs 135 and 138, which are over-represented 
in the MTG over the M1G. These clusters show an overexpression of FOXP2 and 
TSHZ2 and are very similar to each other.
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Extended Data Fig. 9 | Precision–recall curves for popV prediction when 
removing classifiers from voting scheme. We evaluated the performance of 
popV when disabling a subset of algorithms. We removed OnClass from the 
algorithms so that majority voting and popV consensus scoring yield the same 
result. We evaluated the performance of popV using a subset of 5 algorithms 
each. On the respective y- and x-axes, the two algorithms removed from popV for 

the respective trial are displayed. The difference between the accuracy or auPRC 
between the original prediction and the prediction after subsetting the algorithm 
is displayed. Each metric obtained when using all algorithms in popV is given 
in the plot title. a and b denote the thymus experiment (Fig. 3) evaluated on all 
query cells. c and d correspond to the nucleus dataset (Extended Data Fig. 7).
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