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Cell-type classificationis a crucial step in single-cell sequencing analysis.
Various methods have been proposed for transferring a cell-type label

from an annotated reference atlas to unannotated query datasets. Existing
methods for transferring cell-type labels lack proper uncertainty estimation
for the resulting annotations, limiting interpretability and usefulness.

To address this, we propose popular Vote (popV), an ensemble of prediction
models with an ontology-based voting scheme. PopV achieves accurate
cell-typelabeling and provides uncertainty scores. In multiple case studies,
popV confidently annotates the majority of cells while highlighting

cell populations that are challenging to annotate by label transfer.

This additional step helps to reduce the load of manual inspection, whichiis
often anecessary component of the annotation process, and enables one

to focus on the most problematic parts of the annotation, streamlining the
overall annotation process.

Cell-type annotation is a crucial task in analyzing single-cell RNA
sequencing (scRNA-seq) data. The quality of the annotations has a
directimpact on downstream analyses such as the comparison of cell
type composition as well as the analysis performed on a per-cell-type
basis'. Manual annotation s highly time-consuming and requires bio-
logical context-specific and sequencing technology-specific domain
knowledge. Thus, as scRNA-seq becomes anincreasingly standard lab
technique, thereisagrowing need to generate automated annotations.
We propose here the use of a collection of cell-type prediction models
to provide not only automated annotations but also well-calibrated
measures of uncertainty. Thisenables the user to streamline the anno-
tation process.

Automated cell type annotations encounter several challenges?®.
Thereisno gold standard ground truth for cell type annotation within
a specific dataset. Biology is complex, and when cell states vary con-
tinuously, delineations between cell types are imprecise, and even
human experts may disagree on the exact phenotype of a specific
cell. Therefore, itis essential that annotation methods highlight areas

of uncertainty that require expert knowledge input. The continu-
ous nature of cell states®, along with stochasticity in the sequencing
process, as well as the domain knowledge of the person manually
annotating the dataset, can lead to cells being annotated at varying
levels of specificity even within the same dataset. Across multiple
datasets, factors, like identification of new cell subtypes or redefinition
of marker genes, lead to discrepanciesin cell type identification. There
areaplethoraofautomated cell-type annotation methods*. However,
differences in cell type granularity, experiment-specific nuisance
factors and technology-dependent sparsity of gene expression lead
to no clear ‘best method’ for automatic annotation. Based on these
factors, we propose that it is crucial for automatic cell-type annotation
pipelines’ to highlight areas of uncertainty that may require manual
scrutiny, balance the specificity of predictions with accuracy and be
easily accessible and usable.

To address these challenges, we developed popular Vote (popV),
aflexible and scalable automated cell-type annotation framework that
takesinanunannotated query dataset from ascRNA-seq experiment,
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Fig.1|Framework of popV for automatic cell type annotation. PopV takes
anunannotated query dataset and an annotated reference dataset asinput.
Each expert algorithm predicts the label on the query dataset to yield a cell-type
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annotation. The certainty of the respective label transfer can be quantified by
scoring the agreement of those methods. The workflow yields a sample report to
provide the user with insights into the annotated labels.

transfers labels from an annotated reference dataset and generates
predictions with a predictability score indicating the confidence of the
prediction. We pose here that various prediction methods will disagree
in their prediction if an annotation is not accurate, whereas they will
tend to agreeifthe predicted cell typeis the correct one. We named our
method popV because instead of relying on the predictions of asingle
classifier, popV takes a consensus approach andincorporates the pre-
dictions from eight automated annotation methods. PopV also takes
intoaccount annotations at different levels of granularity by aggregat-
ingresults over the Cell Ontology®, an expert-curated formalization of
celltypesin a hierarchical structure with a standardized vocabulary.

PopV is available as an easy-to-install, open-source Python pack-
ageandis designed to be aflexible framework for incorporating future
cell-type classification methods. We provide a notebook that allows
the prediction of new datasets and provides pretrained models for 20
different organs based on the Tabula Sapiens dataset’.

Results

Overview of popV

PopV takes a consensus of experts’ approach to the task of automated
cell type annotation. The input is an unannotated query dataset
togetherwithanannotated reference dataset (Fig.1a). Both datasets are
expected to contain raw count dataand demonstrate that popV canbe
applied to unique molecularidentifier as well as non-unique molecular
identifier-based technologies. PopV thenruns the following eight differ-
entannotation methods: random forest (RF)®, support vector machine
(SVM)®, scANVI’°, OnClass™, Celltypist" and k-nearest neighbors (k<NN)
after batch correction with three single-cellharmonization methods—
scVI'2, BBKNN" and Scanorama' (Fig. 1). The eight prediction algo-
rithms were chosenbecause they were shown to have good prediction
accuracy” and/or good harmonization performances'®. These methods
encompass supervised methods that are trained only on labeled data
(RF, SVM, OnClass, Celltypist and KNN) after applying unsupervised
harmonization methods that are agnostic to label information during
training (BBKNN, Scanorama and scVI) and a semi-supervised method
trained with both labeled and unlabeled data (scANVI). However, we
emphasize that popV offers anintuitive applicationinterface (API) for
the rapid inclusion of additional annotation methods. We demonstrate
this capability through a code snippet for adding a new classifier (k\NN
after batch correction with Harmony") in the Methods.

After applying each of these methods separately, popV proceeds
to aggregate the resulting predictions for two purposes (Extended
Data Fig. 1). The first is to designate a single ‘consensus’ annotation
forevery query cell. The second purpose is to quantify our certainty in

this prediction. We estimate the consensus annotation using asimple
majority vote procedure, counting for each annotation label the num-
ber of algorithms that supportit. In this procedure, all algorithms get
asingle ‘vote’, except for OnClass, which received several votes. The
reason for that is that OnClass is the only method in our collection of
methods thatis capable of predicting cell types that do not existinthe
reference dataset. It does so through a two-step process—first selecting
an annotation out of the collection of labels in the reference dataset
and then propagating it to identify a potentially more refined label in
the Cell Ontology (even if this label is absent from the reference). To
account for these ‘out of sample’ cell type annotations, we consider
every label that is on the path from the root of the ontology down to
the OnClass-predicted label asa predicted label (Extended Data Fig.1).
We then perform majority voting with OnClass having multiple ‘votes’
at different levels of hierarchy. We have attempted using a simple
majority vote with the ‘within sample’ annotation from the first stage
of OnClass and with no propagation along the Cell Ontology. In most
of our analyses, we found our first strategy to outperform the simple
strategy (Supplementary Fig.1).

A potentially useful property of many of the algorithms included
in popVis an ‘algorithm-intrinsic’ estimation of prediction certainty.
This could, inprinciple, beleveraged to compute aweighted consensus.
However, we found that the certainties are calibrated differently for the
different methods, which makes this approach futile as it will weigh
more onthe predictions of classifiers with higher estimated certainties.

After calculating the consensus score, popV generates a sample
reportthatincludes prediction summaries as well asintegrated views
ofthe query and reference datasets. For the latter, it displays Uniform
Manifold Approximation and Projections (UMAPs) for the joint visu-
alization of the reference and query datasets for the four methods that
perform data integration (Fig. 1), as well as a bar plot comparing cell
type frequencies in the reference and query dataset to highlight the
differentialabundance of various cell types. One set of summariesinthe
report is confusion matrices between the consensus predictions and
eachindividual method toindicate which cell types were confused with
another cell type for any particular method. The report also includes
a per-cell-type display of the consensus score (that is, the number of
agreeing methods—between1and 8) to highlight which cell types are
overall difficult to predict. Complementing this ‘algorithm-extrinsic’
estimation of certainty, we also output the intrinsic uncertainty (thatis,
classifier score) of each of the eight methods (these scores are defined
inthe Methods). We emphasize thatintrinsic and extrinsic uncertainty
are two complementary measurements essential to quantifying the
performance of aset of cell annotation tools.
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To allow for fast annotation of new query datasets, we provide
pretrained models for all 20 organs present in Tabula Sapiens'®. Pre-
training is possible for all methods except Scanorama and BBKNN,
which compute ajointembedding of reference and query datasets and
make pretraining infeasible. For scVland scANVI, we provide pretrained
embeddings of the reference dataset and map the query dataset to this
embedding using scArches'. PopV has the following three different
modes of celltype prediction:inretrainmode, all classifiers are trained
from scratch, which requires an hour for 100k cells in a Google Colab
session;ininference mode, models previously trained for the reference
dataset are used where applicable, which requires 30 min for100k cells;
in fast mode, only pretrained models are used and only cell types in
the query dataset are predicted, which requires 5 min for 100k query
cells. PopVisavailable asan open-source Python project and includes
anonline Google Colab notebook with free computing resources. The
codebase enables the addition of new reference datasets (in addition
to Tabula Sapiens) through a simple APl and can be invoked from the
same notebook environment. Werecommend thatin any newly added
reference datasets, the annotations should be consistent with Cell
Ontology, either by matching terms in the ontology or by hierarchi-
cally assigning new terms to existing terms in the ontology. To thisend,
we provide scripts to add custom cell type labels to the Cell Ontology
before processing by popV (where it is used for running OnClass and
calculating our consensus scores).

PopV prediction score discriminates high- and low-quality
annotations

We evaluated the performance of cell-type annotation using popV with
aHuman Lung Cell Atlas as the query dataset® and the lung tissue of
Tabula Sapiens as a reference dataset. The Lung Cell Atlas is carefully
annotated to a highlevel of granularity. It contains awide variety of cell
typesacrossimmune cells, epithelial cells, endothelial cells and stromal
cellsandis therefore well suited for studying tissues with diverse labels.
Tomake the labels comparable across both datasets, we translated the
Lung Cell Atlas labels to the corresponding terms in the Cell Ontology
(Supplementary Fig. 2).

PopV achieves high accuracy on the Lung Cell Atlas. We visualize
the popV predictions against the manual annotationsin the Lung Cell
Atlasand see astrong agreement between the prediction and the origi-
nal annotation, aswell as agood integration between the query and the
reference cells (Fig. 2a). We decided here to use scANVlintegration as it
showed the highest performance in scIB metrics, which measure data
integration and biological conservation' (Extended Data Fig. 2a). To
evaluate the quality of our predictions, we compute accuracy terms
based onthe Cell Ontology tree (Methods). An exact match, as the name
implies, means that the predicted cell type is exactly the same as the
manual annotation. Furthermore, intuitively, a prediction algorithm
that predicts one cell type as another similar cell type performs bet-
ter thanaprediction algorithm that predicts the cellis of an unrelated
type. The parent match, child match and sibling match take this into
account and measure if the predicted cell type is the parent, child or
siblingin the Cell Ontology tree compared to the ground truth annota-
tion. This measure is especially useful if a cell type label exists only in
the query and not in the reference dataset. Every prediction that did
not match any of these relationships was classified as no match. PopV
overall achieves high accuracy for most cell types (Fig. 2b and Extended
Data Fig. 2c). Except for scANVI and OnClass, all methods have com-
parable performance in this dataset. Furthermore, we compared the
performance of popV with the label transfer provided in Seurat, which
is another popular tool for cell type annotation transfer”, and found
that Seurat performs worse than most methods usedin popV. We also
included OnClass predictions after step one (OnClass_seen), where
OnClass only predicts cell types that were presentin the reference data-
set, and found this to perform similarly to the good-performing annota-
tiontools, so that the lower performance of OnClass here is solely due

to the prediction of unseen cell types. Overall, popV performed best
for the number of exact matches and was comparable in the number
of cells with no match, highlighting that the popV prediction is more
accurate than any of the single methods. For a better insight into the
prediction, we display bar plots in the report for popV, highlighting
the abundance of cell types in query and reference datasets, as well as
prediction accuracy (Extended Data Fig. 2), and display confusion of
cell types using alluvial plots (Supplementary Fig. 3).

When checking the popV prediction scores, we found that the
accuracy of the prediction is highly correlated with the prediction
score (Fig. 2c). For scores of 6 and higher, we found that more than
90% of the annotations were exact matches with the ground truth.
For scores of 8, which is a perfect agreement between all methods,
98% of the predictions were exact matches. For scores of 3 and lower,
the prediction accuracy was lower than 50%, highlighting that the
popV consensus score is a valuable metric to reflect the classifica-
tion accuracy and points to groups of cells that should be further
(and manually) scrutinized.

When considering cells that were assigned with a low consensus
score, we found three possible reasons that may explain the disagree-
ment between the different methods (Fig. 2d). The first is that the
distinction between certain cell subsets with differentlabels is unclear.
This often arises in cases of acontinuum of cell states with no clear deci-
sion boundary in transcriptome space. In such cases, the boundaries
determined by different algorithms may vary (because they depend
on different objectives or techniques), leading to low consistency. It
is, however, exactly those cases that merit closer (and often manual)
inspection and—if needed—assignment of multiple optional labels.
As an example, we found several areas of low consensus score in the
various lung endothelial cells (Fig. 2e). Most endothelial cells with
alow consensus score arise between capillary endothelial cells and
alveolar capillary type 2 endothelial cells. In this region, the various
algorithms disagree on the correctboundary, but all algorithms predict
those cells with either of those labels. We found that alveolar capil-
lary type 2 endothelial cells express EDNRB and HPGD, and capillary
endothelial cells express FCN3and /L7R. Cells between both cell types
are double positivein both markers, while they do not show any specific
marker gene. Therefore, we conclude that neither the term capillary
endothelial cell nor the term alveolar capillary type 2 endothelial cellis
adequateto describe these cells, but their phenotypeis between both
celltypes. Thus, itis aregionthat requires manual scrutiny to determine
the correctlabel of those cells. In fact, such scrutiny was appliedin the
original annotation of the Lung Cell Atlas—annotations not provided
to popV—which labeled these cells as capillary intermediates 1and 2.
Therefore, this example demonstrates that alow consensus score can
helpidentify areas that require arefined label, possibly extending the
vocabulary availablein the reference atlas.

The second reason for a low consensus score in this case study
occurswhen the query dataset contains subsets of cells that are absent
from the reference atlas. As an example, while the Lung Cell Atlas (which
weuse as the query) includes asubset of endothelial cells that were orig-
inally labeled bronchial vessel 2, this subset (and its respective label)
seems to be absent from our reference atlas. Indeed, when checking
marker genes for these cells, their expression was highin PLVAPand low
inthe veinendothelial marker ACKRI (Supplementary Fig.4), which can
beinterpreted as anintermediate stage between capillary endothelial
cells (negative for both markers) and lung microvascular endothelial
cells (positive for both markers). This combination of marker gene
expression was not observed in Tabula Sapiens and therefore marks a
celltype not presentin the reference dataset.

The third possible reason we find for the low consensus is inac-
curacy inthe reference annotation. As an example, we found a subset
of T cellswithalow consensus score (Extended Data Fig. 3). All cells of
this groupinthe query dataset were originally labeled (by the authors
of the Lung Cell Atlas) as effector CD4* a3 T cells, while similar cells
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Fig.2|PopV prediction on LCA and TS lung as reference is accurate and
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cells, LCA query cells labeled with the ground-truth label and LCA query
cellslabeled with predicted label. b, Ontology accuracy (Methods) for the
various methods computed on the query cells. ¢, Ontology accuracy for the
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less (low consensus). e, Zoomed-in view of endothelial cells in the LCA with
popV-predicted labels and ground-truth labels displayed. The zoomed-in
picture is rotated by 90° to allow readability of all labels. Alveolar capillary
type 2 endothelial cellis the Cell Ontology term for capillary aerocytes. The
LCA annotated additional cell types between capillary aerocytes and capillary
endothelial cells. TS, Tabula Sapiens; LCA, Lung Cell Atlas.
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originating fromthe Tabula Sapiens reference were labeled as amixture
of CD4 and CD8T cells. Consequently, most algorithms in popV labeled
thislow consensus group asamix of CD4 and CD8T cells with different
decisionboundaries. Manually following up on this low-scoring group,
we checked the marker gene CD8A and found a clear decision bound-
ary that distinguishes the CD4" (T,;) and CD8" (cytotoxic) subsetsina
manner consistent with the (hidden) query annotation. Despite this
clear delineation, we found that many CD8" cells are labeled in the
reference atlas as CD8" T cells. A low consensus score in this group of
cellshelpedtoidentify wrongly annotated cellsin the reference dataset,
and we highlight that manual scrutiny can clean up these wrong labels.

PopV uses a diverse set of underlying classifiers. The heuristic is
that including methods with varying bias allows us to detect uncer-
tain predictions. We studied whether distinct classifiers are essential
by comparing popV against majority voting between eight different
SVM algorithms with different kernels and cost parameters. We find
the popV consensus score to better correlate with accuracy than this
simplified algorithm (Extended DataFig.4a,b,d).Indeed, we find higher
diversity inthe predicted cell-type labelsin the predictors underlying
popV and find no pair of predictors with a Hamming similarity above
0.9 (Extended Data Fig. 4c). While popV highlighted problems with
annotating different subsets of T cells, majority voting after SVM shows
high uncertainty for cells predicted to be natural killer (NK) cells.
However, for these cells, we found marker gene expression that aligns
with those cells being NK cells highlighting an accurate prediction by
popV. Taking together, using a diverse set of algorithms enables popV
to highlight cell types with wrongly predicted labels, while a more
simplified algorithm using only predictors based on SVM does not
provide a calibrated classifier.

We have demonstrated here that the consensus score can highlight
regions that require manual scrutiny and that reannotation in those
regions canbe performed using marker gene expression. Thisleads to
new delineation of cell types not discovered in the reference dataset,
detection of query-specific cell types and correction of the cell type
label of wrongly assigned reference cell type labels.

PopV provides useful label transfer in case of drastic
differencesin cellular composition

After highlighting that popV is capable of detecting query-specific cells
and that the consensus score is capable of highlighting these cells, we
studied whether this canalso be achieved when we have very different
query and reference datasets. To thisend, we studied the annotation of
thymus cells using Tabula Sapiens as areference dataset and asecond
study, which profiled thymi from different age groups (fetal, child-
hood, adolescence and adulthood) as query* (Supplementary Fig. 5).
Inparticular, the thymus undergoes involution with age, and the adult
thymus, whichwe use here as reference, does not accurately represent
the structure and function of the thymus in younger individuals. In
particular, we anticipate that the reference sample will not provide
ample representation of the developing T cell population, which is
prevalentin our query data.

UMAP embedding of the two harmonized datasets clearly high-
lights the subsets of query cells that are represented in the reference
dataset, while as expected by the age of the donorsinthe Tabula Sapiens
project, the compartments of thymocytes and developing T cells are
almost absent from the reference dataset (Fig. 3a and Supplementary
Fig.6).Indeed, we find a high consensus score and accuracy in regions
wellrepresentedin the reference dataset, while the consensus score for
query-specific cell types is lower (Fig. 3b,c). We find a high prediction
accuracy for query cells from the adult thymus that are similar to the
cells from the reference dataset (Fig. 3d and Supplementary Fig. 7).
Reassuringly, popV assigned low consensus scores to the majority of
cells from compartments that are absent in adult humans, highlight-
ing them for manual annotation (Fig. 3e and Extended Data Fig. 5),
while for cellsisolated from an adult thymus, we overall find very high

accuracy across all algorithms and a high consensus score with popV
outperformingthe single methodsinaccuracy (Fig. 3fand Supplemen-
tary Fig. 8). We found for the underlying algorithms that their internal
certainties donot correlate well with the accuracy and find alower area
under the precision-recall curve for these algorithms compared to
popV (Extended Data Fig. 6 and Supplementary Fig. 9).

We identified two other cell populations that are underrepre-
sented in Tabula Sapiens compared to the query dataset, which are
cortical thymic epithelial cells (also associated with involution®®) and
plasmacytoid dendritic cells. Similarly to our previous examples, we
find that the consensus score associated with cortical epithelial cells
isindeed low, with a variety of annotations assigned to these cells by
the different algorithms, including fibroblasts and medullary epithe-
lial cells (Supplementary Fig. 10). The low consensus score suggests
that manual curation of this group of cells is needed. In this case, the
manual assignment of the correct out-of-reference label is relatively
straightforward using PSMB11, an established marker of cortical thymic
epithelial cells that is not expressed in any cell-type in the Tabula Sapi-
ensreference.

For plasmacytoid dendritic cells, all algorithms except Scano-
rama + kNN predicted that those cells are B cells or plasma cells. Scano-
rama+ kNN predicted that those cells are dendritic cells. Even OnClass,
which can predict cells not presentin the reference dataset, predicted
those cells as antibody-secreting cells or ymphocytes of Blineage, with
not a single cell correctly predicted as a plasmacytoid dendritic cell.
However, these query cells expressed high levels of CLEC4Cand IL3RA
and were therefore correctly labeled as plasmacytoid dendritic cells.
Astwo-thirds of plasmacytoid dendritic cells have ascore of 5or lower,
manualidentification of these cells is possible, and the user canidentify
those confidently wrongly annotated cells using these marker genes.

The only cell fraction that had a high consensus score but low
accuracy isagroup of cells labeled as endothelial cells by popV, while
annotated as lymphocytes in the original (hidden) annotation of the
query dataset. However, these cells express CAVIN2, TFPI, which fits
well with an annotation as endothelial cells. We found that their gene
expression aligns well with lymphatic endothelial cells. Therefore, it
suggests awrongannotationinthe query dataset and a correct predic-
tion by popV.

Overall, this demonstrates that the consensus score yields an
interpretable metric for prediction accuracy and that it helps handle
cases of discrepancies between the query and reference dataset.

Creating consensus cell-type labels across different sequencing
technologiesisimportant with the advent of large integration efforts.
We applied popV to this scenario by transferring labels from the Lung
Cell Atlas (Fig. 2) to two lung datasets, one sequenced using Drop-seq
technology and the other using nuclei sequencing®**. We find an accu-
ratetransfer of labels for both datasets (Extended DataFig. 7). The popV
consensus score again provides ametric that was better correlated with
accuracy compared to the intrinsic certainty metrics of the underly-
ing algorithms (Supplementary Figs. 11-14). Thus, it allows detecting
cellsthat require manual scrutiny in these more challenging scenarios.

PopV relies on using a Cell Ontology to aggregate votes across
the ontology. For some reference datasets, cells are not annotated
according to an existing Cell Ontology. We therefore tested the impact
when no matching ontology is provided. For this case, we disable the
use of OnClass, whichrequires anontology (Supplementary Note and
Extended Data Fig. 8). We find popV to perform well in this scenario.
Additionally, this dataset allowed us to study the effect of different
cell-type granularities on cell-type prediction. The prediction score
highlights high granularity annotations as less confidently transferred
and thereby requiring more manual scrutiny to perform annotationat
this very fine level.

Finally, we performed ablation studies to test whether algo-
rithms can be removed from popV while maintaining accurate and
well-interpretable results (Extended Data Fig. 9). After dropping three
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Fig.3|PopVidentifies thymocytes as query-specific cell types and yields d, The predictionaccuracy of the popV predictioninadult thymus cellsin the query
highly interpretable consensus scores. a, UMAP embedding after scANVI shows high accuracy except for CD8T cells. e, Left, PopV accuracy and consensus
integration of reference cells (TS) and query cells (thymus cells across different score are well correlated in all thymus cells with high accuracy for predictions
age groups) labeled by popV prediction and original annotation. b, PopV with a consensus score of 7 and 8. Right, All methods show alow accuracy on fetal
prediction score overlaid on the UMAP plot. The prediction score is low for cells. f, Left, PopV accuracy and consensus score are also well correlated when
thymocytes and higher for most other cell types. ¢, The prediction accuracy subsetting to cells from adult donors. Right, PopV shows the highest accuracy
of'the popV prediction highlights the low accuracy in developing thymocytes. when subsetting to adult cells; most methods show similarly high accuracy.
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of the eight algorithms, we found that the accuracy remains stableinthe
tested cases. However, we find a decrease in the ability to distinguish
predictions with low accuracy. We, therefore, conclude that the num-
ber of algorithms is essential to be able to highlight low-confidence
predictions.

Discussion
We have developed popV, an ensemble method for cell type annotation,
toyield aninterpretable certainty quantification for the task of cell type
annotation. We have demonstrated throughout this manuscript thatin
various scenarios with different sequencing technologies, various cell
typeresolutions and various overlaps of reference and query datasets,
popVyields a confidence score that is well correlated with the actual
accuracy of cell type transfer. We demonstrated that the prediction
score can predict cell types that are specific to the query dataset (mid-
dle temporal gyrus (MTG)-specific neurons), incorrectly annotated
inthereference (CD4 T cell subsets in Tabula Sapiens) or in the query
dataset (lymphatic endothelial cells in the thymus) or cell types that are
not annotated in the reference dataset while present in both datasets
(lung intermediate capillary endothelial cells in Tabula Sapiens).
PopV is implemented as an easy-to-install, open-source Python
tool. The codebase is designed so that adding additional cell type clas-
sification algorithmsis straightforward, thereby allowing researchers
to mitigate therisk of choosing a single algorithm (thatis, circumvent
the no ‘onesize fitsall’ problem). We expect future annotation tools to
bedeveloped and popVto be used asatool to handle various biasesin
these tools and to help quantify certainty in automatic prediction. As
an example, upon user request, we included Harmony + kNN, which
was not part of the initial release and therefore not used throughout
the manuscript, as a classification model and found popV’s flexible
framework to be straightforward inimplementing new predictors.
PopV’s performance is limited by the performance of the under-
lying predictors. We showed throughout the manuscript that overall
popV performed equally well as the single-best method in terms of
accuracy. However, the aim of popV is not to improve the accuracy of
cell-type annotation over the single predictors but to yield ametric of
certainty thatis easy tointerpret and well-calibrated. Infact, we found
that algorithm-intrinsic certainties tend to be poorly correlated with
the accuracy of cell-type annotation. While single methods provide
similar calibration as popV, no other method provides throughout all
case studies similar performance. Other methods therefore provide
noreliable calibration. Thisis alsoreflected in arecent study that high-
lights the low calibration of conventional tools for cell-type transfer®.
Conversely, we demonstrated that the popV consensus score is highly
associated with accuracy and that it helps identify cases where manual
involvementis required. A future focusin the development of cell-type
annotation tools will be on providing better internal certainty meas-
urements. Including these algorithms in popV will provide even more
interpretable results for label transfer, as, for example, in the case of
several algorithms having low internal certainty but agreeing on the
most probable label. Label transfer enables harmonizing cell-type
annotations across different datasets and streamlines data analysis.
However, we recommend validating the transferred labels by check-
ing the expression of canonical marker genes because cell-type label
transfer can fail. For example, for plasmacytoid dendritic cells in the
thymus dataset, for which the corresponding cell type was missing from
thereference dataset, these cells were incorrectly annotated as B cells.
We included eight different algorithms in popV and developed
popVinaway thatallows the inclusion of new algorithmsin a straight-
forward manner. We performed ablation studies and found that remov-
ing algorithms led to less interpretable consensus scores and made
distinguishing low-confidence predictions harder. Inthe future, these
metrics will allow us to scrutinize, including additional algorithms or
remove existing ones. Across the case studies here and in applications
to other datasets, we find an accuracy greater than 95% for scores of

sevenand eight out of eight predictors, while we recommend manually
scrutinizing predictions witha consensus score of six out of eight and
less. We highlighted that the good calibration in popV is dependent
on adiverse set of predictors. These predictors have different biases
(integration methods with kNN classifier versus supervised classifier
ingene expression space). PopVis aflexible framework that can easily
be extended to new classifiers. To make popV a valuable resource for
the community, we provide a Google Colab notebook with pretrained
models for every tissue in the final Tabula Sapiens publication.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-024-01993-3.
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Methods

PopVisaPython package available via the Python Package Index. Fur-
ther details on popV, the source code and amodel tutorial are available
athttps://github.com/YosefLab/popV. Thisresearch complies with all
applicable ethical regulations. No primary data were generated. All
software versions were used as described in our reproducibility GitHub
repository (https://github.com/YosefLab/popv-reproducibility).
Specifically, popV (v0.2.2), AnnData (v0.8.0), BBKNN (v1.5.1), Cell-
typist (v1.6.0), Harmony-Pytorch (v0.1.7), Onclass (v1.3), Scanorama
(v1.7.3), Scanpy (v1.9.3), scikit-learn (v0.24.2) and scvi-tools (v1.0.3)
were used.

Datasets

Tabula Sapiens. Tabula Sapiens was used throughout the manu-
scriptasthereference dataset. It was downloaded from CELLXGENE
(https://cellxgene.cziscience.com/collections/e5f58829-1a66-
40b5-2624-9046778e74f5). The expression data were set to the raw
object of the h5ad object, which contains count data for all cellsand
genes. Thisyields 483,152 cells and 58,559 genes. We filter every cell
type that hasless thanten cellsinarespective tissue as the kNN used
inpopV cannot predict cells with less than eight examples (15 nearest
neighbors by default; Supplementary Table 1). We confirmed that
all cell types are present in the recent version of the Cell Ontology
downloaded from https://github.com/obophenotype/cell-ontology/
tree/v2023-02-19. Furthermore, we validated that the cell type anno-
tation was not donor-dependent in Tabula Sapiens. Tabula Sapiens
was annotated on a per-donor basis, and for early donors, cell type
labels have different names for the same cell type compared to later
donors. Toreduce the effect of this inconsistency, we excluded sev-
eral samples (Supplementary Table 2). Additionally, we found a
strong batch effect between some 10x samples. After contacting
the original authors, we found that the 10x chemistry was the reason
for this and created a new metadata column containing the correct
assay. The corrected assay can be accessed through https://doi.
org/10.5281/zenodo.7587774. Allmodels were trained seperately for
eachtissue using abatch covariate of concatenated donor and assay
(Supplementary Tables 3 and 4).

Lung Cell Atlas. Data were downloaded from CELLXGENE
(https://cellxgene.cziscience.com/collections/5d445965-6f1a-
4b68-ba3a-b8f765155d3a). We relabeled the cell types to attain con-
formity with the Cell Ontology (Supplementary Table 6). Additionally,
we filtered allblood samples collected for the construction of the Lung
Cell Atlas. We created a concatenated column of sample ID and assay
and used this concatenated metadataas the query_batch_keyin popV
(Supplementary Table 5). Throughout this manuscript, the query
dataset label was not used as input to scANVI because the general
application of popV is intended for an unlabeled query dataset. The
Lung Cell Atlas contains 75,071 cells in total, and 39 unique cell types
were used as Cell Ontology labels of 59 unique cell types in the original
Lung Cell Atlas.

Brain dataset. Data were downloaded from CELLXGENE (https://
cellxgene.cziscience.com/collections/283d65eb-dd53-496d-adb7-
7570c7caa443). We downloaded the dissection of cerebral cortex (Cx)-
precentral gyrus (PrCG)-primary motor cortex-M1C and the dissection
of Cx-middle temporal gyrus (MTG) as the two cortical regions with
thelargest number of cells (Supplementary Table 7). Original cell type
labels were used for this dataset, and we used, respectively, cluster_id
and supercluster_term as the cell type key. We removed cells labeled
with the supercluster terms splatter as well as miscellaneous, as these
likely containlow-quality cells where manual annotation was failing. For
all downstreammetrics, we removed cell types with less than ten cells
ineachcell typelabel, as we found those to be reflective of nuclei from
distinct brain regions (medium spiny neuron, hippocampal dentate

gyrus, hippocampal CA1-3 and amygdala excitatory). We decided
against using labels that conform to the Cell Ontology, as all neurons
inthe original data set were labeled with the same Cell Ontology term
neuron, which does not reflect the heterogeneity of these cells. The
cell-typelabels termed subcluster_id were the finest level of annotation.
However, we found little evidence for these labelsin the transcriptome
of nuclei and excluded those from the analysis.

Thymus dataset. Data were downloaded from https://cellxgene.
cziscience.com/collections/del3e3e2-23b6-40ed-a413-e9e12d7d3910
and were analyzed using the same CELLXGENE access link. We labeled
celltypestoachieve granularity comparable to the reference dataset
(Supplementary Table 9). For subset analysis, fetal samples were
filtered to every development stage containing a week number
(for example, 4th week) as a substring, and adult samples were filtered
tothe human early adulthood stage. We use the donor ID and assay as
the query_batch_key in popV (Supplementary Table 8). The thymus
dataset contains 255,901 cells in total, and 28 unique cell types were
used as Cell Ontologies of 31 unique cell types in the original thymus
dataset. All cells in this dataset were labeled according to the Cell
Ontology. However, we decided to summarize all CD4", as well as all
CD8" Tcells,intoacommon cell type to make the annotation granular-
ity comparable betweenreference and query datasets (Supplementary
Fig. 7). We additionally summarized all B cells in the query and refer-
ence dataset tobe annotated as B cells, as the label of B cells in Tabula
Sapiens showed strong donor inconsistencies and summarized all
endothelial cells to be labeled as endothelial cells to harmonize the
granularity of cell type labels.

Nucleus sequencing and Drop-seq dataset. Datawere downloaded
fromthe extended set of the Human Lung Cell Atlas (https://cellxgene.
cziscience.com/e/9f222629-9e39-47d0-b83f-e08d610c7479.cxg/).
For nuclei sequencing, we selected the study_id Sun_2020, and for
Drop-seq, we selected the study_id Schiller_2020. We used donor_id
as the query_batch_key and used no query_labels_key. The models
were trained from scratch using 4,000 highly variable genes com-
puted on the reference cells after subsetting to common genes in the
query and reference datasets, respectively. Cell types provided in
original_ann_nonharmonized were used as ground truth labels based
on the manual labels in the original manuscripts**. We relabeled the
cell types to achieve granularity comparable to the reference dataset
(Supplementary Tables 10 and 11).

Model parameters
We use eight different cell-type annotation algorithms, and in the fol-
lowing, we explain our parameters for those annotation algorithms as
well as the data preprocessing pipeline that we use for popV. For UMAP
embedding, we used scanpy default parameters except for amin_dist
of 0.3. For the kNN classifier, we use uniform weights and n_neighbors
equalto15insklearn.neighbors.KNeighborsClassifier. The classifier is
first trained on all reference cell labels and is then applied to all query
cellsin prediction mode. Toincrease the performance of this classifier,
we useasklearn pipeline and PyNNDescent for neighbor computation?.
All default parameters for the underlying methods can be changed
using a dictionary method_kwargs upon calling popv.annotate_data.
Several algorithmsin popV use a graphics processing unit (GPU) to
accelerate training. We highly recommend using popV with a GPU. All
experiments highlighted here were performed on a workstation with
128 GB of RAM, an Intel Core i9-12900KF desktop CPU and an NVIDIA
3090 GPU. All case studies performed throughout the manuscript
were computed on this workstation, and cell-type prediction took less
thanan hour per dataset. We have applied popV to a dataset of roughly
2 millioncells, which takes less than12 h. We recommend disabling ANN
on Scanorama for large datasets, as it does not scale well with a large
number of experimental batches®.
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Preprocessing. Every dataset was preprocessed using the Process_
Query function in popV. The input parameters of Process_Query are
explained in the popV documentation. If using a pretrained model
folder, bothreference and query datasets are subsets of the same genes.
Itisvalidated that both datasets contain raw counts. The cell type labels
inthereference dataset are subsampled to 300 labeled cells by default
toreduce the runtime of the underlying methods. The intersection of
genes between the query dataset and the reference dataset is taken,
andboth datasets are concatenated. We remove all batches inthe query
and the reference dataset that contain less than nine cells in total, as
otherwise BBKNN is failing and no further filtering was performed.
Highly variable genes are computed using seurat_v3 flavor in scanpy?®,
and by default, 4,000 genes are selected. Count data are stored, and
additionally counts are normalized to 10K counts. The loglp function
isapplied for methods that require normalized data and are stored in
a separate layer. For the computation of principal components, the
count data are scaled to unit variance. These principal components
areused for Spanorama and BBKNN. All keys used to set up the model
arestored in the uns field of the anndata object™.
PopV has the following three different modes:

1. retrain—it trains all methods from scratch and stores the classi-
fier to reuse them on other datasets. This hugely benefits from
a GPU to train the scVl and scANVI algorithms as well as the
OnClass algorithm.

2. inference—it uses pretrained methods to classify query and ref-
erence cells; computes a joint UMAP embedding of query and
reference cells and by default uses all eight methods; and trains
scVland scANVI models for 20 epochs using scArches query
embedding®.

3. fast—it uses pretrained methods to classify only query cells;
computes a UMAP embedding of query cells if enabled; skips
Scanorama and BBKNN data integration as those recompute an
embedding instead of projecting cells into an existing embed-
ding; and trains scVI and scANVI models for 1 epoch using
scArches query embedding.

BBKNN. Batch-balanced kNN is a dataintegrationmethod. Tointegrate
the datasets, BBKNN takes the nearest neighbors from each batch to
construct a balanced neighborhood graph. This nearest-neighbor
graph can then be used as a batch-corrected graph embedding of
the data®. The default settings for popV and those used throughout
the manuscript are 50 principal components, 8 neighbors_within_
batch and the angular metric. We found that the angular metric
outperforms a standard Euclidean metric in our use case. We use
the implementation of BBKNN in scanpy.external.pp.bbknn. The
batch-balanced nearest neighbors are used as a precomputed metric
insklearn.neighbors.KNeighborsClassifier and used as input for UMAP
dimensionality reduction.

Spanorama. Scanorama is a data integration method. It searches for
the mutual nearest neighbors across datasets and uses panoramic
stitching. Cells are then integrated in PCA space using those mutual
neighbors. By default in popV and throughout the manuscript, 50
principal components are used. We compute anew joint embedding of
the query and the reference dataset using scanorama.integrate_scanpy
function. This joint embedding is used for the kNN classification and
UMAP embedding.

scVI. ScVlis a variational auto-encoder that incorporates batch keys
aslatent variables and provides dataintegrationinits latent space. We
use the following nondefault parameters for scVI: dropout_rate = 0.05,
n_layers = 3, n_latent = 20, gene_likelihood = nb, encode_covariates =
True and use_layer_norm = both. The reason for these nonstandard
parameters is to facilitate the integration of a query dataset using

scArches. For the training parameters, we use by default scVI with
n_epochs_kl_warmup =20 epochs. We compute the joint latent rep-
resentation of query and reference data, and this joint embedding is
used for the kNN classification and UMAP embedding.

scANVI.InadditiontoscVl, aclassifier is trained during the training of
the auto-encoder on the positions in latent space to classify cells into
the provided reference cell type labels. We continue training based
on the trained scVI model to reduce the overall training time. For the
classifierin scANVI, we use n_layers = 3 and dropout_rate = 0.1. Subsam-
pledlabels are used as discussed above. We use as training parameters
batch_size = 512 and n_samples_per_label = 20 to stabilize the training
of the classifier. Subsequently, the built-in classifier is used to predict
celltypelabelsinthe query dataset.

RF. RF uses an ensemble of classification trees together with random
feature subsetting to regularize the classification trees. The final pre-
diction is the majority vote across the tree ensemble. We use nor-
malized counts (see above) as input for RF and sklearn.ensemble.
RandomForestClassifier as the classifier. We use nondefault parameters
as max_features =200 and class_weight = balanced_subsample as we
found the best performance using this parameter combination. For
training the classifier, subsampled cell type labels are used as described
above, as thisimproves prediction speed.

SVM. SVMs find the hyperplane that best separates the data. We use
sklearn.svm.LinearSVC as the classifier. We use nondefault param-
eters as C=1, max_iter =5,000 and class_weight = balanced as we
found the best performance using this combination of parameters.
For training the classifier, subsampled cell type labels are used as
described above for RF, as this improves prediction speed. To allow
computation of prediction probabilities, we use sklearn.calibration.
CalibratedClassifierCV.

Celltypist. Celltypist uses a logistic regression framework. We use
nondefault parameters check_expression = False and max_iter =500
to allow for faster model training. During celltypist.annotate, we use
majority_voting = True exceptin fast mode where we set it to False. As
intrinsic probabilities, we use predictions.probability_matrix as the
majority voting purity and not the initial logistic regression probabili-
ties. Thisis similar to the probabilities used in the Celltypist tutorials.

OnClass. OnClass first computes an embedding of the Cell Ontology
using natural language processing (NLP) on the cell type names and
thenapplies random walks. This can be embedded using singular value
decomposition®. Then a bipartite neural network was optimized to
allow classification of the reference cells. The network is then applied
tounannotated cells. By design, this allows the classification of unseen
cell types in the Cell Ontology term-based low-dimensional embed-
ding. We downloaded the Open Biological and Biomedical Ontology
Foundry (OBO) Ontology filesin version releases/2023-01-09. To allow
fast retraining of sentence embedding, we use sentencetransformer.
SentenceTransformer(‘all-mpnet-base-v2’) as the NLP model. This
is a newer NLP model than in the original OnClass publication but
allows in our hands for faster convergence. We encode all descrip-
tions or cell-type labels in the OBO file. We provide notebooks for
retraining with newer releases of ontology files or different species.
We provide several ontology files in our GitHub repository; these
are cl.obo, which is the downloaded file from https://github.com/
obophenotype/cell-ontology. Cl.ontology is afile containing only the
is_a cell type relationships from the cl.obo file, and cl.ontology.nlp.
emb contains the embeddings of the cl.obo file. As count data, we use
normalized data (see above) and disable the options to recompute this
normalization in OnClass. OnClass provides the option to use batch
integration using Scanorama. We disabled this option to not bias the
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prediction based on the performance of Scanorama. We found no sign
ofastrongbatcheffectin cell-type prediction. For OnClass, we provide
two different cell-typelabels. OnClass_seenisthe prediction of all cells
limited to the celltypesinthereference dataset, while OnClass_predic-
tion contains for each cell type the final output of the OnClass model.
OnClass currently only outputs predictions after step 2 for 10% of the
cells, although it computes those onall cells. We found this procedure
wasteful and implemented our own version that outputs labels after
step2onall cells.

Harmony. Harmony was not used throughout the manuscript. How-
ever, wefoundittoscalebetter to large-scale datasets (more thana mil-
lion cells and 50 batches) than Scanorama. Harmony uses soft K-means
clustering and shifts the centroids of those K-means clusters to allow
batch correction”. We used 50 principal components as default input
to Harmony. We used an efficient GPU-enabled version of Harmony
(https://github.com/lilab-bcb/harmony-pytorch). We computed a
new joint embedding of the query and the reference dataset using
harmony.harmonize function. This joint embedding is used for the
kNN classification and the UMAP embedding.

Seurat label transfer. Seurat uses canonical component analysis and
nearest-neighbor matchingtofirstintegrate the reference dataset and
then map the query dataset to this integrated dataset”. Seurat is not
part of popV, as copying a data frame to R can be a time-consuming
step for large data. However, we compared the performance of popV
with Seurat for the Lung Cell Atlas. We computed 2,000 genes using
FindVariableFeatures with vst transformation in Seurat. We used Find-
IntegrationAnchors using 30 CCA components. Subsequently, we
scaled the corrected counts and calculated 30 principal components.
Those components were used in FindTransferAnchors, and afterward,
TransferDatawas called to transfer the labels fromthe reference dataset
tothe query dataset.

Consensus voting. As described in the manuscript, we tried majority
voting as well as Cell Ontology-based aggregation of OnClass results
(Extended Data Fig. 1). We found the Cell-Ontology-based aggrega-
tion to outperform majority voting (Supplementary Fig. 1). For this
voting strategy, we take the majority vote (counting all predictions)
for all predictors except OnClass. For OnClass prediction, we use the
predicted cell type and, in addition, every cell type along the path
from this cell type to the root node of the Cell Ontology graph and
increase the score of those ancestors by 1. We take as consensus score
the score at each cell type level node and take as popV prediction the
cell type node with the highest score. For majority voting, we use the
prediction in OnClass_seen and count the predictors who agree on a
certain cell type node. The node with the majority of votes is used as
the majority-voted cell type label. If there is a tie between two nodes
in the number of votes, we use the cell type label that is further down
the Cell Ontology tree, meaning the more granular cell type. If there
is still disagreement, we use the cell type that is later in the alphabet
to haveadeterministic mapping and notrely onthe order of cell types
inthe prediction matrix.

Evaluation metrics

All code for creating evaluation plots is available in the popV package
as a_reproducibility module. We will discuss those metrics here. For
displaying the translations of cell type terms, we use alluvial plots that
highlight the corresponding cell types before and after translation to
aCell Ontology conform term.

Accuracy metrics. If no Cell Ontology graph is available, we use F1
metrics to quantify accuracy. The micro-F1 accuracy computes the
number of exact matches across the whole dataset and is a global
metric, whereas the macro-F1score computes a per-cell-type accuracy

and averages this across all cell types. The macro-Flaccuracy therefore
better represents the performance across rare cell types. We found
agreement between both metricsin their evaluation of performance,
butthe macro-Flaccuracy is more sensitive asrare cell types are harder
to predict.

IfaCell Ontology is available, we reasoned that the performance
of apredictor is preferable if it predicts a closely related cell type. We
therefore computed different matching scores. We computed an exact
matchsimilartothe F1scoreascell typesthatare correctly predicted.
Parent match means that the predicted termis a node thatis one step
closer totheroot of the Cell Ontology graph, while child match means
thatthe predicted termis one step further away fromthe root. Sibling
match means that the cell type is two steps away from the correct cell
and has the same depth as the original cell type in the Cell Ontology
tree. We also experimented with more fine-grained metrics quantifying
thedistancein the Cell Ontology tree between two cell types. However,
after manually checking the corresponding cell types, we found that
the nearest matches were the correct metric to evaluate classification,
as cell types that are further apart tend to be distinct cell-types.

Confusion matrix. We use scikit-learn.metric.confusion_matrix and
normalize those entries. We compute these matrices between all algo-
rithmsand the ground-truth label but also between the different algo-
rithms and the consensus label.

Differential expression analysis. We use scanpy.tl.rank_genes_groups
with default parameters to yield differentially expressed genes and
scanpy.pl.rank_genes_groups_dotplot to plot those results.

Precision-recall curves. We are evaluating whether a decision bound-
ary exists todistinguish between inaccurate predictions and accurate
predictions. Tothisend, whether apredictionis an exact matchis used
asthelabel, and the prediction certainty is used as the class probability.
Precision-recall curves are computed based on these two values. The
areaunder the precision-recall curve is computed using sklearn.met-
rics.average_precision_score and the F1score at the decision boundary
using sklearn.metrics.f1_score. To calculate the best decisionboundary,
we compute the point with the highest F1score. As some probabilities
are discrete, like the popV consensus score, we include all cells at the
decisionboundary as positive cells. We provide the ratio of cells equal
toorabove the boundary, the accuracy of those cells and the boundary
valueintherespective plots.

Ablation experiment. We are evaluating whether removing predictors
leads toareductioninaccuracy or calibration for popV. We study this
for the thymus case study as well as the scRNA to snRNA label transfer
case study. We first remove OnClass from the popV algorithms. After
removing, simple majority voting and the popV consensus voting yield
the same results. Afterward, we remove all pairs of the seven remain-
ing predictors and compute the majority voting result of these five
predictors as well as the consensus score. We compute the weighted
F1score and the area under the precision-recall curve for each set of
five predictors. In the title of these plots, we present the value in the
original popV algorithm, whilein each field of the resulting heatmaps,
we present the difference in the respective score between the full popV
algorithm and the set of five predictors.

Comparison to majority voting of SVM classifiers. We are evaluating
whether majority voting after predicting cell types with a set of SVM
classifiers is similar in performance to popV. For this comparison, we
use theimplementation of SYMin cuML and set up a multiclass classi-
fier using scikit-learn’s multiclass.OneVsRestClassifier. We train eight
different SVM algorithms that differ in their kernel (sigmoid, polyno-
mial, linear and radial basis function) and the respective cost param-
eters (0.1and 1.0). We otherwise used the default hyperparametersin
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cuML. After predicting the labels for every cell in the Lung Cell Atlas
case study, we perform majority voting between the predictions of
the underlying SVM predictors and subset the resulting dataset to
all query cells. We compute the Hamming similarity by computing
1-HammingDistance and display the results as the upper triangle
comparingall pairs of algorithms against each other. All other metrics
inExtended DataFig. 4 are described in other parts of the Methods and
areapplied here similarly to the results of both algorithms. We do not
display the results of OnClass in Extended Data Fig. 4e to reduce the
amount of colorsin the resulting plot.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. No
datawere excluded fromthe analyses exceptas highlighted inthe Meth-
ods. The experiments were notrandomized, and the investigators were
notblinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Lung Cell Atlas was downloaded from CELLXGENE (https://cellxgene.
cziscience.com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a).
The thymus dataset was downloaded from https://cellxgene.cziscience.
com/collections/del3e3e2-23b6-40ed-a413-e9e12d7d3910. The brain
dataset was downloaded from CELLXGENE (https://cellxgene.czisci-
ence/com/collections/283d65eb-dd53-496d-adb7-7570c7caa443).
Human Lung Cell Atlas was downloaded from CELLXGENE (https://
cellxgene.cziscience.com/e/9f222629-9e39-47d0-b83f-e08d610c7479.
cxg/). Aminimal dataset to reproduce the codeis available asatutorial
at https://github.com/YosefLab/popV. All datasets were used from
the CELLXGENE census accessed on 9 June 2023. After the correction
of metadata (Methods), Tabula Sapiens was deposited on Zenodo
(https://doi.org/10.5281/zenodo.7587774)*.

Code availability

The code to reproduce the experiments of this paper is available at
https://github.com/YosefLab/popv-reproducibility (ref. 33). The popv
package can be found on GitHub at https://github.com/YosefLab/
popV. Documentation and tutorials can be found at https://github.
com/YosefLab/popV (ref. 34).
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I Prediction only used for majority voting T |

I Prediction only used for popV scoring

I Prediction used for both scorings

Extended Data Fig. 1| Comparison of majority voting and popV prediction
score. A single cell is annotated by eight different algorithms. OnClass uses
atwo-step annotation procedure, in which the second can predict cell types
thatare not part of the reference dataset (here CD4+ CD25" T, cell). For simple
majority voting, we use the prediction of OnClass at step 1, whereitisbound to
the cell types observed in the reference dataset (OnClass_seen) and count the
predictions of each algorithm. For popV scoring, we propagate the prediction

Maijority voting: 0
popV score: 1
OnClass

of OnClass along the Cell Ontology graph (shortest path to the root node). Every
cellalong the path from the root term to the predicted term receives a score of
1, and majority voting is performed for these propagated votes. In the case here,
using majority voting, we would classify the cellasa CD8" T cell with a score of 4,
while using the popV consensus score, we would classify the cellasa CD4" T cell
withascore of 4.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2| scANVIshows the highest integration of query cells,
and popV shows low confidence for lowly abundant cell types. a, ScIB metrics
comparing integration scores after integrating query and reference dataset
showed the best integration using scANVI and improvement over uncorrected
data. Labels from the original Lung Cell Atlas paper were used to compute
celltype-dependent scores, and scores were computed only on query cells.

b, Displayed is the number of each predicted cell type in query cells and the
accuracy for each annotated cell type. ¢, Absolute accuracy corresponds to
exact match, while neighbor-only accuracy corresponds to all adjacent cell types
(all accuracy terms except no match). Cells that were rarely predicted (smooth
muscle cells and blood vessel endothelial cells showed the lowest accuracy).
Most cell types have an accuracy greater than 0.9.
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Extended Data Fig. 3| Analysis of T cell sub-clustering in Lung Cell Atlas and
Tabula Sapiens. a, UMAP of cells from the reference dataset labeled with Tabula
Sapiens cell type labels highlights the overlap of these labels in integrated space
without a clear distinction between CD4 and CD8 T cells. Differential expression
analysis identifies surfactant protein genes as markers for annotated effector

T cells, whichis likely due to ambient counts and no strong marker gene

expression in CD4 T cells. b, UMAP of cells from the query dataset labeled with
cell type labels from the Lung Cell Atlas shows a clear distinction between
different cell types. Differentially expressed genes for those cell types align well
with the respective literature. ¢, Canonical marker genes for various subtypes
show aclear splitbetween T cells and NK cells, as well as CD8 and CD4 T cells.
GZMADbut not GZMBiis also expressed in CD4 T cells.
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Extended Data Fig. 4 | See next page for caption.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01993-3

Extended Data Fig. 4 | Comparison of popV against majority voting of
multiple SVM classifiers. All plots are displayed for query cells of the lung cell
query dataset. We compare popV against majority voting after SVM, for which
different kernels (radial basis function, polynomial, linear and sigmoid) and

the cost were varied (0.1and 1.0). a, UMAP-highlighting cells with a consensus
score of 4 or less (low consensus). We compare popV here with the majority vote
of eight distinct SVM classifiers, which differ in their choice of the kernel and
cparameters. b, Accuracy versus consensus score (left) and majority voting
score (right) for both consensus algorithms colored by ontology accuracy terms
(Methods). ¢, Hamming distance between the underlying classifiers of popV and
SVM majority voting. d, Precision-recall curves for both algorithms. We used all

exact match as the label for the metric calculation. In the legend, area under the
precision-recall curve is given (AUPRC). In addition, the F1score at best decision
boundaryis given, along with the confidence level at the decision boundary as
well as the ratio of cells annotated above this threshold. popV shows the higher
AUPRC and F1scores at the decision boundary. e, Focus on T cells and NK cells
(circleina). UMAP of the consensus voting as well as underlying classifiers. Top,
PopV classifiers are displayed. The main disagreement is between CD8 and CD4
T cells. Middle, Majority voting after SVM shows disagreement between NK and
CD8' T cells. Bottomright, Original annotation of query cells shows agreement
for NK cells and no clear separation between different T cell labels.
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Extended DataFig. 5| Calibration of certainty and accuracy for all methods
evaluated on all query cells from the thymus. Displayed is the accuracy for bins
ofiinternal classification certainty. X-axis labels highlight the number of cellsin
eachbin. PopV, OnClass_seen and random forest show the strongest correlation
between exact match and certainty. PopV shows the highest number of high-

confidence predictions. Several methods show a high number of incorrect
results for predictions with confidence above >87.5%. The coloring of the bars
is calculated for the prediction of the respective algorithm, standardized toa
height of one per confidence level.
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Extended DataFig. 6 | Precision-recall curves for all classifiers evaluated
onall query cells from the thymus. Precision-recall curves are evaluated for
all query cells. We used all exact match as the label for the metric calculation. In
thelegend, area under the precision-recall curve is given (AUPRC). F1score at

best decision boundary is given, along with the confidence level at the decision
boundary as well as the ratio of cells annotated above this threshold. PopV shows
the highest AUPRC and F1score at the decision boundary. The decision boundary
corresponds to a consensus score of 7 and above.
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Extended Data Fig. 8 | PopV accurately performs labeling of cell types across
different brain regions and highlights region-specific neurons. a, UMAP
embedding after scANVIintegration of reference nuclei (motor cortex, M1G)
and query nuclei (medial temporal gyrus, MTG) labeled with consensus score,
brainregion (ROI), popV prediction and original annotation (supercluster term).
b, Confusion matrix for the cell types predicted by popV and their respective
manual annotations highlights the agreement between both annotations.

Displayed is the ratio of predicted cell types with popV for each ground truth cell
type.c, Mean agreement score per cell type shows that confused cell types also
exhibit alower agreement score and can be detected based on their score.

d, Differentially expressed genes for cluster ID for upper-layer intratelencephalic
neurons. Highlighted are cluster IDs 135 and 138, which are over-represented
inthe MTG over the M1G. These clusters show an overexpression of FOXP2 and
TSHZ2 and are very similar to each other.
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Extended DataFig. 9| Precision-recall curves for popV prediction when
removing classifiers from voting scheme. We evaluated the performance of
popV when disabling a subset of algorithms. We removed OnClass from the
algorithms so that majority voting and popV consensus scoring yield the same
result. We evaluated the performance of popV using a subset of 5 algorithms
each. Ontherespective y- and x-axes, the two algorithms removed from popV for

therespective trial are displayed. The difference between the accuracy or auPRC
between the original prediction and the prediction after subsetting the algorithm
is displayed. Each metric obtained when using all algorithmsin popVis given
inthe plottitle.aand b denote the thymus experiment (Fig. 3) evaluated on all
query cells.cand d correspond to the nucleus dataset (Extended Data Fig. 7).
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X X []

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All data used throughout the study was collected from CELLXGENE. For Tabula sapiens, metadata
was updated beyond the CELLXGENE version and deposited on Zenodo.

Data analysis All code used throughout the manuscript is publicly accessible through https://github.com/Yoseflab/PopV. For dependencies we refer to the
poetry.lock file in the Github repository. Full analysis code and software is available at https://github.com/YoseflLab/popv-reproducibility.
name: popv_bench
channels:

- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- asttokens=2.2.1=pyhd8edlab_0
- backcall=0.2.0=pyh9f0ad1d_0
- backports=1.0=pyhd8edlab_3
- backports.functools_Iru_cache=1.6.5=pyhd8edlab_0
- ca-certificates=2023.7.22=hbcca054_0
- comm=0.1.4=pyhd8edlab_0
- debugpy=1.6.7=py39h6a678d5_0
- decorator=5.1.1=pyhd8edlab_0
- entrypoints=0.4=pyhd8edlab_0
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- executing=1.2.0=pyhd8edlab_0
- ipykernel=6.25.1=pyh71e2992_0
- ipython=8.14.0=pyh41d4057_0
- jedi=0.19.0=pyhd8edlab_0
- jupyter_client=7.3.4=pyhd8edlab_0
- jupyter_core=5.3.1=py39hf3d152e_0
-1d_impl_linux-64=2.38=h1181459_1
- libffi=3.3=he6710b0_2
- libgce-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libsodium=1.0.18=h36c2eal_1
- libstdexx-ng=11.2.0=h1234567_1
- matplotlib-inline=0.1.6=pyhd8edlab_0
- ncurses=6.4=h6a678d5_0
- openssl=1.1.11=h7f98852_0
- packaging=23.1=pyhd8edlab_0
- parso=0.8.3=pyhd8edlab_0
- pexpect=4.8.0=pyhla96ade_2
- pickleshare=0.7.5=py_1003
- platformdirs=3.10.0=pyhd8edlab_0
- prompt-toolkit=3.0.39=pyha770c72_0
- prompt_toolkit=3.0.39=hd8edlab_0
- ptyprocess=0.7.0=pyhd3deb0d_0
- pure_eval=0.2.2=pyhd8edlab_0
- pygments=2.16.1=pyhd8edlab_0
- python=3.9.0=hdb3f193_2
- python-dateutil=2.8.2=pyhd8edlab_0
- python_abi=3.9=2_cp39
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py39h06a4308_0
- sglite=3.41.2=h5eeel8b_0
- stack_data=0.6.2=pyhd8edlab_0
- tk=8.6.12=h1ccaba5_0
- traitlets=5.9.0=pyhd8edlab_0
- typing_extensions=4.7.1=pyha770c72_0
- wewidth=0.2.6=pyhd8edlab_0
- wheel=0.38.4=py39h06a4308_0
- xz=5.4.2=h5eeel8b_0
- zeromq=4.3.4=h9c3ff4c_1
- zlib=1.2.13=h5eee18b_0
- pip:
- absl-py==1.4.0
- aiobotocore==2.9.0
- aiohttp==3.8.5
- aioitertools==0.11.0
- aiosignal==1.3.1
- alabaster==0.7.13
- anndata==0.8.0
-annoy==1.17.3
-anyio==3.7.1
- array-api-compat==1.4
-arrow==1.2.3
- astunparse==1.6.3
- async-timeout==4.0.3
- attrs==23.1.0
- babel==2.12.1
- backoff==2.2.1
- bbknn==1.5.1
- beautifulsoup4==4.12.2
- bleach==6.0.0
- blessed==1.20.0
- botocore==1.33.13
- cachetools==5.3.1
- celltypist==1.6.0
- cellxgene-census==1.9.1
- certifi==2023.7.22
- cffi==1.16.0
- charset-normalizer==3.2.0
- chex==0.1.7
- click==8.1.6
- cloudpickle==3.0.0
- cmake==3.27.2
- contextlib2==21.6.0
- contourpy==1.1.0
- croniter==1.4.1
- cryptography==42.0.3
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- cubinlinker-cu11==0.3.0.post1
- cuda-python==12.4.0

- cudf-cul1==24.4.0

- cudf-cul2==24.4.0

- cugraph-cul1==24.4.0

- cugraph-cul2==24.4.0
-cuml-cull==24.4.0
-cuml-cul2==24.4.0

- cupy-cudallx==13.0.0

- cupy-cudal2x==13.0.0

- cycler==0.11.0

- cython==3.0.0

- dask==2024.1.1

- dask-cuda==24.4.0

- dask-cudf-cu11==24.4.0
- dask-cudf-cu12==24.4.0
- dask-expr==0.4.0

- dateutils==0.6.12

- deepdiff==6.3.1

- defusedxml==0.7.1

- distlib==0.3.8

- distributed==2024.1.1

- dm-tree==0.1.8

- docrep==0.3.2

- docutils==0.17.1

- editables==0.5

- et-xmlfile==1.1.0

- etils==1.4.1

- exceptiongroup==1.1.3

- fastapi==0.98.0

- fastjsonschema==2.18.0
- fastrlock==0.8.2

- fbpca==1.0

- filelock==3.12.2

- flatbuffers==23.5.26

- flax==0.7.2

- fonttools==4.42.0

- frozenlist==1.4.0

- fsspec==2023.12.2

- gast==0.4.0
-gdown==4.7.1

- geosketch==1.2

- google-auth==2.22.0

- google-auth-oauthlib==1.0.0
- google-pasta==0.2.0

- grpcio==1.57.0
-h11==0.14.0

- h5py==3.9.0

- harmony-pytorch==0.1.7
- hatch==1.9.3

- hatchling==1.21.1

- httpcore==1.0.3

- httpx==0.26.0

- huggingface-hub==0.11.1
- hyperlink==21.0.0
-idna==3.4
-igraph==0.10.6
-imagesize==1.4.1
-imgkit==1.2.2

- importlib-metadata==7.0.1
- importlib-resources==6.0.1
-inquirer==3.1.3

- intervaltree==3.1.0

- ipywidgets==8.1.0

- itsdangerous==2.1.2

- jaraco-classes==3.3.1

- jax==0.4.10

- jaxlib==0.4.10

- jeepney==0.8.0
-jinja2==3.1.2

- jmespath==1.0.1

- joblib==1.3.2

- jsonschema==4.19.0

- jsonschema-specifications==2023.7.1
- jupyter-client==7.4.9

- jupyterlab-pygments==0.2.2
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- jupyterlab-widgets==3.0.8

- keras==2.13.1

- keyring==24.3.0

- kiwisolver==1.4.4

- leidenalg==0.10.1

- libclang==16.0.6

- lightning==2.0.6

- lightning-cloud==0.5.37

- lightning-utilities==0.9.0

- lit==16.0.6

- llvmlite==0.41.1

- locket==1.0.0

- louvain==0.8.1

- markdown==3.3.4

- markdown-it-py==3.0.0

- markupsafe==2.1.3

- matplotlib==3.7.2

- mdurl==0.1.2

- mistune==3.0.1

- ml-collections==0.1.1

- ml-dtypes==0.2.0

- more-itertools==10.2.0

- mpmath==1.3.0

- msgpack==1.0.5

- mudata==0.2.3

- multidict==6.0.4

- multipledispatch==1.0.0

- natsort==8.4.0

- nbclient==0.8.0

- nbconvert==7.7.3

- nbformat==5.9.2

- nbsphinx==0.9.2

- nbsphinx-link==1.3.0

- nest-asyncio==1.5.7

- networkx==3.1

- nltk==3.8.1

- numba==0.58.1
-numpy==1.24.3
-numpyro==0.12.1

- nvidia-cublas-cu11==11.10.3.66
- nvidia-cuda-cupti-cu11==11.7.101
- nvidia-cuda-nvrtc-cu11==11.7.99
- nvidia-cuda-runtime-cu11==11.7.99
- nvidia-cudnn-cu11==8.5.0.96

- nvidia-cufft-cu11==10.9.0.58

- nvidia-curand-cu11==10.2.10.91
- nvidia-cusolver-cu11==11.4.0.1
- nvidia-cusparse-cul1==11.7.4.91
- nvidia-nccl-cu11==2.14.3

- nvidia-nvtx-cu11==11.7.91

- nvtx==0.2.10

- oauthlib==3.2.2

- obonet==1.0.0

- onclass==1.3

- openpyx|==3.1.2

- opt-einsum==3.3.0

- optax==0.1.7

- orbax-checkpoint==0.3.2

- ordered-set==4.1.0

- pandas==2.2.1

- pandocfilters==1.5.0

- partd==1.4.1

- pathspec==0.12.1

- patsy==0.5.3

- pillow==10.0.0

- pip==24.0

- pluggy==1.4.0

- popv==0.2.2

- protobuf==4.24.0

- psutil==5.9.5

- ptxcompiler-cu11==0.8.1.post1
- pyarrow==14.0.2

- pyarrow-hotfix==0.6

- pyasn1==0.5.0

- pyasnl-modules==0.3.0

- pycparser==2.21
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- pydantic==1.10.12

- pyjwt==2.8.0

- pylibcugraph-cul1==24.4.0

- pylibcugraph-cu12==24.4.0

- pylibraft-cu11==24.4.0

- pylibraft-cu12==24.4.0

- pynndescent==0.5.10

- pynvijitlink-cu12==0.1.14

- pynvml==11.4.1

- pyparsing==3.0.9

- pyro-api==0.1.2

- pyro-ppl==1.8.6

- pysocks==1.7.1

- python-editor==1.0.4

- python-multipart==0.0.6

- pytorch-lightning==2.0.6

- pytz==2023.3

- pyyaml==6.0.1

- pyzmg==25.1.1

- raft-dask-cul1==24.4.0

- raft-dask-cu12==24.4.0

- rapids-dask-dependency==24.4.1
- readchar==4.0.5

- referencing==0.30.2

- regex==2023.8.8

- requests==2.31.0

- requests-oauthlib==1.3.1
-rich==13.5.2
-rmm-cull==24.4.0
-rmm-cul2==24.4.0

- rpds-py==0.9.2

-rsa==4.9

- s3fs==2023.12.2

- scanorama==1.7.3

- scanpy==1.9.3

- scikit-learn==0.24.2
-scipy==1.11.1

- scvi-tools==1.0.3

- seaborn==0.12.2

- secretstorage==3.3.3

- sentence-transformers==2.2.2
- sentencepiece==0.1.99

- session-info==1.0.0

- shellingham==1.5.4
-six==1.15.0

- sniffio==1.3.0

- snowballstemmer==2.2.0

- somacore==1.0.6

- sortedcontainers==2.4.0

- soupsieve==2.4.1

- sparse==0.14.0

- sphinx==4.3.2

- sphinxcontrib-applehelp==1.0.4
- sphinxcontrib-devhelp==1.0.2
- sphinxcontrib-htmlhelp==2.0.1
- sphinxcontrib-jsmath==1.0.1

- sphinxcontrib-gthelp==1.0.3

- sphinxcontrib-serializinghtml==1.1.5
- starlette==0.27.0

- starsessions==1.3.0

- statsmodels==0.14.0

- stdlib-list==0.9.0

- sympy==1.12

- thlib==3.0.0

- tensorboard==2.13.0

- tensorboard-data-server==0.7.1
- tensorflow==2.13.0

- tensorflow-estimator==2.13.0
- tensorflow-io-gcs-filesystem==0.33.0
- tensorstore==0.1.41

- termcolor==2.3.0

- texttable==1.6.7

- threadpoolctl==3.2.0

- tiledb==0.24.0

- tiledbsoma==1.6.1

- tinycss2==1.2.1
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- tokenizers==0.13.3

- tomli==2.0.1

- tomli-w==1.0.0

- tomlkit==0.12.3

- toolz==0.12.0

- torch==2.0.1

- torchmetrics==1.0.3

- torchvision==0.15.2

- tornado==6.3.3
-tqdm==4.64.0

- transformers==4.29.0

- treelite==4.1.2

- triton==2.0.0

- trove-classifiers==2024.1.31
- typing-extensions==4.2.0
- tzdata==2024.1

- ucx-py-cul1==0.37.0

- ucx-py-cul2==0.37.0
-umap-learn==0.5.3

- urllib3==1.26.16

- userpath==1.9.1

- uvicorn==0.23.2

- virtualenv==20.25.0

- webencodings==0.5.1

- websocket-client==1.6.1
- websockets==11.0.3

- werkzeug==2.3.7

- widgetsnbextension==4.0.8
- Xarray==2023.7.0

-yarl==1.9.2
-zict==3.0.0
- Zipp==3.16.2

- zstandard==0.22.0
prefix: /home/cane/miniconda3/envs/popv_bench

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Extended Human Lung Cell Atlas was downloaded from CELLXGENE: https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de 293. Lung
Cell Atlas was downloaded from CELLXGENE https://cellxgene.cziscience.462 com/collections/Sd445965-6fla-4b68-ba3a-b8f765155d3a. Thymus data set was
Extended Human Lung Cell Atlas was downloaded from CELLXGENE: https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935¢-db10d30de293. Lung
Cell Atlas was downloaded from CELLXGENE https://cellxgene.cziscience.462 com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a. Thymus data set was
downloaded from Data was downloaded from https://cellxgene.cziscience.com/collections/de13e3e2-23b6-40ed-a413-e9e12d7d3910. Brain data set was
downloaded from CELLXGENE https://cellxgene.cziscience/com/collections/283d65eb-dd53-496d-adb7-7570c7caad43. All data set are in the same form as the
CELLXGENE census on 09/06/2023. After correction of metadata Tabula sapiens was deposited on Zenodo under DOI https://doi.org/10.5281/zenodo.7587774.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size All query datasets contained samples from multiple human individuals (<10). This allows analysis of batch correction efficiency.

All datasets contained less than 200k cells and more than 10k cells. This is a standard size for modern scRNA-seq datasets. We applied popV to
larger datasets and discussed this in the response to the reviewers. This was critical to evaluate scalability.

Data exclusions  Cell-types with less than 10 cells were excluded as the K-nearest neighbor classifiers can't classify these (k=15 and so 8 cells are at least
necessary). We excluded several donors from Tabula sapiens that had conflicting cell-type annotation. Within Tabula sapiens v2 we are

currently refining these labels. This dataset is not publicly available yet.

Replication All results are obtained from multiple human individuals. This demonstrates reproducibility. All findings are reproducible between these
individual samples.

Randomization  No random subsetting was used. Query and reference dataset are coming from different sources.

Blinding No blinding was performed as for every cell it was either unlabeled (query dataset) or labeled (reference dataset). The algorithm itself is
blinded towards the existing query labels that were used to evaluate performance.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
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