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Abstract. Spatial clustering finds groups of neighbouring objects with
similar attributes, revealing patterns of spatial interaction and influence.
However, not all similarities in spatial data are due to areal effects. Con-
founders can mask similarities and hide the spatial signal in the data.
We see this, for example, in cultural evolution where language similarities
due to shared ancestry mask similarities due to contact and interaction.
In this article, we present sBayes a Bayesian mixture model for spatial
clustering in the presence of confounders. sBayes learns which similari-
ties in a set of spatial point objects are explained by confounding effects
and assigns objects to clusters based on the remaining similarities in the
data. We introduce the algorithm to a geographic audience on the exam-
ple of a fictional mobility analysis. We discuss how sBayes can be applied
to ecology, health, and economy problems, revealing hidden geographic
structures and patterns.
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1 Introduction

In the URPP Language and Space at the University of Zurich, geographers and
linguists study language evolution in space. One of our research problems is par-
ticularly challenging: language contact. When speakers of different languages in-
teract, they likely exchange properties and their languages become more similar.
Spatial clustering methods promise to recover these traces, revealing geographic
contact areas and past human interaction. However, contact areas are notoriously
difficult to find. Only a few and usually weak language similarities come from
contact, while more and stronger ones result from either universal preference
or common ancestry. English, German, French and Italian, for example, belong
to the Indo-European language family. They have all inherited similar proper-
ties from their common ancestor, which overshadow potential contact signals.
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Standard clustering algorithms group objects based on their attribute similarity,
their spatial proximity, or both (4). However, in the presence of confounders,
clustering might yield undesired results. In the case of language contact, cluster-
ing likely returns the language families in the data, missing out on the weaker
contact signal. The contact areas are hidden spatial clusters whose similarity is
masked by the stronger similarities of shared ancestry.

We developed sBayes, a Bayesian algorithm for spatial clustering in the
presence of confounders (6). The algorithm learns which similarities in a set of
data result from confounders and which come from areal effects. Initially, we
designed sBayes to find areas of cultural contact, but we believe that it can be
applied to a broader range of spatial clustering problems, revealing hidden spatial
patterns. In this paper, we present a generalized version of the sBayes algorithm
to a geographic audience on the example of a fictional mobility analysis.

2 Hidden spatial clusters

Among many other factors, we can imagine that the place of residence influences
individual mobility behaviour. In areas with easy access to affordable, safe, and
regular bus and train services, citizens might be inclined to use public trans-
port. At the same time, they might opt for private cars in places where public
transport is poorly developed. We could imagine exploring the role of residence
on individual mobility in a survey similar to that in Table 1. We assume that

Question Part. A Part. B
Do you own a car? no yes
What is your preferred means of transport? train car

How often do you use public transport? daily never
Do you have a half-fare travel card? yes no

Do you do your daily shopping by car? no yes

Table 1. Excerpt of a fictional mobility survey on public and private transport use.

answers in the survey are fixed-choice such that each question can be encoded
as a categorical variable, with each answer being one of the applicable cate-
gories. For example, the question "Do you own a car?” is encoded as a binary
variable with categories ”yes” and "no”. The question ”How often do you use
public transport?” is encoded as a multinomial variable with categories ”daily”,
?weekly”, "monthly”, ”yearly”, "never”. Each participant in the sample has a
vector of variables describing their mobility behaviour. To simplify the subse-
quent visualizations, we map the participant to a colour gradient reflecting the
main variation in mobility behaviour. In Figure 1, yellow indicates a participant
with an overall preference for public transport, e.g. participant A, while dark
purple indicates a preference for private motorized transport, e.g. participant B.

Imagine three different age groups in the sample, young, working-age, and el-
derly participants (Figure 1). Each age group has a different mobility behaviour.
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Fig. 1. The spatial clustering of similar mobility behaviour in the three age groups
young (a), working-age (b) and elderly (c), is masked by the tendencies in the different
groups. Hence, no clear clustering is visible in the joint data (d). Accounting for the
confounding effect of age can uncover the hidden spatial clusters.

The young (a) and elderly participants (b) prefer public transport, while the
working-age participants (c) lean towards motorized private transport. In each
age group, participants with similar mobility behaviour also tend to cluster in
space. In the Western region, participants across age groups prefer motorized
private transport, while in the East, they prefer public transport. However, in
the entire sample (d) the spatial signal disappears, because the confounder, age,
masks the clustering. We call these areas with masked similarities hidden spatial
clusters.

3 sBayes

sBayes is a Bayesian mixture model for finding hidden spatial clusters. For
an introduction to Bayesian data analysis and modelling, see the textbooks by
Gelman et al. (3) and McElreath (5). Let us assume a set of spatial point objects
O with categorical features F'. Each feature f € F' takes one of Ny mutually
exclusive states:

Sy ={s1,-,5n,}, (1)

In our example, the spatial objects are participants and their locations of res-
idence. The features capture the individual mobility behaviour. The feature
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fpreferred could indicate the preferred means of transport with states
Spreferred = {car, train, bus, tram}.

sBayes aims to identify the relevant effects to predict why feature f of object
o has state s. Specifically, sBayes proposes an areal effect and one or several
discrete confounding effects. In the mobility example, the confounder is age
demographics. Participants belong to an age group a(o), which influences their
mobility behaviour. For each confounder and the areal effect, sBayes models
a likelihood function. In the example, P,q. is the likelihood that s is preferred
because of age, Pyreal is the likelihood that s is preferred in the areal cluster
Z(0).

sBayes then models each feature as coming from a distribution that is a
weighted mixture of the areal effect and the confounders. The unknown weights
— in the example Wareal and Wage — quantify the contribution of each effect.
For a single participant o who belongs to the demographic age group a(o) and
cluster Z(o0), the following mixture likelihood gives the probability of feature f
being in state s:

P(Xo,f = s|Z,w,B,7) = Wage,f * Page(Xo,f = S|ﬂf,a(o))

(2)
+ Wareal, f * Pareal(Xo,f = S|’7f,Z(O))

The mixture components — Page and Pireal — are categorical distributions
parameterised by probability vectors 8 (o) and vy z(,)- That is, the probability
of observing state s in feature f is By , if it is the result of age demographics and
V#,2(0),s if it is the result of an areal effect in Z(0). While the assignment to age
groups is fixed — each participant belongs to one demographic age group — the
assignment to areal clusters is inferred from the data. sBayes allows for multiple
clusters Z = {Z1, ..., Zx }, each with their own set of areal probability vectors.
A detailed explanation of all mixture components together with examples can
be found in the Supporting Information of the original publication.

The mixture model combines the weighted likelihood for age demographics
and areal effects across all objects. The model has parameters © = {Z, 8, v, w},
which are evaluated against the data D — in the example this is the mobility
behaviour of all participants. The likelihood of the whole model is the joint
probability of the observed feature values D, ¢ over o € O and features f € F,
given O:

PD|6) = [T I P(Xi0 = Di.l®) (3)
0cO feF

Since sBayes is a Bayesian model, each of its parameter needs a prior distri-
bution. sBayes uses Dirichlet priors for the mixture weights and the probability
vectors of the categorical distributions, and purpose-built geo-priors for the as-
signment of objects to clusters. The original paper gives a detailed explanation
of each of the priors P(©) and in the discussion, we will explore the geo-prior in
more detail. The posterior of the model is proportional to the likelihood times
the prior:

P(O|D) x P(D|O) - P(O). (4)
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sBayes uses a Markov chain Monte Carlo (MCMC) algorithm to sample
from the posterior distribution. For each new sample, the algorithm either (a)
randomly assigns objects to one of k clusters (b) updates the probability vectors
for the areal effect, e.g. setting a strong preference for public transport in one of
the clusters, (c) updates the probability vectors for the confounding effects, e.g.
setting a high probability for owning a car in the working-age population or (d)
alters the weights for either effect. After each update, the algorithm evaluates
the likelihood. A sample has a high likelihood, if

- the estimates for the areal and the confounding effect fit the data,

- the entropy for the areal effect is low and the participants in a cluster are
similar across many features,

- the areal effect differs from the confounding effect, e.g. age demographics do
not explain the similarity in the cluster.

The algorithm accepts a move to a new sample with Metropolis-Hastings prob-
ability. More details on the sampling procedure can be found in the original
publication, together with two case studies and detailed simulation studies (6).
The sBayes algorithm is available on GitHub (github.com/derpetermann/sbayes),
both with fixed confounders for finding contact areas in cultural data (branch
master), and customizable discrete confounders for finding hidden spatial clus-
ters in general (branch geo_sbayes).

4 Discussion

This paper presented a generalized version of sBayes, an algorithm to find hid-
den spatial clusters in categorical multivariable geographic data. sBayes is an
interpretable machine learning model. In our idealized example, the feature vari-
ation reduces to a single dimension, with petrolheads and train aficionados on
either end of the spectrum. In actual data, we likely find variation along several
axes, in which case the labelling of objects and the interpretation of clusters is
less straightforward. Besides clusters, sBayes returns weights and feature distri-
butions. The weights indicate how important each feature was to delineate the
cluster, the feature distribution captures the intra-cluster propensity, allowing
for interpretation and labelling. The Bayesian mixture model yields a poste-
rior distribution, which reflects the robustness of clustering. For a strong and
concentrated spatial signal, the posterior distribution is narrow, such that the
clusters in each sample contain the same objects. For a diffuse spatial signal, the
assignment of objects to clusters varies across posterior samples, reflecting the
uncertainty in the data.

Geographic clustering should explicitly consider spatial neighbourhood and
contiguity to find clusters. In sBayes, the geo-prior addresses this issue. The
geo-prior connects all point objects in a cluster with a linkage criterion and then
evaluates spatial coherence. In the original publication, we used the minimum
spanning tree (MST) as linkage criterion, and we let the geo-prior decrease ex-
ponentially with the average distance in the MST. In this case, the geo-prior
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regularizes, preferably reporting spatially compact clusters. However, the likeli-
hood might still overwhelm the prior if the similarity in non-compact clusters
is strong enough. The geo-prior is much more flexible and can accommodate
different spatial contiguity and neighbourhood scenarios. For example, when the
spatial influence is known not to exceed a given threshold, as is the case for noise
or pollution, we might want to set the probability of distant points to occur to-
gether in a cluster to zero. In this case, the linkage criterion would connect all
pair-wise objects. The geo-prior would evaluate the maximum distance against a
distribution truncated at the threshold distance and exclude all spread-out clus-
ters. There is no prior on the number of clusters, k, in the model. Instead, sBayes
uses methods from model selection to find a suitable k that avoids overfitting
but captures the variance in the data.

It is a standard practice in geographic regression analysis to visualize the
residuals of a model on a map (1). Suppose the residuals are spatially auto-
correlated, such that positive and negative residuals occur together in space.
Autocorrelated residuals either point at a distance-related interaction between
the objects or a misspecified model where a critical, spatially structured predic-
tor is missing (2). Our approach differs from classical spatial residual analysis,
but we can make a similar analogy. The mixture model assumes that all relevant
non-spatial predictors of a phenomenon are available as confounders. It assigns
objects to clusters based on the remaining similarities in the data. Consequently,
the model either reveals spatial interaction or a spatially structured predictor.
In the mobility example, the clusters could identify regions with different ac-
cessibility to public transport or point at a distance-based interaction in space:
spatially close participants interact with each other and reinforce their views on
mobility. Only context can tell which of the two the clusters reflect. In case the
clustering does not show a spatial pattern, the algorithm has revealed a non-
spatially structured confounding effect. In the mobility example, this could be
the participants’ profession or income.

So far, we have presented mobility behaviour as a potential new applica-
tion for sBayes, but the idea of clustering in the presence of confounders is
very general. Hence, many areas of application could benefit from such an ap-
proach. We will briefly discuss potential applications in ecology, public health
and economics. The question at the heart of ecology is how we can explain the
spatial distributions of community composition and biodiversity patterns on the
planet. sBayes could find hidden spatial clusters in these distributions account-
ing for known confounding effects of climate, geology, soil or human influence.
Based on health records and demographic data, sBayes could be used to detect
clusters of high or low incidence of different diseases, accounting for known con-
founders of age or preexisting conditions of patients. The influence of different
policies, investments and institutions on economic activity is a central question
in economics. Using data of economic activity in a municipality (e.g. number
of businesses, share of different industries, average revenue) to detect clusters
of surprisingly low or high economic activity, given predefined confounders like
certain policies and regulations in the municipality.
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