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Simple Summary: Cancer metastasis is a critical event in the progression of solid tumors and is
invariably associated with adverse outcomes and mortality. Understanding novel mechanisms
or molecules that promote cancer metastasis will facilitate the development of new strategies for
cancer treatment. Recently, MARCKS has been studied extensively in several cancers and has been
implicated in tumor progression and metastasis. This review summarizes recent advances in the
understanding of MARCKS on cancer metastasis, stemness, and therapeutic resistance and provides
prospects on targeting MARCKS therapeutically. Specifically, we review the molecular mechanisms
and multiple signaling pathways by which MARCKS contributes to the progression and metastasis
in solid tumors.

Abstract: The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated
protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells. MARCKS plays im-
portant roles in multiple cellular processes, including cell adhesion and motility, mucin secretion,
exocytosis, and inflammatory response. Aberrant MARCKS signaling has been observed in the
development and progression of multiple cancer types. In addition, MARCKS facilitates cancer
metastasis through modulating cancer cell migration and invasion. Moreover, MARCKS contributes
to treatment resistance, likely by promoting cancer stem cell renewal as well as immunosuppression.
In this review, we describe MARCKS protein structure, cellular localization, and biological functions.
We then discuss the role of MARCKS in cancer metastasis as well as its mechanisms of action in solid
tumors. Finally, we review recent advances in targeting MARCKS as a new therapeutic strategy in
cancer management.

Keywords: MARCKS; cancer metastasis; cancer stemness; treatment resistance

1. Introduction

Metastasis, defined by disseminated cancer cells at sites distant from the primary
tumor, is the principal cause of cancer death, as shown by the stark differences in 5-year
survival rates for localized compared to metastatic disease [1]. Studies have shown that
large numbers of disseminated tumor cells are released from the primary tumor in the early
stages of cancer growth. However, only a small fraction of these cells are able to colonize
distant foreign tissue sites, adapt to a relatively inhospitable microenvironment and then
progress from micro- to macro-metastatic disease [2]. These metastasis-initiating cells often
possess stem-like properties, allowing them to undergo epithelial-mesenchymal transitions,
enter slow-cycling states for dormancy, evade immune surveillance, establish supportive in-
teractions with organ-specific niches, and co-opt systemic factors for growth and resistance
to anticancer therapies [3–5]. A growing body of evidence implicates the myristoylated
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alanine-rich C-kinase substrate (MARCKS), and the highly homologous MARCKS-like
protein 1 (MARCKSL1) in cancer migration and metastasis. Both MARCKS and MAR-
CKSL1 are activated by phosphorylation, suggesting that MARCKS-targeted therapies
could be used to treat cancer metastasis [6–13]. Our understanding of the molecular mech-
anisms underlying the role of MARCKS in promoting cancer metastasis and therapeutic
resistance is still incomplete; however, much progress has been made [14,15]. In hema-
tological malignancies, MARCKS expression and phosphorylation have been implicated
in treatment resistance and are associated with disease-specific mortality [16]. However,
whether increased MARCKS confers treatment resistance in solid tumors remains unclear.
In this review, we discuss the structure, localization, and function of MARCKS, describe the
role and mechanisms of MARCKS in potentiating cancer metastasis and review whether
MARCKS contributes to treatment resistance in solid tumors.

2. Protein Structure and Cellular Localization of MARCKS

MARCKS, an actin filament crosslinking protein, has a 32 kDa molecular weight that
was originally identified as an 87 kDa protein substrate for Protein Kinase C (PKC) due to
its anomalous molecular behavior and is ubiquitously expressed in eukaryotic cells [16–18].
This rod-shaped protein contains three distinct evolutionarily conserved regions: the
N-terminal myristoylated domain (NMD), the multiple homology 2 domain (MH2), and
the phosphorylation site domain (PSD) (also known as effector domain (ED)) [19]. The
NMD recognized by N-myristoyl transferase mediates the insertion of the myristoyl moiety
into the hydrophobic lipid bilayer of the plasma membrane [20], while the MH2 domain
interacts with actin and contains a potential dimerization motif [18]. The highly positively
charged PSD is crucial for the functionality of MARCKS and the source of its ability
to electrostatically bind to phosphatidylinositol bisphosphate (PIP2), a docking site on
the inner leaflet of the plasma membrane and a direct activator of numerous membrane
proteins [21]. Phosphorylation by PKC within MARCKS PSD at Ser159, Ser163, and
Ser170 directly or through RhoA/ROCK at Ser159 [22] or calcium-dependent calmodulin-
binding reduces MARCKS binding to PIP2 and leads to MARCKS release from the plasma
membrane into the cytoplasm, where it acts as a key regulatory protein [23].

3. Biological Functions of MARCKS

The biological functions of MARCKS primarily depend on its phosphorylation-
dephosphorylation status, which in turn determines its membrane vs. cytosolic local-
ization where it interacts with its two main binding partners, actin and PIP2 [14,15]. At the
plasma membrane, phosphorylated MARCKS directly binds to and cross-links filamentous
actin to modulate cytoskeletal structure in critical biological processes such as wound
healing, morphogenesis, embryogenesis, and metastasis [24,25]. In addition, MARCKS
has been proposed to link secretory granules to the cytoskeletal actin and myosin for
exocytosis [26]. Moreover, MARCKS sequesters PIP2 at lipid rafts in the cell membrane
in various cell types, including neutrophils [27,28], macrophages [29], fibroblasts [30], and
hepatic stellate cells [31], to regulate cell motility and chemotaxis. By regulating PIP2
and its downstream secondary messengers such as inositol-1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG) [32,33], MARCKS indirectly modulates multiple cellular processes,
including cell migration, membrane trafficking, mitosis, vesicular trafficking, receptor
endocytosis, exocytosis, and cytoskeletal reorganization [34]. Finally, MARCKS mediates
the inflammatory response through the regulation of cell migration and inflammatory
cytokines in macrophages and neutrophils [19,35–37].

4. MARCKS in Cancer Metastasis

MARCKS signaling has been implicated in promoting cancer progression and metas-
tasis in several solid malignancies through the interactions of its highly conserved effector
domain with other crucial proteins such as actin [38], PKC, and AKT [14]. Since MARCKS
was first implicated in solid tumors [39], the number of publications has grown rapidly, and
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the ratio of solid tumor-related publications to total MARCKS publications has increased
dramatically from 1989 to 2021 (Figure 1).
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to 2021. The black dots represent the publication ratio (%) of each year in which the publications
of MARCKS research related to solid tumors were divided by the total publications of MARCKS
research. The red line demonstrates the trend of the non-linear regression fit curve analyzed from
each year’s publication ratio by GraphPad Prism (v6.07).

In lung cancer, MARCKS phosphorylation is correlated with advanced stage and lymph
node metastasis and predicts shorter survival [40,41]. Elevated MARCKS phosphorylation
enhances migration and invasion of lung cancer cells in vitro and metastasis in vivo [9], while
a MARCKS-inhibiting peptide attenuates cell growth, migration, and invasion and reduces
metastasis in both subcutaneous and orthotopic xenograft models, likely through modu-
lating NF-κB signaling [42–44]. In addition, an inhaled MARCKS inhibitor, BIO-11006,
demonstrated an improvement of the overall response rate in patients [45]. In addition,
MARCKS overexpression has been observed in aggressive subtypes of breast cancer, i.e.,
basal-like and HER2 subtypes [46], and is also associated with tumor grade, presence of
metastases, and poor survival in male breast cancer and inflammatory breast cancer [47–49],
possibly through increased MARCKS binding to Tob which decreases binding of Tob with
ErbB2 and subsequent activation of ErbB2 signaling [50,51]. In renal cell carcinoma (RCC),
MARCKS phosphorylation is positively correlated with tumor grade, and increased MARCKS
expression promotes tumor growth and angiogenesis in vivo in an RCC xenograft model [52].
Suppression of MARCKS by genetic and pharmacologic approaches in high-grade RCC cell
lines in vitro decreases cell proliferation and migration and suppresses angiogenesis in vivo by
downregulating the AKT/mTOR pathway and HIF-target genes, notably vascular endothelial
growth factor-A [52]. MARCKS phosphorylation also promotes cell migration and invasion
in vitro and predicts shorter survival times in cholangiocarcinoma patients [53]. Moreover,
knockdown of MARCKS in human hepatocellular carcinoma cells in vitro reduces cell migra-
tion and invasion, but not cell proliferation [54]. Finally, MARCKS phosphorylation drives
motility and invasiveness of melanoma cells of both murine and human origin. Inhibition of
MARCKS phosphorylation with a MARCKS-inhibitory peptide abolishes WNT5A-mediated
melanoma cell invasion [8,25], suggesting that MARCKS is a crucial promoter of metastasis in
melanoma and a candidate anti-metastatic target in melanoma patients.

MARCKS expression and phosphorylation are not universally associated with pro-
moting cancer progression in other solid tumors. For instance, in a mouse colon cancer
model, MARCKS depletion reduces motility and invasion in vitro and significantly inhibits
metastases in a syngeneic model of colon metastasis in vivo [55]. However, the inactivation
of MARCKS is commonly observed in human colon cancers and associated with adverse
patient outcomes, suggesting that MARCKS acts as a suppressor of progression in human
colorectal cancer [56]. In glioblastoma multiforme (GBM), down-regulation of MARCKS
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expression with small interfering RNA in cells constitutively expressing EGFRvIII, a me-
diator of MARCKS phosphorylation, leads to decreased cell adhesion, spreading, and
invasion in vitro [57]. However, MARCKS protein expression levels are inversely corre-
lated with GBM proliferation and intracranial xenograft growth rates in vivo, and high
expression levels are associated with improved patient survival [58]. These seemingly
inconsistent results could be due to the critical role of phosphorylation in the regulation of
MARCKS, such that protein expression levels alone fail to correlate with important clinical
and biological outcomes. It is well established that phosphorylation of MARCKS, and not
MARCKS expression levels, drives cancer cell proliferation and motility. High protein
levels of non-phosphorylated MARCKS could attenuate the metastatic phenotype by se-
questration of PIP2 at the cell membrane, thereby suppressing PIP2-mediated signaling
through downstream pathways such as PI3K/AKT and PLD [15].

Conflicting results on the role of MARCKS in cancer progression and metastasis have also
been observed in prostate cancer. Dorris et al. showed that knockdown of MARCKS in PC3
cells significantly decreases migration and invasion through downregulation of MMP9 gene
expression [6], suggesting that MARCKS promotes prostate cancer metastasis. In agreement
with these findings, increased expression of MARCKS is associated with recurrence following
surgery for clinically localized prostate cancers [6]. However, Li et al. reported that upregula-
tion of MARCKS protein expression by knockdown of miR-21, a direct regulator of MARCKS,
inhibits cell motility and invasion in PC3 cells [59]. In addition, two independent studies
demonstrated that targeted knockdown of MARCKSL1, a homologue of MARCKS, in PC3
cells promotes cell migration in vitro [13,60]. While the inhibitory effects of miR-21 knock-
down could be due to downstream targets other than MARCKS, they could also be caused
by sequestration of PIP2 by unphosphorylated MARCKS, leading to suppression of PIP2-
mediated signaling. Indeed, Björkblom et al. showed that dephosphorylated MARCKSL1
increases cell migration, while MARCKSL1 phosphorylated by JNK inhibits cell migration by
bundling and stabilizing F-actin [13,38]. Finally, a recent proteomic analysis of urinary and
tissue-exudative extracellular vesicles has demonstrated that MARCKS and MARCKSL1 are
significantly upregulated in bladder cancer patients [61], and phorbol 12-myristate 13-acetate
(PMA)-induced hyperphosphorylation of MARCKS inhibits invasiveness in bladder cancer
cells by modulating the cytoskeletal structure [62].

Taken together, the majority of the evidence points to a promoting role of MARCKS
in cancer metastasis through multiple signaling pathways (Figure 2) in most solid tumors,
indicating MARCKS may serve as a potential therapeutic target to tackle metastatic disease.
Further studies are needed to define the role of MARCKS in cancer metastasis in cancers
where inconsistent results have been observed. Table 1 summaries the roles of MARCKS and
MARCKSL1 in different solid tumors.
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Table 1. The roles of MARCKS and MARCKSL1 in different solid cancers.

Cancer Type
[Reference] Role Models Proliferation

/Apoptosis
Migration
/Invasion

Tumor
Growth Metastasis Survival/Grade/Stage Treatment

Resistance Target

NSCLC [42] Pro cell line, xenograft, and TMA ↑ ↑ higher grade E-cad, pAKT, pPI3K, and Slug

NSCLC [41] Pro TMA ↑ higher stage

NSCLC [63] Pro cell line, xenograft, and TMA proliferation ↑
/apoptosis ↓ ↑ ↑ shorter survival erlotinib pAKT

NSCLC [45] Pro clinical trial BIO-11006 (MARCK inhibitor) plus carboplatin showed a less disease progression and a higher response rate compared to carboplatin alone.

LC [43] Pro cell line, TMA, and TCGA proliferation ↑
/apoptosis ↓ shorter survival radiation

LC [44] Pro cell line, xenograft, and TMA proliferation ↑ ↑ shorter survival NF-κB, EMT, and stemness

LSCC [40] Pro TMA shorter survival

BC [46] Pro cell line and TMA proliferation ↑ ↑ shorter survival tamoxifen

BC [47,48] Pro TMA shorter survival

BC [49] Pro cell line, xenograft, and TMA proliferation ↑
/apoptosis ↑ ↑ ↑ ↑ shorter survival paclitaxel angiogenic factors

BC [50] Pro cell lines proliferation ↑ ErbB2

RCC [52] Pro cell line, xenograft, and TMA proliferation ↑ ↑ ↑ higher grade regorafenib AKT, mTOR, VEGF, and MM9

CCA [53] Pro cell line, xenograft, and human tissue ↑ ↑ shorter survival

HCC [54] Pro cell line ↑

CC [55] Pro cell line and xenograft ↑ ↑ AURKB

CC [56] Sup cell line and TMA apoptosis ↑ longer survival TRAIL and AKT

GBM [58] Sup cell line, xenograft, clinical trial, and TCGA proliferation ↓ ↓ longer survival

PCa [6] Pro cell line and TMA ↑ more recurrence

PCa [59] Sup cell line ↓

BC, PCa [60] * Sup cell line and xenograft ↓ ↓ E-cad,
b-catenin, and APC

PCa [13] * Sup cell line ↓

BlaC [62] Sup cell line ↓

Abbreviations: NSCLC, non-small cell lung cancer; LSCC, lung squamous cell carcinoma; LC, lung cancer; BC, breast cancer; RCC, renal cell carcinoma; CCA, cholangiocarcinoma;
HCC, hepatocellular carcinoma; CC, colon cancer; GBM, glioblastoma multiforme; PCa, prostate cancer; BlaC, bladder cancer; Pro, promotion; Sup, suppression; * studies on MARCKSL1.
↑, increase; ↓, decrease.
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5. MARCKS in Cancer Stemness

MARCKS and MARCKL1 are both substrates of PKC [12], and PKC is an important
signalling pathway for stemness, self-renewal, and tumorigenesis [64,65]. For instance, in
lung tumor-initiating cells (TICs), protein kinase C iota (PKCiota) is required for oncogene-
induced tumor cell expansion and transformation [66], likely through phosphorylation
of the ELF3 transcription factor and induced expression of NOTCH3, resulting in cancer
stemness and promoting lung cancer development [67]. In breast cancer, protein kinase
C α (PKCα) activation leads to the formation of cancer stem cells from non-stem cells,
and a PKCα inhibitor depletes stem-like cells [68]. Tobacco smoke-induced phospho-
MARCKS upregulates the expression of pro-inflammatory cytokines, causes the epithelial-
to-mesenchymal transition and induces stem-like properties in smoke-related lung cancer,
which can be reversed by a MARCKS-inhibiting peptide [44]. Furthermore, MARCKS tran-
script levels are upregulated in chronic myelogenous leukemia quiescent stem/progenitor
cells [69], and secreted MARCKS protein has been identified in pancreatic cancer stem
cells [70]. Finally, increased levels of MARCKS and MARCKSL1 protein mediated by a
long noncoding RNA Zic family member 2 (lncZic2) and transcriptional factor BRG1 were
detected during hepatocellular carcinogenesis and hepatic TIC self-renewal [71]. This asso-
ciation suggests that the lncZic2–BRG1–MARCKS/MARCKSL1 signaling cascade might be
a potential pathway to target to eliminate hepatic TICs.

6. MARCKS in Cancer Therapeutic Resistance

The development of resistance to cancer therapies, including conventional chemothera-
peutic agents and radiation, is one of the main causes of cancer relapse leading to mortality [72].
Substantial evidence implicates cancer stem cells and acquisition of a cancer stem cell pheno-
type in driving therapy resistance [73–75]. Given the growing body of evidence demonstrating
that MARCKS plays an important role in cancer stemness, it is possible that MARCKS ex-
pression and phosphorylation play an important role in therapeutic resistance. Indeed,
several studies have demonstrated that MARCKS expression levels are correlated with
response to radiation and chemotherapy in multiple cancers. MARCKS is upregulated
in oxaliplatin-resistant pancreatic cancer cells and tamoxifen-resistant breast cancer cells
compared to cells sensitive to those therapies [46,76]. Moreover, treatment with a MARCKS-
inhibiting peptide suppresses lung cancer growth and metastasis in vivo and enhances
the sensitivity of erlotinib in lung cancer cells, particularly those tumors with sustained
activation of phosphoinositide 3-kinase/AKT signaling [63]. Finally, inhibition of MARCKS
phosphorylation sensitizes colon cancer cells to doxorubicin or 5-FU-based chemotherapy
by decreasing ATP-binding-cassette transporter family member ABCB1 internalization [77],
thereby reducing ABCB1 activity, a major cause of chemotherapy resistance in cancer [78,79].
These studies demonstrated the potential of targeting MARCKS signaling as a novel ther-
apeutic strategy to inhibit cancer stemness and overcome resistance to cancer therapies.
However, it is not clear that inhibition of MARCKS could circumvent therapeutic resistance
in all cancers. In glioblastoma multiforme (GBM) model systems, knockdown of MARCKS
is associated with increased resistance to radiation by increasing DNA repair in PTEN-null
GBM cells in vitro and orthotopic xenografts in vivo [58,80]. Additional studies will be
necessary to characterize the roles and mechanisms of MARCKS in therapeutic resistance
across cancer types.

7. Targeting MARCKS as a New Therapeutic Strategy

MARCKS function depends on its NMD and PSD or ED, which are required for its
membrane localization and phosphorylation; therefore, peptides targeting these domains
have been developed to inhibit its function in various cancers. MANS peptide that targets
NMD has been shown to reduce lung cancer metastasis while leaving tumor growth
unaffected in vivo [42]. In addition, treatment of breast cancer xenografts with MANS
peptide sensitizes cancer cells to paclitaxel and decreases angiogenesis/metastasis of cancer
cells by reducing phospho-MARCKS levels [49].
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Moreover, MANS peptide is able to suppress WNT5A-induced melanoma cell in-
vasion in vitro by inhibiting MARCKS phosphorylation without affecting MARCKS
expression [8]. BIO-11006, an analog of the MANS peptide containing the active site
of MANS (the first 10 amino acids), is superior to MANS as an anti-cancer agent
in that it is smaller in size and more soluble, while maintaining identical MARCKS-
inhibitory actions [81]. In a phase II clinical trial of late-stage non-small cell lung cancer,
BIO-11006 significantly increased the overall response rate of patients to standard-of-care
chemotherapy by decreasing MARCKS phosphorylation [45].

Interestingly, studies have shown that peptides targeting PSD are more efficacious
as anti-cancer therapeutics than peptides targeting the myristoylation domain. MPS
peptide, a 25-mer peptide targeting PSD, not only suppresses lung cancer metastasis,
but also inhibits tumor growth in vivo by decreasing levels of phospho-MARCKS, phos-
phatidylinositol (3,4,5)-triphosphate, and AKT activity [63]. In addition, MPS peptide
suppresses smoke-mediated NF-κB signalling activity, pro-inflammatory cytokine ex-
pression, aggressiveness and stemness of lung cancer cells in vitro [44]. In kidney cancer,
MPS peptide reduces cell proliferation, migration, and survival and sensitizes cells to
regorafenib treatment through inhibiting the AKT and mTOR pathways [52]. In multiple
myloma (MM), MPS peptide displays dose-dependent cytotoxicity toward bortezomib-
resistant MM cells as a single agent both in vitro and in a xenograft model of MM and
sensitizes these cells to bortezomib in combination therapy [82]. In GBM, MARCKS
ED peptide produces rapid cytotoxicity through a GBM-specific mechanism involv-
ing plasma membrane targeting and intracellular calcium accumulation [83]. Finally,
a highly basic 24-amino-acid peptide targeting MARCKSL1 ED was shown to inhibit
MARCKSL1 hydrolysis. When synthesized together with an N-terminal HIV-1 Tat trans-
duction domain (TD), MARCKSL1 ED peptide efficiently enters both macrophages and
parasites in a Tat TD-dependent manner, suggesting such a strategy may be useful in
enhancing cell permeability of MARCKS peptide inhibitors [84].

8. Conclusions

MARCKS, a major substrate of PKC, plays a critical role in cancer development
and progression and is strongly implicated in cancer metastasis, cancer stemness, and
therapeutic resistance (Figure 2). Phosphorylation of MARCKS by PKC leads to MARCKS
protein translocation from the plasma membrane to cytosol, where it functions to modulate
the cytoskeletal structure and promote cell migration, invasion, and metastasis in the
majority of solid tumors. Conflicting results in a few cancer types on the contribution of
MARCKS expression levels to metastasis, clinical outcomes, and therapeutic resistance are
likely explained by differences in MARCKS phosphorylation, which is primarily responsible
for MARCKS regulation and its cellular functions. MARCKS and MARCKS-like proteins
promote cancer stemness and resistance to cancer therapies, demonstrating the potential
for MARCKS-targeted therapy as a novel therapeutic strategy to inhibit cancer metastasis
and overcome resistance to cancer treatment.
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