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Abstract of the Dissertation 

 

 
Understanding species and community responses to past and future climate change 

 

by 

 

John Eric Williams 

 

Doctor of Philosophy, Environmental Systems 

University of California, Merced 2018 

Dr. Jessica L. Blois, Graduate Advisor 

Dr. Michael N. Dawson, Chair 

 

 Successful conservation depends on a solid understanding of how climate change 

and biological interactions regulate biodiversity across both space and time, so that the 

distribution of species, communities, and ecosystems can be accurately predicted in 

responses to future climate change. Because species tend to respond to environmental 

changes in an idiosyncratic manner, it is difficult to generalize and predict biodiversity 

patterns for the future. The main goal of this dissertation is to increase our understanding 

of the effects that climate change had on species and communities in the past so that we 

can use the observed and estimated responses (from models and empirical data) to better 

inform our predictions of how species and communities may respond to climate change 

in the future. To complete this goal, I first examined the patterns of mammalian range 

shifts during the late Quaternary and estimated how the velocity of climate change and 

the dispersal ability of a species affects the magnitude of species range shifts in response 

to climate change. Findings from this research show that the broad pattern of species 

range shifts are poleward, but overall, species respond to climate change with a 

multidirectional response. Species are also projected to shift their ranges at a much faster 

rate in the future when compared to estimated past range shifts. The factors estimated to 

increase past rates of range shift are the velocity of temperature and precipitation change, 

while species traits appear to determine shift rates in the future. I next examined the 

factors associated with the assembly of small mammal communities since the Last 

Glacial Maximum and determined if those factors changed over time in relation to 

climate change. Using species distribution models and the fossil record, I determined if 

small mammal communities preserved in a fossil deposit in northern California at various 

time periods in the past assembled as a function of environmental filtering or 

competition. Results suggest that climate (environmental filtering) plays a large role in 

determining the species composition of a community in any given time period, but under 

certain scenarios competition could be an additional determinant for the integration of 

single species into the community. Lastly, I examined how mammalian communities in 

North America are expected to change in the future as a response to anthropogenic 

climate change. I examined this question using stacked species distribution models and 



 
 

xiv 
 

projected these models into two future time periods and under two different 

representative concentration pathways. Results from this study suggests that large areas 

of the southeastern US and the deserts of the southwest will lose species, on average, 

while the Rocky Mountains and the interior portion of Canada will gain species. I also 

determined that large areas of Canada are expected to harbor novel mammalian 

communities as species respond individualistically to climate change. Overall, by 

examining the factors that drive specie range shifts, examining processes important to 

community assembly patterns, and estimating species responses to future climate change, 

I have generated findings that are valuable for efforts to develop conservation strategies 

around the globe. Research from this dissertation is also one of first examinations of the 

development of novel mammalian communities in North America as a response to future 

climate change over a large spatial scale, and the results from this study will be important 

in providing conservation managers with areas of potential diversity loss and change in 

the coming future. 
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1 Introduction 

 
1.1 Background 
 

Climate patterns across the globe have fluctuated throughout Earth’s history ranging from 

periods of extreme cold, which contained large ice sheets, to extreme warm periods 

where ice-caps were not present even at the poles (Zachos et al. 2001). Currently, we are 

faced with an anthropogenic warming event that is predicted to warm the globe at rates 

equal to or faster than those observed over the last millennia (Allen et al. 2000; IPCC 

2014). Determining how species, both flora and fauna, are going to respond to the 

increased rates of climate change is a key concern as scientists and managers attempt to 

conserve and mitigate species, ecological and functional diversity, and ecosystem loss 

due to anthropogenic climate change. Unfortunately, our understanding of potential 

species responses to future climate change is limited, making it difficult to develop 

efficient conservation management strategies.   

 

Overall, species exhibit multiple responses to environmental change (Blois and Hadly 

2009). A species can undergo changes in its local population abundances due to climate 

change (Andrewartha and Birch 1954), which can then lead to other changes at the 

population and genetic levels of the species. Changes in populations can lead to 

extirpation of individuals in one portion of a species’ range and/or lead to the 

establishment of individuals in a previously unoccupied portion of their range, resulting 

in a shift of the species’ range (Blois and Hadly 2009; Hewitt 2000; Lundberg et al. 

2000). Species can also alter their phenology in response to climate change, leading to 

loss or establishment of new species interactions due to changes in daily or seasonal 

activity times (Parmesan and Yohe 2003; Root et al. 2003; Walther et al. 2002; Winder 

and Schindler 2004). The aggregate effect of individual species responses to climate 

change can and will lead to changes in the overall community structure, diversity, and 

ecosystem function of an area (Blois et al. 2010; Grayson 2006; Lyman 2014). The 

aggregate of individual species changes can also lead to the development of ‘no-analog’ 

assemblages, which are assemblages that are compositionally different from any 

observed today (Graham et al. 1996; Williams and Jackson 2007). These no-analog 

communities have been observed to occur during periods of significant climate 

transitions (Shuman et al. 2009; Williams and Jackson 2007). While we know and 

understand how species have responded to climate change overall, the detailed 

understanding needed to effectively predict species responses and generate effective 

conservation strategies for species regarding their responses future climate change is still 

lacking.        

 
By understanding and quantifying the patterns of species response to past episodes of 

climate warming and cooling, we can transfer the gained knowledge and use it to more 

accurately predict how species and communities will respond during similar future 

climate change. The late Quaternary serves as a unique time period to examine the 

responses of species and communities to climate and other kinds of environmental 
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changes. Since the Last Glacial Maximum (LGM) 21-18,000 years ago, the earth has 

experienced several abrupt and significant climate change events such as the Bølling-

Allerød warming episode and the rapid cooling that occurred during the Younger Dryas 

(Liu et al. 2009). The late Quaternary also experienced periods of relative climatic 

stability (Dansgaard et al. 1993). Beause all of the extant species experienced the climatic 

episodes of the late Quaternary, we can examine their responses to those climate change 

events to gain insight on how they may respond to future climate change.  

 

1.2 Purpose of Dissertation 

 
With access to climate and species data that span from the LGM to the present day, the 

purpose of this dissertation is to examine, analyze, and interpret extant species and 

community responses to past climate change and predict their responses to future climate. 

Data obtained from this dissertation will increase our insight and expectations for how 

species and communities will respond to future climate change. I approached this 

question from several angles: I examined local to regional to continental scales, I 

examined responses seen in the past and anticipated for the future, and I focused on a 

variety of responses (range shifts, community assembly, and macroecological attributes 

such as richness and dissimilarity).  

 

First, in order to understand how species will respond to future climate change, I 

estimated how they responded to past and future climate change events, focusing on 

range shifts across western North America. I did this by estimating species range shifts 

for 122 North American mammal species throughout five time periods during the late 

Quaternary and two time periods in the future. This allowed me to estimate the overall 

patterns (direction and rate) of species range shifts. I then determined if dispersal 

distance, body size, and climate velocities explained the estimated variation in species 

range shifts using generalized additive models.  

 

After determining the patterns of species range shifts, I then examined the mechanisms 

that drive community assembly patterns of small mammals at the local scale. I did this by 

predicting the species that would be present at one site in northern California, Samwell 

Cave, throughout the late Quaternary using species distribution models, which served as a 

climate-based community hypothesis. I then compared the climate-based hypotheses and 

a stochastic community hypothesis against empirical data for the site to determine which 

assembly mechanism more accurately predicted the community comoposition of Samwell 

Cave over the previous 18,000 years. Determining that neither climate nor stochastic 

mechanisms perfectly predict community composition, I then performed a community 

trait analysis to estimate the potential importance of competition in structuring the 

Samwell Cave communities since the LGM.  

 

After examining single species responses to climate change and estimating the 

importance of climate in structuring local communities, I then estimated the effect that 

future climate change may have on North American mammalian communities. I did this 

by generating stacked species distribution models for 390 mammalian species in the 
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contemporary time period and forecasting those models to two different representative 

concentration pathways (rcp 4.5 and 8.5) for AD 2050 and AD 2070. This allowed me to 

determine how species richness, community composition, and community dissimilarity 

may change across North America in response to future climate change. The aggregated 

results of my dissertation provide an overview of expectations, responses, and 

mechanisms that drive mammalian species and community response to climate change.  
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2  Range shifts in response to past and future climate change: 

 can climate velocities and species’ dispersal capabilities 

 explain variation in mammalian range shifts? 

 

 
2.1 Abstract 

 
Range shift is a relatively well-understood response to climate change, but our ability to 

predict shifts is limited. Two factors that may cause variation in range shifts across 

species are dispersal ability and varying rates of climate change through time and across 

space. Here, we assess patterns of range shifts during the late Quaternary and estimate 

how the velocity of climate change and the dispersal ability of a species affect the 

magnitude of species range shifts in response to climate change. We hindcast species 

distribution models for 122 North American mammals to five times over the past 17,000 

years and forecast them to two future times given two emissions scenarios. Generalized 

additive models were constructed to quantify the importance of dispersal ability and the 

velocity of temperature and precipitation in determining the magnitude of range shift 

expected for individual species. Hindcasted and forecasted ranges demonstrate the variety 

of responses to climate change. In general, species shifted their ranges in a northerly 

direction (NW, N, NE) regardless of the type of climate change (i.e., warming vs. 

cooling). The highest rates of range shifts during the past occurred during periods of 

relatively rapid climate change (Last Glacial Maximum/Bølling-Allerød and Bølling-

Allerød /Younger Dryas transitions). Rates of range shifts for the future are projected to 

be significantly higher than any of the past intervals. The velocity of climate change is 

significantly associated with the magnitude of range shifts during climate transitions that 

occur over longer time scales, while maximum dispersal distance is important during 

periods of rapid climate change. Our results suggest that both the dispersal ability and the 

velocity of climate change are significantly associated with species’ range shifts. 

However, the importance of these two factors is context dependent and depends on the 

interaction of the rate of climate change and the length of time over which the change 

occurs. 

 

2.2 Introduction 
 

Future rates of climate change are projected to be as fast as or faster than those observed 

in the late Quaternary (IPCC, 2014). Species have shown a variety of responses to past 

and contemporary climate change, such as changes in behavior, phenology, and 

abundance (Blois & Hadly, 2009; Parmesan et al., 1999; Parmesan & Yohe, 2003). These 

local ecological responses integrate to biogeographic (geographic distribution shifts as 

species track their preferred habitats and climatic niches) or evolutionary (in situ 

adaptation to new climate regimes) responses. If rates of range shift or in situ adaptation 
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are insufficient to track rates of climate change, then species risk local extirpation or 

extinction (Moritz & Agudo, 2013). Given the high estimated rates of future climate 

change, both range shifts and local adaptation could be difficult for most species, leading 

to increased extinction rates in the future (Thomas et al., 2004). Thus, understanding how 

species respond to changes in climate—both natural and anthropogenic—and accurately 

predicting those responses is essential if we are to develop effective conservation 

strategies for species. 

 

Of the possible responses species could have to climate change, range shifts have been 

examined extensively in both fossil and contemporary systems (Lyons, 2003; Ordonez & 

Williams, 2013; Sexton et al., 2009; Walther et al., 2002). Ranges have shifted in all 

directions and at varying rates and magnitudes across species (Lyons, 2003; Schloss et 

al., 2012). While the general cause of such individualistic range shifts is thought to be the 

unique environmental niches of each species, which results in each species tracking 

different aspects of their environmental niche across space (Lyons, 2003; Jackson & 

Overpeck, 2000), environmental niches alone cannot fully predict range shifts (Rubidge 

et al. 2011, Santos et al. 2015). Further, due to overlap in the niche requirements of co-

occurring species, there are some similarities in how ranges shift in response to climate 

change (Lyons, 2003). This suggests that the nature of climate change or aspects of 

species biology may improve predictions of range shifts.   

 

A species geographic distribution is broadly based on its physiological tolerance to 

environmental factors (i.e., temperature, precipitation), such that species are found where 

the local environmental conditions are within their physiological limits (Brown et al., 

1996). As Earth’s climate changes, the geographic distributions of species will 

correspondingly change. In the absence of adaptation, if a species were to perfectly track 

climate change, the rate of range shift should equal the velocity of climate (i.e., the rate of 

isotherm movement across the landscape; Loarie et al., 2009). Thus, the direction and 

rate at which a species shifts its range should correlate with the overall velocity of 

climate. Biologically, tracking changes in climate niches across the landscape will be 

facilitated by dispersal (Schloss et al., 2012; Tingley et al., 2009), so dispersal distance 

should also be correlated with the magnitude of range shift. However, some populations 

may respond to climate change through in situ mechanisms such as phenotypic or 

behavioral plasticity or adaptation (Reale et al. 2003), which, together with the influence 

of local species interactions, may influence the overall correlation between climate and 

range shifts (e.g., Valladares et al. 2014 Wisz et al. 2013). Overall, the influence of 

climate velocity and dispersal capability on variation in range shifts is unknown.  

Here, we investigate projected past range shifts for western North American mammals to 

interpret the nature and drivers of future projected range shifts. First, we focus on 

estimating and understanding the pattern of projected shifts (i.e., direction, rate, and 

magnitude of range shift) since the Last Glacial Maximum (LGM). We then examine the 

correlates of projected range shifts to determine if climate velocity or species traits—

specifically traits related to dispersal ability—explain the estimated variation of past 

range shifts. Finally, we extend these analyses to the future by predicting range shifts in 
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response to two scenarios of future climate change and determining whether those shifts 

will also be associated with climate velocity and dispersal ability (Fig. 2.1). 

 

2.3 Methods 
 

2.3.1 Estimating species distributions 

 

Occurrence data: Contemporary occurrence data for 242 mammals were 

downloaded from the Global Biodiversity Information Facility (GBIF; www.GBIF.org). 

Species were included in this study if any part of their geographic distribution overlapped 

the western United States, west of the Rocky Mountains. Due to data quality issues and 

the potential for spatial bias in GBIF data (Beck et al., 2014), all occurrences were 

inspected to validate their spatial accuracy. Occurrences were removed if they occurred 

substantially outside of the known modern range of the species, based on the NatureServe 

distributions (Patterson et al., 2007) or if their basis of record was labeled as either 

“unknown” or “fossil specimen”.  Occurrences were spatially thinned to match the 

resolution of the climate rasters by determining which grid cells contained at least one 

occurrence for a given species. This prevented pseudoreplication during the modeling 

process (Guisan & Zimmermann, 2000). Only species with > 20 occurrences after spatial 

thinning (189 species) were included in the dataset due to issues with modelling species 

with small sample sizes (Wisz et al., 2008). Sixty-seven additional species were excluded 

because they did not have sufficient trait data for this study. The final dataset contained 

occurrences for 122 species (see Appendix Table 2.10.1), ranging from 34 – 2890 

spatially thinned observations for each species. These occurrences served as presence-

only data and were used to construct species distribution models for the contemporary 

time period. 

 

Climate simulations: Climate simulations are from the Community Climate 

System Model version 3 (CCSM3) transient simulation (Liu et al., 2009; Liu et al., 2012). 

The climate variables in this simulation were debiased and downscaled to a 0.5° x 0.5° 

resolution grid (~50 x 50 km) based on contemporary (1901-2011) Climate Research 

Unit time-series (CRU TS3.20) data (Lorenz et al., 2016). The downscaled simulations 

represent the average North American climate at every 500 years from 21,000 years ago 

to present (i.e., the variables are 200-year averages centered on the 500-year time slices 

for most times, though the contemporary simulations represent the average climate from 

1850 to 1990 CE). At the same grid resolution, future climate simulations based on 12 

Earth system models from CMIP5 (Taylor et al., 2012) were available every 10 years 

from the present to 2090 CE for two Representative Concentration Pathways (RCPs; RCP 

4.5 and RCP 8.5) of greenhouse gas concentrations; in this case, the variables are 20-year 

averages centered on the 10-year time slices (Lorenz et al., 2016). Out of a possible 54 

climate variables, we relied on the same six variables as Maguire et al. (2016) (maximum 

precipitation of the wettest quarter, mean yearly potential evapotranspiration, maximum 

temperature of the warmest quarter, mean yearly water deficit index, mean yearly actual 

evapotranspiration, and minimum precipitation of the driest quarter) because these 

variables were minimally correlated across space and time for the late Quaternary and 



8 
 

 
 

represent a range of biologically important measures of temperature and precipitation. All 

climate layers contained paleoshorelines and estimated species distributions were clipped 

to represent the presence or absence of ice sheets during each time period. We note that 

our analyses are based on one climate simulation only, and that all climate simulations 

have associated uncertainty and biases (Harrison et al. 2014), which reinforces that we 

are exploring potential rather than actual range shifts and their correlates. CCSM3, 

however, has been shown to capture the broad-scale features of spatiotemporal climate 

change across the late Quaternary (Liu et al., 2009; Liu et al., 2012) and model-data 

comparisons that include CCSM3 have shown substantial consistency among different 

climate models (Harrison et al. 2014).  
 

Our approach of modeling species ranges with only climatic variables implicitly 

assumes that there is only a direct influence of climate on mammal distributions. Climate 

could also act indirectly on mammal distributions by modifying the composition and/or 

structure of the habitat supporting mammal populations. Indirect effects could be 

particularly strong for precipitation, which may strongly influence vegetation 

composition and structure (Haxeltine et al., 1996). However, Ordonez and Williams 

(2013) found that biotic velocities in fossil pollen assemblages closely (but not perfectly) 

matched climate velocities at both northern and southern pollen distribution boundaries 

over the late Quaternary, suggesting that discrepancies between the direct and indirect 

influences of climate on mammal distributions should be minimal, especially at the 

timescales utilized in this study. 

 

Species distribution models (SDMs): The contemporary distributions of all 122 

mammals were generated using the R package ‘BIOMOD2’ (v. 3.3-7; Thuiller et al., 

2009). Because the occurrence data were presence only and studies have shown that a k-

fold random cross-validation analysis can lead to inflated performance estimates of 

SDMs (Bahn and McGill, 2012) we evaluated our SDMs using a geographically 

structured k-fold cross-validation approach (Radosavljevic and Anderson, 2013). This 

approach spatially partitions the occurrences into four quadrants of equal size. We then 

constructed the models for each species using an iterative process, where each model is 

generated using occurrences from three quadrants and the model is then evaluated in the 

fourth quadrant. This procedure is repeated for all possible iterations, resulting in four 

models. Area under the receiver operating characteristic curve (AUC) values were 

generated for each of the four models and then averaged together across all iterations to 

generate an average AUC value for the species. Random pseudoabsence points were 

generated for each quadrant equaling up to half of the grid cells not occupied by the focal 

species. Five models were constructed for each species using different model algorithms 

(maxent, artificial neural networks, generalized linear models, multiple adaptive 

regression splines, and boosted regression trees) and each algorithm underwent the 

geographically structured k-fold evaluation process. The chosen algorithms were among 

the best performing algorithms from an analysis by Elith et al. (2009) and represent a 

range of approaches for modeling distributions.  
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An ensemble distribution model was generated for each species using predictions 

from each of the five algorithms and their associated averaged AUC values from the 

evaluation process (Araújo & New, 2007), providing a probability distribution that is a 

function of the five underlying statistical models. By generating the SDMs through the 

ensemble process, the process is not relying on a single algorithm for its predictions and 

more robust predictions can be made for each species by weighting the useful 

information from each individual forecast into a single consensus model (Araújo & New, 

2007). Ensemble predictions for the contemporary distributions were evaluated using the 

Boyce index. The Boyce index ranges from -1 to 1, where values of zero indicate that a 

model is similar to a random distribution, positive values represent predicted presences 

that are consistent with the evaluation dataset, and negative values indicate a poor 

performing model (Hirzel et al., 2006). We calculated the Boyce index using the R 

package ‘ecospat’ (v. 2.2.0; Broennimann et al., 2016) with a moving window of 0.1 of 

the habitat suitability range to determine the habitat suitability bins. This alleviates the 

sensitivity of this index to low numbers of suitability classes and provides a method of 

model evaluation that is similar to AUC, but is more appropriate for presence-only data 

(Hirzel et al., 2006).   

 

Projecting SDMs: Ensemble models were both hindcasted and forecasted to 

generate predicted distributions for all species at eight time periods representing 

climatically unique periods during the late Quaternary and the future: 17 thousand years 

before present (ka BP) (representative of early deglaciation), 14.5 ka BP (Bølling-

Allerød), 12 ka BP (Younger Dryas), 10.5 ka BP (Pleistocene-Holocene transition), 6 ka 

BP (mid-Holocene), 0 ka BP (contemporary period, 1950 CE), 2050 CE (for both RCP 

4.5 and RCP 8.5), and 2090 CE (for both RCP 4.5 and RCP 8.5) (Fig. 2.2). All hindcasts 

from the past time periods were clipped using the location of ice sheets during the time 

period to account for unhospitable habitats. For the future time slices, the ensemble 

model for each species was projected for each of the 12 different Earth System Models; 

the resulting 12 ensemble models were then averaged together to generate a single 

ensemble prediction of the species distribution given the time period and greenhouse gas 

concentration scenario. These time periods provide a mechanism for testing if the 

dominant influences on range shifts vary during different climatic scenarios.  

 

Validating hindcasted SDMs with fossil data: We validated the hindcasted SDMs 

with independent fossil occurrences from all of the past time periods (17, 14.5, 12, 10.5, 

and 6 ka BP), adding a buffer of +/- 1000 years to increase available sample sizes but 

remain in a climatically similar time. All available occurrences were downloaded from 

the Neotoma Paleoecology Database (Williams et al. 2018) using the R package 

‘neotoma’ (v. 1.7.0; Goring et al., 2015). For each of the time periods, the occurrences 

were overlaid onto the hindcasted distribution maps and the predicted probability of 

presence for each species occurrence record was extracted and averaged to provide a 

general indication of model performance for that time. We also validated hindcasted 

models for each time period by calculating the AUC of each hindcasted model (Appendix 

Fig. 2.10.2). For these calculations, we used fossil assemblages (i.e., sites with >5 taxa 

found) at which the species being modeled was not found to serve as absence points. 
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Given the very limited sample sizes for the presence points, however, which appeared to 

overestimate model performance and resulted in inflated AUC values (Appendix Fig. 

2.10.2), we present results from the first approach only in the main paper.     

 

2.3.2 Calculating range shifts 

 

To determine the magnitude of range shift that occurred for each species between 

adjacent time periods, we focused on shifts in the core projected distribution, i.e., those 

locations where the estimated probability of presence was 0.7 or higher. We conducted a 

sensitivity analysis to determine the effects of varying suitability thresholds on our 

predicted range shift results using two other probability thresholds (0.6, 0.8; Appendix 

Fig. 2.10.3). No significant difference in observed range shifts between these three 

probability thresholds were found. We then determined the unweighted centroid of the 

core distributional area using the ‘gCentroid’ function in the R package ‘rgeos’ (v. 0.3-

26; Bivand et al., 2014) for each species at each time. We calculated range shift in two 

ways, standardizing for area and for time separately. First, the magnitude of range shift 

was calculated as the linear distance and direction between the centroids in each adjacent 

time period (17 – 14.5 ka BP, 14.5 – 12 ka BP, 12 – 10.5 ka BP, 10.5 – 6 ka BP, 6 – 0 ka 

BP/1950 CE, 1950 –2050 CE, 2050 – 2090 CE). Because the magnitude of range 

centroid shift may be constrained by the overall range size and available area, we 

standardized the range shift estimates by dividing the linear shift distance by the area 

(km2) of the estimated core species distribution from the older time period. The 

standardized linear shift distance (SLSD) served as our metric to describe the magnitude 

of range shift for a species between two time periods. For each time period we 

determined the estimated rate of range shift for a species by dividing the unstandardized 

linear shift distance by the elapsed time between adjacent time periods.  

 

To determine if species shifted their ranges in conjunction with the direction of 

climate velocity, we extracted the velocity of temperature and precipitation from the 

range centroids of the older time period. We then calculated the difference in bearing 

between the direction of estimated species range shift and the direction of each of the 

climate velocities. We determined whether the bearing difference was significantly 

different from zero using a one-sided t-test.  Finally, to determine whether species 

exhibited consistent rates of range shift through time relative to one another, we rank 

ordered the species based on their range shift, then correlated species ranks between 

adjacent time comparisons.  

  

2.3.3 Testing correlates of range shifts 

 
Once we determined the magnitude and direction of range shifts, we tested 

whether several factors were associated with variation in range shift and determined if 

their relative importance changed through time. We considered four variables, all of 

which should be significantly correlated with range shifts: two that characterize climate 

velocity and two that characterize dispersal ability. 
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Climate velocity: Climate velocity can serve as a surrogate measure for how fast a 

species must be able to disperse and shift its distribution to track its preferred climatic 

niche (Serra-Diaz et al., 2014). We calculated the climate velocity associated with each 

species distribution shift across all time periods using methods similar to Loarie et al. 

(2009), separately for two variables representing average climate change: maximum 

yearly average temperature and yearly average precipitation. Neither of these variables 

was used to generate the SDMs. Briefly, we divided the temporal gradient of change at a 

focal grid cell for each time comparison (e.g., °C/year for temperature) by the local 

spatial gradient of change at the older time period based on the 3x3 matrix of grid cells 

centered on the focal cell (e.g.,, °C/km for temperature). The velocities of temperature 

and precipitation associated with each species range shift were then determined by 

extracting the velocity values at the range centroid during the older time period.   

 

Dispersal ability: Direct estimates of the dispersal ability of mammals are lacking 

for most species. However, a species ability to disperse is positively correlated with both 

body size and home range area (Whitmee & Orme, 2013). For body size, larger species 

tend to disperse greater distances than smaller species (Whitmee & Orme, 2013). 

Bowman et al. (2002) and Whitmee & Orme (2013) determined that the home range area 

of a species is directly related to its maximum dispersal distance. We obtained home 

range area and body size for all 122 species from the PanTHERIA database (Jones et al., 

2009), then transformed the estimates of home range area into direct estimates of 

maximum dispersal distance for each species (Bowman et al., 2002). Thus, one variable 

(maximum dispersal distance) is a direct estimate of dispersal ability, and an additional 

variable (body size) serves as a surrogate for dispersal ability and other life history 

attributes. 

 

Predicting dispersal limitation: The amount of time to complete a range shift 

varies between the different focal times, and species with different generation times could 

have higher or lower potential to complete the range shift given the elapsed time. 

Therefore, we determined the potential for individual species to be limited by dispersal 

ability. We use the age at first birth served as a surrogate measure for the generation time 

of a species, relying on data in PanTHERIA (Jones et al. 2009). The maximum dispersal 

distance (originally in units of km/generation) was standardized across species based on 

their generation times to km/yr. The standardized maximum dispersal distance was then 

compared to the estimated shift rate (km/yr) for a species in a given time period. If the 

estimated shift rate was larger than maximum dispersal distance, then the species was 

predicted to be dispersal limited for that time period.    

 

GAMs: To test which factors are associated with the magnitude of range shift and 

whether the importance of those factors varied through time, we constructed generalized 

additive models (GAMs). Generalized additive modelling does not rely on linear 

relationships or normally-distributed data and provides a model that is easily interpretable 

with flexible predictor and smoothing functions (Hastie & Tibshirani, 1986). The GAMs 

included the following variables as predictors: maximum dispersal distance (MD, km), 
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body size (BS, g), velocity of temperature (temp velocity, km/yr), and velocity of 

precipitation (prcp velocity, km/yr) (equation 2.1): 

 

SLSD = log(BS) + log(MD) + temp velocity + prcp velocity   Eq. (2.1) 

 

Models were constructed using the gam function from the R package ‘mgcv’ (v. 1.8-23; 

Wood, 2011), after log-transforming body size and maximum dispersal distance to 

normalize the data. All models were generated using a gamma family distribution with a 

log link function and a cubic regression smoothing function was applied to each variable.  

 

For each time comparison, GAMs were generated for all 16 possible 

combinations of predictor variables. The best model for the time comparison was 

determined based on the model with the lowest Akaike Information Criterion (AIC) 

score. If any models were within two AIC units of the model with the lowest AIC score, 

then in most cases the model with the highest deviance explained out of those models 

was chosen as the best model. However, when the top-ranked model based on AIC was 

the full model (a model containing all four predictor variables) but there were other 

models within two AIC units, the simplest model was chosen as ‘best’ as long as the 

deviance explained was similar to that of the full model (Arnold, 2010; Burnham & 

Anderson, 2001). To further confirm that our final models were the best models for the 

data, Akaike weights were determined for each model in all time periods. Akaike weights 

describe the probability that a model is the best model given the data, and are dependent 

upon the data and the models generated a priori (see Burnham & Anderson, 2001). In all 

cases, our final model was the best model given the data.     

 

All analyses were completed in R (v. 3.4.3; R Development Core Team, 2017). 

 

2.4 Results 
 

2.4.1 Species distribution models and range shifts 

 

Contemporary distributions: The Boyce index indicates that all SDMs were 

reconstructed within an acceptable level of accuracy, though accuracy of the SDMs 

varied across species. The mean Boyce index was 0.954 (± 0.04; see Appendix Table 

2.10.1), ranging from 0.733 for the Mazama pocket gopher (Thomomys mazama) to 0.998 

for American Red Squirrel (Tamiascurus hudsonicus) and the American deer mouse 

(Peromyscus maniculatus).    

 

Hindcasted distributions: Between 38 (17 ka BP) and 154 (12 ka BP) fossil 

occurrences were downloaded for the 17, 14.5, 12, 10.5 and 6 ka BP time periods, 

ranging from 1 – 10 occurrences per species per time period. Thus, even with a +/- 1000 

year buffer, few occurrences were found for most species since many mammal fossil 

assemblages are imprecisely dated and/or time-averaged (e.g., some localities were 

reconstructed as ‘Glacial’, which ranged from 20,500 – 9,500 years ago). Average 

predicted probability of presence for fossil occurrences was 74.995.28% (s.d. = 22.38) 
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during the mid-Holocene (6 ka BP), 69.58% (s.d. = 25.04) at the Pleistocene-Holocene 

transition (10.5 ka BP), 61.91% (s.d. = 26.39) during the Younger Dryas (12.5 ka BP), 

50.94% (s.d. = 33.32) during the Bølling-Allerød (14.5 ka BP), and 44.38% (s.d. = 32.50) 

during early deglaciation (17 ka BP; Fig. 2.3), indicating hindcasted distributions for 

some times should be interpreted with caution.       

 

Rate and magnitude of range shifts: Based on the hindcasted and forecasted 

SDMs and subsequent range shift calculations, species are projected to have shifted their 

ranges in all directions and at varying rates across the previous 17,000 years and as we 

move into the future (Figs. 2.4 & 2.5; Table 2.1; Table 2.2). Across each time 

comparison, on average 71% of all species shifted their ranges in a northward direction 

(i.e.,, NW, N, or NE) regardless of the nature of climate change during that time (Table 

2.1, Fig. 2.3). The largest percentage of species shifted their ranges northward (95%) 

during the warming transition from the LGM into the Bølling-Allerød (17 – 14.5 ka BP in 

our hindcasted comparison). The second largest pulse of northward range shifts occurred 

during the Pleistocene/Holocene warming transition from 12 – 10.5 ka BP (79.3%) and 

between 1950 – 2050 RCP 8.5 (80.2%) in our comparison (Table 2.1, Fig. 2.4). Very few 

species are estimated to have shifted their ranges in a southward direction (i.e., SW, S, or 

SE) across any past time period: the percentage of species that potentially shifted 

southward ranged from 0.8% (17 – 14.5 ka BP) to 22.8% (6 ka BP – 1950 CE). Lastly, 

comparisons between the direction of species range shifts and the direction of change in 

climate isotherms suggests that estimated species shifts are significantly different from 

the direction that temperature (t = -15.7; df = 987; p = 0) and precipitation (t = -5.62; df = 

952; p = 0) isotherms are predicted to have shifted (Fig. 2.6).  

 

The predicted distributions of species shifted at a much slower rate (0.05 km/yr 

and 0.01 km/yr; Table 2.2) during the Holocene (10.5 – 6 ka BP and 6 – 0 ka BP time 

periods, respectively) when climates were relatively stable, than in the late Pleistocene 

(0.20 km/yr from 17 to 14.5 ka BP, 0.19 km/yr from 14.5 to 12 ka BP, and 0.17 km/yr 

from 12 to 10.5 ka BP), when rates of climate change were much higher (Fig. 2.2; Table 

2.2). No species are predicted to be dispersal limited in the past based on the elapsed time 

between range projections and their maximum dispersal distances (Table2.2) 

 

Rates of projected range shifts for the future are expected to be significantly 

higher than any of the rates from the late Quaternary, regardless of time period or 

greenhouse gas concentration scenario (Table 2.2). The future scenarios are also the only 

scenarios where species are predicted to be dispersal limited (between 19 – 32% of 

examined species; Table 2.2). Species are predicted to shift their ranges at an average rate 

of 2.89 km/yr between 1950 – 2050 CE and 3.25 km/yr between 2050 – 2090 CE under 

the RCP 4.5 scenario. Under the RCP 8.5 scenario, species are predicted to shift their 

ranges at a slightly higher average rate of 3.35 km/yr between 1950 – 2050 CE and a 

substantially higher rate of 7.86 km/yr from 2050 – 2090 CE.  

 

Species overall had a weak, but significant correlation in their range shift ranks 

between adjacent time periods, suggesting that species were consistent in the distance 
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that they shifted their distributions between time periods (Appendix Fig. 2.10.4). One 

species was estimated to have the largest range shift in four of the nine examined time 

periods. The Arctic shrew (Sorex arcticus) had the largest predicted shift for the time 

periods 17 – 14.5 ka BP (1.53 km/yr), 14.5 – 12 ka BP (1.70 km/yr), 12 – 10.5 ka BP 

(0.74 km/yr) and 1950 – 2050 CE for RCP 8.5 (37.2 km/yr). Other species that had large 

estimated shifts in the other examined time periods were the brown bear (Ursus arctos; 

10.5 – 6 ka BP; 0.51 km/yr), the wolverine (Gulo gulo; 6 ka BP – 1950 CE; 0.08 km/yr); 

the gray wolf (Canis lupus, 1950 – 2050 CE for RCP 4.5; 11.03 km/yr), the Canada lynx 

(Lynx canadensis, 1950 – 2050 CE for RCP 8.5; 14.97 km/yr), and the San Joaquin 

pocket mouse (Perognathus inornatus, 2050 – 2090 CE for RCP 4.5; 20.68 km/yr).     

  

2.4.2 Generalized additive models 

 

 Even though the predicted distributions were based solely on climate variables, 

climate velocity only partially explained differences in the magnitude of range shifts 

across species.  Final GAMs (see Appendix Table 2.10.5 for list of models) for each time 

comparison in the past explained at most 42% of the model deviance (17 – 14.5 ka BP) 

and as little as 25.3% (14.5 – 12 ka BP; Table 2.3). Models explaining variation in future 

range shifts fared similarly, ranging from 22.5% to 45.5% explained deviance depending 

on time period and RCP (Table 2.3). Akaike model weights for the top models also 

varied substantially, ranging from 0.15 to 0.81 depending on time comparison. For all 

time comparisons, at least one of the climate velocity variables was present in the top 

model. The one exception was the 1950 – 2050 CE, RCP 4.5 time period (Table 2.3), 

when neither of the climate velocity variables was included in the top model. However, 

only the velocity of precipitation change was significantly correlated with the estimated 

range shift of species, during three out of nine time periods. Either the body size of a 

species or its maximum dispersal distance were also included in the top models 

explaining SLSD patterns for past time comparisons. Body mass was significantly 

correlated with SLSD during the transition from the Bølling-Allerød into the Younger 

Dryas, 14.5 – 12 ka BP, and MDD was significant during the transition from the LGM 

into the Bølling-Allerød, 17 – 14.5 ka BP (Table 2.3). For the future, body mass was 

important in all of the future climate scenarios and MDD was important only in 2050 – 

2090 CE for both RCPs (Table 2.3).  

 

2.5 Discussion 
 

2.5.1 Geographic patterns of species range shifts   

 

Many species respond to climate change in the form of poleward (north or south) 

and elevational (upward or downward in elevation) range shifts (Chen et al., 2011; Davis 

& Shaw, 2001; Parmesan & Yohe, 2003; La Sorte & Thompson, 2007), reflecting the 

influence of temperature on species distributions (Parmesan & Yohe, 2003). Not all 

species are strongly limited by temperature (VanDerWal et al., 2012), however, and a 

more refined expectation is that the direction of a range shift will depend upon how 

climate changes relative to the climatic constraints on the species range; distribution 



15 
 

 
 

shifts are the result of species tracking the movement of their preferred climatic 

variable(s), such as temperature, precipitation, and/or some other climatic (or correlated 

habitat) variable important to the species survival (Tingley et al., 2009; Walther et al., 

2002). Indeed, species responses to past changing climates and habitats were 

individualistic (e.g.,, Jackson & Overpeck, 2000; Ordonez & Williams, 2013), and 

species are shifting their distributions in all directions in response to recent climate 

change (Pinsky et al., 2012; VanDerWal et al., 2012).   

 

North American mammals have also responded to climate change in an 

individualistic manner over the late Quaternary (Graham et al., 1996; Lyons, 2003). 

Previous studies have focused on broad-scale responses due to the nature of the time-

averaged fossil record, detecting changes in species ranges from the Glacial (20,500 – 

9,500 years ago) to the Holocene period (10,500 years ago to present) from fossils, for 

example (Graham et al., 1996; Lyons, 2003). The broad temporal windows across which 

a species range is being inferred in these previous studies could mask finer temporal 

dynamics in ranges associated with deglaciation, as climate did not change smoothly 

from a glacial to an interglacial state. For example, the Glacial time period examined in 

Lyons (2003) potentially includes fossil localities recorded from the LGM, the warm 

Bølling-Allerød, and the colder Younger Dryas, thus missing the effects of rapid climate 

transitions. Other studies have estimated the past range shift patterns for only one or a 

few species of mammal (e.g., Nogues-Bravo et al., 2008, Davis et al., 2014).  

 

In this paper, we instead use SDMs to project range shifts that may have occurred 

(similar to Lawing and Polly 2011) as the Earth system transitioned from a glacial to an 

interglacial, and then we examine the responses expected in the future, focusing on two 

aspects of range shifts: direction and rate. Validation of species shifts with fossil data is 

inconclusive (see Appendix Fig. 2.10.2) especially during the earliest time periods 

(similar to Davis et al., 2014), in part due to the low number of radiocarbon-dated 

occurrences available to accurately validate the projected ranges and because the models 

have been constructed with assumption that the relationship between species occurrence 

and climate is constant through time and the only factor determining range. In addition, 

we rely on one climate model only (CCSM3) to capture past paleoclimates. Therefore, 

our results outline only the potential scenarios of past and future range shifts, but allow us 

to examine the potential fine-scale dynamics that accompanied range shifts. Our 

validation results agree with other studies showing that SDMs predict species ranges 

more accurately in time periods that are more climatically similar (i.e., 6 ka BP) to the 

time period in which the SDMs were constructed (e.g., Maguire et al., 2016). Therefore, 

model interpretations must be carefully considered for future predictions, especially as 

future climate becomes more novel.   

 

The hindcasted range shifts, like the results from many other studies (Graham et 

al., 1996; Lyons, 2003; Moritz et al., 2008; Pinsky et al., 2012), show that mammals 

likely responded to climate change in individualistically, with species predicted to have 

shifted their distributions at various rates and directions over the previous 17,000 years 

(Tables 2.1 & 2.2; Fig. 2.4). The individualistic pattern of species shifts is also 
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demonstrated by the fact that the same species does not exhibit consistently large or small 

distances in any given climate change scenario (except for Sorex arcticus), making it 

difficult to predict the pattern of range shifts in the future. However, all species are 

expected to have increased shift rates in the future regardless of the greenhouse gas 

concentration scenario (Tables 2.1 & 2.2; Fig. 2.5).   

Directionality: Based on climate-only hindcasted and forecasted SDMs, the 

overall estimated pattern of species range shifts is generally in the northward (poleward) 

direction (NW, N, or NE), with a minority of species estimated to have shifted their 

distributions in other directions across all time periods. This strong northward 

directionality in species shifts has been observed in multiple studies and largely results 

from the latitudinal temperature gradient across North America (Lyons, 2003; Ordonez & 

Williams, 2013). The past time periods in which the largest percentage of the species 

shifted northward were periods of rapid climate warming such as the transition into the 

Bølling-Allerød and the Pleistocene/Holocene transition from the Younger Dryas into the 

interglacial (Table 2.1). During these two time periods, approximately 25 to 40% more 

species shifted their distributions northward than during other periods in the past. 

However, fewer species are projected to shift their ranges northward in the future than in 

the past, even though we anticipate higher rates of future climate warming (Marcott, et 

al., 2013, Table 2.1). Further, past species ranges were predicted to have shifted farther 

(average: 300.5 km; maximum: 2885 km) than they are expected to in the future 

(average: 267.1 km; maximum: 1497 km). One possible explanation is that during the 

past, when the Cordilleran and Laurentide ice sheets were still present over northern 

North America, there was less habitable area and species mostly resided in what is now 

the contiguous United States and Central America. As ice sheets retreated following the 

LGM, more land area became exposed, allowing species to shift northward. In contrast, 

for contemporary and future range shifts, most land area in North America has already 

been available to species for 1000s of years (excluding Greenland, outside the geographic 

scope of this study) and several species have already shifted as far north as 

geographically possible. Therefore, it is plausible that the estimated percentage of species 

shifting northward in the future will continue to decline. Our results emphasize the 

importance of studying the interactions of multiple climate variables, geography, 

topography, and other species and how these variables dictate the direction a species will 

shift in response to climate change.     

 

While these results recover the main pattern of poleward shifts and echo the 

findings of other studies that species respond to warming climates by shifting their ranges 

poleward (La Sorte & Thompson, 2007; Parmesan & Yohe, 2003), our projections 

suggest there is significant multidirectionality in species responses to climate change 

(Figs. 2.4 & 2.5). Recently, VanDerWal et al. (2012) also observed similar 

multidirectionality, but found that bird species were generally shifting their ranges 

towards the equator or longitudinally as they followed changes in precipitation. Similarly, 

Fei et al. (2017) found more westward than poleward shifts in trees over the last few 

decades, likely related to changes in moisture rather than temperature. However, the 

direction of Quaternary mammal species shifts is not strongly related to the overall 

movement of the climate isotherms, at least at the range centroid. Therefore, the direction 
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a species shifts its range is most likely the result of multiple climate factors, combined 

with geographic barriers and species interactions, which this study did not address. It is 

also possible that species ranges track climate more closely at the range margins rather 

than the range centroids. For example, Ordonez and Williams (2013) found stronger 

correlations between biotic and climatic velocities at northern versus southern 

boundaries. 

 

Rates: Species ranges are projected to shift very quickly in the future regardless 

of RCP scenario, much higher than rates of range shift seen in the past (e.g., compare the 

scale of range shift rates in Fig. 2.4 vs. Fig. 2.5). Average past range shift rates are 30 - 

250 times lower than average estimated rates for the future (Table 2.2). The species 

exhibiting the largest shifts were different across time periods, though the arctic shrew is 

predicted to consistently have large shift rates across many time periods. Results from 

this study are within the range of estimates for woody taxa from Davis and Shaw (2001; 

0.01 – 1 km/yr) and Ordonez and Williams (2013; -0.17 – 0.27 km/yr and -0.15 – 2.7 

km/yr for northern vs. southern boundaries, respectively), but are higher than rattlesnake 

range shift rates from Lawing and Polly (2011; 0.002 km/yr). While some of the 

difference in rates of range shifts is likely due to differences in the time interval over 

which rates are calculated (e.g.,, Barnosky et al., 2003; Ordonez & Williams 2013), rates 

of future climate change are projected to be much faster than seen for the past in our 

averaged data, indicating that faster range shifts will be necessary for species to track 

future climate change (Lawing & Polly, 2011; Malcom et al., 2002). The effect of 

differing interval lengths also influences the amount of time that a species has to 

accomplish a range shift. The warming event that occurred during the transition from the 

LGM into the Bølling-Allerød spans approximately 2,500 years in our study (17 – 14.5 

ka BP) while the Holocene time periods span 4,500 and 6,000 years (for 10.5 – 6 ka BP 

and 6 – 0 ka BP, respectively). If range shifts lagged behind fast climate changes, 

however, these fine-scale dynamics may be undetectable due to the broad spatial and 

temporal scales employed in this study. Other studies have also reported that species had 

sufficient shift rates to track their climatic niches in the past. Ordonez and Williams 

(2013) showed that rates of range shift for 30 woody taxa were as fast or faster than 

estimated rates of climate velocity from 16 kya to the present. However, all of the future 

intervals are significantly shorter than the past time intervals (100 years for 1950 – 2050 

CE and 40 years for 2050 – 2090 CE). Our data suggest that the high rates of climate 

change over shorter time scales will lead to species being limited by dispersal as they 

attempt to track their climate niches in the future (Table 2.3), and they may need 

hundreds to thousands of years in the future to catch up to the lags caused by dispersal 

limitation.  

 

The median rates of future range shifts estimated in this study (from 2.49 – 6.18 

km/yr among time comparisons and RCPs) are slightly higher than the median rate of 

1.69 km/yr reported in a recent meta-analysis of historical latitudinal range shifts (Chen 

et al., 2011), though note that our calculations of range shift encompass both latitudinal 

and longitudinal shifts, exacerbating any mismatch among studies. These historical 

observations (Chen et al., 2011) indicate a significant amount of variation in the rate at 
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which species shifted their ranges, and species may need to shift their ranges at 

substantially higher rates in the future to keep pace with climate change (our results: 0.01 

– 37.23 km/yr across all species (Table 2.2); Lawing & Polly, 2011: 1.61 – 7.90 km/yr). 

However, the estimated extent of species range shifts in the future could possibly be an 

over-estimation of actual species shifts, since our models do not account for local 

adaptation. Therefore, the number of species at risk of becoming dispersal limited in the 

future may not be as high as our estimates suggest. 

 

2.5.2 Drivers of species range shifts 

 

Given the climate-based projected distributions, the velocity of climate change 

should be strongly correlated with the direction and rate of range shifts. Our results show, 

however, that while either temperature or precipitation velocity is present in the final 

models, for six out of the nine time periods neither variable is significantly correlated to 

SLSD. In fact, the velocity of temperature change is not significantly correlated with 

SLSD in any time period (Table 2.3), which is counter to results from Pinsky et al. (2013) 

showing that climate velocity was a better predictor of range shifts than life histories. 

Species traits may better describe variation in species responses to climate change, as 

body mass and MDD are significantly correlated with SLSD in six out of the nine time 

periods, especially in the future (Table 2.3). Body mass was generally significant in more 

models than MDD, echoing its usefulness as a trait that reflects a broad range of 

ecological and evolutionary processes (Brown, 1995). Future studies should consider 

incorporating species traits and life histories into their modelling framework, as they 

attempt to describe and determine species response patterns to future climate change 

(Kearney and Porter, 2009; Kearney et al., 2010). Determining which factor is likely 

most limiting in different times is one framework for interpreting these results.  In the 

past, species had enough time to track their climatic niche at millennial scales, thus a 

species dispersal ability was adequate for facilitating range shifts and not important in 

determining SLSD; climate velocity emerged as the strongest factor associated with 

SLSD during these periods. As the magnitude of climate change lessened and the extent 

of range shifts became very small in the Holocene (Fig. 2.4), the importance of any 

variable in explaining the pattern of SLSD is removed and no variables are significantly 

correlated with SLSD. However, in the future, high rates of climate change are expected 

over short time scales (IPCC, 2014; Marcott et al., 2013) and the estimated rates of shift 

required for species to track their climatic niches are significantly larger (Fig. 2.4 & 2.5; 

Table 2), so dispersal ability may become the limiting factor (Table 2.3).  

 

Overall, our results suggest that maximum dispersal ability is a good indicator for 

how far a species may shift its range, but only during periods of rapid climate change. 

However, the models did not explain all of the observed variation in the extent of range 

shifts – ranging from 22.5% - 45.5% explained variation– and for three of the times, none 

of the variables were significantly correlated with SLSD. Other factors that could be 

driving species distribution shifts are biotic interactions, geographic barriers (or lack 

thereof), local adaptation, or climatic or environmental factors that were not included in 

our original set of predictors. Further, we did not allow interactions between variables in 
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the GAMs, and there may be interactions between temperature and precipitation velocity 

or between body mass and MDD, for example, pointing to the need for further model 

refinement.  

 

2.6 Conclusions 

 
Overall, a better understanding of the factors that explain the magnitude, 

direction, and rate of range shifts can be used to guide management practices and goals 

for protecting species and their habitats as climate continues to change in the future. The 

observation that species potentially shifted their distributions in multiple directions in 

response to past climate change, and will continue this pattern as climate changes in the 

future, is important if we are to effectively manage future populations and account for 

likely scenarios of species range shifts. The potential influence of factors other than 

temperature and precipitation is apparent by the fact that temperature velocity was not 

significant in any time period and precipitation velocity was important in only three out 

of the nine time periods, therefore suggesting that future studies should incorporate 

multivariate climate velocity simulations (see Dobrowski et al., 2013) in their models to 

accurately estimate the effect of climate on species range shifts. We are beginning to 

converge on similar rates of range shifts across studies for some taxonomic groups, but a 

large amount of unexplained variation remains; much more influences the distributions of 

species than just simple climate relationships, as shown by the significance of dispersal 

ability in our models. Instead, the combination of climate, traits, species interactions, and 

topography is most important for determining range shifts (Lenoir & Svenning, 2015). 

Because species are expected to shift their ranges at highly variable rates, our forecasts 

need to be able to incorporate species interactions and associations, physiology, and fine-

scale environmental factors in order to guide effective conservation strategies in the 

future. 
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2.8 Tables 
 

Table 2.1:  The percentage of species estimated to shift in a specific direction for each 

time period, both in the past and the future. Southward and Northward percentages reflect 

the overall percentage of species estimated to shift in that general direction: Southward 

shifts are the sum of South (S), Southeast (SE), and Southwest (SW) shifts and 

Northward shifts are the sum of North (N), Northeast (NE), and Northwest (NW) shifts.  
  

Time Period NW N NE E SE S SW W Southward Northward 
2050 – 2090 CE 

RCP 8.5 27.8 40.1 9.8 8.1 9.0 0.8 0.8 3.2 10.6 77.7 

2050 – 2090 CE 

RCP 4.5 33.6 34.4 10.6 9.0 5.7 2.4 0.8 3.2 8.9 78.6 

1950 – 2050 CE 

RCP 8.5 22.1 40.1 18.0 13.11 4.0 1.6 0 0.8 5.6 80.2 

1950 – 2050 CE 

RCP 4.5 22.1 36.8 18.0 14.7 6.5 0.8 0 0.8 7.3 76.9 

6 ka BP-1950  18.8 20.4 19.6 13.1 10.6 4.9 7.3 4.9 22.8 58.8 

10.5-6 ka BP 18.8 15.5 10.6 24.5 16.3 2.4 4.0 7.3 22.7 44.9 

12-10.5 ka BP 31.1 36.0 12.2 13.9 3.2 0 0.8 2.4 4 79.3 

14.5-12 ka BP 33.6 12.2 7.3 29.5 8.1 1.6 3.2 4.0 12.9 53.1 

17-14.5 ka BP 68.0 22.1 4.9 1.6 0 0.8 0 2.4 0.8 95.0 
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Table 2.2: Summary statistics for the shift rates (km/yr) of species in all time 

comparisons and the number of species predicted to be limited and not limited by 

dispersal ability during each time period.  

 

Time Comparison Average Maximum Minimum Median Limited Not Limited 

2050 - 2090 CE RCP 4.5 3.25 20.68 0.11 2.53 7 30 

2050 - 2090 CE RCP 8.5 7.86 37.23 0.30 6.18 12 25 

1950 - 2050 CE RCP 4.5 2.89 11.03 0.22 2.49 7 30 

1950 - 2050 CE RCP 8.5 3.35 14.97 0.11 2.76 7 30 

6-0 ka BP 0.01 0.08 0.00 0.01 0 37 

10.5-6 ka BP 0.05 0.51 0.00 0.03 0 37 

12-10.5 ka BP 0.17 0.74 0.00 0.13 0 37 

14.5-12 ka BP 0.19 1.70 0.00 0.12 0 37 

17-14.5 ka BP 0.20 1.53 0.02 0.16 0 37 
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Table 2.3: The significance of each variable in determining the extent of range shifts for 

each time comparison. *(P ≤ 0.05), ** (P < 0.01), *** (P < 0.001), - (non-significant but 

included in the best model), NA (not included in the final model). MDD = maximum 

dispersal distance, Precip. Velocity = precipitation velocity, Temp. Velocity = 

temperature velocity, and Akaike Weight = the probability that the given model is the 

best model out of the set of generated models for the given time period (Wagnemakers 

and Farrell 2004).  

 

Variable 17 – 

14.5 (ka 

BP) 

14.5 – 

12 (ka 

BP) 

12 – 

10.5 (ka 

BP) 

10.5 – 

6 (ka 

BP) 

6 – 0 

(ka 

BP) 

1950 – 

2050 

CE 

(RCP 

4.5) 

1950 – 

2050 CE 

(RCP 

8.5) 

2050 – 

2090 

(RCP 

4.5) 

2050 – 

2090 

(RCP 8.5) 

Body 

Mass (g) 
- *** - NA - ** * * ** 

MDD 

(km) 
* NA NA - - NA - * * 

Precip. 

Velocity 

(km/yr) 

* - - - - NA NA ** *** 

Temp. 

Velocity 

(km/yr) 

NA - - - NA - NA - - 

Deviance 

Explaine

d 

42% 25.3% 41.3% 27.2% 27.6

% 
22.5% 25.7% 45.5% 43.7% 

Akaike 

Weight 
0.30 0.16 0.22 0.15 0.24 0.24 0.20 0.74 0.81 
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2.9 Figures 

 
 

 

 
 

Figure 2.1: Workflow diagram depicting the steps used in this study. The species 

distribution modelling steps are outlined in blue, the climate velocity step is outlined in 

red, and the trait data are outlined in purple. SDMs: Species distribution models; GAMs: 

Generalized additive models; Temp: Temperature; Prcp: Precipitation; BM: Body mass; 

MDD: Maximum dispersal distance; GBIF: Global Biodiversity Information Facility.  
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Figure 2.2: Annual average maximum temperature for North America from the Last 

Glacial Maximum (21 ka BP) to the year 2090 CE, based on the downscaled CCSM3 

simulations (notice the break in the scale between 0 BP (equivalent to 1950 CE) and 2020 

CE; Lorenz et al., 2016). The dark grey vertical bar represents the contemporary period in 

which the species distribution models were constructed and validated. The contemporary 

models were then hindcasted and forecasted to 7 time periods represented by the light 

grey vertical bars: 17 ka BP, 14.5 ka BP, 12 ka BP, 10.5 ka BP, 6 ka BP, 2050 CE, and 

2090 CE.  
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Figure 2.3: Boxplot of the average predicted probability of presence and the upper and 

lower quantiles for models validated with fossil data in each of the past time periods 

examined in this study.  
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Figure 2.4: Rose diagrams representing the estimated shift direction (indicated by the 

direction of bars) and the rate of shift (indicated by the length of bars) for 122 mammal 

species (individual bars) across North America for five time intervals since the end of the 

Last Glacial Maximum. Rate of centroid shift is at the same scale in all graphs. Shift 

direction corresponds to 360/0 = North, 90 = East, 180 = South, 270 = West.   
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Figure 2.5: Rose diagrams representing the estimated shift direction (indicated by the 

direction of bars) and the rate of shift (indicated by the length of bars) for 122 mammal 

species (individual bars) across North America for two future time intervals (rows) under 

two Representative Concentration Pathways (RCPs; columns). Shift direction 

corresponds to 360/0 = North, 90 = East, 180 = South, 270 = West.   
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Figure 2.6: The bearing difference between the direction of estimated species range shift 

and the direction of the climate velocities (left: maximum yearly average temperature 

velocity; right: yearly average precipitation velocity). Positive values of the bearing 

difference indicate that the estimated species range shift was clockwise from the direction 

of climate velocity and negative values indicate that the estimated species range shift was 

counterclockwise from the direction of climate velocity. 
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2.10 Appendix   
 

Table 2.10.1: Species examined in this study and the number of filtered occurrences for 

each species and the associated Boyce index values for each of the ensemble models 

constructed in this study.   

Species 

Number of 

Occurrences Boyce Index 

Ammospermophilus leucurus 273 0.971 

Antilocapra americana 241 0.944 

Aplodontia rufa 94 0.913 

Baiomys taylori 269 0.980 

Bassariscus astutus 270 0.982 

Blarina brevicauda 892 0.982 

Brachylagus idahoensis 52 0.943 

Canis latrans 1426 0.969 

Canis lupus 768 0.997 

Castor canadensis 733 0.980 

Cervus elaphus 218 0.978 

Chaetodipus fallax 53 0.835 

Chaetodipus nelsoni 126 0.874 

Chaetodipus penicillatus 250 0.962 

Cryptotis parva 442 0.976 

Cynomys gunnisoni 87 0.976 

Cynomys leucurus 77 0.863 

Cynomys ludovicianus 269 0.977 

Dasypus novemcinctus 404 0.988 

Didelphis virginiana 895 0.989 

Dipodomys agilis 68 0.938 

Dipodomys merriami 531 0.954 

Dipodomys microps 137 0.881 

Dipodomys ordii 775 0.929 

Dipodomys panamintinus 49 0.941 

Dipodomys spectabilis 149 0.843 

Glaucomys sabrinus 490 0.976 

Gulo gulo 425 0.980 

Lepus americanus 608 0.965 

Lontra canadensis 532 0.990 

Lynx canadensis 349 0.976 

Lynx rufus 972 0.974 

Marmota flaviventris 265 0.980 

Marmota monax 480 0.975 
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Species 

Number of 

Occurrences Boyce Index 

Martes americana 499 0.981 

Martes pennanti 228 0.979 

Mephitis mephitis 875 0.991 

Microdipodops megacephalus 91 0.960 

Microtus californicus 148 0.972 

Microtus montanus 398 0.983 

Microtus ochrogaster 430 0.987 

Microtus oregoni 99 0.881 

Microtus pennsylvanicus 1369 0.989 

Microtus richardsoni 98 0.989 

Mustela erminea 740 0.982 

Mustela frenata 867 0.968 

Mustela nivalis 212 0.956 

Myodes californicus 34 0.843 

Myodes gapperi 604 0.992 

Neotoma albigula 488 0.976 

Neotoma cinerea 506 0.993 

Neotoma lepida 316 0.971 

Neotoma micropus 282 0.966 

Neurotrichus gibbsii 123 0.945 

Ochotona princeps 250 0.990 

Odocoileushemionus 639 0.991 

Odocoileus virginianus 964 0.988 

Ondatra zibethicus 840 0.983 

Onychomys leucogaster 666 0.947 

Onychomys torridus 308 0.974 

Oreamnos americanus 82 0.977 

Pecari tajacu 219 0.965 

Perognathus flavus 467 0.972 

Perognathus inornatus 34 0.866 

Perognathus longimembris 182 0.987 

Perognathus merriami 129 0.891 

Perognathus parvus 267 0.994 

Peromyscus boylii 496 0.982 

Peromyscus californicus 71 0.891 

Peromyscus crinitus 262 0.950 

Peromyscus keeni 188 0.967 

Peromyscus leucopus 1559 0.994 

Peromyscus maniculatus 2890 0.998 

Peromyscus pectoralis 192 0.821 
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Species 

Number of 

Occurrences Boyce Index 

Peromyscus truei 439 0.967 

Procyon lotor 1192 0.985 

Puma concolor 398 0.978 

Rangifer tarandus 163 0.963 

Reithrodontomys fulvescens 496 0.970 

Reithrodontomys megalotis 1045 0.955 

Reithrodontomys montanus 277 0.967 

Scalopus aquaticus 445 0.985 

Scapanus orarius 93 0.931 

Sciurus aberti 105 0.934 

Sciurus carolinensis 683 0.960 

Sciurus griseus 135 0.981 

Sigmodon ochrognathus 36 0.794 

Sorex arcticus 95 0.938 

Sorex cinereus 1229 0.984 

Sorex monticolus 737 0.978 

Sorex palustris 411 0.994 

Sorex vagrans 370 0.985 

Spermophilus beecheyi 144 0.934 

Spermophilus spilosoma 202 0.932 

Spermophilus tereticaudus 83 0.882 

Spermophilus tridecemlineatus 390 0.979 

Spermophilus variegatus 246 0.968 

Spilogale putorius 388 0.992 

Sylvilagus audubonii 692 0.981 

Sylvilagus bachmani 126 0.927 

Sylvilagus floridanus 1097 0.993 

Tamias amoenus 365 0.992 

Tamias dorsalis 170 0.887 

Tamias minimus 664 0.973 

Tamias quadrivittatus 118 0.952 

Tamias senex 57 0.844 

Tamias speciosus 37 0.864 

Tamias townsendii 102 0.940 

Tamias umbrinus 118 0.946 

Tamiasciurus douglasii 198 0.989 

Tamiasciurus hudsonicus 1257 0.998 

Taxidea taxus 597 0.970 

Thomomys bottae 629 0.936 

Thomomys mazama 47 0.733 
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Species 

Number of 

Occurrences Boyce Index 

Thomomys monticola 38 0.881 

Ursus americanus 805 0.987 

Ursus arctos 407 0.991 

Vulpes macrotis 136 0.945 

Vulpes velox 89 0.941 

Vulpes vulpes 848 0.994 

Zapus hudsonius 748 0.997 

Zapus princeps 375 0.978 
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Figure 2.10.2: Box plots of the AUC scores for the fossil validation of hindcasted models 

in each of the past time periods. Total range of AUC scores is indicated by the thin 

vertical lines, whereas the boxes represent the upper and lower quantile, and the thicker 

horizontal line within the box indicates the average AUC score. 
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Figure 2.10.3: Boxplots of centroid shifts using three habitat suitability threshold values 

during the 2050 – 2090 CE in the RCP 8.5 scenario. Boxplot interpretation as indicated in 

the caption for appendix Fig. 2.10.2. 
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Figure 2.10.4: Correlation between rank of species range shifts across time periods. 
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Table 2.10.5: Models generated for each time period and their associated AIC, Delta AIC 

(from the best model), and Akaike Weight values. SLSD = Standardized Linear Shift 

Distance. 
 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

17 - 14.5 

kya 

-

4175.27 0.00 0.31 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

17 - 14.5 

kya 

-

4175.27 0.00 0.31 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

17 - 14.5 

kya 

-

4175.27 0.00 0.31 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

17 - 14.5 

kya 

-

4169.93 5.35 0.02 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

17 - 14.5 

kya 

-

4169.93 5.35 0.02 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

17 - 14.5 

kya 

-

4169.93 5.35 0.02 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

17 - 14.5 

kya 

-

4166.98 8.30 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

17 - 14.5 

kya 

-

4166.98 8.30 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

17 - 14.5 

kya 

-

4166.98 8.30 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

17 - 14.5 

kya 

-

4165.38 9.89 0.00 

~shift_areas(CV_prcp, bs = "cr") 

17 - 14.5 

kya 

-

4164.00 11.28 0.00 

~shift_areas(CV_temp, bs = "cr") 

17 - 14.5 

kya 

-

4164.00 11.28 0.00 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

17 - 14.5 

kya 

-

4164.00 11.28 0.00 

~shift_areas(log(Body_mass), bs = "cr") 

17 - 14.5 

kya 

-

4154.85 20.43 0.00 

~shift_areas(log(Max_disp), bs = "cr") 

17 - 14.5 

kya 

-

4154.21 21.07 0.00 

~shift_area1 

17 - 14.5 

kya 

-

4143.47 31.80 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

14.5 - 12 

kya 

-

4677.95 0.00 0.17 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

14.5 - 12 

kya 

-

4677.95 0.00 0.17 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

14.5 - 12 

kya 

-

4677.95 0.00 0.17 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

14.5 - 12 

kya 

-

4677.72 0.23 0.15 



43 
 

 
 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

14.5 - 12 

kya 

-

4677.72 0.23 0.15 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

14.5 - 12 

kya 

-

4677.72 0.23 0.15 

~shift_areas(log(Body_mass), bs = "cr") 

14.5 - 12 

kya 

-

4673.67 4.28 0.02 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

14.5 - 12 

kya 

-

4672.14 5.81 0.01 

~shift_areas(log(Max_disp), bs = "cr") 

14.5 - 12 

kya 

-

4670.03 7.92 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

14.5 - 12 

kya 

-

4668.27 9.68 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

14.5 - 12 

kya 

-

4668.27 9.68 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

14.5 - 12 

kya 

-

4668.27 9.68 0.00 

~shift_area1 

14.5 - 12 

kya 

-

4662.60 15.35 0.00 

~shift_areas(CV_prcp, bs = "cr") 

14.5 - 12 

kya 

-

4660.67 17.28 0.00 

~shift_areas(CV_temp, bs = "cr") 

14.5 - 12 

kya 

-

4660.67 17.28 0.00 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

14.5 - 12 

kya 

-

4660.67 17.28 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

12 - 10.5 

kya 

-

4845.59 0.00 0.23 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

12 - 10.5 

kya 

-

4845.59 0.00 0.23 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

12 - 10.5 

kya 

-

4845.59 0.00 0.23 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

12 - 10.5 

kya 

-

4843.58 2.01 0.08 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

12 - 10.5 

kya 

-

4843.58 2.01 0.08 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

12 - 10.5 

kya 

-

4843.58 2.01 0.08 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

12 - 10.5 

kya 

-

4840.61 4.98 0.02 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

12 - 10.5 

kya 

-

4840.61 4.98 0.02 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

12 - 10.5 

kya 

-

4840.61 4.98 0.02 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

12 - 10.5 

kya 

-

4837.18 8.41 0.00 

~shift_areas(CV_prcp, bs = "cr") 

12 - 10.5 

kya 

-

4837.18 8.41 0.00 
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~shift_areas(CV_temp, bs = "cr") 

12 - 10.5 

kya 

-

4837.18 8.41 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

12 - 10.5 

kya 

-

4827.60 17.99 0.00 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(log(Body_mass), bs = "cr") 

12 - 10.5 

kya 

-

4826.12 19.47 0.00 

~shift_areas(log(Max_disp), bs = "cr") 

12 - 10.5 

kya 

-

4813.52 32.08 0.00 

~shift_area1 

12 - 10.5 

kya 

-

4800.01 45.58 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

10.5 - 6 

kya 

-

4986.91 0.00 0.16 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

10.5 - 6 

kya 

-

4986.91 0.00 0.16 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

10.5 - 6 

kya 

-

4986.91 0.00 0.16 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

10.5 - 6 

kya 

-

4985.32 1.59 0.07 

~shift_areas(CV_prcp, bs = "cr") 

10.5 - 6 

kya 

-

4985.32 1.59 0.07 

~shift_areas(CV_temp, bs = "cr") 

10.5 - 6 

kya 

-

4985.32 1.59 0.07 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

10.5 - 6 

kya 

-

4985.24 1.67 0.07 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

10.5 - 6 

kya 

-

4985.24 1.67 0.07 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

10.5 - 6 

kya 

-

4985.24 1.67 0.07 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

10.5 - 6 

kya 

-

4984.08 2.82 0.04 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

10.5 - 6 

kya 

-

4984.08 2.82 0.04 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

10.5 - 6 

kya 

-

4984.08 2.82 0.04 

~shift_areas(log(Max_disp), bs = "cr") 

10.5 - 6 

kya 

-

4970.55 16.36 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

10.5 - 6 

kya 

-

4969.37 17.54 0.00 

~shift_area1 

10.5 - 6 

kya 

-

4954.07 32.84 0.00 

~shift_areas(log(Body_mass), bs = "cr") 

10.5 - 6 

kya 

-

4954.06 32.85 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 6 - 0 kya 

-

5234.93 0.00 0.24 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 6 - 0 kya 

-

5234.93 0.00 0.24 
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~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 6 - 0 kya 

-

5234.93 0.00 0.24 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 6 - 0 kya 

-

5231.79 3.14 0.05 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 6 - 0 kya 

-

5231.44 3.49 0.04 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 6 - 0 kya 

-

5231.44 3.49 0.04 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 6 - 0 kya 

-

5231.44 3.49 0.04 

~shift_areas(log(Body_mass), bs = "cr") 6 - 0 kya 

-

5231.39 3.54 0.04 

~shift_areas(log(Max_disp), bs = "cr") 6 - 0 kya 

-

5229.95 4.98 0.02 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 6 - 0 kya 

-

5228.60 6.33 0.01 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 6 - 0 kya 

-

5228.60 6.33 0.01 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 6 - 0 kya 

-

5228.60 6.33 0.01 

~shift_area1 6 - 0 kya 

-

5224.67 10.27 0.00 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 6 - 0 kya 

-

5223.09 11.84 0.00 

~shift_areas(CV_prcp, bs = "cr") 6 - 0 kya 

-

5223.09 11.84 0.00 

~shift_areas(CV_temp, bs = "cr") 6 - 0 kya 

-

5223.09 11.84 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4999.37 0.00 0.25 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4999.29 0.08 0.24 

~shift_areas(log(Body_mass), bs = "cr") 

0 - 2050 

RCP 4.5 

-

4997.71 1.65 0.11 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4997.62 1.75 0.10 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

0 - 2050 

RCP 4.5 

-

4997.43 1.94 0.09 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4997.41 1.96 0.09 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

0 - 2050 

RCP 4.5 

-

4996.27 3.10 0.05 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

0 - 2050 

RCP 4.5 

-

4995.85 3.51 0.04 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4991.89 7.47 0.01 
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~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4991.24 8.13 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4990.07 9.30 0.00 

~shift_areas(log(Max_disp), bs = "cr") 

0 - 2050 

RCP 4.5 

-

4990.01 9.36 0.00 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

0 - 2050 

RCP 4.5 

-

4987.45 11.91 0.00 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(CV_prcp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4987.44 11.92 0.00 

~shift_areas(CV_temp, bs = "cr") 

0 - 2050 

RCP 4.5 

-

4986.79 12.57 0.00 

~shift_area1 

0 - 2050 

RCP 4.5 

-

4982.64 16.73 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

0 - 2050 

RCP 8.5 

-

4938.01 0.00 0.21 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4937.83 0.18 0.19 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

0 - 2050 

RCP 8.5 

-

4937.61 0.40 0.17 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

0 - 2050 

RCP 8.5 

-

4937.21 0.80 0.14 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4936.71 1.30 0.11 

~shift_areas(log(Body_mass), bs = "cr") 

0 - 2050 

RCP 8.5 

-

4935.70 2.31 0.07 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4935.16 2.85 0.05 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4934.57 3.44 0.04 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4931.70 6.31 0.01 

~shift_areas(log(Max_disp), bs = "cr") 

0 - 2050 

RCP 8.5 

-

4931.41 6.60 0.01 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4931.32 6.69 0.01 

~shift_areas(CV_prcp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4927.59 10.42 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4927.52 10.49 0.00 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

0 - 2050 

RCP 8.5 

-

4926.53 11.48 0.00 

~shift_areas(CV_temp, bs = "cr") 

0 - 2050 

RCP 8.5 

-

4926.29 11.72 0.00 

~shift_area1 

0 - 2050 

RCP 8.5 

-

4923.87 14.15 0.00 
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~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5094.13 0.00 0.74 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5091.00 3.13 0.16 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5088.37 5.76 0.04 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5087.93 6.20 0.03 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

2050 - 

2090 RCP 

4.5 

-

5086.31 7.83 0.01 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

2050 - 

2090 RCP 

4.5 

-

5083.27 10.87 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5083.03 11.10 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5082.17 11.96 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5081.18 12.96 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5079.70 14.44 0.00 

~shift_areas(CV_prcp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5078.30 15.83 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5076.61 17.53 0.00 

~shift_areas(log(Body_mass), bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5072.79 21.35 0.00 

~shift_areas(CV_temp, bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5069.83 24.31 0.00 

~shift_areas(log(Max_disp), bs = "cr") 

2050 - 

2090 RCP 

4.5 

-

5067.12 27.01 0.00 

~shift_area1 

2050 - 

2090 RCP 

4.5 

-

5049.02 45.12 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") + s(CV_temp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4798.95 0.00 0.82 
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~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_prcp, bs = 

"cr") 

2050 -

2090 RCP 

8.5 

-

4795.73 3.21 0.16 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4790.92 8.02 0.01 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_prcp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4786.75 12.20 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") + s(CV_temp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4785.50 13.45 0.00 

Model 

Time 

Period AIC Delta AIC Akaike Weight 

~shift_areas(CV_prcp, bs = "cr") + s(CV_temp, 

bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4783.59 15.35 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_prcp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4781.30 17.64 0.00 

~shift_areas(CV_prcp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4777.66 21.28 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4769.69 29.25 0.00 

~shift_areas(log(Max_disp), bs = "cr") + 

s(CV_temp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4768.75 30.20 0.00 

~shift_areas(log(Max_disp), bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4768.58 30.37 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(log(Max_disp), bs = "cr") + s(CV_temp, bs = 

"cr") 

2050 -

2090 RCP 

8.5 

-

4766.90 32.04 0.00 

~shift_areas(log(Body_mass), bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4763.56 35.39 0.00 

~shift_areas(log(Body_mass), bs = "cr") + 

s(CV_temp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4763.02 35.93 0.00 

~shift_area1 

2050 -

2090 RCP 

8.5 

-

4761.48 37.47 0.00 

~shift_areas(CV_temp, bs = "cr") 

2050 -

2090 RCP 

8.5 

-

4760.71 38.24 0.00 
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3  Processes driving small mammal community composition 

 over the previous 18,000 years. 

 

 
3.1 Abstract 

 
The importance of neutral and non-neutral processes on community composition is often 

debated. The relative importance of different processes can vary depending on the scale 

of sampling, species pool size, and the nature of climate or habitat change experienced by 

a community. However, predicting which processes are important under specific 

scenarios is difficult, making it challenging to determine how species will assemble into 

communities as they respond to future climate change. Here, we assess the importance of 

climate and stochastic processes for facilitating the assembly of small mammals at 

Samwell Cave in northern California over the previous 18,000 years. We generated 

climate-based predictions of community composition at fourteen past time periods and 

also estimated potential community composition based on the species pool, which served 

as a neutral hypothesis. The neutral and non-neutral predictions were then compared to 

the empirically-observed fossil communities found at Samwell Cave in each of the time 

periods. Results suggest that community composition at Samwell Cave is primarily 

shaped by climate, but mismatches between predictions and observations suggest that 

climate is not the only factor determining community composition. We then explored 

whether mismatches could be explained by similarity in species traits, indicating potential 

competition among species. Climate predictions did significantly better at predicting 

species composition than did stochastic predictions. Our results suggest that climate-

based community predictions do well at predicting past community composition, which 

will be important as we predict community change in the future. 

 

3.2 Introduction 
 Simulations of future climate change predict that the Earth’s global mean surface 

temperature could increase by as much as 4.8°C by the year 2100 (IPCC 2014). If we are 

to better understand and predict how species will respond to climate change, then 

understanding the global patterns of biodiversity, the processes responsible for those 

patterns, and the role of climate in particular is essential (Chase 2007; Lavergne et al. 

2010; Pio et al. 2014; Walther et al. 2002). The ecological mechanisms that lead to the 

distribution of global biodiversity ultimately play out within local communities; thus, an 

understanding of the processes that govern the properties and diversity of local 

communities is required.  

 

Community composition is hypothesized to be determined primarily through two 

different mechanisms. The first is non-random, deterministic mechanisms such as 

environmental filtering and interactions with other species (i.e., competition; Chase and 
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Myers 2011; Jackson and Overpeck 2000; Schoener 1983). The second mechanism is 

random or stochastic processes such as ecological drift, random extinction or extirpation 

events, and chance colonizations (Hubble 2001). The relative importance of each 

mechanism in determining community composition is debated (Connor and Simberloff 

1979; Diamond 1975; Hubble 2001; Keddy 1992), and all mechanisms likely work in 

unison to determine community assembly patterns (Vellend 2010).  

 

Deterministic mechanisms are highly dependent upon the functional traits and 

physiological characteristics of a species, which determine its ecological fit to local 

environmental conditions, the potential interactions it may have with other species, and 

its ability to persist within a community (Keddy 1990, 1992; Lebrija-Trejos et al. 2010). 

When environmental filtering is the primary deterministic mechanism structuring 

community composition, the community is expected to consist of ecologically similar 

species. This occurs because species with similar traits tend to have similar physiological 

tolerances and thus similar environmental niches (Chase 2007; Diamond 1975; 

MacAuthur and Levines 1964; Mayfield and Levine 2010). On the other hand, even if the 

local environment is within the range of a species environmental niche, the species may 

not occur in that local environment due to competitive exclusion (Diamond 1975; Grime 

1973), which may occur when two species, often congeners, have similar traits and 

physiological characteristics. Overlap in traits and resource use means the two species 

have similar ecological requirements, which may lead to resource competition between 

them, with one species eventually outcompeting the other and excluding it from the 

community (Diamond 1975; Fox 1987). Therefore, if community assembly has been 

shaped by intraspecific competition, then the traits of the species within the community 

will exhibit patterns of trait over-dispersion (Moulton and Pimm 1987; Weiher and 

Keddy 1995). In all likelihood, both deterministic processes – environmental filtering and 

interactions such as competition – are operating simultaneously during community 

assembly (Ayarza et al. 2011; Ellwood et al. 2009; Kelt et al. 1995; Rodríguez et al. 

2006).  

 

Alternatively, community assembly may also be influenced by stochastic 

processes (Connor and Simberloff 1979; Hubble 2001), which are independent of species 

traits. In this hypothesis, all species have an equal chance of assembling into a 

community, so communities located in areas with similar environmental conditions can 

have different community compositions simply through the random trajectory of 

colonizations and extirpations that occur in each location (Hubble 2001). The existence 

of multiple stable states within communities that have assembled under largely stochastic 

processes can lead to higher community dissimilarity between communities than 

expected based on environmental differences between locations, and stochastically 

assembled communities should contain species that are more dissimilar in their climatic 

niches and functional traits than expected by environment or trait filtering, respectively 

(Chase 2003; Sutherland 1974).  

 

The different community assembly processes are complementary and act in 

unison, and it has been difficult to predict when any of the suggested mechanisms are 
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important in facilitating community assembly. This is in part because the dominant 

mechanism may vary depending upon the spatial scale of the study of interest and the 

intensity of the environmental filter (Cavender-Bares et al. 2006; Chase 2007; Gomez et 

al. 2010). As the scale (regional vs. local) of the study changes so does the species pool, 

as well as the magnitude of environmental and climatic heterogeneity observed in the 

study area, influencing the strength of the environmental filters (Chase 2007; Chase and 

Myers 2011; Lessard et al. 2012; Meyer et al. 2011). Environmental filtering is known to 

structure communities at regional scales where there is a significant amount of habitat 

heterogeneity (Gomez et al. 2010). However, at local scales with less habitat 

heterogeneity, competitive exclusion or stochastic processes may dominate the assembly 

process (Brown 1989; Kelt et al. 1995). 

 

Climate and habitats are continually changing through time and the species 

assembled into a local community can be exposed to both rapidly changing and relatively 

stable climates. Given these environmental changes, the mechanisms important in 

determining community composition will likely vary at a single location (local scale) 

through time analogous to how communities differ with changing environments across 

the landscape. There is little knowledge and research, however, on how the importance of 

deterministic and stochastic mechanisms will variably affect the assembly of 

communities through time. Therefore, we examined the role and relative importance of 

deterministic and stochastic mechanisms in structuring communities at a single fossil 

locality over the past 18,000 years. We compared the ability of different deterministic 

and stochastic processes to accurately predict local communities. 

 

In this study, we focused on the late Quaternary, during which the Earth has 

experienced significant climate change events such as rapid cooling (Younger Dryas) and 

warming episodes (Bølling-Allerød), as well as periods of relative climatic stability 

(Dansgaard et al. 1993; Liu et al. 2009). Because the late Quaternary encompasses 

periods of both rapid climate change and climate stability, it provides a unique time 

period to examine the processes important for community assembly under varying 

climate scenarios, where the strength of the environmental filter varies even as the spatial 

scale of the study site remains the same. Specifically, we examined the community 

assembly processes important in a small mammal community found at Samwell Cave in 

northern California over the past 18,000 years. First, we determined if the small mammal 

communities observed at different time periods in Samwell Cave assembled as a function 

of climatic filtering by comparing climate-based community hypotheses generated from 

species distribution models with observed fossil communities. Second, we examined the 

outliers – species that were not present in the fossil community even though they were 

predicted to be present for a particular time period – to determine if competition was a 

potential explanation for the exclusion of the species from the community. Finally, we 

compared stochastically-assembled communities with observed communities and 

determined which mechanism, deterministic or stochastic, better predicts community 

composition across all time periods.   
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3.3 Methods 
 

3.3.1 Study system 
 

The study system consists of the small mammal assemblage excavated from the 

Samwell Cave Popcorn Dome (SCPD) fossil deposit, located in Shasta County, Northern 

California (N 40.920, W -122.239). This deposit extends from contemporary times back 

to end of the Last Glacial Maximum (LGM), approximately 18,000 years ago (Blois et al. 

2010). There are 14 different strata within the deposit, each representing on average 

1,285 years of time. Because SCPD is a cave deposit derived from woodrat midden 

material, we focused on small mammals (i.e., mammals from Orders Rodentia and 

Soricomorpha) that are well-represented in the SCPD fossil record. Other work has 

shown that cave deposits capture a highly representative sample of the surrounding small 

mammal community (Hadly 1999; Terry 2010). Overall, each “community” in this study 

represents the empirical or predicted taxa list for a single stratum or time slice at Samwell 

Cave. 

 

3.3.2 Regional species pool 
 

We first determined the regional species pool for Samwell Cave. Small mammal 

species were included in the regional species pool if their contemporary range overlapped 

Samwell Cave.  Because species ranges have shifted through time, we also considered 

species with contemporary ranges that occurred in the region around Samwell Cave 

(which included small mammals generally located in northern CA, NV and OR). In total, 

the regional species pool contained 35 small mammal species (Appendix Table 3.10.1).  

 

3.3.3 Community composition inferences 
 

To determine the relative importance of different community assembly processes, 

we compared the empirically observed community with predicted communities based on 

two contrasting assumptions: that climate is the only factor determining community 

composition or that stochastic processes determine community composition. To do this, 

three community lists were generated for each stratum in SCPD: empirically-observed 

communities, climate-predicted communities, and stochastically-predicted communities.  

 

Empirically-observed communities: The small mammal taxon lists for each stratum 

of SCPD (Table 3.1) were originally generated by Blois et al. (2010) and represent the 

empirically-observed community list for a single time period. SCPD specimens were 

originally identified to the genus level (Microtus, Neotoma, Peromyscus, Sorex, and 

Tamias) in most cases and species level when possible (Blois et al. 2010).  
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Climate-predicted communities: Predicted communities for all time periods were 

generated using species distribution models (SDMs). Models were constructed, validated, 

and hindcasted following the methods of Williams and Blois (2018). Briefly, we 

constructed SDMs for all 35 species in the regional species pool using presence-only data 

from the contemporary period, downloaded from the Global Biodiversity Information 

Facility (GBIF; www.GBIF.org). The GBIF data were cleaned and manually inspected 

for discrepancies, and the species occurrences were spatially thinned based on the cell 

resolution of the underlying climate layers. This prevented any pseudoreplication in the 

model building process.  

 

Species distribution models were constructed using climate variables downscaled to 

0.5° x 0.5° grid cells (~50 x 50 km) (Lorenz et al. 2016), which were originally simulated 

with the Community Climate System Model version 3 (CCSM3) transient simulation 

(Liu et al. 2009; Liu et al. 2012). The downscaled simulations represent the average 

North American climate at every 500 years from 21,000 years ago to present (i.e., the 

variables are 200-year averages centered on the 500-year time slices for most times, 

though the contemporary simulations represent the average climate from 1850 to 1990 

CE). Out of a possible 54 climate variables, we used six uncorrelated and biologically 

relevant variables: maximum precipitation of the wettest quarter, mean yearly potential 

evapotranspiration, maximum temperature of the warmest quarter, mean yearly water 

deficit index, mean yearly actual evapotranspiration, and minimum precipitation of the 

driest quarter. All climate layers contained paleoshorelines and have been clipped to 

represent the presence of ice sheets during each time period.   

 

All models were initially constructed in the contemporary time period and evaluated 

using the geographically structured k-fold cross-validation approach outlined in Williams 

and Blois (2018). Five models were constructed for each species using different model 

algorithms (maxent, artificial neural networks, generalized linear models, multiple 

adaptive regression splines, and boosted regression trees) and the results from each 

algorithm underwent the geographically structured k-fold evaluation process.  

 

An ensemble distribution model was generated for each of the 35 species using 

predictions from each of the algorithms and their associated averaged AUC values from 

the evaluation process (Araújo & New, 2007), providing a probability of presence 

distribution that is a function of the five underlying statistical models. By generating the 

SDMs through the ensemble process, the process is not relying on a single algorithm for 

its predictions and more robust predictions can be made for each species by weighting the 

useful information from each individual forecast into a single consensus model (Araújo & 

New 2007). Ensemble predictions for the contemporary distributions were evaluated 

using the Boyce index (Hirzel et al. 2006), calculated using the R package ‘ecospat’ (v. 

2.2.0; Broennimann et al. 2016) with a moving window of 0.1 of the habitat suitability 

range to determine the habitat suitability bins.  

 

http://www.gbif.org/
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Contemporary ensemble models were hindcasted to times that best matched the 

midpoint age of the individual strata in SCPD. Since the CCSM3 paleoclimate simulation 

only contains climate layers for 200-year intervals spaced 500 years apart, if the midpoint 

age of a sediment layer did not fall within one of the intervals, the closest 500-year layer 

was used (Fig. 3.1). 

 

We determined if a species was predicted to be present, based on its climatic niche, 

at a particular time period by establishing the species-specific probability of presence 

threshold as the lowest predicted probability once the lowest 30% of the probability 

scores were discarded (Pearson et al. 2007). If the predicted probability of presence at 

Samwell Cave for a species was higher than the established threshold, the species was 

predicted to have been present at Samwell Cave during the associated time period. The 

climate-predicted community list was thus all species predicted present at Samwell Cave 

in a given time period. However, for taxa that were not able to be identified to the species 

level in the fossil record, the genus was predicted to be present during a time period if at 

least one species in the genus was predicted to be present based on the SDM or the 

stochastic predictions. The final community list represents a snapshot of community 

composition if climate filtering was the driving factor in community assembly (i.e., if the 

contemporary climatic tolerances of species completely determine which species 

assemble into a community).  

 

All species distribution models and model statistics were constructed using the 

program BIOMOD2 (Thuiller et al. 2009) unless otherwise stated.  

 

Stochastically-predicted communities: We generated random predictions of 

community composition for each time period by randomly sampling taxa from our 

regional species pool without replacement using R (v. 3.4.3; R Development Core Team, 

2017). The number of taxa sampled was equivalent to the number of taxa in the 

empirically-observed community for that time period from the fossil deposit. We 

repeated the sampling process 1000 times for each time period. 

 

Dissimilarity calculations: We used Sørenson’s index to determine how closely the 

climate- or stochastically-predicted communities compared with the empirically-observed 

community composition for each time period. For the stochastically-predicted 

communities, we calculated the average dissimilarity across the 1000 simulations. The 

average stochastically-predicted dissimilarities were then compared to the climate- 

predicted dissimilarities to determine which method better predicted the empirical 

community composition at Samwell Cave. Our assumption is that the method that creates 

the closest match (i.e., the lowest dissimilarity) approximates the most relevant 

community assembly process for Samwell Cave, though we recognize that both processes 

likely are acting simultaneously.  We statistically compared the climate-based versus 

stochastic-based dissimilarities using an analysis of variance statistical test.  

 

3.3.4 The significance of competition in community assembly  
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Neither of the processes mentioned above, climate or stochastic assembly, is 

likely to perfectly predict community composition. This can be the result of several 

factors that would differently affect one or more of our empirical or predicted 

communities: 1) species interactions such as competition may hinder climate-predicted 

species from integrating into a community; 2) geographic and dispersal barriers may 

prevent climate-predicted or stochastically-predicted species from reaching a community; 

3) taphonomy issues may bias estimation of the empirically-observed communities; or 4) 

model error may bias the climate-predicted communities (Thuiller 2004; Zhang et al. 

2015). Here, we focus on determining if competition (factor #1) may explain mismatches 

between the climate-predicted and empirically-observed community composition, using a 

trait-based approach. We specifically focus on the scenario where SDMs predict a species 

to be present at Samwell Cave during a given time period, but that species is not observed 

in the fossil assemblage.  

 

The trait-based approach is based on the assumption that species with similar 

traits will be more likely to compete with one another for resources if occupying the same 

local environment (Fargione et al. 2004; Moulton and Pimm 1987). Our trait analysis 

examined each community throughout the SCPD fossil deposit, focusing on the taxa 

predicted to be present in a community based on their climatic niches, but empirically 

determined to be absent (“incorrectly-predicted” taxa). For this subset of taxa, we 

determined if there is evidence from their traits to suggest that they were competitively 

excluded from Samwell Cave in the past due to competition. 

 

First, for each empirical community (i.e., time period), we determined the overall 

community trait space. Traits examined in this analysis were body mass (g), foraging 

habits (fossorial, semi-fossorial, and not fossorial), foraging height (arboreal, scansorial, 

and terrestrial), activity time (nocturnal, diurnal, crepuscular, and cathermal), and the use 

of potential food sources. Trait data were downloaded from PanTHERIA (Jones et. al. 

2009), and missing trait values were filled in by referencing the literature (Appendix 

Table 3.10.2). Some fossil specimens were identified to the genus and not the species 

level; in these instances, we calculated the most common (modal) trait value among all 

members of each genus included in the species pool (Table 3.2). All taxa analyzed in this 

study are extant and because of this we used modern trait values, with the assumption that 

these traits have remained consistent through time (Miller et al. 2014). The community 

trait space was generated using the trait values for all taxa observed in a single 

community at Samwell Cave (grey circles; Fig. 3.2.A). Next, for each taxon observed in 

the community, we calculated the minimum Euclidean distance between it and all other 

taxa in the assemblage, and a density plot of the minimum Euclidean distances among all 

taxa was generated for each community (Fig. 3.2.A). This represents the empirically-

observed minimum trait spacing between all taxa in a community (Fig. 3.2.B). Finally, 

we determined the minimum Euclidean distance between each incorrectly-predicted and 

all empirically observed taxa in a community (red circle, Fig. 3.2.A). We then compared 

the minimum distances of the incorrectly-predicted taxa to the minimum Euclidean 

distance value that represented the lower 5% percent of the density distribution of the 

empirically-observed community (Fig. 3.2.B). This minimum value was generated using 
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the R function quantile on each of the empirical communities. If competitive exclusion 

was a primary factor in community assembly at Samwell Cave over the previous 18,000 

years, then the minimum Euclidean distance of most excluded taxa is expected to be 

smaller than the minimum distances of the taxa observed in the empirical community into 

which they are trying to assemble, suggesting that they are ecologically similar to taxa 

that were already present in the community.  

 

3.4 Results 
 

3.4.1 Community composition through time 
 

 Predicted community composition varied through time; climate-predicted 

communities contained an average of 15 taxa per time period, higher than the average of 

11.2 taxa in the observed communities. Species distribution models used to generate the 

climate-predicted communities were accurate, but the accuracy varied across taxa. The 

average Boyce index value for our ensemble SDMs was 0.90 (± 0.12; Appendix Table 

3.10.1) with a minimum value of 0.54 (Sorex pacificus) and a maximum value of 1.00 

(Peromyscus maniculatus). Several taxa were predicted by the SDMs to be present at 

Samwell Cave during all past time periods (Microtus, Peromyscus, Neotoma, Sorex, 

Tamias, Tamiasciurus douglasii, Sciurus griseus, Spermophilus lateralis, Glacomys 

sabrinus, and Zapus trinotatus), three taxa were predicted to be present in only the cooler 

time periods that occurred at the end of the LGM (Aplodontia rufa, Arborimus albipes, 

and Myodes californicus), one taxon (Scapanus latimanus) was predicted to be present in 

all time periods except for 17,500 ka BP, and one taxon (Thomomys bottae) was 

predicted to be present in all time periods except 17,500 and 16,500 ka BP. The 

remaining taxa were predicted to be present at Samwell Cave intermittently (Table 3.1). 

 

 The climate-based communities matched the empirically-observed communities 

better than did the stochastically-generated communities (Fig. 3.3).  Dissimilarity 

between climate-based community predictions and the empirically-observed community 

lists was low: across all time periods, there was an average dissimilarity of 0.21 (± 0.08; 

min = 0.11, 6,000 ka BP; max = 0.42, 10,000 ka BP). In contrast, the stochastically-

generated community predictions and the observed community lists had an average 

dissimilarity of 0.611 (± 0.06; min = 0.54, 6,000 ka BP; max = 0.74, 10,000 ka BP). 

Climate-based dissimilarities were significantly lower than stochastically-based 

dissimilarities (f = 211.8, df = 26, p < 0.0001).   

 

3.4.2 Potential for competitive exclusion 
 

 Comparisons between the climate-predicted and the empirically-observed fossil 

community assemblages at Samwell Cave revealed 65 instances where our models 
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predicted a taxon to be present at Samwell Cave during a particular time period but the 

taxon was not observed in the fossil record (Appendix Table 3.10.3). Taxa that were 

incorrectly predicted across all 14 time periods were Zapus trinotatus (14/65); 

Neurotrichus gibbsii (9/65); Glaucomys sabrinus (9/65); Reithrodontomys megalotis 

(8/65); Sciurus griseus (5/65); Sorex (4/65); Myodes californicus (4/65); Spermophilus 

lateralis (4/65); Tamias (4/65); Scapanus lateralis (1/65); Aplodontia rufa (1/65); 

Tamiasciurus douglasii (1/65); Thomomys bottae (1/65). Species distribution models 

predicted the presence of Z. trinotatus in all time periods and N. gibbsii was predicted to 

be present in 5 of the 14 examined time periods, but neither taxa were present at any time 

period throughout fossil deposit (Table 3.1).  

 

 Twenty of the 65 instances where taxa were incorrectly predicted to be present 

may have been the result of competitive exclusion from the community in the examined 

time period. In these instances, the minimum trait distance of the incorrectly predicted 

taxon fell in the lower 5% of the distribution for the empirical communities’ trait space 

(Appendix Table 3.10.3). Neurotrichus gibbsii (8/20) and R. megalotis (6/20) made up 

70% of the 20 possible instances of competitive exclusion. The remaining instances of 

potential competitive exclusion included Z. trinotatus (3/20), Sorex (2/20), and Tamias 

(1/20; Appendix Table 3.10.3).  

 

Results for our trait analysis show that in all instances where N. gibbsii had the 

potential to have been competitively excluded from the Samwell Cave community, the 

taxon to which it was most similar in trait space was Sorex. However, in the single 

instance where N. gibbsii was predicted to be present but absent and Sorex was also 

absent, and N. gibbsii was more similar to R. megalotis. Reithrodontomys megalotis was 

generally most functionally similar to Sorex and when Sorex was not empirically 

observed to be present, R. megalotis was most similar to Peromyscus in trait space. Zapus 

trinotatus was also predicted to have been competitively excluded from Samwell Cave 

and was ecologically similar to Peromyscus, Tamias, and Scapanus lateralis. Finally, in 

the two instances that Sorex was significantly more similar to another taxon in trait space, 

it was more similar to Peromyscus and R. megalotis.  

 

3.5 Discussion 
 

3.5.1 Climate vs random assembly  
 

Communities are hypothesized to assemble as a function of environmental and 

habitat filtering, species interactions, and/or stochastic mechanisms (Hille Ris Lambers et 

al. 2012; Hubble 2001; Keddy 1992). Our analyses demonstrate that the fossil small 

mammal communities at Samwell Cave over the late Quaternary were consistently 

structured by climate: the observed species composition is similar to what would be 

expected if the communities assembled only as a function of climate filtering (Sørenson 

dissimilarities ranged between 0.11 - 0.42 through time; Fig. 3.3). We found little support 
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for stochastic mechanisms leading to community assembly, a result that varies from 

others, as stochastic mechanisms are found to drive community composition mostly at 

local scales (Shipley et al. 2012; Weiher et al. 2011). In all time periods examined, the 

dissimilarities between the stochastically-predicted community hypotheses and the fossil 

community were significantly higher than the dissimilarity between the climate-predicted 

community hypotheses and the observed fossil community. This suggests that the 

community at Samwell Cave was assembled largely based on deterministic mechanisms 

(Cornwall and Ackerly 2009; Gómez et al. 2010; Lebrija-Trejos et al. 2010). However, 

we recognize that our approach examines the importance of environmental filtering and 

stochastic assembly individually rather than simultaneously. As acknowledged 

previously, both mechanisms likely work in unison. Our results, therefore, indicate which 

process is important under a scenario where one mechanism is likely to strongly 

determine community composition over the other. A more integrative analysis would 

examine the mechanisms in tandem by analyzing the residuals of the climate-based 

models for signals of stochastic assembly patterns. We plan to incorporate such analyses 

in future work to determine if both processes are in fact working in unison to determine 

community composition.      

 

Even though climate appears to be the dominant mechanism determining 

community assembly, the match between the climate-predicted and empirically-observed 

communities was not perfect, however, and the magnitude of the mismatch was higher in 

the past (Fig. 3.3). This result could be linked to the effect of projecting SDMs to novel 

climates. For example, Maguire et al. (2016) found that SDMs decrease in accuracy when 

projected to areas with a climate that differs from the climate in which the SDMs were 

constructed. This is indicted in our results as the dissimilarity between the climate-based 

community predictions and the empirical fossil community increases, on average, as the 

models are projected farther back in time to periods that were much cooler than today 

(Liu et al. 2009). The presence or absence of a taxon in any given community in the 

region around Samwell Cave is largely based on physiological tolerances or habitat and 

therefore driven by climate (or climate as a surrogate for habitat). However, if the model 

used to predict the presence of the species does not include the complete range of climate 

tolerances in which the species can persist, the species potential distribution in the past 

may be underestimated (Thuiller et al. 2004). In addition, the climate simulations 

themselves may be less accurate further back in time (Harrison et al. 2015), which could 

influence resulting species range hypotheses. Both of these potential mechanisms may 

lead to incorrect predictions of species presence in a community.    

 

3.5.2 Trait filtering  
 

The increased mismatch in the past, however, may also arise because other 

mechanisms besides climate are driving community assembly patterns at the end of the 

Last Glacial Maximum, such as competition, dispersal limitation, and geographic barriers 

(Kelt et al. 1995). Competition between mammal species can restructure species 

distributions and occupancy in a community as species respond to competitive 

interactions. Hallett et al. (1983) determined that Peromyscus maniculatus distribution in 
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a wet grassland was primarily structured based on competitive interactions with Microtus 

pennsylvanicus, Zapus hudsonius, and Spermophilus tridecemlineatus, resulting in P. 

maniculatus occupying areas where the other three species were not found. Abramsky et 

al. (1979) provided similar results when they analyzed competitive ineractions of small 

mammals on a shortgrass prairie ecosystem. They determined that Microtus ochrogaster 

directly altered the distribution and abundance of Peromyscus maniculatus through 

competitive interactions. Although climate appears to be a large factor in determining the 

taxa present in a community at any given time and some mismatches may result from 

modeling error, our results suggest that competitive exclusion may have inhibited some 

taxa from becoming integrated into the local community at Samwell Cave. Two species, 

Neurotrichus gibbsii and Zapus trinotatus, appear to have been potentially excluded from 

Samwell Cave as both species were predicted to be present in all time periods but never 

appeared in the fossil record (Table 3.1). Results from our trait similarity analysis suggest 

that Sorex may have competitively excluded N. gibbsii from Samwell Cave, while 

Peromyscus may have excluded Z. trinotatus at the end of the LGM. Both Sorex and 

Permyscus were present at Samwell Cave 17,500 yr BP, while N. gibbsii and Z. trinotatus 

were predicted to be present but were absent. The presence of Sorex and Peromyscus at 

Samwell Cave before N. gibbsii and Z. trinotatus may have prevented the integration of 

N. gibbsii and Z. trinotatus into the community, especially since Sorex and Peromyscus 

are almost always present in the SCPD fossil deposit (Table 1). However, our results 

suggest Peromyscus to be the dominant competitior, while previous research has shown 

that Peromyscus is generally the non-dominant competitor (Abramsky et al. 1979; Hallett 

et al. 1983). This discrepancy may be due to the fact that Peromyscus is identified to the 

genus level at SCPD; more refined taxonomic identifications may reveal hidden 

importance of competitive interactions for this group.  

 

The competitive exclusion of N. gibbsii by Sorex is biologically plausible, as both 

taxa are primarily crepuscular and consume similar resources such as seeds, plant 

material, and invertebrates (Table 3.2). Sorex can also make use of other resources such 

as fungi, which N. gibbsii is not known to use, thus allowing Sorex access to resources 

not associated with N. gibbsii (Carraway 1975; Beneski and Stinson 1987; Carraway and 

Verts 1991; George 1989; Gillihan and Foresman 2004; Pattie 1973; Table 3.2). 

However, during the one instance when Sorex was not present in the fossil record (12,500 

yr BP), N. gibbsii was predicted present but absent. Since N. gibbsii still didn’t assemble 

into the community in the absence of its most functionally similar species, competition 

may not be the main reason for its absence from the fossil record at Samwell Cave; 

instead, other factors such as dispersal limitation or geographic barriers may better 

explain its absence.  

 

 Zapus trinotatus and Peromyscus also share similar resource overlap, with both 

taxa consuming seeds, fruits, fungi, plant material, and invertebrates. Their activity times 

can vary slightly as Z. trinotatus is mainly nocturnal with crepuscular tendencies, while 

Peromyscus is nocturnal (Gannon 1988; Kalcounis-Rueppell and Spoon 2009; Sullivan 

1995; Table 3.2). Because both taxa are primarily nocturnal, they likely would have been 

active at the same time and competed for the same resources, with Peromyscus likely 
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outcompeting Z. trinotatus.  However, further insight is limited because it is unknown 

which species of Peromyscus was present at Samwell Cave at this time. 

 

Other taxa suggested to have been competitively excluded were likely absent 

from the fossil record due to taphonomic processes. For example, some taxa, such as R. 

megalotis, Sorex, and Tamias, were only found in the fossil record during some time 

periods at Samwell Cave. Their absence in the fossil deposit during intermittent time 

periods is likely an artifact of taphonomy and rarity (Behrensmeyer et al. 1979; 

Behrenmeyer and Boaz 1980). Bones of small mammals are more prone to destruction by 

carnivores, scavengers, and weathering processes as their surface area is increased 

through fragmentation from trampling (Behrensmeyer et al. 1979; Behrensmeyer and 

Boaz 1980). Because of these factors small mammal remains tend to preserve 

significantly less well than those of larger mammals, resulting in taxa potentially not 

being represented in the fossil record even though they existed on the landscape. Other 

research also suggests that the increase in the surface-to-volume ratio of small mammal 

bones allows them to be more susceptible to acidic dissolution than those of large 

mammals and they are therefore found in the fossil record less often (Retallack 1988). 

Therefore, the instances where Sorex, R. megalotis, and Tamias appear to have been 

competitively excluded from SCPD are likely artifacts of rarity and the fossilization 

process. A similarly small mammal, Peromyscus sp., was present in all levels of the 

deposit and was the most common taxon found in the deposit, but it is also very common 

on the landscape (Blois et al. 2010).  

 

3.5.3 Other factors  
 

Size of species pool: The scale at which a community is defined has a dramatic 

influence on the mechanisms that facilitate community assembly processes (Cavender-

Bares et al. 2006, Gomez et al. 2010, Lessard et al. 2012). Here, we apply a conservative 

definition of the species source pool, where we define the source as the species that are 

observed in the SCPD fossil deposit and any small mammal whose range was located in 

the broad region around the cave (northern California, Oregon, and Nevada). This 

definition represents a relatively local source pool compared to the number of small 

mammal species that would have been included, for example, if we had included all 

species in the western United States. Different delineations of the source pool would 

potentially alter the results (Cavender-Bares et al. 2006, Lessard et al. 2012). For 

example, we would expect the strength of climate filtering to increase as the definition of 

the source pool changed from our locally defined pool to one that included all small 

mammal species in California and its surrounding states, the result of increased habitat 

heterogeneity encompassed by broader spatial extents. We also expect the accuracy of 

our stochastic predictions to decrease with a larger species pool, simply because the 

addition of more species will make it less likely for the stochastic models to sample the 

15 or so species empirically observed in the SCPD fossil deposit. Overall, broadening the 

source pool would serve to widen the gap between climatically vs. stochastically-inferred 

communities and thus reinforce our finding that climate predicts community composition 
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relatively well. Further, the increased species pool size would likely allow for a greater 

detection of competition throughout the SCPD fossil deposit, since the larger species pool 

would include more species that potentially were competitively excluded in the past.  

Finally, the fact that we aggregated many of the species in our analyses to the genus level 

to match the taxonomic resolution of the fossil record is not likely to alter our 

fundamental conclusions substantially, though it may underestimate the importance of 

competition in some cases. 

 

 Priority effects: We did not consider priority effects when we constructed our 

climate and stochastic predictions: our results assume that all species have an equal 

probability of being integrated into the community at Samwell Cave regardless of the 

order that species assemble into the community. Some studies have shown that the order 

(i.e., site history) in which species integrate into communities has no effect on the final 

compostion of communities (Chase 2007; Sommer 1991; Tilman et al. 1986), while other 

studies suggest that site history does indeed matter and that communities with similar 

environmental conditions can comprise multiple compositional states, which are 

dependent upon which species initially integrate into the community (Drake 1991; Law 

1999; Samuels and Drake 1997). Including priority effects into our analyses could cause 

our inferences of the important community assembly mechanisms to differ. For example, 

if priority effects were strong, the importance of competition might also be initially very 

high as newly arriving species would be excluded or included based on the presence of 

the first few species that integrate into the community (Drake 1991, Law 1999). 

However, the fossil record at SCPD is not long enough to capture the initial community 

assembly process to test for priority effects. Replicated fossil deposits that preserved 

other records from the same region and time would be a useful addition to test for priority 

effects. 

 

3.6 Conclusions 
 

Results from this study suggest that communities present at Samwell Cave have 

assembled largely due to climate filtering, with competitive exclusion serving as a 

secondary potential mechanism that fine tunes the community composition. Two taxa, N. 

gibbsii and Z. trinotatus, show potential evidence of competitive exclusion, by Sorex and 

Peromyscus, respectively. Our study also shows that SDMs have the ability to be used to 

predict community composition relatively confidently in this system and that SDMs 

predict community composition better than stochastic sampling methods. However, 

caution must be used when projecting models into differing climates, which can lead to 

increased model error and incorrect community predictions (Maguire et al. 2016). One 

potential method of combating the issues associated with projecting models into climates 

that differ from those in which the models were constructed is to use pooled species 

distribution models (Nogués-Bravo, 2009). Pooled SDMs provide a more complete 

estimation of the niche and the models can then be used to more accurately estimate 

changes in community composition as the result of future climate change.  



62 
 

 
 

 

This study, one of the first to estimate mechanisms of community assembly 

through time at a local scale, could be strengthened by extending the methods used here 

to multiple sites. Increasing the number of replicated sites, while using the same analyses, 

would help further disentangle the importance of the different mechanisms that determine 

community composition. For example, replication would indicate if there are priority 

effects influencing community composition, and if the observed patterns in this study are 

idiosyncratic or instead representative of strong climatic influence on community 

assembly, with additional but low influence of competition.  
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3.8 Tables 

Table 3.1. Taxon presences through time for the climate and empirically-observed community predictions for Samwell Cave. The left 

value indicates the taxa that were present (1) or absent (0) for the climate predictions and the right value indicates the presences and 

absences for the empirically-observed taxa from the SCPD fossil deposit. Total taxonomic richness is also indicated for each time 

period.  

 A
. 

ru
fa

 

M
ic

ro
tu

s 
 

N
eo

to
m

a
  

N
 g

ib
b

si
i 

P
er

o
m

ys
cu

s 
 

R
. 

m
eg

a
lo

ti
s 

S
o

re
x 

 

S
. 

b
ee

ch
ey

i 

T
a

m
ia

s 
 

T
. 

d
o

u
g

la
si

i 

T
. 

b
o

tt
a

e 

S
. 

la
ti

m
a

n
u

s 

A
. 

a
lb

ip
es

 

S
. 

g
ri

se
u

s 

S
. 

la
te

ra
li

s 

G
. 

sa
b

ri
n

u
s 

M
 c

a
li

fo
rn

ic
u

s 

Z
. 

tr
in

o
ta

tu
s 

T
ax

o
n

o
m

ic
 

R
ic

h
n

es
s 

1 Kyr BP 0 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 0 1 / 0 1 / 0 1 / 0 0 / 0 1 / 0 15 / 9 

3 Kyr BP 0 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 0 / 1 1 / 1 1 / 1 1 / 0 0 / 0 1 / 0 15 / 12 

4.5 Kyr BP 0 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 0 / 0 1 / 1 1 / 0 1 / 0 0 / 0 1 / 0 15 / 10 

6 Kyr BP 0 / 0 1 / 1 1 / 1 1 / 0 1 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 0 1 / 1 1 / 1 1 / 1 0 / 0 1 / 0 14 / 13 

7 Kyr BP 0 / 0 1 / 1 1 / 1 0 / 0 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 0 1 / 1 1 / 0 1 / 1 0 / 0 1 / 0 14 / 11 

8 Kyr BP 0 / 0 1 / 1 1 / 1 0 / 0 1 / 1 1 / 0 1 / 0 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 0 / 0 1 / 1 1 / 1 1 / 0 0 / 0 1 / 0 14 / 9 

9 Kyr BP 0 / 0 1 / 1 1 / 1 0 / 0 1 / 1 1 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 0 / 1 1 / 1 1 / 1 1 / 1 0 / 1 1 / 0 14 / 13 

10 Kyr BP 0 / 0 1 / 1 1 / 1 0 / 0 1 / 1 1 / 0 1 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 0 0 / 1 1 / 0 1 / 0 1 / 0 0 / 0 1 / 0 14 / 7 

11.5 Kyr BP 0 / 0 1 / 1 1 / 1 0 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 1 / 1 1 / 1 1 / 0 0 / 0 1 / 0 14 / 13 

12.5 Kyr BP 0 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 0 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 1 / 0 1 / 1 1 / 0 0 / 0 1 / 0 15 / 10 

14 Kyr BP 1 / 1 1 / 1 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 0 1 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 0 1 / 0 17 / 13 

15 Kyr BP 1 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 1 / 0 1 / 1 1 / 0 1 / 0 1 / 0 17 / 12 

16.5 Kyr BP 1 / 1 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 0 / 0 1 / 1 0 / 1 1 / 1 1 / 1 1 / 0 1 / 0 1 / 0 16 / 12 

17.5 Kyr BP 1 / 1 1 / 1 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 0 / 1 1 / 1 1 / 0 1 / 1 1 / 1 1 / 0 1 / 0 16 / 13 
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Table 3.2: Trait data and resource use for each taxon examined in the study. Keys for traits are as follows: activity time (1 = 

nocturnal, 2 = diurnal, 3 = crepuscular, 4 = cathermal), foraging habits (1 = not fossorial, 2 = semi-fossorial, 3 = terrestrial), and 

foraging height (1= arboreal, 2 = scansorial, 3 = terrestrial). For the food resources (seeds, fruits, fungi, plant material, 

invertebrates, vertebrates, and fish), whether a taxon consumed (1) or did not consume (0) the food resources is indicated. 

References for trait data other than the PanTHERIA database are found in Appendix table 3.10.2. 

 

 

Taxa Body Mass (g) 

Activity 

Time 

Foraging 

Habits 

Foraging 

Height Seeds Fruits Fungi 

Plant 

Material Invertebrates Vertebrates Fish 

Aplodontia rufa 806.21 1 3 2 1 0 0 1 0 0 0 

Arborimus albipes 23 1 3 1 0 0 0 1 0 0 0 

Glaucomys sabrinus 137.53 1 1 2 1 1 0 1 1 1 0 

Microtus spp 41.26 1 2 3 1 0 0 1 0 0 0 

Myodes californicus 18.3 1 3 3 1 0 1 1 0 0 0 

Neotoma spp 249.57 1 1 3 1 1 0 1 0 0 0 

Neurotrichus gibbsii 9.56 3 2 2 1 0 0 1 1 0 0 

Peromyscus spp 23.62 1 1 3 1 1 1 1 1 1 0 

Reithrodontomys megalotis 10.72 1 2 3 1 0 0 1 1 0 0 

Scapanus latimanus 62.46 3 3 3 0 0 0 0 1 0 0 

Sciurus griseus 703.85 4 1 1 1 0 1 1 1 0 0 

Sorex spp 10.8 3 1 3 1 0 1 1 1 0 0 

Spermophilus beecheyi 597.82 2 3 3 1 1 1 1 1 1 0 

Spermophilus lateralis 175.1 2 2 3 1 0 1 1 1 1 0 

Tamias spp 71.65 2 1 2 1 1 1 1 1 1 0 

Tamiasciurus douglasii 225 2 1 1 1 0 1 1 1 1 0 

Thomomys bottae 98.92 3 2 3 1 1 0 1 0 0 0 

Thomomys mazama 93.07 3 2 3 1 0 0 1 0 0 0 

Zapus trinotatus 27.45 3 1 3 1 1 1 1 1 0 1 
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3.9 Figures 

 

Figure 3.1: The relationship between the strata in the Samwell Cave Popcorn Dome (SCPD) 

fossil deposit and temperature through time. The temperature proxy (solid grey line) is based on 

δ18O from the North Greenland Ice Core Project ice-core record (North Greenland Ice Core 

Project memers 2004). Vertical dashed lines indicate the boundaries between strata within 

SCPD. Points represent the time to which species distribution models were hindcast in order to 

generate climate predictions for taxa in each community throughout the SCPD fossil deposit. The 

200 year climate average is depicted by the horizontal lines associated with the points.  
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Figure 3.2: Hypothetical community trait analysis examining the ecological similarity of taxa 

using two traits (trait A and trait B). For each taxon observed within a single community at 

Samwell Cave (grey circles), the ecological distance based on traits was calculated to all other 

taxa within the community (dashed lines; for simplicity, not all pairwise associations were drawn 

in the figure). All pairwise distances among empirically-observed taxa were used to determine 

the distribution of ecological distances for the community. Then, the ecological distances of a 

taxon that was predicted to be present in the community based on its climactic tolerances but was 

not observed in the fossil record for the time period was determined (red circle; ecological 

distances for this taxon are represented by the black arrows). B) If the minimum observed 

distance (solid vertical line) of the mismatched taxon is smaller than the lower 0.05 threshold of 

the empirical community distribution (dashed vertical line), then the taxon may have been 

competitively excluded from the community during the examined time period.    
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Figure 3.3: The fit of climate predictions and stochastic predictions to the empirically observed 

community composition. The scatterplot depicts the Sørenson’s dissimilarity between empirical 

communities and the climatically predicted (gray) and stochastically predicted (black) 

communities from the Last Glacial Maximum to the present day.  
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3.10 Appendix  
 

Table 3.10.1: List of the species examined in this study, which represents the regional species 

pool. Also listed are the Boyce index values for the ensemble model constructed for each species 

using contemporary occurrence data and the CCSM3 paleoclimate simulation.   

Species Boyce index 

Aplodontia rufa 0.92 

Arborimus albipes 0.56 

Glaucomys sabrinus 0.96 

Microtus californicus 0.98 

Microtus longicaudus 0.90 

Microtus ochrogaster 0.99 

Microtus oregoni 0.96 

Myodes californicus 0.90 

Neotoma cinerea 1.00 

Neotoma fuscipes 0.97 

Neurotrichus gibbsii 0.97 

Peromyscus boylii 0.98 

Peromyscus maniculatus 1.00 

Peromyscus truei 0.99 

Reithrodontomys megalotis 0.98 

Scapanus latimanus 0.97 

Sciurus aberti 0.97 

Sciurus griseus 0.97 

Sorex bendirii 0.98 

Sorex pacificus 0.55 

Sorex palustris 0.99 

Sorex trowbridgii 0.89 

Sorex vagrans 0.99 

Spermophilus beecheyi 0.99 

Spermophilus lateralis 0.95 

Tamias amoenus 1.00 

Tamias senex 0.80 

Tamias siskiyou 0.91 

Tamias sonomae 0.58 

Tamias speciosus 0.69 

Tamias townsendii 0.98 

Tamiasciurus douglasii 0.99 

Thomomys bottae 0.98 
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Thomomys mazama 0.82 

Zapus trinotatus 0.72 
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Table 3.10.2:  A list of all the species included in the trait analysis, before the trait values were consolidated to account for the fact 

that some taxa in the fossil record were not identified to the species level. Trait data were taken from the PanTHERIA database (Jones 

et al. 2009) and values that were not present in PanTHERIA were generated from the references listed in the table.  

Species Body 

Mass 

(g) 

Activity 

Time 

Foraging 

Habits 

Foraging 

Height 

Seeds Fruits Fungi Plant 

Material 

Invertebrates Vertebrates Fish Reference 

Aplodontia rufa 806.2 1 3 2 1 0 0 1 0 0 0 

Carraway, L.N. and B.J. Verts. 

1993. Aplodontia rufa. 

Mammalian Species 431: 1-10. 

Arborimus 

albipes 23 1 3 1 0 0 0 1 0 0 0 

Verts, B.J. and L.N. Carraway. 

1995. Phenacomys albipes. 

Mammalian Species 494:1-5 

Glaucomys 

sabrinus 137.5 1 1 2 1 1 0 1 1 1 0 

Wells-Gosling, N. and Heaney 

L.R. 1984. Glaucomys sabrinus. 

Mammalian Species 229:1-8. 

Microtus 

californicus 57.4 4 2 3 1 0 0 1 0 0 0 

Cudworth, N.L. and J.L. 

Koprowski. 2010. Microtus 

californicus (Rodentia: 

Cricetidae). Mammlian Species 

868:230-243 

Microtus 

longicaudus 44.8 1 3 3 1 1 1 1 0 0 0 

Smolen, M.J. and B.L. Keller. 

1987. Microtus longicaudus. 

Mammalian Species 271:1-7 

Microtus 

ochrogaster 42.5 1 3 3 1 0 0 1 1 1 0 

Stalling, D.T. 1990. Mammalian 

Species 355:1-9 

Microtus 

oregoni 20.3 3 2 3 0 0 1 1 0 0 0 

Carraway, L.N. and B.J. Verts. 

1985. Mammalian Species 233:1-

6; IUCN data base 

Myodes 

californicus 18.3 1 3 3 1 0 1 1 0 0 0 

Alexander, L.F. and B.J. Verts. 

1992. Clethrionomys californicus. 

Mammalian Species 406:1-6 

Neotoma 

cinereal 285.8 1 1 3 1 1 0 1 0 0 0 

Smith, F.A. 1997. Neotoma 

cinerea. Mammalian Species 

564:1-8 

Neotoma 

fuscipes 213.2 1 1 3 0 0 0 1 0 0 0 

Carraway, L.N. and B.J. Verts. 

1991. Mammalian Species 386:1-

10 

Neurotrichus 

gibbsii 9.5 3 2 2 1 0 0 1 1 0 0 

Carraway,L.N. and B.J. Verts. 

1991. Neurotrichus gibbsii. 

Mammalian Species 387:1-7 
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Species Body 

Mass 

(g) 

Activity 

Time 

Foraging 

Habits 

Foraging 

Height 

Seeds Fruits Fungi Plant 

Material 

Invertebrates Vertebrates Fish Reference 

Peromyscus 

boylii 23.9 1 2 3 1 1 1 1 1 1 0 

Kalcounis-Rueppell, M.C. and 

T.R. Spoon. 2009. Peromyscus 

boylii (Rodentia: Cricetidae). 

Mammalian Species 838:1-14 

Peromyscus 

maniculatus 19.9 1 1 3 1 1 1 1 1 0 0 

Sullivan, J. 1995. Peromyscus 

maniculats. In: Fire effects 

information system, [Online]. U.S. 

Department of Agriculture, Forest 

Service, Rocky Mountains 

Research Station, Fire Sciences 

Laboratory. Available: 

http://www.fs.fed.us/database/feis/ 

Peromyscus 

truei 27 1 1 2 1 1 0 1 1 1 0 

Hoffmeister, D.F. Peromyscus 

truei. Mammalian Species 161:1-

5; IUCN database 

Reithrodontomys 

megalotis 10.7 1 2 3 1 0 0 1 1 0 0 

Webster, W.D. and Jones J.K. Jr. 

1982. Reithrodontomys megalotis. 

Mammalian Species 167:1-5 

Scapanus 

latimanus 62.4 3 3 3 0 0 0 0 1 0 0 

Verts, B.J. and L.N. Carraway. 

2001. Scapanus latimanus. 

Mammalian Species 666:1-7; 

Harris J. 2000. Broad-footed 

mole. California Wildlife Habitat 

Relationships System.  

Sciurus aberti 622.9 1 1 1 1 0 1 1 0 1 0 

Nash, D.J. and R.N. Seaman. 

1977. Sciurus aberti. Mammalian 

Species 80:1-5 

Sciurus griseus 703.8 4 1 1 1 0 1 1 1 0 0 

Carraway, L.N. and B.J. Verts. 

1994. Sciurus griseus. Mammalian 

Species 474:1-7 

Sorex bendirii 15.7 3 1 3 0 0 0 0 1 0 0 

Pattie, D. 1973. Sorex bendirii. 

Mammalian Species 27:1-2 

Sorex pacificus 10.5 3 1 3 1 0 1 1 1 1 0 

Carraway, L.N. 1985. Sorex 

pacificus. Mammalian Species 

231:1-5 

Sorex palustris 13.5 3 1 3 0 0 1 1 1 1 1 

Beneski, J.T. Jr. and D.W. 

Stinson. 1987. Sorex palustris. 

Mammalian Species 296 1-6 

Sorex 

trowbridgii 5.02 3 1 3 1 0 1 1 1 0 0 

George, S.B. 1989. Sorex 

trowbridgii. Mammalian Species 

337:1-5 
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Species Body 

Mass 

(g) 

Activity 

Time 

Foraging 

Habits 

Foraging 

Height 

Seeds Fruits Fungi Plant 

Material 

Invertebrates Vertebrates Fish Reference 

Sorex vagrans 5.9 3 1 3 1 1 1 1 1 0 0 

Gillihan, S.W. and K.R. 

Foresman. 2004. Sorex vagrans. 

Mammalian Species 744:1-5 

Spermophilus 

beecheyi 597.8 2 3 3 1 1 1 1 1 1 0 

Polite, C. and G. Ahlborn. 1990. 

California Ground Squirrel. 

California Wildlife Habitat 

Relationships System.  

Spermophilus 

lateralis 175.1 2 2 3 1 0 1 1 1 1 0 

Bartels, M.A. and D.P. 

Thompson. 1993. Spermophilus 

lateralis. Mammalian Species 

440:1-8 

Tamias amoenus 50.6 2 2 2 1 1 1 1 1 1 0 

Sutton, D.A. 1992. Tamias 

amoenus. Mammalian Species 

390:1-8 

Tamias senex 89.3 2 2 2 1 1 1 1 1 0 0 

Gannon, W.L. and R.B. Forbes. 

1995. Mammalian Species 502:1-

6 

Tamias siskiyou 75 2 2 2 1 1 1 1 1 0 0 IUCN data base 

Tamias sonomae 75 2 2 2 1 1 1 1 0 0 0 

IUCN data base; T.L. Best. 1993. 

Tamias sonomae. Mammalian 

Species 444:1-5 

Tamias 

speciosus 60.8 2 2 2 1 1 1 1 1 1 0 

IUCN data base; T.L. Best. 1994. 

Tamias speciosus. Mammalian 

Species 478:1-9 

Tamias 

townsendii 79.1 2 2 2 1 1 1 1 1 1 0 

D.A. Sutton. 1993. Tamias 

townsendii. Mammlian Species 

435:1-6 

Tamiasciurus 

douglasii 225 2 1 1 1 0 1 1 1 1 0 

Steele, M.A. 1999. Tamiasciurus 

douglasii. Mammalian Species 

630:1-8 

Thomomys 

bottae 122.7 3 2 3 1 1 0 1 0 0 0 

Jones, C.A. and C.N. Baxter. 

2004. Mammalian Species 742:1-

14 

Thomomys 

Mazama 93.0 3 2 3 1 0 0 1 0 0 0 

Berts, B.J. and L.N. Carraway. 

2000. Mammalian Species 641:1-

7 

Zapus trinotatus 27.4 3 1 3 1 1 1 1 1 0 1 

Gannon, W.L. 1988. Zapus 

triotatus. Mammalian Species 

315:1-5 
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Table 3.10.3: List of taxa that were predicted to be present in the SCPD fossil deposit based on their climatic tolerances but were 

not observed in the fossil record. ‘Minimum Community Distance’ is the value that represents the lower five percent of the 

minimum ecological distance distribution for the empirical community. ‘Taxon Minimum Distance’ is the minimum ecological 

distance for the predicted present but empirically absent taxon in the community for the associated time period. If the taxon 

minimum distance is less than the minimum community distance, it is possible that the associated taxon was competitively 

excluded from the SCPD fossil deposit (indicated in the “Competition” column).   

Species Minimum Community Distance Taxon Minimum Distance Time Period Competition 

Aplodontia rufa 2.45 208.44 15000 yr BP No 

Glaucomys sabrinus 9.92 38.71 1000 yr BP No 

Glaucomys sabrinus 2.45 37.84 3000 yr BP No 

Glaucomys sabrinus 2.45 38.71 4500 yr BP No 

Glaucomys sabrinus 18.47 37.84 8000 yr BP No 

Glaucomys sabrinus 3.66 38.71 10000 yr BP No 

Glaucomys sabrinus 2.45 37.84 11500 yr BP No 

Glaucomys sabrinus 3.66 37.84 12500 yr BP No 

Glaucomys sabrinus 2.45 37.84 15000 yr BP No 

Glaucomys sabrinus 3.66 37.84 16500 yr BP No 

Myodes californicus 3.66 5.30 14000 yr BP No 

Myodes californicus 2.45 5.30 15000 yr BP No 

Myodes californicus 3.66 5.30 16500 yr BP No 

Myodes californicus 3.66 5.30 17500 yr BP No 

Neurotrichus gibbsii 9.92 2.13 1000 yr BP Yes 

Neurotrichus gibbsii 2.45 2.13 3000 yr BP Yes 

Neurotrichus gibbsii 2.45 2.13 4500 yr BP Yes 

Neurotrichus gibbsii 2.45 2.13 6000 yr BP Yes 

Neurotrichus gibbsii 3.66 13.73 12500 yr BP No 

Neurotrichus gibbsii 3.66 2.13 14000 yr BP Yes 
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Species Minimum Community Distance Taxon Minimum Distance Time Period Competition 

Neurotrichus gibbsii 2.45 2.13 15000 yr BP Yes 

Neurotrichus gibbsii 3.66 2.52 16500 yr BP Yes 

Neurotrichus gibbsii 3.66 2.13 17500 yr BP Yes 

Reithrodontomys megalotis 9.92 2.45 1000 yr BP Yes 

Reithrodontomys megalotis 9.92 2.45 7000 yr BP Yes 

Reithrodontomys megalotis 18.47 13.05 8000 yr BP Yes 

Reithrodontomys megalotis 3.66 2.45 9000 yr BP Yes 

Reithrodontomys megalotis 3.66 12.56 10000 yr BP No 

Reithrodontomys megalotis 3.66 12.56 12500 yr BP No 

Reithrodontomys megalotis 3.66 2.45 14000 yr BP Yes 

Reithrodontomys megalotis 3.66 2.45 17500 yr BP Yes 

Sciurus griseus 9.92 106.08 1000 yr BP No 

Sciurus griseus 3.66 106.08 10000 yr BP No 

Sciurus griseus 3.66 106.08 12500 yr BP No 

Sciurus griseus 2.45 106.08 15000 yr BP No 

Sciurus griseus 3.66 102.47 17500 yr BP No 

Spermophilus lateralis 9.92 49.95 1000 yr BP No 

Spermophilus lateralis 2.45 49.95 4500 yr BP No 

Spermophilus lateralis 9.92 37.84 7000 yr BP No 

Spermophilus lateralis 3.66 74.61 10000 yr BP No 

Scapanus latimanus 3.66 9.92 10000 yr BP No 

Sorex spp 18.47 13.05 8000 yr BP Yes 

Sorex spp 3.66 12.80 10000 yr BP No 

Sorex spp 3.66 12.80 12500 yr BP No 

Sorex spp 3.66 2.45 16500 yr BP Yes 

Thomomys bottae 3.66 27.43 14000 yr BP No 
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Species Minimum Community Distance Taxon Minimum Distance Time Period Competition 

Tamiasciurus douglasii 3.66 25.05 10000 yr BP No 

Tamias spp 2.45 9.92 3000 yr BP No 

Tamias spp 2.45 9.92 4500 yr BP No 

Tamias spp 18.47 9.92 8000 yr BP Yes 

Tamias spp 3.66 9.92 9000 yr BP No 

Zapus trinotatus 9.92 4.20 1000 yr BP Yes 

Zapus trinotatus 2.45 4.20 3000 yr BP No 

Zapus trinotatus 2.45 4.20 4500 yr BP No 

Zapus trinotatus 2.45 4.20 6000 yr BP No 

Zapus trinotatus 9.92 4.20 7000 yr BP Yes 

Zapus trinotatus 18.47 4.20 8000 yr BP Yes 

Zapus trinotatus 3.66 4.20 9000 yr BP No 

Zapus trinotatus 3.66 4.20 10000 yr BP No 

Zapus trinotatus 2.45 4.20 11500 yr BP No 

Zapus trinotatus 3.66 4.20 12500 yr BP No 

Zapus trinotatus 3.66 4.20 14000 yr BP No 

Zapus trinotatus 2.45 4.20 15000 yr BP No 

Zapus trinotatus 3.66 4.20 16500 yr BP No 

Zapus trinotatus 3.66 4.20 17500 yr BP No 
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4 Estimates of changes in North American mammalian species 

richness and community response patterns to future climate 

change  

 

 

4.1 Abstract 
 Determining how biodiversity dynamics will change in response to future climate 

change is essential to the development of effective conservation management strategies. 

Increased rates of climate change are expected over the next century as well as the 

development of local or regional abiotic conditions with no current analog. The 

development of novel climatic conditions is expected to lead to the development of novel 

community assemblages since species distributions are largely determined at a broad 

scale by species’ physiological tolerences. Here, we estimate how North American 

mammal species richness and community composition is expected to change between 

today, AD 2050, and AD 2070 under two representative concentration pathways. We also 

estimate the potential emergence of novel communities in the future as well. To exmine 

these patterns we generated contemporary species distributions for 348 North American 

mammal species using ensembled and stacked species distribution models to determine 

how species ranges are expected to change in the future and how those changes will 

ultimately affect species richness and community composition across North America. 

Our results indicate that species richness is expected to change significantly across North 

America in the future. Species richness is expected to decrease in the southeastern U.S., 

the northeastern U.S., and the southwestern deserts of the U.S. Speces richness is 

expected to increase in the Rocky Mountains, the Sierra Nevada Mountain, the interior of 

Canada, southwestern Alaska, and the Canadian Shield. Further, our results indicate that 

the areas of high change in species ricness are also the areas that show high change in 

community composition between contemporary and future communities. We predict the 

appearance of novel communities throughout the interior of Canada and the Canadian 

Shield.   

4.2 Introduction 
 Climate change affects the distributions of species and communities both directly 

and indirectly (Barnosky et al. 2003, Blois and Hadly 2009; Blois et al. 2010; Chen et al. 

2011; Jackson and Overpeck 2000; Spooner et al. 2018; Williams and Blois 2018). With 

future global climate change expected to occur at rates not seen since the late Pleistocene 

(IPCC 2013), understanding how biodiversity changes across space and time as a 

response to both natural and anthropogenic change is important if conservation strategies 

are to be effective at mitigating biodiversity loss in the future (Myers et al. 2000; Purvis 

and Hector 2000). The increased rate of climate change over the next century is expected 

to lead to the emergence of abiotic conditions that have no historical analog (i.e., novel 

climates; Radeloff et al. 2015; Williams and Jackson 2007), especially in tropical and 
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subtropical areas (Williams et al. 2007). Because climate is one of the main factors that 

determine species distributions, due to the constraints of species physiological tolerences, 

the increase in novel climatic conditions has the potential to lead to the development of 

highly novel communities. No-analog communities consist of assemblages and species 

associations that have not been observed before (i.e., the communities have high novelty; 

Radeloff et al. 2015). Previous evidence shows that biological communities become more 

novel as abiotic conditions increase in novelty (Finsinger et al. 2017, Fitzpatrick et al. 

2018, Maguire et al. 2016, Williams et al. 2007), thereby suggesting that communities as 

well as climate exist on a continuum of novelty (Radeloff et al. 2015). However, while 

community novelty is correlated to climatic novelty, communities that are located in 

areas experiencing a high degree of climatic change are not necessarily the communities 

that will be the most novel in the future (Radeloff et al. 2015; Williams and Jackson 

2007). 

Theory regarding the formation of novel communities is based on a large body of 

evidence showing that species generally respond to climate change in an individualistic 

manner (Graham et al. 1996; Lyons 2003; Webb 1987), with species either adapting to 

climate change in situ, shifting their distributions to track their preferred climatic niche, 

or becoming extinct or locally extirpated if they are not able to adapt (Mortiz and Agudo 

2013). Generally, species exhibit multidirectional range shifts in response to climate 

change due to idiosyncratic responses (Lyons 2003, Williams and Blois 2018; 

VanDerWal et al. 2013). Overall, regardless of which particular climate change response 

is exhibited by a species, the aggregate of individualistic changes in multiple species 

across both space and time has the potential to result in changes to local community 

structure and species interactions (Graham et al. 1988, Williams and Jackson 2007; 

Williams et al. 2007). This reshuffling of species and communities can lead to the 

development of highly novel communities and species interactions (Williams and 

Jackson 2007). Further, even if the reshuffling of species does not lead to highly novel 

communities, the community composition may change enough to indicate large structural 

shifts such as observed in community structure differences between biomes, effectively 

leading to an introduction of new evolutionary histories in a specific locality.   

Assessing of the development of highly novel communities in reponse to future 

climate change is important if management agencies are to effectively manage species 

and communities in the future: highly novel communities may be difficult to plan for or 

manage because of their novelty. However, generating accurate predictions of species 

responses to novel climates is difficult because model transferability decreases as the 

climates into which models are predicted become more novel (Fitzpatrick and Hargrove 

2009; Maguire et al. 2016; Owens et al. 2013). Nonetheless, quantifying the expected 

extent of novel communities provides a starting point for the development of 

management strategies.  

In determining the novelty of a community, the first question must be: what is the 

ecological significance of different levels of community novelty? Novelty is necessarily 

calculated relative to some set of baseline data (Radeloff et al. 2015). Further, community 

novelty exists as a continuum from low to high novelty, and so the interpretation of the 
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ecological significance of different levels of novelty must be calibrated from baseline, 

historical data (Radeloff et al. 2015). For example, methods have been developed in the 

fossil pollen community to determine the threshold at which highly novel communities 

can be considered “no-analog”, ie, without any analog in the past (Williams and Jackson 

2007, Radeloff et al. 2015), based on the minimum dissimilarity observed between future 

and past communities. However, research in the vertebrate community has not yet 

established such thresholds to interpret meaningful novelty in vertebrate communities. A 

recent revision to the Wallace zoogeographic realms and regions (Holt et al. 2013) 

provides a way to assess different levels of novelty in mammalian communities: we can 

assess average novelty of contemporary communities within zoogeographic regions as 

compared to between regions, and use this information to interpret the novelty we expect 

for the future to understand whether regions will experience community change 

analogous to a shift from one zoogeographic region to another. 

Here we estimate the response of North American mammalian communities to 

future climate change (for AD 2050 and 2070) using stacked species distribution models 

(SDMs) under two representation concentration pathways (RCPs) (RCP 4.5 and RCP 

8.5). We specifically determine: 1) What areas are expected to exhibit the largest change 

in community composition in terms of both richness and dissimilarity? 2) Which areas 

are expected to develop into highly novel communities in the future? 3) Do the areas of 

high richness change correlate with high community novelty? As part of these questions 

we also explore a fourth question: 4) What amount of novelty is meaningful for 

mammalian communities? By estimating the potential shifts in species richness and 

community novelty we can begin to devlop management strategies that account for 

changes in community composition and potential zoogeographic shifts that may result 

from species individualistic responses to climate change.  

 

4.3 Methods 
 

4.3.1 Occurrence Data 
 

To determine how mammalian communities are expected to respond to future 

climate change, contemporary occurrence data for North and Central American mammals 

were downloaded from the online database, Global Biodiversity Information Facility 

(www.GBIF.org). While our study is focused on species and community responses in 

North America, we included occurrence data from Central American species as well 

because we wanted to capture most of the species that could potentially shift into North 

America in the future. Due to known data quality issues in GBIF data sets (Beck et al. 

2014), downloaded occurrences were cleaned, examined, and compared to their known 

modern ranges from the NaturServe database (Patterson et al. 2007) to check for any 

potential errors in their spatial accuracy. Occurrences whose basis of record was labeled 

as either “unknown” or “fossil record” were removed from the data set. The occurrences 

were spatially thinned to match the climate raster resolution, and to prevent spatial 

http://www.gbif.org/
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autocorrelation and pseudoreplication during the model building process (Guisan and 

Zimmerman 2000). Only species with greater than 20 occurrences remaining after the 

data cleaning step were used during the model construction process, to prevent issues 

from modeling species with small sample sizes (Wisz et al. 2013). In total, our final data 

set contained occurrence data from 348 mammalian species (Appendix Table 4.10.1). 

  

4.3.2 Climate Data 
 

Species distribution models were constructed using climate simulations from 

WorldClim version 1.4 (Hijmans et al. 2005; worldclim.org). The contemporary climate 

variables are interpolations of global weather data using averages from 1960 – 1990. 

Future climate simulations are downscaled global climate models (GCMs) taken from the 

IPCC AR5 future climate projections (Hijmans et al. 2005). Four of the 19 avilable 

bioclimatic variables were chosen to construct the SDMs and were selected based on the 

results of a correlation analysis, allowing us to determine and use the least correlated 

climate variables. The selected bioclimatic variables were annual mean temperature, 

annual precipitation, precipitation seasonality, and precipitation of the driest quarter. 

Species distribution models were constructed using climate data from contemporary 

climatic conditions and were forecasted into two different future periods, AD 2050 (AD 

2041-2060 climate averages) and AD 2070 (AD 2061 – 2080 climate averages), under 

two representative concentration pathways (RCP 4.5 & RCP 8.5). Five global climate 

models were used to generate future distributions (ACCESS0-1, BCC-CSM1-1, CNRM-

CM5, INMCM4, and MIROC5) and were chosen using a model selection guidline 

developed by Sanderson et al. (2015) to incorporate the five least similar GCMs available 

in the WorldClim data set.  

 

4.3.3 Constructing species distribution models 
 

Species distribution models were constructed for all species using the R package 

“BIOMOD2” (v. 3.3-7; Thuiller et al. 2009). Contemporary models were built following 

methods from Williams and Blois (2018). Five models were constructed for each species, 

one for each of five algorithms (generalized linear model, MAXENT, artificial neural 

network, boosted regression tree, and multivariate adaptive regression splines). The 

selected algorithms represent a range of approaches for modelling species distributions 

and were among the best performing algorithms in an analysis by Elith et al. (2006). 

Individual species occurrences were geographically partitioned into four quadrants; 

SDMs were constructed iteratively using occurrences from three quadrants and were 

evaluated with occurrences from the unused fourth quadrant (Radosavljevic and 

Anderson 2014). This process was repeated for all possible iterations, resulting in four 

different models per species per algorithm. The area under the receiver operating 

characteristic curve (AUC) was obtained for all algorithms in each of the four iterations 

and was used to prouduce an average AUC value for each algorithm per species. The 
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AUC values were then used to generate a weighted ensemble distribution model for each 

species during the contemporary time period (Araújo & New 2007). Because the Boyce 

index provides a model evaluation metric that is simiar to AUC but more appropriate for 

presence only data (Hirzel et al. 2006), ensemble models were evaluated using the Boyce 

index. The Boyce index was calculated using the R package “ecospat” (v. 2.2.0; 

Broennimann et al. 2016; Appendix table 4.10.1), with a moving window of 0.1 of the 

habitat suability range to determine the necessary habitat suitability bins. The Boyce 

index ranges between -1 and 1, with values near zero representing models that are simiar 

to random distributions, positive values indicating that model performance is consistent 

with the data set used to generate the models, and negative values indicating that models 

are poor estimates of species distributions.  

 

4.3.4 Future projections     
 

  Contemporary ensemble models were projected to two future time periods (AD 

2050 and 2070) given two different RCP scenarios (RCP 4.5 and RCP 8.5), for each of 

the 5 GCMs. This resulted in five individual models per combination of time period and 

RCP. The five distribution models were then averaged together to produce a single 

ensemble projection for each species in the associated time period and RCP. Projecting 

responses to different RCPs enables us to determine if communities will be expected to 

respond differently to future climate change based on different emissions scenarios and 

using multiple GCMs allows us to combine estimated responses from multiple different 

climate predictions.  

 

4.3.5 Estimates of species richness and community dissimilarity 
 

 Converting SDMs to presence/absence data: All species ensemble models were 

converted to binary presence/absence distributions by generating species specific 

thresholds. These thresholds were determined by examining the contemporary species 

occurrences and their associated habitat suitability scores from the contemporary 

ensemble models. We then used the 30th percentile habitat suitability score as the 

threshold value for a species. Any gridcell that had a habitat suitablility score greater than 

or equal to the species-specific threshold value was converted to a presence (Pearson et 

al. 2007). Gridcells with habitat suitability scores lower than the threshold were 

converted to an absence. Once the species distributions were converted to binary 

distributions, we stacked all individual binary distributions together in a single time 

period, for all time periods (contemporary, AD 2050 and AD 2070) and RCPs, to provide 

estimates of community composition for each grid cell.   

Species richness estimates: We summed the number of species present in each 

grid cell for each time and RCP combo to determine species richness across North 

America through time. To estimate changes in species richness, the difference between 
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estimated future and contemporary species richness was calculated. We also calculated 

species richness change from 2050 to 2070 under both RCP scenarios.    

 Estimates of community dissimilarity: We determined changes in community 

similarity across time periods and RCPs using the Sorensen index of dissimilarity, which 

is appropriate for binary data and is not as succeptible to differences in sample size if 

those differences are assumed to be real and not an artifact of sample size (Wolda 1981). 

Specifically, we examined changes between the contemporary time period – AD 2050 

(RCP 4.5 and 8.5), the contemporary time period – AD 2070 (RCP 4.5 and 8.5) and 

between AD 2050 – AD 2070 for each RCP. 

 

4.3.6 Estimating community novelty   
 

 To determine a baseline for interpreting high versus low community dissimilarity, 

we relied on community dissimilarity among sites across North Amarica during the 

contemporary time period (Radeloff et al. 2015). The dissimilarity baseline was 

generated by separating North America into six zooregions, following the updated 

mammalian zooregions from Holt et al. (2013). We then randomly selected two 

communities (ie, gridcells) across North America and calculated Sørenson’s dissimilarity 

between the two communities using the R function “vegdist” in the vegan package 

(Oksanen et al. 2017), tracking the zooregion of each gridcell in the pair. We repeated 

this process 100,000 times. This process generated two distributions of dissimilarity 

values, one that quantified the range of dissimilarity of two communities within the same 

zoogeographic region (within region dissimilarity) and one that quantified the 

dissimilarity of two communities from different zoogeographic regions (between region 

dissimilarity). Because the zoogeographic regions were determined by a combination of 

species ranges as well as ancestral relationships and the evolutionary history of species, 

communities drawn from the same zoogeographic region should be more similar than 

communities from different zoogeographic regions (Holt et al. 2013). Therefore, by 

determining the dissimilarity distribution of both within and between region 

communities, we can determine a novelty threshold that is based on historical, baseline 

data, which can be used to gauge the ecological and evolutionary significance of changes 

in novelty in the future. After determining an appropriate dissimilarity threshold to 

represent highly novel communities (0.8, see results below), we converted all 

dissimilarity maps into maps of potential novel communities by labeling any community 

with a dissimilarity of 0.8 or higher relative to baseline as novel.    

 

4.4 Results 
 

4.4.1 Accuracy of species distribution models 
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 Species distribution models generated in the contemporary time period 

represented current mammal distributions with acceptable accuracy. The average Boyce 

index value for contemporary SDMs was 0.88 (± 0.15) and ranged from -0.27 for 

Habromys lepturus (Zempoaltepec deer mouse) to 0.999 for Ursus americanus (American 

black bear; Appendix Table 4.10.1).  

4.4.2 Estimated patterns of changes in species richness 
 

 Based on forecasted SDMs, mammal species richness in North America is 

expected to change substantially in the future, for all combinations of time and RCP (Fig. 

4.1). On average, North American mammal communities will increase in species 

richness, but the amount of change will vary depending on the the time period and RCP 

examined. Average estimated change in species richness for each time period is 8.2 (AD 

2050 RCP 4.5), 10.8 (AD 2050 RCP 8.5), 11.7 (AD 2070 RCP 4.5), and 21.0 species 

(AD 2070 RCP 8.5; Table 4.1). The average increase in species richness is also 

significantly different between RCP for a given time period, with the RCP 8.5 expected 

to experience a much higher change in species richness compared to RCP 4.5 (AD 2050: 

t = -147.43, df = 932620, p = 0; AD 2070: t = -380.5, df = 894200, p = 0). The maximum 

increase in species richness across North America for each time period and RCP scenario 

is 42 (AD 2050 RCP 4.5), 48 (AD 2050 RCP 8.5), 50 (AD 2070 RCP 4.5), and 62 (AD 

2070 RCP 8.5; Table 4.1). However, even though we estimate that species richness will 

increase on average, there are communities in all time periods and RCPs that are 

expected to lose species. The estimated maximum loss of species from a community 

(with average estimates of species loss in parenthesis) is 21 (3.5), 22 (4.0), 21 (4.2), and 

24 (5.3) species for AD 2050 RCP 4.5, AD 2050 RCP 8.5, AD 2070 RCP 4.5 and AD 

2070 RCP 8.5, respectively (Table 4.1). 

 A majority of the contiguous United States is expected to experience decline in 

species richness regardless of the time period and RCP (Fig. 4.1). However, high 

elevation areas such as the Rocky Mountains and the Sierra Nevada Mountains, the 

northern Great Plains, the interior regions of Canada, and the Canadian Shield between 

50° and 60° North are expected to increase in species richness. The magnitude of increase 

in richness and the areal extent that experiences that increase is dependent upon the future 

time period and RCP (Fig. 4.1). The year AD 2070 under RCP 8.5 exhibits the largest 

increase in species richness and is expected to conatin the largest area of richness 

increase compared to any other time period and RCP examined in this study (Fig. 4.1). 

The cumulative increase in species richness from now until AD 2070 is expected to result 

in a larger overall area of richness increase than in AD 2050 and RCP 8.5 is predicted to 

have a larger area of richness increase than RCP 4.5 in both time periods.  

 4.4.3 Estimated changes in community dissimilarity    
 

 Average community dissimilarities between contemporary communities and 

future communities across North America are predicted to be 0.50 (AD 2050 RCP 4.5), 

0.55 (AD 2050 RCP 8.5), 0.56 (AD 2070 RCP 4.5), and 0.66 (AD 2070 RCP 8.5; Table 
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4.1). Areas of high and low dissimilarity overlap with areas of high and low species 

richness change, respectively (e.g., compare Figs. 4.1 and 4.2). Because of this overlap, 

dissimilarity is significantly correlated with species richness change for all times and 

RCPs (AD 2050 RCP 4.5:  p = 0, r = 0.41; AD 2050 RCP 8.5: p = 0, r = 0.44; AD 2070 

RCP 4.5: p = 0, r = 0.41; AD 2070 RCP 8.5: p = 0, r = 0.47; Fig. 4.3). Therefore, we 

estimate that communities in the Rocky Mountains, Canada, southwestern Alaska, and 

the Arctic are expected to become more dissimilar compared to the contemporary time 

period as we move into the future and species respond to changing climates.     

4.4.4 Estimating areas of community novelty 
 

Two communities located in different zoogeographic regions within North and 

Central America are, on average, highly dissimilar (Fig. 4.4); while there is a large range 

of between-region dissimilarities, the average between-region dissimilarity is 1, the 

maximum possible. This means that, on average, communities from different 

zoogeographic regions have completely different species compositions. In contrast, the 

within-region dissimilarity values are generally much less than 1 (Fig. 4.4). In terms of 

setting an appropriate novelty threshold, all within-region community dissimilarity 

analyses contained an average dissimilarity below 0.8 except for region 3, which consists 

of Canada, Alaska, and the Arctic (Fig. 4.5). Thus, a dissimilarity value of 0.8 by and 

large reflects the amount of dissimilarity that would correspond to a shift into a new 

zoogeographic region for contemporary mammals across North and Central America. 

The major exception to this pattern is zoogeographic region 3, which had an estimated 

community dissimilarity average of 1.0, the same value as the average between-region 

dissimilarity. Thus, communities within region 3 are as different from one another as two 

communities located in different zoogeographic regions (Fig. 4.4).  

With a dissimilarity threshold established that indicates potential novel 

communities, our conversion of community dissimilarity to community novelty show that 

the Arctic, southern Alaska, interior Canada, and the Canadian Shield are areas in North 

America that are likely to become novel in the future. These areas, excluding the Rocky 

Mountains and northern Great Plains, are the same areas that are expected to have a large 

increase in species richness in the future (Fig. 4.1). Community novelty also increases in 

area between AD 2050 and AD 2070. The area of estimated novel communities in North 

America is estimated to be the largest at AD 2070 RCP 8.5 and appears to be drastically 

larger than the area estimated from the AD 2070 RCP 4.5, as over half of Canada is 

estimated to contain novel communities during this time period.     

4.5 Discussion 
 

 Species respond to climate change in an individualistic manner and given this, 

communities rarely respond as a single unit (Graham et al. 1996; Lyons 2003; Webb 

1987). Here, we estimated how independent species responses to future climate change 

may affect patterns of species richness and community composition across North 

America. Overall, our results show that mammalian species richness and community 
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composition are expected to undergo significant changes as individual species respond to 

anthropogenic climate change, and as a result, significant part of northern North America 

will harbor highly novel mammalian communities in the future.  

4.5.1 Changes in mammalian species richness across North America 
 

On average, species richness is expected to increase across North America as 

species shift their ranges due to climate change (Table 4.1; Fig. 4.1). However, not all 

regions are expected to experience increases in species richness: only the higher 

elevational, mountainous areas of the Rocky and Sierra Nevada Mountains, the cooler 

regions of the interior of Canada, and the southwestern portion of Alaska show an 

increase in species richness. The estimated species richness increase in these areas 

suggests that species will mainly be migrating upward in elevation or northward to track 

their preferred climatic niche. While species have individual and multidirectional 

responses to climate change (Lyons 2003; VanDerWal et al. 2013, Williams and Blois 

2018), the suggested poleward and elevational migration corresponds with previous 

estimates of species shift patterns in North America, as on average species have shifted or 

are expected to shift their ranges northward as a response to climate change (Chen et al. 

2011; Davis and Shaw 2001; Parmesan and Yohe 2003). Large regions of North 

America, however, are expected to see decreases in species richness with anthropogenic 

climate change. Areas where species richness is predicted to decrease or remain constant 

are the southeastern United States, the Great Basin region, portions of Mexico, and the 

deserts of southwestern United States (Fig. 4.1). Our results also estimate that in RCP 

8.5, which is the scenario with the largest estimate of global temperature change 

(Meinshausen et al. 2011), species richness increases will be significantly higher on 

average than in RCP 4.5 and consequently species richness increases will be larger in the 

mountainous and northern portions of North America. 

Currie (2001) and Lawler (2009) report similar patterns in mammal species 

turnover and species richness. However, Currie (2001) estimated that their cumulative 

species richness changes would likely take upwards of a millennium and that short-term 

richness changes would likely be negative (i.e., loss in species richness). Results from 

Currie (2001) are based on modeling contemporary species richness against 

contemporary climate using multiple regression analyses. This approach varies from the 

approaches of Lawler (2009) and the current manuscript, which both used species 

distribution models to estimate future species richness. A notable difference between our 

results and Currie (2001) is that our changes in species richness are expected to occur 

over a time period of decades instead of millennia (though species richness may continue 

to accumulate beyond the time periods in this study as well), if species are tracking 

climate change synchronously. This is an important distinction, because for species 

richness to increase as a response to climate change (vs. other mechanisms such as non-

native species introductions), species will need to be able to spatially track shifts in their 

preferred climatic niche (La Sorte and Jetz 2012; Pinsky et al. 2013; Tingley et al. 2009). 

Therefore, species ranges must be able to shift the necessary distances to track their 

preferred abiotic conditions, which implies that species range shift rates must be faster for 
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our estimates when compared to the necessary rates needed for species under the 

estimates of Currie (2001). Our estimates assume, however, that there are no lags in 

species responses to climate change and that species have unlimited dispersal capibilities. 

Both of these factors are known to be issues: species have shown lags in their responses 

to climate change and species can also be hindered by geographic barriers (La Sorte and 

Jetz 2012; Schloss et al. 2012). Therefore, our estimates of changes in speices richness 

are likely on the high end of what will be seen in the near future and these limitations 

should be accounted for in any management strategies related to our results.             

4.5.2 Patterns of community change  
 

 The cumulative responses of individual species to climate change alter and affect 

community composition across the landscape as species migrate into and out of particular 

locations. Our results estimate that mammalian communities across North America are 

going to experience significant species turnover (average dissimilarity of 0.50 – 0.66; 

Table 4.1; Fig. 4.2). The highest expected dissimilarity occurs between contemporary 

communities and communities at AD 2070 RCP 8.5. Like the pattern seen at AD 2070, 

the expected dissimilarity in AD 2050 is highest with RCP 8.5 when compared to RCP 

4.5 (Table 4.1; Fig. 4.2). While future dissimilarity and changes in species richness are 

moderately correlated (Fig. 4.3), not all areas of increased richness are expected to have 

high dissimilarity between contemporary and future communities. In all time periods and 

both RCPs, the areas estimated to experience high dissimilarities (approximately 0.60 and 

higher) are the Great Plains region, Canada, and the Arctic Circle (Fig. 4.3). The only 

scenario that estimates large dissimilarity increases in the Rocky Mountains (an area of 

estimated increased species richness) is AD 2070 RCP 8.5. This scenario (AD 2070 RCP 

8.5) also estimates that most of Canada, the Arctic, and Greenland will experience 

increased turnover in community composition (Fig 4.2). The increases in community 

turnover will most likely lead to new species interactions, community reorganizations, 

changes in ecosystem structure, changes in community evolutionary histories, 

modification of ecological networks, and shifts into novel communities (Bellard et al. 

2012; Walther 2010, Walther et al. 2002). The change of species composition in 

communities not only affects interactions among mammals, but it also influences 

herbivore-vegetation interactions. Recent work has shown that changes in mammalian 

community composition can lead to herbivory release or suppression via herbivory on 

vegetation communities, resulting in substantial changes in vegetation composition and 

the formation of novel plant communities (Gill et al. 2009). These types of community 

composition changes can lead to drastic and important changes in ecosystem structure 

and function (e.g., Williams et al. 2004).      

4.5.3 Development of novel communities 
 

 The cumulative response of individual species to climate change can lead to 

changes in community composition that are unlike any observed previously (Williams 

and Jackson 2007). The development of novel communities puts scientists and 

conservation managers in a unique position to determine the best management practices 
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for these types of systems. Novel communities can serve as unique ecosytems to better 

understand and study how new species interactions, ecosystem functions, and ecosystem 

services arise from community compositions not observed before. However, novel 

communities also challenge conservation practitioners because current management 

strategies are often based on preserving the current structure of a community or an 

ecosystem, and current management strategies (i.e., National Parks) are not completely 

successful in accommodating climate change (Burns et al. 2003).  

To determine if novel communities may develop in response to future climate 

change, some baseline of community data for comparison to future communities is 

needed (Radeloff et al. 2015). However, community novelty exists as a continuum and a 

dissimilarity framework has to be established to determine when a community becomes 

so compositionally different when compared to the baseline data that it represents some 

significantly new and unique combination of species (e.g., “no-analog; Radeloff et al. 

2015). While a framework for detecting novelty exists for fossil pollen communities 

through time (e.g., Jackson and Williams 2004), there is no such framework established 

for detecting novelty in terrestrial vertebrate communities. Previous approaches 

examining community novelty estimated the minimum community dissimilarity across 

the landscape by comparing one community (i.e., a single grid cell) to all other 

communities in the baseline data set. A community is determined to be novel if the 

minimum dissimilarity is greater than a dissimilarity threshold established by the 

researcher. Our approach differs from the previously described framework in that we 

calculate dissimilarity only within the same location through time and our dissimilarity 

metric is based on presence-absence data rather than relative abundance data like that 

used in pollen-based work (Fitzpatrick et al. 2018; Mahony et al. 2017; Mahony et al. 

2018; Williams et al. 2007). Our results examining community dissimilarity both within 

and between zoogeographic regions for the contemporary time period (Holt et al. 2013) 

thus serve as initial first estimates of dissimilarity thresholds needed to quantify when 

communites become different enough to be classified as novel mammal communities 

(Fig. 4.4). Given that our analyses are aimed at understanding dissimilarity across 

zoogeographic regions that delineate important transitions between communities 

composed of species with similar ranges as well as evolutionary histories, similar levels 

of community dissimilarity expected for the future are both ecologically and 

evolutionarily meaningful. However, because we are not quantifying the minimum 

dissimilarity of our communities to that of all communities in our baseline data, we may 

not be directly estimating novel communities in the future. In other words, because we 

are examining within-region dissimilarities only, we are only predicting how different 

future communities will be with respect to their baseline regional community. Thus, in 

some cases we may be detecting shifts of zoogeographic regions across the landscape in 

the future rather than reshuffling of species in an individualistic fashion. Future work will 

identify the differences between the two methods of determining mammalian climate 

novelty.   

Our results also indicate that one  of the six updated zoogeographic regions 

established by Holt et al. (2013) (our region 3, Fig. 4.4 and Fig. 4.5, which contains the 

northwestern part of the US, Canada, Alaska, and the Arctic) may need to be re-examined 
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as a unique zoogeographic region. Average within dissimilarities for region 3 show that 

communities from this region are completely different compositionally (i.e., average 

dissimilarity value of 1.0), while all other regions have an average within-region 

dissimilarity that ranges between 0.6 and 0.7 (Fig. 4.4). The high within-region 

dissimilarity in region 3 echoes other concerns of the use of zoogeographic regions to 

delineate the world into similar faunistic and floristic communities (Kreft and Jetz 2013) 

and at the very least, region 3 should be reconsidered as a single unique zoogeographic 

region. Overall, given the uncertainty in some of the zoogeographic regions, other 

methods of determinining levels of substantial novelty in mammalian communities 

should be explored.We suggest using a method that examines communities at a finer 

scale than zoogeographic regions, with more similar climatic and environmental 

conditions, such as ecoregions, which typically contain communities with similar 

compositions throughout the region. These ecoregions serve to represent divisions 

between distinct biological communities with community composition expected to be 

more similar within an ecoregion than between ecoregions (Smith et al. 2018). 

Conducting the same community novelty analysis as the one used in the study, but with 

ecoregions (i.e. from Dinerstein et al. 2017) instead of zoogeographic regions may 

provide added insight if one scheme performs better than another.   

Results from our community novelty analysis indicate that regardless of the time 

period and RCP, large portions of interior Canada, the Arctic, and southwest Alaska are 

expected to transition into novel communities as species migrate poleward in response to 

future climate change (Fig. 4.5). However, the RCP does influence how large of a 

geographic region the novel communities are expected to cover as the area of novelty 

increase as the projected amount of climate warming increase from RCP 4.5 to RCP 8.5. 

While these areas are located in zoogeographic region 3, which inherently has an average 

within-region dissimilarity value that is above our novelty threshold, our results still 

represent the likely development of novel communities. This is because the threshold 

within-region dissimilarity value is generated from spatial dissimilarities for each 

zoogeographic region and are generally highly consistent among all other regions. Thus, 

this threshold represents a meaningful transition from one evolutionarily cohesive set of 

species to another, while the high within-region dissimilarity for region 3 is likely a 

reflection of an artificial grouping of ecologically and evolutionarily distinct species. The 

spatial dissimilarity serves a baseline of expected community dissimilarities for North 

America as a whole. Further, the community dissimilarity values used to delimit regions 

with highly novel future communities are temporal dissimilarities, which compare the 

change in species composition of single community (i.e., gridcell) through time. This 

makes the temporal dissimilarity an independent measurement of community turnover 

with respect to the measurement of the spatial dissimilarity of a region.  

It is important to note that the development of these novel communities (as well 

as our estimates of richness) relies on the assumption that we are correctly capturing 

species environmental niches and that their environmental niches are stable through time 

(Thuiller 2004; Zhang et al. 2015). Further, our models may be estimating species and 

community changes into novel climates, which increase model error and thus directly 
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affects our results (Fitzpatrick and Hargrove 2009; Maguire et al. 2016; Owens et al. 

2013). Finally, our analyses are based on individualistic SDMs, whereas other work has 

suggested that community-level models (CLMs) or mechanistic models are not as 

succeptible to the issue of model transferability into novel climates and may be more 

appropriate to determine species responses to future climate change (Nieto-Lugilde et al. 

2018; Williams et al. 2013). Community-level models are an “assemble-and-predict-

together” modeling strategy that simultaneously models co-occurring species and 

environmental variables by determining the shared requirements of species and any other 

processes driving co-occurrence patterns, including biotic interactions, without discarding 

information on species level responses to the environment (Nieto-Lugilde et al., 2018). 

However, they are computationally expensive and not suitable for modeling such a large 

region as North America. Future work will involve trying to circumvent the 

computational issues of CLMs and then developing CLMs using the same species data 

set to determine how robust our results are to varying methods. We also plan to include a 

second climate model for estimating contemporary niches, to examine how robust our 

projections are to differences in climate models. Finally, we will examine actual 

differences in species lists of communities through time, to determine how different or 

similar functional diversity and evolutionary histories will be in areas that are expected to 

undergo drastic community compostion changes.   

 

4.6 Conclusions 
 

 We estimated the response of mammalian species and communities to future 

climate change and determined changes in the patterns of species richness, community 

composition, and areas of potential novel communities. While estimates of future 

mammalian species richness have been established previously (Curry 2001; Lawler 

2009), this is the first paper that delineates the potential location and magnitude of future 

highly novel communities for mammals across North America. It is important to note that 

our methods estimate community novelty as a function of only climate and our study 

does not estimate areas of novel communities due to land use changes, extinction events, 

and invasive species, all of which can alter community composition. Even though we 

only include estimates that are based on climate, our results can serve as initial measures 

for guiding management planning strategies. For example, our results show that species 

richness will likely increase in the Rocky Mountains, Sierra Nevada mountains, and large 

portions of Canada, making them ideal areas of management focus if the management 

goal is to conserve regions that will be hotspots of future richness. However, this region 

is also where the highest novelty communities will potentially be located, which may 

make management decisions more complex since there may not be any current analogs 

for species composition in these regions. To facilitate species movements and formation 

of novel communities with climate change, managers can focus efforts on restoring and 

maintaining habitat continuity. For example, constructing habitat corridors or protecting 

important parcels of land that serve as links between where species are located now and 

where they are predicted to be in the future would facilitate climate-driven range shifts.  
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Similarly, if managers want to mitigate or forestall species losses, then it is imperative to 

maintain habitat connectivity between regions estimated to undergo species loss into 

regions with species increases. It is highly unlikely that we will be able to manage 

communties in a way that prevents alterations of present day communities in response to 

climate change, but ensuring that species are able to respond as naturally as possible to 

climate change is an important first response for conservation managers.  
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4.8 Tables 
Table 4.1: Summary statistics of estimated change in species richness through time.  

Shown are the average species richness, the maximum increase in species richness, the 

average loss of species richness, the average change of species richness and the average 

dissimilarity from the contemporary time period to four different future time periods and 

representative concentration pathways.  

  

AD 2050 

RCP 4.5 

AD 2050 

RCP 8.5 

AD 2070 

RCP 4.5 

AD 2070 

RCP 8.5 

Maximum Increase in Species Richness 42.00 48.00 50.00 62.00 

Maximum Loss of Species Richness 21.00 22.00 21.00 24.00 

Average Loss of Species Richness 3.50 4.00 4.20 5.30 

Average Change in Species Richness 8.20 10.80 11.70 21.00 

Average Dissimilarity  0.50 0.55 0.56 0.66 
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4.9 Figures  

 
Figure 4.1: Projected change in species richness. Shown are the estimated differences in 

species richness from the contemporary time period and each associated future time 

period (columns) and representative concentration pathway (rows).   
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Figure 4.2: Estimated community dissimilarity between contemporary and future 

communities. Sørenson dissimilarity is calculated between contemporary communities 

and communities from from each associated future time period (columns) and 

representative concentration pathway (rows).  
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Figure 4.3: Correlation between community dissimilarity and the change in species 

richness between contemporary communities and the associated future scenarios. The 

dashed lines represent the correlation trendline for each future scenario.  
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Figure 4.4: Dissimilarity within and between zoogeographic regions. The horizontal red 

line indicates the dissimilarity threshold of 0.8 used in this study to indicate significantly 

novel communities, based on the dominant pattern of within-region dissimilarities across 

regions. See Fig. 4.5 for the spatial location of each region. 
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Figure 4.5: Estimated distribution of novel communities and the associated 

zoogeographic regions. A dissimilarity threshold of 0.80 was used to determine which 

communities would become novel in the future scenarios. Note: numbers for the 

zoogeographic regions in this study do not correspond with the associated numbers from 

Holt et al. (2013).  
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4.10 Appendix 
 

Table 4.10.1: List of species that models were constructed for in this study. Boyce index 

values for the contemporary ensemble species distribution models are also shown for 

each species. Values of 1 indicate that models performed accurately based on the data. 

Values of 0 indicate the models performed as good as random models and values of -1 

indicate that the models performed poorly.  

 

 

Species Boyce Index 

Alces americanus 0.98 

Alouatta palliata 0.67 

Alouatta pigra 0.87 

Ammospermophilus harrisii 0.81 

Ammospermophilus interpres 0.88 

Ammospermophilus leucurus 0.96 

Ammospermophilus nelsoni 0.74 

Antilocapra americana 1.00 

Aplodontia rufa 0.97 

Arborimus albipes 0.92 

Arborimus longicaudus 0.93 

Ateles geoffroyi 0.91 

Baiomys musculus 0.96 

Baiomys taylori 0.89 

Bassariscus astutus 0.80 

Bassariscus sumichrasti 0.75 

Blarina carolinensis 0.96 

Blarina hylophaga 0.97 

Bos bison 0.98 

Brachylagus idahoensis 0.92 

Caluromys derbianus 0.72 

Canis latrans 0.93 

Canis lupus 0.98 

Canis rufus 0.87 

Castor canadensis 0.96 

Cervus canadensis 0.99 

Chaetodipus arenarius 0.77 

Chaetodipus artus 0.65 

Chaetodipus baileyi 0.96 
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Species Boyce Index 

Chaetodipus californicus 0.96 

Chaetodipus eremicus 0.86 

Chaetodipus fallax 0.86 

Chaetodipus formosus 0.92 

Chaetodipus goldmani 0.78 

Chaetodipus hispidus 0.99 

Chaetodipus intermedius 0.88 

Chaetodipus nelsoni 0.91 

Chaetodipus penicillatus 0.93 

Chaetodipus pernix 0.90 

Chaetodipus rudinoris 0.25 

Chaetodipus spinatus 0.45 

Condylura cristata 0.98 

Conepatus leuconotus 0.96 

Conepatus semistriatus 0.76 

Cratogeomys castanops 0.97 

Cratogeomys merriami 0.92 

Cryptotis goldmani 0.74 

Cryptotis magna 0.74 

Cryptotis mexicana        0.92 

Cryptotis parva 0.97 

Cuniculus paca 0.91 

Cynomys gunnisoni 0.95 

Cynomys leucurus 0.96 

Cynomys ludovicianus 0.92 

Cynomys mexicanus 0.86 

Cynomys parvidens 0.93 

Dasyprocta mexicana 0.93 

Dasyprocta punctata 0.75 

Dasypus novemcinctus 0.97 

Dicrostonyx groenlandicus 0.96 

Didelphis marsupialis 0.93 

Didelphis virginiana 0.99 

Dipodomys agilis 0.92 

Dipodomys californicus 0.92 

Dipodomys heermanni 0.89 

Dipodomys merriami 0.96 

Dipodomys microps 0.94 

Dipodomys nelsoni 0.85 
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Species Boyce Index 

Dipodomys nitratoides 0.55 

Dipodomys ordii 0.95 

Dipodomys panamintinus 0.95 

Dipodomys phillipsii 0.95 

Dipodomys simulans 0.80 

Dipodomys spectabilis 0.92 

Dipodomys stephensi 0.36 

Dipodomys venustus 0.51 

Eira barbara 0.44 

Galictis vittata 0.79 

Geomys arenarius 0.80 

Geomys attwateri 0.51 

Geomys breviceps 0.76 

Geomys bursarius 0.97 

Geomys knoxjonesi 0.78 

Geomys personatus 0.81 

Geomys pinetis 0.87 

Geomys texensis 0.72 

Glaucomys sabrinus 0.90 

Glaucomys volans 0.99 

Gulo gulo 1.00 

Habromys lepturus -0.28 

Heteromys desmarestianus 0.73 

Heteromys gaumeri 0.77 

Lemmiscus curtatus 0.95 

Lemmus trimucronatus 0.99 

Leopardus pardalis 0.93 

Leopardus wiedii 0.91 

Lepus alleni 0.84 

Lepus americanus 0.96 

Lepus californicus 0.98 

Lepus callotis 0.93 

Lepus othus 0.97 

Lepus townsendii 0.98 

Liomys irroratus 0.97 

Liomys pictus 0.97 

Lontra longicaudis 0.83 

Lynx canadensis 0.98 

Lynx rufus 0.94 
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Species Boyce Index 

Marmosa mexicana 0.91 

Marmota broweri 0.95 

Marmota caligata 0.98 

Marmota flaviventris 0.94 

Marmota monax 0.94 

Martes pennanti 0.99 

Megadontomys cryophilus 0.70 

Mephitis macroura 0.96 

Mephitis mephitis 0.97 

Microdipodops pallidus 0.71 

Microtus californicus 0.89 

Michrotus chrotorrhinus 0.98 

Microtus longicaudus 0.99 

Microtus mexicanus 0.87 

Microtus miurus 0.99 

Microtus mogollonensis 0.96 

Microtus montanus 0.95 

Microtus ochrogaster 0.98 

Microtus oregoni 0.97 

Microtus pennsylvanicus 0.99 

Microtus pinetorum 0.98 

Microtus quasiater 0.89 

Microtus richardsoni 0.95 

Microtus townsendii 0.82 

Microtus xanthognathus 0.96 

Mustela erminea 0.94 

Mustela frenata 0.97 

Mustela nigripes 0.96 

Mustela nivalis 0.93 

Myocastor coypus 0.93 

Myodes californicus 0.95 

Myodes gapperi 0.99 

Myodes rutilus 0.98 

Napaeozapus insignis 0.97 

Nasua narica 0.95 

Nelsonia neotomodon 0.97 

Nelsonia neotomodon 0.97 

Neotoma albigula 0.96 

Neotoma cinerea 0.99 
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Species Boyce Index 

Neotoma devia 0.86 

Neotoma floridana 0.89 

Neotoma fuscipes 0.95 

Neotoma goldmani 0.94 

Neotoma lepida 0.93 

Neotoma leucodon 0.94 

Neotoma macrotis 0.95 

Neotoma magister 0.84 

Neotoma mexicana 0.97 

Neotoma micropus 0.95 

Neotoma phenax 0.86 

Neotoma stephensi 0.97 

Neotomodon alstoni 0.90 

Neovison vison 0.94 

Neurotrichus gibbsii 0.92 

Notiosorex crawfordi 0.75 

Nyctomys sumichrasti 0.91 

Ochotona collaris 0.82 

Ochotona princeps 0.99 

Ochrotomys nuttalli 0.92 

Odocoileus hemionus 0.98 

Odocoileus virginianus 1.00 

Oligoryzomys fulvescens 0.88 

Ondatra zibethicus 0.97 

Onychomys arenicola 0.93 

Onychomys leucogaster 0.98 

Onychomys torridus 0.80 

Oreamnos americanus 0.90 

Orthogeomys grandis 0.83 

Orthogeomys hispidus 0.96 

Oryzomys alfaroi 0.96 

Oryzomys chapmani 0.89 

Oryzomys couesi 0.97 

Oryzomys melanotis 0.27 

Oryzomys palustris 0.98 

Oryzomys rostratus 0.80 

Osgoodomys banderanus 0.84 

Ototylomys phyllotis 0.92 

Ovis canadensis 0.98 
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Species  Boyce Index 

Ovis dalli 0.95 

Panthera onca 0.84 

Parascalops breweri 0.96 

Pecari tajacu 0.93 

Perognathus amplus 0.92 

Perognathus fasciatus 0.90 

Perognathus flavescens 0.87 

Perognathus flavus 0.93 

Perognathus inornatus 0.81 

Perognathus longimembris 0.97 

Perognathus merriami 0.84 

Perognathus parvus 0.97 

Peromyscus attwateri 0.94 

Peromyscus aztecus 0.85 

Peromyscus beatae 0.73 

Peromyscus boylii 0.95 

Peromyscus californicus 0.99 

Peromyscus crinitus 0.95 

Peromyscus difficilis 0.98 

Peromyscus eremicus 0.96 

Peromyscus eva 0.62 

Peromyscus fraterculus 0.70 

Peromyscus furvus 0.79 

Peromyscus gossypinus 0.99 

Peromyscus gratus 0.94 

Peromyscus keeni 0.99 

Peromyscus leucopus 1.00 

Peromyscus levipes 0.82 

Peromyscus maniculatus 0.99 

Peromyscus megalops 0.92 

Peromyscus melanocarpus 0.69 

Peromyscus melanophrys 0.98 

Peromyscus melanotis 0.97 

Peromyscus merriami 0.62 

Peromyscus mexicanus 0.96 

Peromyscus nasutus 0.98 

Peromyscus pectoralis 0.97 

Peromyscus perfulvus 0.19 

Peromyscus polionotus 0.95 
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Species Boyce Index 

Peromyscus simulus 0.54 

Peromyscus spicilegus 0.81 

Peromyscus truei 0.97 

Peromyscus zarhynchus 0.80 

Phenacomys intermedius 0.96 

Philander opossum 0.83 

Podomys floridanus 0.96 

Potos flavus 0.78 

Procyon lotor 0.97 

Puma concolor 0.95 

Puma yagouaroundi 0.87 

Rangifer tarandus 0.96 

Reithrodontomys chrysopsis 0.87 

Reithrodontomys fulvescens 0.98 

Reithrodontomys gracilis 0.79 

Reithrodontomys humulis 0.95 

Reithrodontomys megalotis 0.98 

Reithrodontomys mexicanus 0.81 

Reithrodontomys microdon 0.88 

Reithrodontomys montanus 0.94 

Reithrodontomys raviventris -0.01 

Reithrodontomys sumichrasti 0.92 

Romerolagus diazi 0.74 

Scalopus aquaticus 0.98 

Scapanus latimanus 0.98 

Scapanus orarius 0.93 

Scapanus townsendii 0.82 

Sciurus aberti 0.96 

Sciurus alleni 0.82 

Sciurus arizonensis 0.95 

Sciurus aureogaster 0.93 

Sciurus carolinensis 0.99 

Sciurus colliaei 0.87 

Sciurus deppei 0.98 

Sciurus griseus 0.95 

Sciurus nayaritensis 0.89 

Sciurus niger 0.99 

Sciurus oculatus 0.71 

Sciurus yucatanensis 0.93 
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Species  Boyce Index 

Sigmodon alleni 0.83 

Sigmodon arizonae 0.68 

Sigmodon fulviventer 0.93 

Sigmodon hispidus 0.97 

Sigmodon leucotis 0.87 

Sigmodon mascotensis 0.75 

Sigmodon ochrognathus 0.91 

Sorex arcticus 0.97 

Sorex bendirii 0.93 

Sorex cinereus 0.96 

Sorex dispar 0.84 

Sorex fumeus 0.97 

Sorex haydeni 0.94 

Sorex hoyi 0.99 

Sorex merriami 0.87 

Sorex monticolus 0.99 

Sorex nanus 0.96 

Sorex ornatus 0.91 

Sorex pacificus 0.81 

Sorex palustris 0.99 

Sorex preblei 0.91 

Sorex rohweri 0.55 

Sorex saussurei 0.43 

Sorex trowbridgii 0.98 

Sorex tundrensis 0.99 

Sorex ugyunak 0.89 

Sorex vagrans 0.98 

Sorex ventralis 0.46 

Spermophilus beecheyi 0.91 

Spermophilus beldingi 0.92 

Spermophilus columbianus 0.90 

Spermophilus franklinii 0.81 

Spermophilus lateralis 0.92 

Spermophilus madrensis 0.83 

Spermophilus mexicanus 0.95 

Spermophilus mohavensis 0.77 

Spermophilus parryii 0.98 

Spermophilus richardsonii 0.90 

Spermophilus spilosoma 0.94 
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Species  Boyce Index 

Spermophilus tereticaudus 0.75 

Spermophilus 

tridecemlineatus 

0.97 

Spermophilus variegatus 0.93 

Spermophilus washingtoni 0.93 

Spilogale gracilis 0.97 

Spilogale putorius 0.89 

Spilogale pygmaea 0.64 

Sylvilagus aquaticus 0.94 

Sylvilagus audubonii 0.99 

Sylvilagus bachmani 0.92 

Sylvilagus brasiliensis 0.94 

Sylvilagus cunicularius 0.88 

Sylvilagus floridanus 0.96 

Sylvilagus nuttallii 0.89 

Sylvilagus obscurus 0.80 

Sylvilagus palustris 0.95 

Sylvilagus transitionalis 0.66 

Synaptomys borealis 0.95 

Synaptomys cooperi 0.90 

Tamandua mexicana 0.88 

Tamias striatus 1.00 

Tamiasciurus douglasii 0.98 

Tamiasciurus hudsonicus 0.99 

Tapirus bairdii 0.69 

Taxidea taxus 0.95 

Tayassu pecari 0.89 

Thomomys bottae 0.99 

Thomomys bulbivorus 0.38 

Thomomys idahoensis 0.94 

Thomomys mazama 0.92 

Thomomys monticola 0.87 

Thomomys talpoides 0.98 

Thomomys townsendii 0.95 

Thomomys umbrinus 0.90 

Tlacuatzin canescens 0.72 

Tylomys nudicaudus 0.88 

Urocyon cinereoargenteus 0.98 

Ursus americanus 1.00 
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Species Boyce Index 

Ursus arctos 0.97 

Vulpes lagopus 0.98 

Vulpes macrotis 0.90 

Vulpes velox 0.80 

Vulpes vulpes 0.95 

Zapus hudsonius 0.99 

Zapus princeps 0.99 

Zapus trinotatus 0.87 

 




