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ABSTRACT 
 
 This paper presents a loading unloading rule for a one dimensional nonlinear stress-strain model 

capable of reproducing any modulus reduction and damping curve. Unlike many previous 
nonlinear models, the proposed model does not utilize Masing's rules, nor does it require a specific 
functional form such as a hyperbola. Rather, the model utilizes a coordinate transformation 
technique in which one axis lies along the secant shear modulus line for a particular strain level 
with the other axis in the orthogonal direction. Damping is very easily controlled in the 
transformed coordinate space. An inverse transformation returns the desired stress for any 
increment of strain, and the model converges independently of the amplitude of the strain 
increment. Small-strain hysteretic damping can also be achieved using the proposed model. 

 
Introduction 

 
This paper presents a new unloading and reloading rule that completely departs from Masing’s 
rules to provide a perfect fit of a modulus reduction and damping curve. Masing’s rules are a 
poor way to match the damping behavior of a soil because they over predict damping at large 
strains, and do not provide hysteretic damping at small strains. To introduce small strain 
damping nonlinear codes typically use frequency dependent Rayleigh damping (Rayleigh and 
Lindsay 1945). Rayleigh damping is typically configured to match the desired small strain 
damping ratio at one or two target frequencies. Several solutions have been proposed to better 
match damping at large strains. Darendeli (2001) created a damping reduction factor to change 
the shape of the unloading curve. Based on Darendeli’s work, Phillips and Hashash (2009) 
introduced a new damping reduction factor that provides a better fit for the curve at large strains. 
Phillips and Hashash also introduced a full Rayleigh damping formulation that is frequency-
independent. This formulation is computationally demanding. Although their model is an 
important achievement it does not provide a perfect fit of the damping curve. It also uses a 
hyperbolic fit of the modulus reduction curve, which is unable to match any target curve. The 
hyperbolic fit typically introduces bias at large strains rendering the models unable to capture the 
shear strength of the soil. Hashash et al. (2010) presented a procedure to match the strength with 
their model. This procedure provides a more realistic shear strength but is still imperfect. Some 
of the most advanced models follow the framework of plasticity, and use bounding surface 
algorithms (e.g. Wang et al. 1990). Although they tend to match the strength pretty well, they 
also over predict damping at large strains. 
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The new model presented in this paper departs from Masing’s framework, and utilizes a 
coordinate transformation from the shear stress (τ) – shear strain (γ) space to the modified shear 
stress (τ’) – shear strain (γ’)  space, where γ' lies in a direction parallel to the secant modulus and 
τ' is in the orthogonal direction. The shear stress is directly calculated from the shear strain 
through an inverse coordinate transformation. During initial loading the new model follows the 
backbone curve and keeps track of the maximum shear strain 𝛾𝛾𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. The model uses a spline 
fitting method to create a backbone curve from a modulus reduction curve.  
 

Mathematical Framework of the Unloading Reloading Rule 
 
Coordinate Transformation 

 
The mathematical transformation used by the new rule consists of a rotation of the axis by an 
angle θ and a translation of the frame of reference by (γ0,τ0). The system is rotated so the 
previous reversal point and the target reversal point lie on the new horizontal axis, γ'. The 
reference point is also translated so the center of the new coordinate system is in the middle of 
the previous reversal point and the target reversal point. In Figure 1, the subscript L (opposite 
direction of the strain increment) designates the previous reversal point, and the subscript R 
(same direction of the strain increment) designates the target reversal point. The target reversal 
stress-strain point is defined as the previous reversal point if the current reversal point is not the 
maximum reversal stress-strain point. Otherwise the target reversal point is defined as the 
opposite of the maximum reversal point, and the reference point is not translated as shown in 
Figure 1(a). (γ,τ) designates the original coordinate system, and (γ’,τ’) designates the new 
coordinate system. 

 

 

 
Figure 1. Stress-Strain loops during (a) Reloading; (b) Asymmetrical loading; (c) Unloading 

 
The definition of the angle of rotation depends on the direction of loading. If the soil is being 
reloaded, i.e. the direction of loading is positive on γ, as shown in Figures 1(a) and 1(b), then the 
angle of rotation is defined by the Equation 1(a). If the soil is being unloaded, i.e. the direction of 
loading is negative (Figure 1(c)), and the angle of rotation is defined by the Equation 1(b). 

 

𝜃𝜃 = tan−1
𝜏𝜏𝑅𝑅 − 𝜏𝜏𝐿𝐿
𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿

  (1a) 



𝜃𝜃 = 𝜋𝜋 + tan−1
𝜏𝜏𝑅𝑅 − 𝜏𝜏𝐿𝐿
𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿

  (1b) 

 
The point of reference is translated from (0,0) to (γ0,τ0) . The new point of reference has the 
following coordinates in the initial axis system: 

 
𝛾𝛾0 =

𝛾𝛾𝑅𝑅 + 𝛾𝛾𝐿𝐿
2

  (2) 
   

𝜏𝜏0 =
𝜏𝜏𝑅𝑅 + 𝜏𝜏𝐿𝐿

2
  (3) 

 
The coordinates in each system can be expressed in terms of the coordinates in the other system: 

 

�
𝛾𝛾
𝜏𝜏
� = �

𝛾𝛾′ cos𝜃𝜃 −𝜏𝜏′ sin𝜃𝜃 + 𝛾𝛾0
𝛾𝛾′ sin𝜃𝜃 + 𝜏𝜏′ cos𝜃𝜃 + 𝜏𝜏0

� 
 

(4) 
 

 

�
𝛾𝛾′
𝜏𝜏′�

= �
(𝛾𝛾 − 𝛾𝛾0) cos𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃
−(𝛾𝛾 − 𝛾𝛾0 )sin𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0 )cos𝜃𝜃

� (5) 

 
Calculation of the New Stress 
 
Once the mathematical transformation is algebraically defined, a function can be chosen to 
describe the stress-strain relationship. In the transformed system we use a biquadratic equation to 
describe the stress:  

 
𝜏𝜏′ = 𝑎𝑎 𝛾𝛾′4 + 𝑏𝑏 𝛾𝛾′2 + 𝑐𝑐 (6) 
 
With a, b, and c coefficients defined by three conditions to control the shape of stress-strain loop 
(Equations 8-10). This function was selected because it gives realistic stress strain loops, while 
being simple. It should be noted that the proposed function is even and that because of the 
rotation, the rotated axes have no meaningful units. However, as shown later, the stress is not 
actually calculated in the transformed coordinate system, only in the initial system, and the 
coordinate transformation is nothing more than a mathematical trick to satisfy desired damping 
conditions. The shape of the function describing a half loop in the transformed coordinate system 
is shown in Figure 2. 
 



 
 

Figure 2.  a) Half loop in the transformed coordinate system, and b) definition of damping 
 
Figure 2(a) introduces the target reversal strain in the transformed system: 

 
𝛾𝛾′𝑖𝑖𝑖𝑖 =

𝛾𝛾𝑅𝑅 − 𝛾𝛾0
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

 (7) 

 
To derive the three coefficients a, b, and c, we define the three following conditions: 

 
𝑓𝑓(𝑥𝑥) = 0 𝑎𝑎𝑎𝑎 𝑥𝑥 = ± 𝛾𝛾′𝑖𝑖𝑖𝑖 

 
(8) 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

𝛾𝛾′𝑖𝑖𝑖𝑖

−𝛾𝛾′𝑖𝑖𝑖𝑖

= 𝐴𝐴 = 𝛾𝛾′𝑖𝑖𝑖𝑖𝐷𝐷𝜋𝜋(𝜏𝜏𝑅𝑅 − 𝜏𝜏0)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 
 

(9) 

 
𝑓𝑓′′(𝑥𝑥) ≤ 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 ∈ −𝛾𝛾′𝑖𝑖𝑖𝑖. . 𝛾𝛾′𝑖𝑖𝑖𝑖 

 
(10) 

 
The Equation 8 ensures that the loop closes, and that the transformed stress is 0 at the target 
reversal point (see half loop on Figure 2(a)). Equation 9 makes sure that the area under the loop 
satisfies the damping curve. The area under the half loop is A. The damping ratio is defined by 
D=2A/(4πB). B is the area of the triangle shown on Figure 2(b) and is equal to: 

 

𝐵𝐵 =
(𝜏𝜏𝑅𝑅 − 𝜏𝜏0) ∗ (𝛾𝛾𝑅𝑅 − 𝛾𝛾0)

2
 (11) 

 
Equation 9 is obtained by plugging Equation 7 in 11. The damping ratio D is linearly 
interpolated from the input damping curve with the strain axis being a logarithm scale, based on 
the equivalent shear strain level: 

 

𝛾𝛾𝑒𝑒𝑒𝑒 =
|𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿|

2
 (12) 

 

a) b) 



If the loading is symmetrical then γL =-γR, and the strain used to calculate D is simply 𝛾𝛾𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. 
Equation 10 ensures that the curve is concave rendering a more realistic shape to the stress-strain 
curve. A bi-quadratic equation has maximum two inflection points where 𝑓𝑓′′(𝑥𝑥) = 0, that are 
symmetrical with respect to the y-axis. If we force the inflection points to be at ±γ’in then the 
condition is automatically satisfied. Equations 8, 9 and 10 reduce to the following system of 
equations: 

 
𝑎𝑎 𝛾𝛾′𝑖𝑖𝑖𝑖

4 + 𝑏𝑏 𝛾𝛾′𝑖𝑖𝑖𝑖
2 + 𝑐𝑐 = 0 

 
(13) 

2
5
𝑎𝑎 𝛾𝛾′𝑖𝑖𝑖𝑖

4
+

2
3
𝑏𝑏 𝛾𝛾′𝑖𝑖𝑖𝑖

2 + 2𝑐𝑐 = 𝐷𝐷𝜋𝜋(𝜏𝜏𝑅𝑅 − 𝜏𝜏0)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 (14) 

12𝑎𝑎 𝛾𝛾′𝑖𝑖𝑖𝑖
2 + 2𝑏𝑏 = 0 (15) 

 
This system of equations can easily be solved using matrices to obtain the coefficients a, b, and c 
that satisfy the three conditions. Combining Equations 4, 5, and 6, a relationship between strain 
and stress can be derived in the original coordinate system: 

 
𝜏𝜏 = [(𝛾𝛾 − 𝛾𝛾0) cos𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃] sin𝜃𝜃 + [𝑎𝑎((𝛾𝛾 − 𝛾𝛾0) cos𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃)4 +
𝑏𝑏((𝛾𝛾 − 𝛾𝛾0) cos𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃)2 + 𝑐𝑐] cos𝜃𝜃 + 𝜏𝜏0  (16) 

 
In this equation everything is known except the stress τ. To solve this equation we use the 
Ridders’ Method (Ridders 1979), an algorithm based on the false position method in which 
convergence is guaranteed as long as the two initial guesses lie on each side of the root. This is 
satisfied by using the stress at the previous time step and the target stress point as initial guesses. 
Convergence is ensured independently of the amplitude of the strain increment. Other methods 
converge more rapidly (e.g., Newton-Raphson), but are not always able to converge upon the 
desired root. Ridders' method cannot fail once the root is bracketed, and converges more quickly 
than the bisector method. 

 
Asymmetrical Loading 

 
The previous section describes the constitutive equations of the model and introduces the notion 
of target and previous reversal points, respectively (γR,τR) and (γL,τL). When the loading is 
symmetric, the previous point is the maximum reversal stress-strain point and the target point is 
the opposite of the maximum reversal stress-strain point. In this section we present how (γR,τR) 
and (γL,τL) are selected from a vector of possible values when the loading is asymmetrical. The 
vectors of stress and strain reversal points update in a similar fashion. For the sake of brevity we 
only present the procedure to update the strain vectors.  
 
The model keeps track of the reversal points in vectors containing the possible values of the 
target and previous reversal points. When reversal occurs, the direction of the strain increment 
changes, and the previous reversal point becomes the target reversal point while the current 
reversal point becomes the previous reversal point γL. When the current strain is greater than the 
target reversal strain (γR), the target reversal strain becomes the next reversal point in the 



direction of loading. The previous reversal point is also updated, and taken at the next reversal 
point in the opposite direction of loading. When the points are updated without change of 
direction of loading, the previous values are deleted from the vectors of possible values. Figure 3 
presents an example of how the previous and target reversal points are selected. 
 

 
 

Figure 3. Evolution of the reversal strain vectors 
 

Performance of the Model 
 
Influence of Strain Increment Amplitude 

 
As mentioned earlier, the model is able to predict the correct stress for any strain increment. 
Figure 4 presents the prediction of the model for a sample of clay subject to sinusoidal loading at 
different strain levels. The target damping and modulus reduction curves are calculated from 
Darendeli for a soft clay with the following characteristics: PI=40, σ’v=47.5 kPa, γ=15 kN, 
Vs=80 m/s, OCR=1.15 K0=0.5. The modulus reduction is also modified following the procedure 
of Yee et al. (2013), to match a target undrained strength (Su) of 17 kPa. The transition strain 
was set to 0.03%. The target curves are presented on Figure 5. Figure 4 shows that predictions 
for a cycle defined by 20 points lie exactly on the curves described by 200 points, at every strain 
levels. This is because the stress is calculated directly as a function of the current strain and does 
not depend on the amplitude of the strain increment. Figure 4(a) also illustrates how hysteretic 
damping is introduced at low shear strain level where the soil does not exhibit any modulus 
reduction. 
 



 
 

Figure 4. Comparison of the predictions of the model for cycles defined by 20 and 200 points at 
strain levels of (a) 0.001%, (b) 0.1%, (c) 10%. 

 

 
 

Figure 5. Hysteretic damping curves predictions of different models for a clay PI=40 
σ’v=47.5 kPa, γ=15 kN, Vs=80 m/s, OCR=1.15 K0=0.5. 

 
Comparison with Existing Models 

 
Figure 5 is a comparison between our model and different existing model: MRDF UIUC used in 
Deepsoil (Phillips and Hashash 2009), the PressureIndepMultiYield (PIMY) Model in OpenSees 
(Elgamal et al., 2003), and Masing’s rules. The target curves were the same as described 
previously.  
 
Neither the PIMY nor MRDF UIUC model capture small-strain hysteretic damping. Small strain 
damping is typically modeled using Rayleigh damping, which is either frequency-dependent 
(i.e., two-point Rayleigh damping in OpenSees) or computationally demanding (frequency-
independent damping in DeepSoil).This results in a pretty close match of the damping curve. Our 



coordinate transformation model perfectly matches the damping curve, at all strain levels. This 
avoids the need for Rayleigh damping, and also avoids over-damping at high strain that is 
associated with Masing's rules. 

 
Conclusions 

 
A new unloading and reloading rule uses a coordinate transformation approach to precisely 
match a desired modulus reduction and damping curve, regardless of the amplitude of the strain 
increment. The model captures small-strain hysteretic damping, thereby eliminating the need for 
Rayleigh damping, and it does not over-damp at high strain, which is a well-known problem 
associated with Masing's rules. The model is well suited for 1D site response analysis, though it 
is not yet implemented in a site response code. Furthermore, a multi-axial generalization could 
permit the model to be used in 2D or 3D numerical simulations. Implementation and extension of 
the model is reserved for future publications. 
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