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Workshop— 
Agent-Based Modeling of Complex Spatial Systems 

 

April 14-16, 2007 

Santa Barbara, CA 

Over the past few years two research communities have developed more-or-less independently: the community 
of agent-based modelers of spatial systems on the one hand, and the community interested in the representational 
and computational aspects of complex dynamic systems on the other.  
 
As part of the joint US National Science Foundation–UK Economic and Social Research Council Special 
Activity in the Area of E-Science, the University of California, Santa Barbara and University College 
London received funding for a workshop of approximately 30 participants. 

The event was hosted by the National Center for Geographic Information and Analysis (NCGIA) and UCSB 
at the Upham Hotel in Santa Barbara, California. The workshop followed the traditional format of a specialist 
meeting of the NCGIA, combining presentations with plenary and small-group discussions.  

Presentations 

Session I: Representation in and of Complex Spatial Systems  

David Bennett, University of Iowa 
May Yuan, University of Oklahoma 
Discussant: Georgios Theodoropoulos, University of Birmingham 

Session II: Modeling Complex Spatial Systems  

Mike Worboys, University of Maine 
Marina Alberti, University of Washington 
Discussant: Nigel Gilbert, University of Surrey 

Session III: Validation and Verification of ABMs  

David O'Sullivan, University of Auckland and Mark Gahegan, Penn State  
Dawn Parker, George Mason University 
Discussant: Mike Batty  
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Modeling Complex Urban Landscape Dynamics: 
A Pattern-Oriented Hierarchical Approach  

Workshop on Agent-Based Modeling of Complex Spatial Systems 

Santa Barbara April 14-16, 2007 

Marina Alberti 
Department of Urban Design and Planning  

University of Washington 
 
As complex dynamic systems, urban landscapes emerge from the local interactions of 
socioeconomic and biophysical agents and processes. These complex systems are highly 
heterogeneous, spatially nested, and hierarchically structured (Wu and David 2002). They are 
prototypical complex adaptive systems, which are open, nonlinear, and highly unpredictable 
(Levin 1998, Portugali 2000, Gunderson and Holling 2002). Patterns emerge from numerous 
locally made decisions involving multiple human and biophysical agents interacting among 
themselves and with their environment. These agents are autonomous, adaptive and change their 
rules of action based upon new information. Interactions within this complex domain between 
agents and processes are scale dependent.  
 While important progress has been made in modeling complex human and natural 
systems, the ability to simulate emergent behavior in ways that reasonably capture patterns 
observed in urban landscapes remains a significant research challenge. One major challenge in 
modeling urban landscape dynamics is in representing explicitly the human and biophysical 
agents at a level of disaggregation that allows us to explore the mechanisms linking patterns to 
processes (Portugali 2000). A second challenge in modeling the interactions between human and 
natural systems is that many factors operate simultaneously at different levels of organization. 
Additionally, since urban landscapes are spatially heterogeneous, changes in driving forces may 
be relevant only at certain scales (Turner et al. 1995). Yet our current understanding of the 
interactions between spatial scales is limited. Simulating the behavior of urban landscapes 
requires not only an explicit consideration of the temporal and spatial dynamics of these systems, 
but it also requires identifying the interactions between human and biophysical agents across the 
different temporal and spatial scales at which various processes operate. 
 A new Biocomplexity research project at the University of Washington (UW) and 
Arizona State University (ASU) aims to develop a new framework for modeling the complex 
coupled human-natural system dynamics of Seattle and Phoenix metropolitan areas.* We 
propose a pattern-oriented hierarchical approach to model how complex agent-based interactions 
generate landscape patterns at multiple temporal and spatial scales. We hypothesize that 
similarly to other ecosystems described by Scheffer et al. (2001), in urban landscapes changes 
from one state (characterized by a set of processes) to another (characterized by a new set of 
processes) can be triggered either by the action of slowly changing variables or by relatively 
discrete shocks. We hypothesize that urban landscapes are spatially nested hierarchies in which 
the hierarchical levels correspond to structural and functional units (Wu and David 2002). Using 
a hierarchical modeling approach we aim to identify the structural and functional units at distinct 
spatial and temporal scales of human and biophysical processes and specify the agents and rates 
of processes that characterize and distinguish the levels in the hierarchy. The hierarchical patch 
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dynamics perspective emphasizes both the vertical structure (linkages between scales or 
organizational levels) and horizontal structure (spatial patterns) of the urban landscapes (Wu and 
David 2002). This perspective allows for a more realistic representation of the relationships 
among patterns, processes, and scales that lead to emergent properties of heterogeneous urban 
landscapes.  
 We specify this model using a spatially explicit, agent-based approach. The model will 
incorporate the hierarchical patch dynamic modeling approach: such a strategy allows an explicit 
representation of the nested organizational hierarchies present in human-biophysical systems and 
thereby provides an elegant means of understanding the interconnections between hierarchical 
levels. We implement this approach using a hybrid method that integrates dynamic probabilistic 
relational model (DPRM) and an agent based model. Using DPRM, parameters and spatial rules 
are estimated empirically from two longitudinal land cover and land use data sets developed for 
the Seattle and Phoenix Metropolitan Areas. 
 
 
*For a description of this project see: BE/CNH: Urban Landscape Patterns: Complex Dynamics 
and Emergent Properties. Alberti, M. (PI), Wu, J., Redman, C., Marzluff, J., Handcock, M. 
Anderies, J. M., Waddell, P., Fox, D. and H. Kautz. NSF Biocomplexity 2005-2009. 
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and Natural Systems. Island Press, Washington , DC 
 
Levin, S.A. 1998. Ecosystems and the biosphere as complex adaptive systems. 
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Personal perspectives on ABM:  

Development of the Pseudo-history Approach 

Li An 

Questions: Sampling is a fundamental way to collect data for scientific investigations in 
various disciplines. For instance, scientists have been employing sampling data to test 
hypotheses, investigate new phenomena, and establish new theories. However, people 
have seldom, if ever, asked questions regarding the geographic size of the sampling 
frame, the time span of data collection (for longitudinal studies), and the frequency of 
data collection. Decisions related to these questions are usually made based on the 
researcher’s experiences, data availability, or “common sense” without exploring whether 
the relationships under investigation can be captured by data collected using the chosen 
sampling strategy. An example in Geography is that researchers choose spatial data sets 
(e.g., satellite images) of their study site over a certain time span and at a certain time 
interval, which are largely decided by factors such as costs and availability of the data. 
This lack of examining the match between the extent, scale, and rate of the real processes 
(often not directly observable) under investigation and the corresponding sample strategy 
may substantially undermine the validity of the subsequent analysis and findings. Many 
reasons may account for this problem, such as uncertainties in the processes and the 
related system structures of interests, difficulties in observing and quantifying the spatial 
and temporal scales of some phenomena, and costs of data collection in some large areas, 
over long time, and at short time interval. 

Justification: The advent of fast computers in the last decades and advancement in 
software have brought forward new opportunities to address the above sampling strategy 
questions using agent-based spatial models. Rather than solely depending on real data 
that are sometimes subject to the above constraints, researchers can use computers to 
generate an artificial digital “world”, and let whatever processes of scientific interests 
proceed on this ‘world”. Theories, experiences, and hypotheses could be used to guide or 
affect the directions, strengths, and interactions of such processes. The emergent patterns 
on the artificial world, sometimes unexpected and surprising, may arise from the 
behaviors of many agents (autonomous entities or objects that have goals, some degree of 
knowledge, and actions), the interactions among themselves, and their relationships with 
the environment(s). This type of “realistic” mapping of real-world entities and processes 
onto a computer model facilitate a totally new scientific investigation in comparison with 
traditional analyses based on empirical data: computational simulation. A digital artificial 
laboratory can be constructed to take major relevant entities and processes under certain 
research objectives and eliminate unimportant details and noises, thus reducing 
uncertainties, difficulties, costs, which would otherwise prohibit many data collection, 
analysis, and scientific investigation activities. Thus Computational simulations 
undoubtedly will bring a new era in addressing the above questions relating to the match 
between the extent, scale, and rate of real processes (but often not directly observable) 
and our sampling strategy.  

Because the researcher controls the processes that underlie the observable patterns 
through setting the parameters or choosing the algorithms, we can freely choose varying 
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sampling strategies by setting the simulation time frame, automating sampling at the 
designated intervals, and choosing a certain geographic area within our artificial world. 
Analyzing data obtained through such strategies with the knowledge of the processes 
ongoing should be able to reveal the effectiveness of different sampling strategies. 
However, such a crucially important area has seldom, if ever, been touched. For instance, 
a web of science search under this combination of key words “(sample or sampling) and 
(artificial world or computational simulation)” resulted in two irrelevant records (this 
search is not exclusive, but may be still suggestive). 
 
The pseudo-history ABM approach: A new approach developed by An and Brown (in 
preparation); see CV, the pseudo-history analysis, can be used as a socio-environmental 
laboratory that accommodates all the sampling strategy related needs, conduct computer-
based experiments, and advance scientific research related to the effectiveness of 
sampling strategy. The current pseudo-history model encapsulates a hypothetical 
“landscape” that is available for human residence and service center development at the 
beginning. The “landscape” can vary by size, and several variables (parameters) control 
its environmental and socioeconomic features such as soil quality and distance to service 
center. As time goes on, i.e., as computer internal clock moves, “homebuyers” (computer 
objects) with various characteristics and preferences (parameters) enter the “landscape”, 
evaluate different locations (controlled by algorithms and equations) as candidate 
locations, and choose locations that meet their objectives of maximizing residence utility.  
 
Given such a hypothetical “landscape” and the residence-choice related processes on it, 
the following tasks can be implemented in order to achieve the above objectives: (1) 
further verify the current model, including debugging, (2) let some residence decision-
related parameters correlat with changes in the environmental or socioeconomic 
parameters, (3) add new features to the model, such as letting the residence-choice and 
land-use processes have higher correlation with time and space, automating the model in 
taking samples at varying sizes, spans, and time intervals, and writing the sample results 
in appropriate formats, and finally (4) examine what sampling strategies in relation to 
geographic sampling frame, sampling span, and sampling interval would best disclose 
model inputs that have generated the sample data. Furthermore, because the researcher 
knows the true mechanisms ongoing and their temporal/spatial scales (established as 
parameters and rules in the ABM), and thus many uncertainties are removed, the pseudo-
history approach can be used to test what statistical methods can best detect the 
underlying rules accommodated in the ABM.  
 
Significance: This approach is significant for several reasons. First, it explores the 
effectiveness of varying sampling strategies, which would benefit scientists who use 
sampled data regardless of what fields they come from. Second, it will advance methods 
and theories of the Geocomplexity, an increasingly recognized field that connects 
Geography, computer science and engineering, and complexity science, witnessing 
tremendous applications in many theoretical and empirical studies. Last, this approach 
will add crucial components to a spatial modeling and simulation curriculum, and give 
graduate students invaluable experiences in computational modeling and simulation. 
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NSF/ESRC Agenda Setting Workshop on 
Agent-based Modelling of Complex Spatial Systems 

 
Richard Aspinall 

Macaulay Institute, 
Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK 

r.aspinall@macaulay.ac.uk 
 

Land-use change as an application that challenges capabilities in agent-based 
modelling and spatial simulation 

 
 
Modelling and analytical needs of the science land-use and land-cover change present 
some demanding challenges to agent-based and spatial modelling methodologies. Land-
use change is increasingly recognised as an emergent property of interactions of 
coupled natural and human systems operating as a complex adaptive system (Stafford-
Smith and Reynolds, 2002; Lambin et al, 2003). Land-use and land-cover change have 
been related to a variety of direct (proximate) and indirect (underlying) factors1 (Geist 
and Lambin 2002, 2004).  Observed changes are associated with i) multi-factor 
explanations, including interaction between factors, ii) complex local- and regional- 
scale institutional and individual decisions, themselves related to national- to global- 
scale opportunities associated with new technologies as well economic and other 
policies, and iii) historical contingency, reflecting development and transition of 
underlying and proximate factors over time and producing both path dependence and 
non-stationarity in change (Aspinall, 2004). Additionally, the meta-analysis of case 
studies of land-use change by Geist and Lambin (2002, 2004) shows that no universally 
applicable (in space or time) policies or practices for policy-level direction of land-use 
change are found, and that a detailed understanding of change at a given location is 
required to evaluate place- and time- specific patterns of change.   
 
Explanation and modelling of change based on driving factors has served reasonably 
well, both as a basis for comparison across an international suite of case studies and for 
identifying important sets of influences on land-use change.  However, for improved 
understanding and ability to analyse and model land-use change a factor-based 
approach must be expanded to include explicit recognition of processes that produce 
change.  Natural system processes influencing land-use change include a set of 
processes concerned with soil, climate, ecosystems, and hydrology and there has been 
considerable progress in coupling environmental process models to GIS for scientific 
study of natural systems at spatial scales from local to global and time scales from short 
to long.  The human system processes influencing land-use change reflect a complex 
set of individual, group, and institutional decision-making; there are fewer models of 
these processes despite efforts in economics, and an increase in agent-based modelling 
as a mechanism for addressing decision-making processes. 
 
These qualities of systems of land-use and land-cover change indicate some of issues 
that agent-based and spatial models need to be able to address to i) improve 
understanding of processes producing change, ii) model change, and iii) improve our 

                                                 
1 Underlying factors include demographic, economic, technological, policy and institutional, cultural 
factors (Geist and Lambin, 2002, 2004) 
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ability to predict change and project into the future.  Two general requirements relate to 
the observation that there are no universally applicable policies or practices for 
direction of land-use change: 
 

1. Place-based analysis and models are necessary for understanding land-use 
change.  The capabilities of GIS to support place-based analysis and modelling 
provide a foundation for this. 

 
2. Time-based (including historical context and contingency) analysis and 

modelling are necessary for understanding land-use change.  Modelling 
methodologies and technologies thus need to be able to include characteristics 
of temporal context and contingency explicitly.  This complements the need for 
place-based analysis to provide models that can adequately reveal local 
responses to change. 

 
In the context of agent-based models that address individual, group and institutional 
issues, including decision-making processes, which operate primarily within the set of 
factors associated with the human systems component of land-use change I identify 
three related needs: 
 

1. Agent-based models are needed that can represent individual, group, and 
institutional decision-making, and their interaction, in the context of larger scale 
economic and other (e.g. technological) opportunities and policies.   

 
2. Management of the spatial representation of landscapes linked to an agent-based 

model such that the spatial extent, behaviour, and actions of individual agents 
are adequately located in space.  This includes using GIS to provide spatial 
context and identify neighbours for ‘geographic agents’ in order to provide 
potential for peer-group interactions, diffusion of innovation, and shared or 
common decisions or responses that influence land-use change. 

 
3. Management of the temporal resolution of agent-based models in relation to the 

temporal application and behaviour of the entity being represented as an agent.  
For example, many economic policies or technological opportunities effectively 
operate as constants over some period of time, yet individual, group and 
institutional responses to these policies and opportunities evolve and otherwise 
change over time. 

 
 
 
 
Aspinall, RJ (2004) Modelling land use change with generalized linear and generalized additive models – 

a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana.  Journal of 
Environmental Management, 72, 91-103 

Geist, HJ and Lambin, EF (2002)  Proximate causes and underlying driving forces of tropical 
deforestation.  BioScience, 52, 143-150 

Geist, HJ and Lambin, EF (2004)  Dyanamic causal patterns of desertification.  BioScience, 54, 817-829. 
Lambin, EF, Geist, HJ, and Lepers, E (2003)  Dynamics of land-use and land-cover change in tropical 

regions.  Annual Review of Environmental Resources, 28, 205-241.  
Stafford-Smith, DM and Reynolds, JF (2002)  Desertification: a new paradigm for an old problem.  In: 

Global Desertification: Do Humans Cause Deserts?  Reynolds, JF and Stafford Smith, DM (Eds), 
Berlin: Dahlem University Press, 387-401. 
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NSF/ESRC  Agenda Setting Workshop on Agent-Based Modeling of Complex 
Spatial Systems: April 14-16,  2007 

 
Evaluating Agent-Based Spatial Models 

 
Michael Batty, CASA, UCL 

 
 
I am interested but worried about the development of this relatively new class of models 
which tend to fight against very long standing principles in science that seek for 
simplicity in abstraction and application. Agent-based models (ABM) have developed for 
spatial systems through advances in computing that enable distinct objects to be defined 
with respect to their behaviours which in turn suggest that much more highly 
disaggregate systems can be represented than hitherto. The fact that ABMs are defined 
with respect to behaviour implicitly means that such models are temporally dynamic and 
this too increases the richness of these models in terms of the variability of the systems 
that are being simulated. Spatial data too is being acquired at ever finer spatial and 
temporal scales and is making possible the development of richer models structures of 
which ABMs are typical. 
 
I consider that the workshop should spend time discussing various types of ABMs, 
defining different types at different levels of object specification, scale, and spatio-
temporal disaggregation. Not all ABMs are equated with large scale data requirements 
that are hard to meet and thus there may be model types that do not conflict with the 
hallowed canons of parsimony that have defined the scientific method and the model-
building process hitherto. Moreover we need to consider ABMs that are not designed to 
mirror a reality in terms of religiously simulating an observed system. Some models are 
designed for much more general purposes in terms of defining baselines, structuring data, 
and enabling hypothesis generation, and thus we need to be clear about the purpose for 
which particular models are being built. 
 
My own view is that most ABMs are being developed for purposes that are similar to 
those for which models in the social science have traditionally been constructed: for 
making predictions that inform policy in the future, although there is a distinct subgroup 
of such models that are focussed on the past and these tend to break this symmetry1. In 
fact, where ABMs do not work very well in terms of their generating predictions that are 
close to the reality they seek to simulate, the purpose for which they are initially defined 
tends to change to less ambitious aims. What has clearly happened however is that as new 
types of models such as ABMs have emerged over the last 20 years, the whole process of 
confronting models with reality through observational data, has been elaborated. Here we 
will refer to the process of matching the model against reality and theory as ‘evaluation’ 
which will include different aspects of this confrontation which are called verification, 
validation, calibration, confirmation, falsification, prediction, and accreditation. 
                                                 
1 van der Leeuw, S. E. (2005) Why model? Cybernetics and Systems, 35, 117-128. 
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Accreditation we can probably dispense with as it involves the extent to which the model 
comes from credible sources, although there is always the prospect of models emerging 
from outside the scientific establishment.   
 
If a model is designed to predict some reality, then the only unique test that is acceptable 
is one in which the model’s predictions are compared with observations that are entirely 
independent of the information used in constructing the model in the first place2. If a 
model is fitted to an existing set of data which contains variables that are defined as 
inputs and outputs with the model being based on associations between these inputs and 
outputs, the fact that the model predicts the outputs correctly from the inputs is not an 
acceptable test of the model’s quality as the data used is not independent. The only 
acceptable test would be for the model to be used on another set of data which is judged 
to be independent of the data set in question. In terms of spatio-temporal models, this 
data set should be at a different time in a different space. Even models that are fitted to a 
space at time t and generate predictions for the same space at time t+1 are unacceptable 
for the data is not completely independent. In fact in spatio-temporal systems, this is an 
extremely hard criterion to follow and it can damn entire classes of model in terms of 
determining their predictive abilities. Although this is often confused with verifying a 
model, we call this process of testing a model’s predictions against an independent set of 
observations validation. The process of fitting a model to the data set around which is has 
been designed is in fact called calibration which is akin to statistical estimation in that 
this is the way the unknown parameters are determined which fine tune the model to a 
real situation. In fact, the process of validation and calibration might be one and the same 
in that what this implies is that at least two sets of data are needed, one on which to 
estimate the model and one on which to gauge its predictions from these estimations. 
Sometimes a single data set is partitioned into two, with estimation occurring on one and 
validation on the other. Sometimes it is said that the model is trained to the first subset so 
that when trained it can be used to predict the second subset of data. 
 
The process of verification is defined here as one in which the model’s assumptions and 
construction is checked for consistency and plausibility. A good definition by Miser and 
Quade3 is “…the process by which the analyst assures himself and others that the actual 
model constructed is indeed the one he intended to build”. They also contrast with the 
definitions of validation as “…the process by which the analyst assures himself and 
others that the model is a representation of the phenomenon being modelled that is 
adequate for the purposes of the study…”.In short, verification consists in generating 
some sense in which the model is consistent with theory, produces logical results, and is 

                                                 
2 Manson, S. M. (2007) Challenges in Evaluating Models of Geographic Complexity, 
Environment and Planning B, 34; forthcoming. 
http://www.envplan.com/contents.cgi?journal=B&volume=forthcoming  
3 Miser, H. J. and Quade, E. S. (1988) Validation, In Hugh J. Miser  and Edward S. 
Quade (Editors) Handbook of Systems Analysis: Craft Issues and Procedural 
Choices, North Holland, New York, 527-565; quoted in Hodges, J. S. (1991) Six (or So) 
Things You Can Do with a Bad Model, Operations Research, 39, 355-365. 

Agent-Based Modeling of Complex Spatial Systems US NSF / UK ESRC Special Activity E-Science

Santa Barbara, California April 14-16, 2007 10

http://www.envplan.com/contents.cgi?journal=B&volume=forthcoming


appropriate to the problem being explained. These issues also appear during validation  
but it is possible to verify a model without validating it and vice versa. 
 
In validation which involves comparing model outputs and independent observations, 
model predictions might be confirmed or falsified. In fact, this process is always 
ambiguous for there is always uncertainty in the data which confronts the model, and 
there is always uncertainty in calibration. In short, predictions are never perfect and thus 
there are important value judgements to be made in the process of validation. For ABMs, 
the balance of calibration, verification and validation needs to be explored in 
considerable detail for models which lack parsimony as most ABMs do, contain 
assumptions and processes that cannot be compared against data, and thus the balance 
between verification and validation is different from those model processes and outputs 
which an be so compared with data. In discussion, I hope we will introduce various 
examples that illustrate these difficulties. From my own work and some of my associates, 
I will show how models of local movement where actual behaviour can be hypothesised 
quite plausibly but rarely observed in terms of individual movements defy full validation, 
and require less than best strategies to be designed for their evaluation.4 
 
Many of the models that we will discuss at this workshop cannot be validated in the 
traditional sense and this requires us to be very clear as to the purposes for which they are 
constructed. Hodges and Dewar5 define several distinct reasons for building models that 
cannot be validated and these revolve around notions of using model for ‘book-keeping’, 
for selling an idea, for training, for management, for communication, for strengthening 
arguments, and for generating new theory and hypotheses. I am particularly intrigued by 
the class of agent based models that deal with disaster management such as those dealing 
with crowding where the models are potentially near to full validation but the 
circumstances of such validation may not be repeatable – i.e. disasters – and are certainly 
not ethically desirable to be repeated. These events are also conditioned by extreme 
control and this makes their observation unstable through time. Helbing’s work6 on the 
disasters at the Hajj, the Pilgrimage to Makkah, count amongst these examples. I would 
be fascinated in what the balance of opinion on these questions is amongst our expert 
group as I imagine that this will depend as much in disciplinary perspective and on the 
extent to which we consider our models as being central to policy-making.  
 

                                                 
4 Batty, M.,  Desyllas, J., and Duxbury, E. (2003) Safety in Numbers? Modelling Crowds 
and Designing Control for the Notting Hill Carnival, Urban Studies, 40, 1573-1590. 
5 Hodges, J. S., and Dewar, J. A. (1992) Is It You or Your Model Talking? A Framework 
for Model Validation, RAND Corporation, R-4114, Santa Monica, CA. 
6 Helbing, D., Johansson, A., and Al-Abideen, H. Z. (2007) The Dynamics of Crowd 
Disasters; http://arxiv.org/pdf/physics/0701203; and 
http://www.trafficforum.org/crowdturbulence  
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Issues of Representation and Interpretation for Agent-based Models of Complex Adaptive Spatial 
Systems 
 
David Bennett, Department of Geography, The University of Iowa 
 
What we know of the world around us is, in large measure, the product of reductionist science.  The basic 
tenets of this approach tell us that truth can be found through an understanding of individual system 
components; a system is the sum of its parts.  While this approach served us well through much of the 20th 
century, many scientists now believe that a reductionist approach alone is insufficient for the study of 
natural and social systems.  These scientists promote a new approach based on complexity theory and 
complex adaptive systems (CAS) that is focused as much on the linkages among system components as 
the components themselves; a science where the underlying assumption is that a system can be more than 
the some of its parts.   Traditional scientific methods, however, are often ill-suited to the study of complex 
systems characterized by feedbacks and non-linear dynamics, path dependency, adaptation, cross-scale 
interaction, self-organization, emergent behavior, and dissipative processes.   Agent-based modeling 
(ABM) has been highly touted as an appropriate technique for the study of complex adaptive spatial 
systems (CASS).   
 
My interests in ABM for CASS lie primarily in the representation of intelligent, mobile, spatially-aware, 
and adaptive decision-makers.  More specifically, my research has been focused on how individuals make 
decisions about: 1) land use, land cover, and associated management strategies; 2) how to navigate across 
uncertain and risky landscapes (elk in this situation); and 3) how to organize to effect change in policies 
that, in turn, effect changes in the production of ecosystem services.  Linking all three of these projects 
are underlying questions about how landscape structure emerges from individual and localized action and 
how feedback mechanisms link multiple social or spatial scales.  Gaining an understanding of landscape-
scale processes through the use of ABM presents significant challenges for the representation of spatially-
aware cognitive agents and in the interpretation of model results.  These challenges must, in my opinion, 
be addressed before ABM will meet our high expectations for the study of CASS.  In the following 
discussion I lay out some of these challenges in greater detail. 
 
Representational challenges 
Two related and significant challenges for the development of ABM for CASS are the representation of 
cognition and context.  Complexity is often discussed in terms of self-organization and emergent 
behavior; behavior driven, in part, by adaptive processes.  For humans (and presumably other higher order 
animals), short-term adaptation requires cognition.  Research is needed on how to represent and 
implement cognitive processes (learning, reasoning, and memory) in ABM for CASS.  For example, 
spatial decision-making is often a collaborative, multi-objective, and semi-structured process supported 
by limited and uncertain knowledge.   Agents built to support the simulation of CASS might, therefore, be 
required to learn to: 1) manage spatial resources under uncertainty; 2) organize, compromise, and 
collaborate to reach individual or societal objectives; and 3) minimize risk and maximize opportunity.   
“Hard-coding” these behaviors into a system is likely to lead to what Holland (1986) has referred to as 
“brittleness” and a failure to capture complex behavior.  Unique to the simulation of spatial systems is the 
need to represent spatial cognition.  Learning safe routes through a landscape may require, for example, 
the digital equivalent of cognitive maps that agents learn, store, reference, and adapt to changing risk 
surfaces.  While there has been a significant amount of work done in machine learning for more 
simplified environments (e.g., robotics), little of this kind of work has found its way into models of 
complex adaptive spatial systems.  
 
Cognitive behavior is, generally speaking, derived from a history of contextualized experiences. 
Spatially-aware, intelligent agents must, therefore, connect external stimuli (e.g., resources and threats), 
internal states (e.g., wealth, nutrition, social connections), and the states and behaviors of other agents 
(neighbors, colleagues, competitors) to successful behavior and generalize this knowledge to similar 
situations.  Furthermore, an appropriate spatial response might depend on a particular sequence of events.   
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Context given heterogeneous agents with bounded knowledge about complex spatial systems must, 
therefore, be agent-specific and derived from a spatio-temporal representation.   
 
Interpretational challenges 
When we use simulation we need to know that the model accurately reflects the real-world processes of 
interest and that this model was accurately translated into software.  The goal of complex system models 
is often to explore system-level behavior as it is produced by a large number of interacting and 
heterogeneous agents.  ABM are often large and complicated, which makes model verification and 
validation challenging.  Much has been written about the verification and validation of ABM and, while it 
remains a significant challenge, I will make just two quick comments here.  The first comment (an 
admittedly obvious one) is that the identification and resolution of verification and validation problems 
becomes even more difficult given a virtual system expected to produce complex non-linear, stochastic, 
path dependent, and emergent behavior.  If we accept, for example, an explanation based on complexity 
then we must also accept that an existing spatial pattern is just one realization of many possible 
alternative states.  A model that fails to reproduce the existing state is not, therefore, necessarily in error.  
Similarly, the concept of equifinality suggests that a model that does mimic real-world patterns is not 
necessarily valid (Brown et al. 2006).  Second, the use of ABM in CASS makes most sense when one is 
studying how the actions and interactions of individuals lead to system-level behavior.  Relations among 
individuals or between individual and their environment at a single analytical scale can often be studied 
more directly using other techniques (e.g., a statistical approach).   However, models of adaptive, 
contextually aware agents are complicated and the output difficult to interpret.  How do we prove, for 
example, that the emergent behavior (ignoring for now how this is defined and measured) produced by 
the system is, in fact, generative evidence of real complex behavior, and not an unintended artifact of 
some simplifying assumption encoded into agent behavior?   
 
This brings me to the final issue that I wish to address in this position paper.  If a generative scientific 
approach, like ABM, is to be applied to CASS it must be transparent.  We might expect system dynamics 
to be transparent simply because agent behavior is explicitly encoded, but issues of adaptation, 
equifinality, bifurcation, and divergence, the very behaviors we expect the system to capture, can quickly 
render the modeling process opaque.  It makes sense to build into complex system models the same kinds 
of explanatory tools typically associated with expert systems, but tracking cause and effect for a CASS 
will be considerably more complicated.  Can we determine a priori what an important event in an ABM 
simulation looks like?  When, for example, is the variation in the state of some modeled component 
unimportant noise and when does it signal a bifurcation point?  Building into ABM the ability to trace 
back through model output to gain an understanding of how a system got to where it did is likely to prove 
challenging, but it seems imperative that we do so if we are to make strong claims about our 
interpretations of model results.  The first step toward such a capability might be the construction of the 
kinds of cognitive and spatio-temporal data representations discussed above. 
 
Final thoughts 
Given the challenges associated with cognition, context, and model interpretation, what conclusions can 
be drawn from ABM about complex spatial systems?  A goal of statistically valid models of real world 
processes seems a ways off and, perhaps, even misguided.  Perhaps the greatest value of agent-based 
models for complex adaptive spatial systems lies in the questions that they require us to ask about system 
behavior, the way that they require us to conceptualize system structure, and the opportunities that they 
provide for us to explore plausible outcomes and search for robust decisions. 
 
Brown D.G., Aspinall, R., Bennett, D.A. 2006. Landscape Models and Explanation in Landscape 
Ecology—A Space for Generative Landscape Science?  The Professional Geographer, 58(4): 369–38. 
 
Holland. J.H. 1986. Escaping brittleness: The possibility of general-purpose learning algorithms applied 
to parallel rule-based systems, In: Machine Learning, an Artificial Intelligence Approach, Morgan-
Kauffman, vol. 2. 
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We are interested in the physics of cyberspatial objects (events, agents, processes) whose behaviors unfold in 
cyberspace, a manifold where geospatial, infospatial and temporal indices are required to distinguish one object 
from another and, for a given object, one state from another.  Consequently, we propose a cyberspace-time (CST) 
reference framework for describing the dynamics of cyberphysical systems (CPS).  A CPS is an information system 
(object, intelligent agent or event) whose behavior is defined in geospatial, infospatial and temporal terms.  A CPS is 
responsible, in whole or in part, for observing and possibly reacting to cyberphysical events.  As such it may be an 
observer-controller of other CPS, in client-server (peer-peer) or parent-child (superior-subordinate) configurations.  
CST is the cyberspatial analog of the classical space-time reference frames found in Newtonian and relativistic 
physics.   
 

 
Figure 1 – Situation Assessment 

 
Figure 1 expresses graphically the following problem: Two autonomous observers (rational1 cyberphysical systems 
CPSa and CPSb), from their respective independent reference frames, are tasked with monitoring events related to a 
specific geophysical process.  How do they identify, discover, bind to and observe (measure) the same process?  
How do (should) physical processes and their proxies (e.g., sensor and actuator subnets) represent their states and 
behaviors?  How do the independent CPS observations compare; by what metrics?  What differences arise in their 
perception of events when viewed from distinct cyberspatial reference frames?  What are the sources of these 
variations?  How are these variations rationalized?  How are events to be time stamped, sequenced, archived and 
reported (shared)?  
 
These questions, and many others, lead to requirements for a unified cyberspace-time framework, one that relates 
geospatial (physical), infospatial (logical) and temporal dimensions. 

Geospatial References 
The geospatial reference frame is the familiar three-dimensional Newtonian space-time framework (Figure 2), 
adjusted when speeds dictate, for relativistic effects by the Loretnz transformation.  We are concerned with 
cyberphysical systems operating within the Earth’s biosphere (Gaia), a region roughly 9 km above and below the 
Earth’s mean sea level.  Within this region a CPS is tasked with locating, identifying, tracking, reporting on and 
possibly controlling cyberspatial objects (CSO).  Naturally, we require a unified means of logging (cataloging) the 
characteristics and behavior of CSO.  An appropriate repository (database) in turn requires a geospatial schema 
competent to capture both static and dynamic attributes of the enormous population of potential CSO, individually 
and in various combinations.  We therefore require a digital representation of geospace and its contents, a 
requirement addressed by a digital earth reference model (DERM, ref. Figure 3)2. 

                                                           
1 An object is rational to the degree it chooses actions that are in its own best interests, given the beliefs it holds 
about the world, its own capabilities, and the constraints under which it is allowed to operate. 
2 We require a bidirectional conversion between classical Euclidean (Cartesian and Spherical) coordinates and 
DERM coordinates 
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Figure 2 – Geospatial Reference Frames 
 

 
Figure 3 – Aperture 3 Hexagon Tessellations on a Sphere 

 
For reasons beyond the scope of this paper, we chose a particular DERM, one based on the Pyxis innovation3, 
multiple groups of aperture-3 tessellations placed on an icosahedron and Snyder-projected onto a sphere (Figure 
3C).  Each subsequent (higher) resolution is related to the previous according to / 31radius radiusn n= − , with 
alternate tessellations rotated by 30°.  Resolution 0, the coarsest, is based on the 12 vertices of the unfolded 
icosahedron (Figure 3A and Figure 4A).  Each icosahedal vertex defines the center of a pentagon (Figure 3D and 
Figure 4A). 
 
The Pyxis innovation indexing syntax, beginning at Resolution 1, is “AN:N…N”, where “AN” is an alphanumeric 
string identifying a vertex or face value, as shown in Figure 4B, and “N…N” is a numeric string giving the standard 
Pyxis resolution index.  In general, a geospatial address (gsa), expressed in terms of the Pyxis digital earth index, is 
given by 

: :gsa dga dra dea=< >  
 
The Pyxis DERM Global Address ( dga ) specifies the Resolution 1 index “AN.”  The Pyxis DERM Resolution 
Address ( dra ) specifies the higher resolution (>1) indices “N…N.”  And the Pyxis DERM Elevation Address 
( dea ) specifies the thickness (volume) of the cell identified by :dga dra< > . 
 

                                                           
3 The Pyxis innovation, www.pyxisinnovation.com  
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Figure 6A emphasizes our interest in events taking place within the Earth’s biosphere (Gaia), a region roughly 9 km 
above and below the Earth’s surface.  Figure 6B shows the three components of a Pyxis innovation geospatial 
address of a cell at a particular resolution within a hexagonal cone. 
 

01:1

02:003:0 04:0 05:0 06:0

07:0 08:0 09:0 10:0 11:0

12:0

A: B: C: D: E:

F: G: H: I: K:
K: L: M: N: O:

P: Q: R: S: T:

(B) Resolution 1 Tiles

01

0203 04 05 06

07 08 09 10 11

12

(A) Resolution 0 Tiles       
Figure 4 – DERM Indexing 

 
 

 
 

Figure 5 - Nested √3 Hexagonal Tiling ( :dga dra< > ) 
 
 

 
Figure 6 – Identifying Geospatial Cells (Regions with Volume) 

Infospatial References 
Cyberspatial objects are either static (inert) or dynamic (active).  Dynamic objects are enterprising, able to 
communicate, exhibiting both state and behavior.  Static or dynamic objects may be of interest to other dynamic 
objects, independent observers (agents) referred to as cyberphysical systems (CPS).  As diagrammed in Figure 7, 
CPS objects are defined in terms of two complementary functions: (A) the processes (value-added services) through 
which they interact (trade) with other objects—their regulatory (production) control structure—and (B) the internal 
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governance structure through which they regulate their behavior in order to maintain their viability—their 
supervisory command (accountability) structure4. 
 

 
Figure 7 - A Cyberphysical [Agent] System (CPS) 

 

 
Figure 8 - CPS [Agent] Federations 

 
CPS operate in federations (communities if mutual interest, alliances, ecosystems), requiring that each member 
possess unique identity, a means of discovery and the ability to bind with other CPS for the exchange of goods and 
services. As described in Figure 8, a CPS operates in a three-dimensional space, within one or more communities of 
interest (COI), along that community’s horizontal production (supply) chain and along its vertical command (asset) 
chain.  Therefore, its identity requires at least three components, one for each axis.  In the figure, these components 
are identified by indices , ,j k l< > , respectively. 
 

, , , ,j k l federationID prodIndex cmdLevel< >=< >  

                                                           
4 A detailed discussion of the command and control (C2) structures diagrammed here is contained in several papers 
available at http://www.metacomsys.com and in the author’s text Creating Rational Organizations – Theory of 
Enterprise Command and Control, available at http://www.cafepress.com/mcsi.  
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CPSj,k,l represents the object’s name.  In addition to its name a CPS requires unique addresses for its service access 
points (SAP)—ports on the object through which it offers its capabilities (value propositions) to other objects.  For 
identification of service access points we utilize the addressing mechanisms defined in the Internet Protocol version 
6 (IPv6) standard. 
 
Figure 8 diagrams the relation among governance structures of members of a single federated system (A) and a 
multi-federation system (B).  This lattice structure emphasizes roles among CPS members along their respective 
horizontal production and vertical command axes.  The multi-federation system (B) also emphasizes the requirement 
for a CPS operating system (CPOS) that supports agile movement (i.e., context switching, multi-tasking) among the 
demands of multiple federated systems. 
 

 
 

Figure 9 – Replicated CPS Governance Structure 
  
Figure 9 provides a closer look at the governance structure of nCPS , where ( , , )n f j k l= .  The CPS may contain 

one or more subordinate value production processes { , 1.. }i
n nP i K= , each requiring one or more service access point 

addresses.  Typically, a CPS will represent a local subnetwork address space.  Figure 10 represents a CPS structure 
for an enterprise that chooses to distinguish (separate) their intelligence, surveillance and analysis services from 
their command (decision) and control services.  A wide variety of such partitioned service portfolios are possible. 
 
Each i

nP  contains (represents) one or more services of a regulatory control loop.  The set { }i
nP  are governed 

(regulated, synchronized) by E5-E4-E3 command structure elements through its two juxtaposed (counter-balancing) 
feedback loops—the sympathetic (E3-E2-E1-E3) and parasympathetic (E3-E3

*-E0-E1-E3) aspects of the CPS’ 
autonomic nervous system (ANS).  Each E1 Director is the E5-E4-E3 command structure (rotated 45°) for the next 
lower (subordinate) level of command.  Consequently, each E0 ( i

nP ) represents one or more embedded CPS.  This 
counter-balanced and recursive formulation of CPS governance supports a high degree of scalability and the design 
and deployment of reusable service-oriented CPS governance software. 
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Figure 10 – Partitioned CPS Governance Services 
 
An infospatial reference frame is one that provides a unique naming and addressing (indexing) scheme for 
cyberspatial system objects that operate within a specific infosphere.  For our purposes, the highest level 
“containment domain” is an infosphere expressed in terms of addressing conventions defined in Internet Protocol, 
version 6 (IPv6) 5.  Within this domain, a communicating object is represented by one or more IPv6 infospatial 
addresses (ISA).   
 
An ISA is a 128-bit integer identifying one of potentially ~3.4x1038 objects.  A given ISA may have various formats 
and interpretations.  The general format for an IPv6 address provides the first 48 bits for specifying one of ~2.8x1014 
Global Network Addresses (GNA), the next 16 bits specifying one of 65,536 Sub Network Addresses (SNA) and the 
final 64 bits identifying one of ~1.8x1019 possible Service Access Points (SAP) within the subnetwork. 
  

128 48 16 64: :isa gna sna sap=< >  
 
An ISA has two accepted expressions, one a human-oriented text string referred to as a universal resource locator 
(URL) and one a binary (hexadecimal) string as defined above.  URLs are typically in the form 
 

service_protocol://service_host_name.domain_name.domain_extension 
 
For example, a secure web (https) based CPS data acquisition (sensor) service might have a URL of the form 
 

https://sensorID.cpsID.net 
 
This URL would translate (through a Domain Name directory Service, DNS) into a specific Internet address of the 
form 128 48 16 64: :isa gna sna sap=< > . 
 

                                                           
5 Ref. http://www.ietf.org/rfc/rfc2460.txt  
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Temporal References 
Time, in infospace, is by definition relative to one or more network accessible (local or distributed) clocks.  
According to the prevailing Internet time standard6, time in infospace consists of monotonically increasing offsets 
(timestamps) from January 1st, 1900, eight decades prior to the 1979 emergence of the internet network time 
protocol (NTP)7. Time according to NTP and its simpler non-averaging (SNTP) version8, is concerned with the 
relation between times (durations) reported by different network-connected observers (CPS servers) in their 
description events of shared interest.   
 
NTP time is synchronized with Coordinated Universal Time (UTC), the standard used nearly everywhere in the 
world, itself derived from a set of rationalized atomic clocks.  Conceptually, UTC extends into the indefinite past 
and indefinite future. The NTP timescale is defined by a 128-bit register, of which the first 64 bits count seconds 
from the 0h January 1, 1900 (the prime epoch) and the last 64 bits count fractions of seconds.  Timestamps are 
unsigned 64-bit fixed-point integers, with whole seconds to the left of the decimal point and left of the bit 32, 
numbered from the left (big-endian).   Fractions of seconds are to the right of the decimal point.  This format 
represents the 136 years from 1900 through 2036 with a precision of about 200 picoseconds. 
 
As network bandwidth continues to increase and the processors in NTP client and server machines operate at super-
gigahertz clock rates, issues of clock synchronization become critical for the proper coordination of high-resolution 
cyberphysical system applications.  Such synchronization is increaslingly critic for the proper (e.g., causal) 
sequencing, recording and reporting of cyberphysical events (CPE).  

Cyberspace-Time References 
A cyberspatial object is one whose state requires description in both geospatial and infospatial terms.  A dynamic 
cyberspatial object is one whose behaviors unfold in both cyberspace and time.  With the preceding introduction to 
geospatial, infospatial and temporal consideration we now able to turn our attention to the behavior of cyberspatial 
objects and the set of services required of cyberspatial systems in their monitoring and control activities.  Figure 
11A describes graphically a region of cyberspace-time (CST) whose coordinates include a geospatial reference 
(GSA), and infospatial reference (ISA) and a timeline (NTS) established by internetwork timestamps.  A specific 
CPS is assigned by an enterprise to this cell for the purpose of identifying, cataloging, monitoring and possibly 
controlling the dynamic properties of the cell. 
 
The cyberspace-time axes are orthogonal since a value along any one dimension is independent of values along the 
others.  Recall that the GSA and ISA dimensions are each three dimensional.  CST is therefore a seven dimensional 
manifold with boundary constraints determined by the size and allocation of GSA and ISA address components. 
 
Figure 11B shows the trajectory (motion) of a cyberspatial object (event, particle) as it moves in CST from point 

0( )P t  to 3( )P t .  The figure shows parametrically the movement of an object (event) through CST, where the 
sequence of network timestamps (along the NTS dimension) it  is derived from NTP-synchronized clocks. 
 

0 0 1 1 2 2 3 3{ ( ), ( )} { ( ), ( )} { ( ), ( )} { ( ), ( )}gsa t isa t gsa t isa t gsa t isa t gsa t isa t→ → →  
 
We are interested in variations in this trajectory as perceived by different observers (CPS reference frames).  These 
distinct reference frames arise from the relative cyberspatial locations of observers that are focused on specific 
regions of cyberspace-time.   
 

                                                           
6 Ref. RFC-1305, http://www.ietf.org/rfc/rfc1305.txt?number=1305  
7 For a discussion of the history and current status of NTP, see http://www.ntp.org/ 
8 Ref. RFC-4330, http://www.ietf.org/rfc/rfc1305.txt?number=4330   
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Figure 11 – Cyberspace-Time 

 
 
In summary, Figure 12 shows our infospatial observer (agent) monitoring a region of cyberspace.  Many details have 
been omitted for brevity. 
 

 
Figure 12 - Agent (Observer-Controller) Assigned to a Region of Cyberspace-Time 
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Multi-agent systems, mathematical modelling and microsimulation 

 
I consider mathematical modelling and simulation to be both a legitimate intellectual 
exercise, and a practical aid to policy analysis and decision-making.  However to the 
extent that there is an issue revolving around understanding models versus understanding 
systems1, then I am fully committed to the systems camp.  I think it is a cop out to 
produce models which may exhibit all kinds of interesting behaviour under idealised 
conditions which may bear little or no resemblance to real systems.  It concerns me that 
there is a growing swell within the MAS community which perhaps regards questions 
like validation and policy application as faintly grubby and beneath the dignity of the 
simulation modelling community.  These days it is easy to generate models which do all 
sorts of exciting things, and to visualise these models in novel and interesting ways; but it 
remains as difficult as ever to develop models which give real insights about real 
systems. 
 
I am excited by the capabilities of e-Research to provide modellers with access to 
unprecedented riches of both data and simulation  power.  I think these opportunities are 
largely being ignored by the academic community, which remains too easily satisfied by 
proof of concept in relation to problems which are idealised, imaginary or trivial.  For 
example, in relation to complex systems, there is too much rhetoric for my liking on the 
generation of complex behaviour from simple models as opposed to complex behaviour 
from complex models.  It seems to me that much of the excitement about agents is in the 
ability to build models with very complex behaviour from agents with very simple 
behaviour.  As geographers, I believe that the agents in our systems of interest actually 
have quite complex behaviours, whether those agents are consumers, regulators, 
entrepreneurs or whatever.  I think we should be focusing more on realistic social 
simulations which recognise the existence of complexity throughout the (modelling) 
process. 
 
One of my main methodological interests is in microsimulation.  This technique is used 
in a number of large, policy-focused applications, many of them economically driven, 
although ‘spatial microsimulation’ has been emerging as a distinct research sub-theme.  
In these models, individuals and households are represented in great detail, in effect as a 
list of characteristics. These lists are typically generated either by reweighting survey 
sources, or by synthetic estimation from aggregate data.  Behaviours can be added to 
synthetic microdata, for example by linking to meso-level spatial interaction models2.   
                                                 
1 Sayer R A, 1979, "Understanding urban models versus understanding cities" Environment and Planning A 
11(8),  853 – 862. 
2 K. Hanaoka & G. Clarke (2007)  Spatial microsimulation modelling for retail market analysis at the small 
area level, Computers Environment and Urban Systems, xxx (in press).   
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Models with this structure can begin to address difficult aggregation problems, but there 
remains a suspicion that they are overly deterministic.  I am intrigued by the possibility 
that the incorporation of agent driven behaviours within a microsimulation model could 
somehow dramatically enrich the representation of dynamics at the level of individuals 
and households.  I think the workshop would be a good opportunity to explore whether 
there are fundamental methodological mis-matches between the microsimulation and 
agent-based approaches to modelling, or whether these differences are more cultural and 
terminological. 
 
I guess there is another question here about data, which is whether the two modelling 
styles – microsimulation and agents – actually require different types of data, with the 
former focused on ‘statistical data’ of the type readily available from censuses and major 
surveys, the latter needing data of a more ‘behavioural’ orientation, and consequently 
more difficult to access.  This looks to present overlaps into disciplinary and 
methodological domains like sociology, anthropology and ethnography, although 
experience indicates that geographers are well-placed to exploit such multi-disciplinary 
terrain. 
 
These are very real practical concerns, as it is our intention to combine microsimulation 
with agents in the Moses project.  For example, consider the problem of the impact of an 
ageing population on the provision of social services.  From a microsimulation 
perspective, we can look at this problem in terms of transition probabilities, from young 
to old, from healthy to sick, from married to single or widowed, and so on.  But what 
effect does something like a social network have on this process, given that the vast 
majority of social care is provided informally within the context of families and 
neighbourhoods?  Is this something that should be represented with consideration of the 
interaction between individuals as agents? 
 
Another important concern is with the robustness of forecasts from simulations, whether 
agent-based or otherwise.  Since I have argued that policy-relevant models need to be 
calibrated to extensive data sets, this presents obvious problems to predictive modelling 
where ‘data’ relating to the future is clearly much more difficult to come by.  Although 
there are many potential strategies for the evaluation of forecasting capabilities, such as 
historical benchmarking (calibration of the model to a historical baseline, so that model 
‘forecasts’ can be evaluated against subsequent events that are known), model training 
strategies (in which a portion of data is withheld for model evaluation), continuous 
monitoring, or even running the models in reverse, none of these mechanisms appears to 
be completely satisfactory.  
 
I have been impressed by a number of high profile simulations of the spread of diseases 
through spatial networks, notably those emanating from UCL3 and from Los Alamos, 

                                                 
3 Neil M. Ferguson, Derek A.T. Cummings, Simon Cauchemez, Christophe Fraser, Steven Riley, 
Aronrag Meeyai1, Sopon Iamsirithaworn & Donald S. Burke (2005)  Strategies for containing an emerging 
influenza pandemic in Southeast Asia, Nature, 437 (8), 209-214. 

Agent-Based Modeling of Complex Spatial Systems US NSF / UK ESRC Special Activity E-Science

Santa Barbara, California April 14-16, 2007 23



now VBI4 5.  These examples help to establish the credibility of agent models, and the 
emphasis on real policy applications is particularly welcome.  It seems to me that the 
application of these methods has a much broader relevance to problems of diffusion in 
space in time 6 – indeed there is direct resonance with our own humble and much less 
sexy analysis of spatial patterns and retail price dynamics7.  However the naivete of the 
spatial networks which underpins these models is alarming.  I feel sure there is a whole 
apparatus of symmetrical nodes, radial accessibilities, well-regulated hierarchies, and all 
sorts of traditional and unsatisfactory representations beneath these models.  It seems to 
me to be important that as geographers and spatial scientists we can get a message across 
to a broader MAS community that geography matters, and the workshop would be a 
useful opportunity to discuss ways to promote this.    
 

                                                 

4 Stephen Eubank1, Hasan Guclu2, V. S. Anil Kumar1, Madhav V. Marathe1, Aravind Srinivasan3, Zoltán 
Toroczkai4 and Nan Wang5 (2004),  Modelling disease outbreaks in realistic urban social networks, Nature, 
429, 180-184. 

5 Chris L. Barrett, Stephen G. Eubank and James P. Smith (2005)  If Smallpox Strikes Portland ... , 
Scientific American, 292 (3), 54-61. 
6 Bo Lenntorp, Gunnar Törnqvist, Olof Wärneryd, Sture Öberg (2004) Torsten Hägerstrand 1916-2004,  
Geografiska Annaler, Series B: Human Geography 86 (4), 325–326 
7 Heppenstall, A.J., Evans, A.J., and Birkin, M.H. (2006)  Application of multi-agent systems to modelling 
a dynamic, locally interacting retail market, Journal of Artificial Societies and Social Simulation, 9, 3.  
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Position Paper for Agent-Based Models of Complex Systems* 
 
Dan Brown, Professor 
School of Natural Resources and Environment 
University of Michigan 
 

Object-oriented process models, which include individual-based models (IBM) 
commonly used in ecology and agent-based models (ABM) common in the social sciences, allow 
for modeling both change and movement of geographic entities and have developed 
independently of GIS.  The object-oriented framework of ABM involves identification of agents 
and of a temporal framework within which those agents perform actions. While many different 
types of agents can exist, the following general definition is common: an agent is a self-directed 
object, i.e., it has the ability to satisfy internal goals or objectives through actions and decisions 
based on a set of internal rules or strategies. These agents may be dynamic in either state (i.e., 
change) or space (i.e., movement) and may, through their actions, change the state or location of 
other objects, processes, or environments around them. Agent dynamics are most naturally 
implemented in an ABM by a set of behaviors (“methods”) that can include conditional decision 
making and other (non-linear) rules that distinguish them from mathematically continuous 
models.  The ability for Lagrangian motion (i.e., agent movement) distinguishes ABM and other 
object-oriented modeling frameworks from the change-based spatial models described above. It 
also creates additional challenges for integrating these models with GIS, as described in more 
detail below. 

ABM dynamics are defined at the level of (a) agent behaviors that result in change and 
movement, and (b) the independent dynamics, if any, of non-agent objects.  Thus to represent 
dynamics, ABMs are implemented as discrete event simulations, in which some kind of 
"scheduling" mechanism handles the sequencing of agent behaviors and events. An ABM may 
implement scheduled events in three ways:  

• Events may be sequenced in a synchronous step-wise fashion. For example, each 
agent, set of agents or non-agent object is signaled to perform its tasks once at each 
time step or once every n time steps.  

• An event may be scheduled to occur only once at some time step n. Any number of 
different events may be scheduled to occur in this fashion providing a predetermined 
history of events to take place. 

• The model may encapsulate ‘event-driven’ processes whereby model agents may 
trigger events to occur or may add events to the schedule or queue of events to take 
place. 

On the other hand, ABMs often use relatively limited representations of space. For 
example, ABMs frequently use hypothetical spaces based on square or hexagonal tessellations, 
and only recently have ABMs begun to use real-world spatial data. To avoid edge effects on the 
performance of some models, researchers commonly use a toroidal representation of space, 
which wraps around from top-bottom, left-right, and vice versa. The rich temporal 
representations (agents and processes) of agent-based models, therefore complement the spatial 
data representations (fields, objects and functions) of GIS. The object-oriented nature of both 
presents tremendous opportunities for their integration. 

Given the complementarities of spatial data models (fields and objects) and agent-based 
(i.e., object-oriented) process models, and their combined potential to improve on integrated 
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representations of spatial patterns and temporal processes, we argue that tight coupling of models 
and data within ABM and GIS, respectively, can reap benefits in terms of both efficiency, 
through reduced computing times, and capability, through new functionality.  Attempts to 
integrate ABM and GIS techniques have raised several conceptual and technical questions.  
These issues broadly fall into questions of ontology and process, i.e., how are entities and 
processes represented, and how do those representations interact, respectively.  For instance, 
Bian (2003) concluded that the environment within an individual-based model can be 
represented as either patch-based (i.e., object-based), maintaining object-orientation in both the 
model and data, or field-based, such that object-oriented individuals interact with a discretized 
environment of attributes. She discounts the value of treating all cells in a grid-based 
environment as objects on both technical (i.e., due to inefficiencies) and ontological (i.e., poor 
match to conceptual view of fields) grounds. 

More generally, developing models that make use of both GIS and ABM techniques 
requires the specification and implementation of relationships between agent-level processes and 
spatial data.  First, by defining an identity relationship between an agent and a spatial feature or 
features, GIS techniques can be used to store the geographic extent and attributes of the feature, 
while ABM techniques represent the behavior of the agent and the change in associated 
feature(s). Thus (a) spatial features associated with agents can move or change, and (b) attributes 
of features associated with agents can change.   Second, in many models, agents have causal 
relationships with (i.e., the ability to take actions that affect) spatial features and/or their 
attributes, even if there is no identity association between the agent and the spatial feature(s) it is 
acting on (i.e., non-agent features).  Agents can take actions that result in changed locations or 
attributes of features, or they can take actions that change the values of an attribute on a field 
(e.g., a raster).  Third, temporal relationships are inherent in two types of actions in a coupled 
process-data model: (a) the actions of the agents and (b) the updating of attributes or locations of 
features in a database or display.  Either can be handled using synchronous or asynchronous 
approaches.  Finally, movement of spatial features, either by processes internal to their 
associated agents or by those of other agents, can require basic information about the topological 
relationships between an agent and the physical world or between features.   
 We have been working on a number of different approaches to implementing the object-
based process models that are linked to dynamic spatial data models.  The simplest approach has 
been to loosely couple agent-based process models, with GIS data bases by passing interchange 
files between the two.  A significant disadvantage of this is the volume of data created by the 
models and the consequent data-management challenges.  Secondly, we participated in the 
testing of AgentAnalyst, an extension to both RePast and ArcGIS and other GIS systems (like 
OpenGIS) that serves as a sort of middleware to link the two.  There are limits to its ability to 
dynamically use of GIS functions, unless connected to open source GISs.  This places greater 
burden on the modeler to program GIS functions within the model.  Finally, we have a model 
written in VBA and running completely within ArcGIS, which takes fuller advantage of GIS 
functions, but requires that ABM functions (like the scheduler) be programmed into the model 
(rather than relying on existing software libraries).  New dynamic modeling functions within GIS 
environments, like those in PCRaster for raster data, will significantly improve these capabilities 
within next-generation GISs. 
 
* mostly excerpted from Brown, D.G., Riolo, R.L., Robinson, D., North, M., and Rand, W.  Spatial process and data models: 
Toward integration of agent-based models and GIS.  Journal of Geographical Systems, 7(1): 1-23. 
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Cellular automata and agent-based models: what next? 
 

Helen Couclelis 
 

Cellular automata (CA) and agent-based models (ABM) are hallmarks of 
computational geography. Increasingly they are used in combination in the development 
of process-oriented models of people or other kinds of actors interacting with their 
environment, with CA typically simulating the spatial environment and ABM 
representing the relevant decision-making units. Combined CA-ABM models may be 
used to simulate farmer communities dynamically affecting land cover through adaptive 
land use decisions, households seeking suitable housing in changing urban areas, or trip 
makers responding to various congestion pricing schemes on transportation networks. 
Such models are built to incorporate considerable empirical and intuitive understanding 
of the complex processes of interest, and when calibrated to actual data they are often 
presented as suitable for prediction and policy analysis. As someone who has studied 
these two types of models for over 20 years, I am skeptical of such claims (Couclelis 
2001). I believe that we have by now accumulated enough experience for a more 
systematic exploration of the potential and the limitations of CA and ABM to model 
complex spatial systems, whether used in conjunction or separately. 

Computation has often been discussed as the third way of doing science, lying 
somewhere between theory development and experimentation. This implies a new 
approach to knowledge production and the need for a new kind of research methodology 
different from either the mostly deductive mode of theoretical work or the mostly 
inductive mode of experimental science. That third way centers on the construction of 
complex simulated worlds within which experiments may be run that would have been 
difficult or impossible to conduct in the real world. The epistemological problem is that 
models of complex open systems with deep uncertainties, as social systems nearly always 
(and natural systems usually) are, cannot in principle be used for prediction. Predictive 
models belong in the traditional scientific paradigm of theoretical closed system 
descriptions supported by experimental evidence, or at least of well-established empirical 
generalizations such as human geography’s spatial interaction models. Because this fact 
is not always appreciated, many computational modelers understand progress in the field 
to mean building simulations that are increasingly detailed and realistic, even though 
increased detail can actually decrease any predictive value such models may have. The 
meaning of model validation in this new world of computational process models thus 
remains open, and so does the question of how to derive valid insights that may be useful 
for both theory development and for policy guidance.  

Technically, the reason why models of complex open systems cannot yield 
reliable predictions is that many (in some cases infinitely many) different models can 
provide acceptable fits to the data. In other words, any particular model is but one 
realization out of a large space of potential models, few or none of which may be correct 
by whatever definition of the term. This issue is sometimes addressed with Monte Carlo 
simulations that generate many versions of a particular model by systematically varying 
the parameters; model outcomes are then considered reliable to the extent that they are 
reproduced by large numbers of different parameter sets. This methodology may take 
care of parametric uncertainty but cannot address structural uncertainty, that is, the 
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degree of confidence one may have in the structural validity of the model. Researchers in 
both the social and the natural sciences have suggested methods for generating large 
numbers of different model structures in a manner analogous to generating versions of 
the same model through Monte Carlo simulations. The idea is that investigating the 
properties of entire ensembles of models, even relatively simple ones, may yield more 
robust insights into the complex spatial processes of interest than the study of even the 
more realistic-looking individual models. Procedures for generating ensembles of models 
for that purpose have been described in hydrology by Beven and associates in a long 
series of papers (e.g, Beven and Freer 2001), in policy studies by the RAND team of 
Popper, Lempert and Bankes (e.g., Popper et al. 2003), and in several other fields. 

Should we wish to explore that direction, our task will be greatly facilitated by the 
fact that in formal terms, CA and ABM are very close cousins. Both are structures 
described in the theory of automata, one of the three major branches of the mathematical 
theory of computation. A CA may be seen as spatial array of ABM. In principle, anything 
that can be modeled as a (generalized) CA can also be modeled as an ABM and vice 
versa, though obviously some options will be more intuitive and computationally 
efficient than others. Thus CA models have been developed where the cells are endowed 
with complex goal-directed decision rules and ABM where the agent is the environment. 
Some researchers consider mobility to be the defining difference between the two kinds 
of models, but in actual fact CA simulate movement in the same way your computer 
screen does, by spreading activation down a sequence of adjacent cells or pixels. (Action 
at a distance – easy for ABM – is somewhat trickier to simulate within a pure CA 
framework, but that too can be done). The affinity between ABM and CA means that 
both agents and environment can be specified within the same framework in the formal 
language of automata theory. Such integration is very likely to provide a substantially 
increased theoretical understanding of the properties of these structures and to greatly 
support the generation and analysis of appropriate ensembles of models. I think that there 
is fertile ground here for the more theoretically inclined among us to make contributions 
to complex spatial systems modeling that could benefit researchers in many fields. 
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Representing geographic dynamics 
 
Thomas J. Cova, Associate Professor, Department of Geography 
University of Utah, 260 S. Central Campus Dr., Rm. 270, 
Salt Lake City, UT  84112-9155, cova@geog.utah.edu, Voice: 801-581-7930 
 
A number of related yet distinct subfields of GIScience associated with representing 
geographic dynamics have recently emerged.  Researchers in spatio-temporal theory and 
data modeling, spatial process modeling, complex systems, and agent-based modeling all 
consider dynamic (or temporal) aspects of geographic phenomena germane to their 
respective specialty.  Given this common ground, an obvious question arises as to the 
degree to which these communities have shared goals that might be forwarded through 
collaboration.  In short, where might synergies or unique insights lie, and what redundant 
efforts might be streamlined?  This short position paper looks at two research areas (and 
communities) that are the focus of this workshop: agent-based modeling and spatio-
temporal data modeling. 

 
Agent-based modeling of complex systems 
 
Agent-based modeling is an active research area that continues to gain momentum.  The 
software tools to support this type of modeling have come a long way both in terms of 
facilitating rapid model development as well as integrating models with GIS.  The area 
also evolved from the start with a particular emphasis on explicit representation of space 
despite having no relation to the GIScience community. In general, researchers in this 
area are concerned with modeling geographic processes “from the bottom up” in a quest 
to understand emergent phenomena at a macro scale form micro interactions.  A common 
approach is to generate synthetic populations and landscapes where autonomous, 
intelligent agents can interact with their environment and each other.  Although the 
landscapes represented are often based on real places, the notion that the population is 
synthetic implies that the correspondence with actual agents in the real world is 
secondary to the goal of discovering emergent outcomes at the macro scale.  For 
example, it’s more important to reveal global patterns of segregation in a hypothetical 
city than it is to represent any real agent, building or event.  In some cases, agents may 
adapt to, or learn from, their surroundings.  In this way, agents are typically ephemeral.  
Validity and accuracy therefore generally refer to the degree to which a model 
corresponds with a given process rather than whether any object, interaction or event is 
positioned correctly in space-time (or can be recovered through query). 
 
Spatio-temporal data modeling 
 
In contrast to agent-based modeling, research in spatio-temporal data modeling tends to 
focus on accurately depicting real world geographic phenomena as objects, fields, events 
and processes in such a manner that their histories and interaction can be queried, 
reconstructed or predicted.  Mining large data sets that represent spatio-temporal 
phenomena is a current theme.  Maintaining or tracking an object’s identity through time 
is also important, as is assessing the accuracy of a field or object attribute at time t.  An 
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example object in this research context might be a delivery truck traveling across the 
country, a field might be the anticipated precipitation along the route, and an event might 
be “leaving Iowa” or “entering a storm cell”. Field-object hybrids have been proposed to 
deal with unique phenomena like weather or wildfire (Yuan, 2001; Cova and Goodchild 
2002) along with models that focus on the inter-relationships between objects, events, 
and processes (Worboys and Hornsby 2004).  Recent work has emphasized the search for 
an underlying theoretical level that might underpin all geographic representation 
(Goodchild et al. 2007).  In any case, the concepts of synthetic populations, emergence, 
complexity and adaptiveness are generally foreign to this area, despite the similar focus 
on geo-dynamics shared with researchers in complex systems and agent-based modeling. 
 
Combining efforts 
 
What would a union between the sub-fields of complex adaptive systems (or agent-based 
modeling) and spatio-temporal data modeling yield?  One outcome might be a subfield 
(or associated software platform) that can model adaptive agents and their interactions 
with an eye to identifying emergent phenomena, yet also allow for greater data mining or 
querying of object and field dynamics or events to reconstruct scenes with a close (or 
accurate) relationship with real world states.  The theories and software tools in the two 
areas seem to have developed from entirely different goals, and it’s difficult to visualize 
one platform that would satisfy specialists from both areas.   A recent call from the point 
of view of spatio-temporal theory for research into data structures (Galton 2004) 
emphasizes how far behind this area is from the easy-to-acquire and install software 
platforms to support agent-based modeling.  Similarly, recent papers from spatial-
temporal data modeling tend to emphasize how difficult it is to advance this area given 
the problems that time presents (Peuquet 2001; O’Sullivan, 2005).  The notion of a 
workshop to explore the benefits of cross-fertilization of these two areas is likely to yield 
very interesting and fruitful research and development directions for both areas. 
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Catherine Dibble 

Assistant Professor, Department of Geography, University of Maryland     cdibble@umd.edu 
 

Agent-Based GeoComputation is not about building models.  It is, ultimately, about the art and 
science of addressing complex spatial problems with computers; for sound inference on matters 
of importance. An appropriate model is necessary, but not sufficient.  Consider the 
complementary laboratory tools and practices sufficient for inference with agent-based 
computational laboratory research for effective responses to complex geographic emergencies.   
 Our methodological advances in computational laboratory tools and practices have been 
driven by a potential pandemic influenza emergency due to an unusually deadly (H5N1) 
influenza pandemic spreading worldwide among migrating, wild, and domestic birds.  H5N1 
influenza currently kills more than half of its human victims.  If it adapts to spread easily among 
humans, it could lead to a global influenza pandemic far more severe than the flu pandemic of 
1918-1919. 
 Our research uses complementary computational laboratory tools to evaluate relative 
geographical risks via patterns of inter-city hierarchical diffusion of pandemic influenza, and to 
optimize geographic deployment of limited resources to inhibit the inter-city spread of pandemic 
influenza.  The crucial substantive challenge harnesses advantages of geographic structure to 
clarify relative risks and to amplify the protective leverage of available resources, in order to 
target advanced preparation, minimize mortality, and gain time for vaccine production and 
administration.  The crucial methodological challenge is to conduct sufficient sensitivity and risk 
analyses of the model and of recommended interventions to provide as much information as 
possible for decision-makers, in the event that model results must be used to recommend 
deployments of interventions during a pandemic emergency.   
 The epistemological insights and methodological extensions driven by responding to this 
potential emergency provide helpful guidelines for effective calibrations, experimental designs, 
optimizations, and risk analyses of spatial agent-based computational laboratory research.   
 

Complementary Mathematical Modeling of Complex Dynamic Systems 
 
Although respective limitations and advantages of mathematical versus agent-based models of 
complex dynamic systems are most commonly considered with respect to their roles as 
methodological substitutes (see for example Rahmandad and Sterman (2004)), there exist 
significantly complementary roles for which understanding their differences is also vital. 

First, hybrid models using Dynamic Agent Compression (Wendel and Dibble (2007)) can 
harness efficiency and scaling gains by using mathematical equations rather than representative 
agents.  For which temporal nuances of sacrificed discretization may become important to 
understand even for generalizations that appear to be lossless in other ways.    

Second, standard mathematical models of complex dynamic systems such as SEIR 
models of epidemic diffusion in aspatial populations (Anderson and May 1991) may be cast as 
official standards against which behavior of agent models should be benchmarked.   To do so, 
however, requires explicit consideration of the agent-based effects due to discretization as well 
as of those due to spatial structure in agent models (Durrett and Levin (1994), Keeling and 
Grenfell (2000), and Rahmandad and Sterman (2004)). 
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Complementary Genetic Algorithm Inference, Optimization, and Risk Analysis 
  
Miller (1998) proposed to use a supervisory genetic algorithm to perform what he called “active 
nonlinear tests” (ANTs) by using the genetic algorithm to challenge each simulation model by 
seeking outcomes that provide exceptions or counter-examples to its usual results.  This section 
briefly discusses a generalization of Miller’s ANTs to the broader problem of providing effective 
search and optimization across both treatment domains and outcome ranges for a model.    
  Systematic analysis of model behavior typically involves millions of simulation runs, each 
controlled by sweeping across discrete lists of values for sensitive model parameters, for each 
treatment variable of interest, and for seeds to control one or more random number series for 
stochastic simulations.  
  Of far greater importance scientifically, the standard focus on exploring model behavior 
via combinatorial sweeping across regularly spaced parameter values is a blind search for 
significant outcomes.  As illustrated in Figure 1, regularly spaced parameter values may be 
entirely unrelated to the truly important parameter values where model outcome reach significant 
extrema.    
 Ideally, we would like to be able to search for interesting behavior in the outcome space 
rather than sweeping blindly in parameter space.   As illustrated in Figure 2, a supervisory 
genetic algorithm allows us to do so with far greater efficiency than brute force combinatorial 
sweeping of parameter spaces.  The genetic algorithm can be set up to search across 
combinations of key parameters for extreme values of single or multiple combinations of 
outcome variables, based on results from one or more stochastic replications of the scenario that 
is associated with each combination of key parameters.  In addition, the greater economy in 
searching for key scenarios releases computational resources that may in turn be used to simulate 
sufficient stochastic replications for each to be able to distinguish statistically significant 
differences among scenario outcomes. 

 
Figure 1: Running only a few stochastic 
replicates of each treatment level can result in 
variances so large that the signal becomes lost 
in the noise.  Similarly, selecting treatment levels 
blindly via random or regular spacing may 
completely miss important local and global 
extrema. 
 

 
Figure 2: In contrast, an ideal experimental 
design runs enough stochastic replicates for 
reliable inference. Similarly, data-driven 
experimental designs may provide guidance for 
identification of key values for treatment 
variables and for basins of attraction leading to 
common outcomes. 
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Bridging the Gulf between ABM and CSS: 
A Three-Tiered Approach 

 
A Perspective for the Workshop on Agent-Based Modeling of Complex Spatial Systems 

 
Hamid R. Ekbia 
hekbia@indiana.edu 

 
That there is a gulf between the agent-based modeling (ABM) and complex spatial systems (CSS) 
communities is hardly in need of elucidation. Part of the reason for the gap is historical and 
institutional — these areas originate in different disciplines and are practiced in different quarters 
of the academia. Add to this the fact that “space” has only recently started to acquire its due 
status, along with “time,” in our thinking, and one could readily explain the gulf. To connect the 
two communities, therefore, needs particular institutional efforts and arrangements, of which this 
workshop is an example. In addition, however, there are other gaps between the two 
communities, which I would like to characterize as conceptual, methodological, and technical. To 
bridge the gulf, I suggest, work needs to be done on all three levels. The following is a sketch of 
my thoughts on each.1  

 
The Conceptual Level 

The conceptual gap has multiple dimensions, but I would like to focus on how the two 
communities understand the core concepts of “complexity” and “representation.” 
 
Complexity 
Complexity is an overused (and these days even abused) term. It means different things to people 
from different backgrounds and disciplines. For some (e.g., mathematicians and computer 
scientists) it has to do with quantity, scale, and magnitude, for others (e.g. psychologists and 
cognitive scientists) with structure, heterogeneity, and interconnection, and for yet others (e.g., 
biologists) with history, change, and function. The ABM and CSS communities, due to their 
multidisciplinary make-up, might not fully align with any one of these camps, but I believe that 
they do have varying understandings of “complexity.” To illustrate this let me use a famous 
example.       

Many decades ago, Herbert Simon made a simple observation, which is probably one of 
the most frequently cited episodes in modern science. The casual observation had to do with an 
ant’s movement on beach sand, which Simon used to show how apparently complex behavior 
would emerge from the interaction of a simple organism (the ant) and a complex environment 
(the patterns of sand). Confronted with this scenario, the ABM community would mainly see the 
ant, and the CSS community would probably focus on the sand. I might be oversimplifying here, 
but the example highlights the differences in perspective.    
 
Representations 
Representations are also understood differently by various disciplinary traditions — e.g., as 
surrogates, precursors, and pointers to action, as mediators for coordination among different 
actors, as channels of communication, as vehicles of conflict resolution and alliance formation, 
and so on. Traditional accounts of representation typically focus only on the role of 
representations as stand-ins for individual activity, and ignore other equally important roles that 
they play in collective processes. Furthermore, they are based on an epistemological view that 
takes representations as products of a mapping between an external reality and an internal 
                                                
1 These thoughts mostly derive from ongoing research on the modeling of change and movement in GIS 
that I have been conducting in collaboration with the Redlands Institute. 
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mechanism. This limits the applicability, if any, of such accounts to the very special case of local, 
stable and static situations, where individual activity is the focus of attention, and where explicit 
linguistic forms of representation are dominant. What we are increasingly observing, on the other 
hand, is a whole set of collective practices, mostly mediated by modern digital information and 
communication technologies, which involve tacit, distributed, and indirect forms of representation 
using various mediums of expression (e.g., visual). In short, there is a huge gap between current 
narrow accounts and the broad aspects of representation. 
 Here again, the ABM and CSS communities might be wedded to one or the other of the 
above views of representation, and they need to develop a shared understanding of 
representations by paying attention to the increasingly multifaceted role that they play in the 
coordination of activities among temporally, geographically, and semantically dispersed actors. 
 

The Methodological Level 
What I call the methodological gap has mostly to do with the way the two communities approach 
and implement the phenomenon of “change.” Traditionally, GIS views the world as a collection 
of locations and/or objects with attributes, and cartography views change as the application of 
rules to layers. Accordingly, the CSS community has a largely “snapshot” view of change as the 
implied difference between states (S1 - S2 ⇒ Δs), as opposed to the “incremental” (or 
“transitional”) view that sees change as the accrual of effects in transition from one state to the 
next (S1 + Δs ⇒ S2)).  

As others have shown, this difference in thinking about change has significant 
consequences, and the two communities need to make their differences as explicit as possible in 
order to be able to tackle common topics and issues.   
 

The Technical Level 
Finally, there are serious differences in terms of the computational techniques and programming 
environments applied in ABM and CSS. Traditionally, in GIS spatiotemporal information was 
represented by time-stamping records (data objects), attributes (fields), or attribute values (cells). 
Later on, there was a shift toward the integration of time and space via events or processes. 
Although semantically rich and more easily amenable to object-oriented modeling techniques, 
this integrated approach has proven to be non-trivial and challenging in many ways — e.g., in 
dealing with multiple scales (resolutions), in maintaining database consistency, and so on.  More 
recently, there is a growing interest in agent-based modeling techniques, although the GIS 
community is yet to come to grips with agent-based modeling and to fully appreciate its 
potentials. 

*************** 
 

To sum up, I believe that there is great potential to be realized in interactions and collaborations 
between the ABM and CSS communities. In my own work on modeling change and movement 
in GIS, I have seen a lot of room for the integration of ABM techniques. But there are also serious 
barriers and challenges that need to be addressed on different levels.   
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Simulation, Noir 
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It was three ten in the morning when the smell of cordite and the memory of an 
unpleasant burlesque woke Jake Kadigin from an overwise delightful sleep. He’d been 
dreaming of dancing with a group of increasingly beautiful marionettes. Each dance had 
been of added intricacy, building to such a complexity that in the final moments before it 
all went sour there was little he could do but recline backwards into the cat’s cradle of 
strings and be bound to the dancers himself. As his mobile phone implant injected 
unpleasant memories directly into his consciousness, the dancers became grotesques and 
the strings lit fuses, and what had started as a warm delight became a dark struggle from 
which he woke with a start of recognition. Must change that ringtone.  
 
The call was from The Simulation. The Simulation had had other names over the years, 
but after the first ten pilot projects and the following thirty development studies, the 
group had run out of smartarse acronyms, and so the model, which spanned some six 
continents, had been worn down to just “The Simulation”, which Jake felt was suitably 
ominous. Acronyms were for government funding, and Bush Jr. III had knocked that on 
the head after the MORMON simulation results came back. Well, a call from The 
Simulation was a call you had to answer, and he patched in. The Simulation recounted its 
calculation paths for the previous evening and then issued a warning: a socioquake, and a 
biggy. So biggy, infact, that Jake sat back on his bed and considered which family 
members he might phone before he looked into it. As it was, The Simulation had already 
booted his home terminal and was demanding a response. Jake nevertheless called his 
sister in Baltimore and blearily told her answering machine to stock up on tinned food 
before turning his attention to the terminal cube. The globe floating in the cube showed 
the North East US throbbing a cancerous red, the devastation sweeping out through both 
the transport and financial networks to other areas of the world, death tolls accelerating 
each time Jake rubbed his eyes and tried to focus on the issue. 
 
The Simulation was a construction so beautiful that aged programmers had been known 
to break down and weep before it. A total behavioural encapsulation of the human 
race, gridded to every known dataset the globe collected. Ok, so that beauty came at a 
price: $200 billion a year and 20 separate wind-farms; it had also turned Jake from a 
bright young fella into an insular wreck. But, oh, the wonder of it. The Simulation was 
still based around its core functionality – socio-economic prediction, but it could do so 
much more. The ability to upload behaviours across a variety of social scales allowed 
the system to act as a gigantic validator of social logic – new discoveries uploaded as 
viruses by everyone from transactional psychologists to playground monitors could 
compete in the system for sociological survival. The Gödel Module integrated new 
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behavioural models and assessed their consistency with current theory and for 
internal completeness, identifying strings of behavioural incompatibility, pinpointing 
potential hypocritical paradoxes, and revealing new holes in our understanding. Once a 
new behaviour was validated logically, it was tested quantitatively – introduced to a 
generalized model first, and then to models of increasing socio-economic detail, until 
finally being dynamically added to The Mirror – The Simulation’s dark and chaotic 
identical twin. Only if the Mirror held up to this introduction and could back-predict the 
entire data timeline at key spatio-temporal scales based on a variety of supports 
would the behaviour be added to The Simulation itself, to be run either in the full model, 
or one of the Point-of-view models that slanted the simulations towards a particular 
world-view. Environmental and Climatic modules had been made interoperable with The 
Simulation early on – initially there had been many such models, but funding unification 
under the UN following the submersion of Florida and the Netherlands had rapidly driven 
the cream of the crop to solidify into a single entity, held together by Translation 
Schema. By and large, the models were run together these days, though short term 
weather changes were sometimes still predicted independently.      
 
It wouldn’t be inaccurate to describe The Simulation as conscious. Although spoken 
language was largely redundant in modelling human interactions, any given agent in the 
system could pass the Turing Test. The general public largely loved The Simulation, or, 
more specifically, their piece of it, and regularly updated their profile in the machine 
with tit-bits of knowledge or additional rulesets. The key buy-in by the public had 
come after the development of the “Voices of the Past” project – a Sino-Korean 
genealogical tool that gave people the nearest to immortality they could hope for. Voices 
of the Past allowed people to update the agents representing them with the knowledge 
and rulesets which they lived by, often automatically generated by the data capture 
systems they interacted with. When they passed on, the agent was made available to 
their descendants for querying – a person could ask their family ancestors any question: 
“is he a good man?”; “what do you think of the market today?”; “how do I cope with the 
despair?”, and get a variety of trusted answers. People were suddenly able to explicitly 
and directly tap into the huge bank of experience that had, implicitly, made them who 
they are. Initial the Voices were generic and thin, the ghosts of personalities from the 
past, but with each iteration the knowledge capture became more sophisticated and the 
recently deceased gave enchantingly personality-based advice. Most importantly, the 
service was free to those who uploaded. The system cross-compared everyone, 
calculating which knowledge was personal and which more general, building up a core 
map of human intelligence as well as a hive intelligence constructed from the world’s 
4.3 billion citizens. In addition, the system was globally self-aware – iteratively 
predicting its own influence, both socio-economically and environmentally – the latter 
dependent on the workload in the 20 or so processor farms dotted around the globe. In the 
early days they’d had given The Simulation a voice constructed by parsing Slim Pickens’ 
dialogue from Dr Strangelove – the kind of geek humour they had time for back then – 
but funders had found it too disturbing; now, if The Simulation spoke at all, it was as 
James Earl Jones. But the main interface was haptic, via the cube – the very cube Jake 
was sat in front of now. 
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The socioquake prediction was for three days time. Jake checked it wasn’t a policy-
experiment, but confirmed his fears that it was from a work-a-day run, predicated only on 
the current state of society – a state in turn garnered from every dataset people meandered 
through: from CCTV estimates of eating habits, to social-nets parsed from phone calls, to 
the taxation trackers in the last few remaining private cars. Jake grabbed the globe and 
drilled down into the North East. It was a mess. The three day state was one of total 
social collapse. Not simply the usual odd pocket of riots or demonstration, but a mélange 
of armed gangs, ethnic cleansing, and spontaneous group murders across the whole social 
spectrum. Jake stared sweating at the globe in a moment’s paralysis, before the spreading 
red pulled him together. There had always been the potential that society would flip away 
from its stable attractors, but the homeostatic forces were immense – Jake never expected 
it to bleed from theory to his terminal.  
 
Lost for a strategy to deal with the unfolding horror, Jake resorted to the standard 
techniques. Cancelling the press forecasts, he first pulled up the error surface associated 
with the prediction – while it was fluctuating wildly for Europe, the errors were tightly 
dampened for the US, in particular the Eastern Seaboard. He then sliced into the errors to 
reveal the major contributors, first for the current prediction, then the most solid 
contributors over the past three days, probing the time periods and networks those errors 
had acted over. He saw no fluctuations in the errors to make him doubt the predictions. 
By the time he finished, three hours had passed – too long, and he knew it; even The 
Simulation had limits. If he were to prevent the quake he needed to do two runs: an 
investigation and a preventative-policy estimation; now he only had time for one and a 
half. Damn; it was a coin-flipper for sure. Gambling that an investigation might turn up 
an obvious cause, while a policy run might just stall things for 24 hours, he opted for a 
full investigation and a low-grade policy suggestion. Setting the run going, he grabbed 
the globe again, and began to trace back the emergent properties. Prior to the run, he only 
had maps of data flows the system had tagged as interesting and unusual. These trends 
were good for tracking memes, but for divisible commodities they often appeared and 
then vanished as individuals dispersed materials to larger groups. Despite this, there did 
seem to be a spatial autocorrelation in, of all the crazy things, bean purchases in areas 
that later generated problems. The system hadn’t flagged the origin of this, and Jake 
bemarked it for later mining.  
 
An hour later the investigative run was complete, and the low-grade policy prediction 
began, searching through multiple policies that might kick the system back into a stable 
state by synchronizing the various distribution networks. The right kick, at the right 
time, might just rescue it. But there was limited time to run real simulations, and the low 
grade run used some pretty rough heuristics. While The Simulation ran its merry way, 
Jake started on the investigative key statistics, tracing them back through the spatio-
temporal maps using the probabilities of causality generated by the investigative run. As 
time charged on, Jake became more intense, tearing off networks, flipped back and 
forward through probability differentials, and running small causality calculations on 
network loops that largely dissipated to nothing. All was apparently to vain, but still he 
cut back through the simulation. Finally he noticed a zone of spending: panicked buying 
preceding the wave of violence some five hours before the real trouble broke out. He 
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followed it forward, spreading out across the East, and then he flipped back, watching the 
wave shrink towards its origin. The wave propagated back, back and back from the 
Seaboard to the North East, and then a sudden turn, south to Maryland, and then…the 
screen froze. Crap, The Simulation had reached the current moment – the Critical 
Horizon, Jake slumped back into his chair. It was too late. Whatever it was, it was already 
happening. Jake stared at the screen, only to be slapped back into awareness by a broad 
voice indicated the policy run had been completed. One last hope. The result, with all the 
desert-dry wisdom of the Delphic Oracle, was a taciturn “Three thirty three; buy no 
beans”.  
 
Jake gave the cube a look that might have been acceptance, or resignation, or the dull 
flash of years of calculated ennui imploding to nihilism, and grudgingly pushed himself 
up. He walked to the window, and let the morning sun stream warm across the room. 
Pulling on a pair of antiqued jogging pants and trainers, he walked out of his door and 
across the plaza. Half way across the square he stopped mid-step, backtracked to his 
block, and stuck a $200 bill into the cup of an old critical geographer who had resorted to 
begging from his doorway, then, turning unhurried into the sun once more, he set off 
across the plaza and down the strip towards the local gun mart, reluctantly fingering the 
credit card in his pocket.   
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Re: Agent-based Modeling Workshop 
 
Dear Dr. Goodchild: 

  
This is an application to the recently announced Workshop on Agent-Based 
Modeling of Complex Spatial Systems.   The following describes my views 
on the direction of this field, my prior research related to agent-based 
modeling, and my future planned directions. 

Department of 
Geography 

 
701 E. Kirkwood Ave. 
Student Building 120 
Indiana University 
Bloomington, IN 
47405-7100 

 

 
I have been working with agent-based models with respect to land cover 
change research since 2000 with a particular emphasis on household 
decision-making dynamics and landscape outcomes.  Since this time I have 
seen agent-based models move from relatively abstract representations to 
those more tightly linked to empirical foundations.  Yet, while those 
employing agent-based models of land cover change (as an example) often 
use observed land cover data to ‘validate’ the model (avoiding the discourse 
on what ‘validation’ means for the moment), I believe there has been less 
attention given to validate the unique characteristics of agent-based models 
that make them more attractive than other modeling approaches.  In my 
mind, these characteristics include: 1) the ability to represent agents and 
their decision-making strategies heterogeneously and 2) the ability to 
explicitly incorporate interactions between agents. 
 
Now that the agent-based modeling community has made progress in 
supporting models with empirical data, I believe that the next logical step is 
to test the performance of our models with data that explicity tests the above 
two characteristics.  This is admittedly a considerable challenge as the data 
collection costs necessary is potentially prohibitive for many projects.  To 
truly assess the role of agent interactions in a system will require complex 
new datasets to be collected that are both rich and longitudinal – quite a 
daunting task.  However, this next step should be considered if we are to 
convince the broader community (both modelers and others) why agent-
based models are more suitable for some tasks than say spatial regression or 
cellular automata. 
 
My personal background in agent-based modeling began with a a NSF 
award from the Biocomplexity program for a project titled: “Biocomplexity 
in Linked Bioecological-Human Systems: Agent-Based Models of Land-
Use Decisions and Emergent Land-Use Patterns in Forested Regions of the 
American Midwest and the Brazilian Amazon” on which I was a Co-PI.  
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From this research I have published manuscripts utilizing agent-based 
modeling in International Journal of Geographic Information Science, 
Environmental Management, and several book chapters along with 
manuscripts in review with Geoforum, Land Change Science, and Journal of 
Economic Dynamics and Control.  These papers have broadly explored 
topics including the role of scale dependence in agent-based models, the use 
of agent-based models for backcasting, and the integration of methods from 
experimental economics and agent-based modeling. 
 
Other activities include co-organizing (with Steve Manson) a special issue 
of the journal Environment and Planning B focused on modeling and 
complexity in geographic research.  This special issue is the product of a 
series of organized sessions on geographic complexity at the 2005 AAG 
meeting.  The special issue is planned for publication in the March 2007 
issue of EPB. 
 
My most recent research involves the use of agent-based modeling to 
explore the dynamics of reforestation in Indiana and Sao Paulo, Brazil.  I am 
the principal investigator of a new project titled “Dynamics of Reforestation 
in Coupled Social-Ecological Systems: Modeling Land-Use Decision 
Making and Policy Impacts” recently funded by the NSF HSD program.  In 
this extension of previous research, we will incorporate a more diverse set of 
agents to explore land cover change dynamics.  In particular, we will 
represent actors such as NGO’s and governmental officials and their 
interactions with household level actors in these new modeling efforts.  This 
research will also be tightly integrated with complex physical models  
(hydrology, forest ecology) at various spatial scales of analysis.  As on prior 
research, the approach of this project is highly multi-disciplinary with 
colleagues from anthropology, hydrology, forestry and political science. 
 
While I expect this to be a popular workshop, hopefully there is room to allow 
me to attend.  I look forward to hearing if that is the case.  
 
Sincerely, 
 

 
 
Tom P. Evans 
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Philosophical and practical limits of Agent Based Models as viable systems for 
discovering and verifying new geographical knowledge 

 

Mark Gahegan David O’Sullivan 
GeoVISTA Center 
Department of Geography, 
The Pennsylvania State University, USA. 
 

School of Geography, Geology and 
Environmental Science, 
University of Auckland, New Zealand. 

 

New analysis and modeling approaches often call for reconsideration of methodological and 
philosophical stances if they are to be used appropriately.  This is particularly true of Agent-
Based Models (ABM), which can play a wide range of roles in scientific investigations, from 
characterizing emergent properties of data through prediction of future states, to positing 
explanations of possible causal mechanisms.  In the biological simulation community, a similar 
recognition is summed up by Peck (2005) thus: "Philosophers and practitioners of science are 
recognizing that simulation models are a new kind of tool that defies the categories, uses and 
restrictions found in the historical use of mathematical models”.  Such models do not sit easily 
with the traditional view of models and their roles in geographical analysis (e.g. Chorley, 1964).  
While we do not agree that simulation is a ‘new kind of science’ we do believe that its 
application and interpretation, and legitimate roles and limitations, are not yet well understood.  
Equally, real-world experiments are not practical for many kinds of broad-scale, geographical 
inquiry, and simulation models allow exploration of alternative realities and responses to change.  
Thus, we must learn to use simulation technology in effective and defensible ways. 

How do we validate such complex models?  There is a danger that simulation models can 
become self-fulfilling prophesies because they often conflate different analysis activities that 
would ordinarily stand alone and be independently scrutinized.  For example: data collection, 
model synthesis, numerical analysis, validation and presentation (e.g. Gahegan & Brodaric, 
2002) are traditionally disjoint activities where uncertainties at each stage are accessible for 
independent investigation.  In simulations, some (or all) of these activities may become 
intertwined.  For example, data may be imputed, loaded into individual agents, which then 
interact via a (possibly evolving) set of rules to produce outcomes that appear realistic or useful.  
But mere plausibility is no guarantee that the explanations derived are true in the world.  If the 
modeler expects certain outcomes, constructs rules and gathers data accordingly, then tests 
various models until their behavior matches expectations, then there is little independence and a 
lot of bias.  Over-fitting will be rife and there is little chance for novel or unexpected outcomes 
to emerge. 

How do we know what is going on ‘inside’ simulation models?  Visualization in support of 
ABMs remains quite primitive, and typically unable to provide much insight into the complex 
interactions and states of many independent actors.  Interactions become so complex that it is not 
possible to be sure exactly how the model is behaving.  We may be confident in model outcomes 
as a realistic representation, but causal mechanisms (and explanations) may remain elusive.  A 
related concern is that difficulty in observing what is going on ‘inside’ models often means that 
they are viewed in terms of (pre-selected) aggregate measures that reinforce the modeler biases.  
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Also, disparities between the scale at which models are developed (individual decision-making) 
and evaluated (aggregate outcomes) raise further questions about validation processes. 

How geographical are ABMs, really?  ABMs appear to be explicitly spatial, but that does not 
mean that they are inherently geographical.  For the most part, ABMs represent only a very 
impoverished, grid-based geography, with poor handling of boundary conditions and without any 
inherent structure within the space (Gilbert & Bankes 2002).  There are only a few exceptions, 
(e.g. O’Sullivan et al, 2003; Brown et al. 2005).  That they are often considered as collections of 
actors within a geographical space does not mean that they magically resolve or avoid any of the 
classical statistical pitfalls that beset geographical analysis.  In particular, it is unusual for models 
to reflect the multiple geographical (and social) scales at which decisions are made.  ABMs are 
at their most convincing in contexts where constrained actors make decisions in ‘reactive’ ways, 
the prime example being various models of pedestrian behaviour (see e.g., Helbing et al. 2001), 
but such contexts represent a small percentage of cases where human activities make a 
difference.   

How do we avoid merely reflecting our own biases?  Arising from all of these questions, and 
as Bankes (2002) suggests there is a tendency to focus on those aspects for which 
straightforward behaviors can be constructed, or for which good data are available, but to ignore 
or play down other more problematic aspects.  This leads to bias in the results (in terms of both 
explanation and prediction) and points to an important and elusive question: “Did we really 
represent and explore the space of all plausible models?”  Currently, the search for a solution 
tends to stop when a useful model is produced (perhaps tested by goodness of fit to some desired 
outcome, or more informally because its behavior ‘seems right’).  This question does not apply 
to simpler forms of predictive modeling where the outcome can be validated straightforwardly 
(e.g. predicting stream discharge).  But if the outcome is complex, the data uncertain, or the aim 
is to create an explanatory model (e.g. predicting a landcover change surface) it is very likely 
that a family of solutions exists, all of which would perform equally well—within the wide 
margins of confidence (equifinality).  The internal differences exhibited by a family of models 
that produce similar outcomes could tell us much about the nature of the systems we analyze, 
including their stability and the confidence we should place on predicting future states.  
Representing the hypothesis space of solutions and the regions within it that a simulation 
has (and has not) explored is a very difficult but important problem that needs to be 
addressed.  Likewise highlighting and comparing the parameterization of solutions that 
produce similar outcomes.  (See figure at end). 
 
Some issues we are interested in and on which we can most readily contribute: 

1. Providing ways to better understand—by visualization—the detailed inner working of ABMs 

2. Building ABMs that are more geographically explicit  

3. Developing measures of confidence in the results obtained from ABMs, for example by 
representing the path that potential model solutions have taken through the hypothesis space. 

4. Adding to the theoretical understanding, and creating associated guidelines on best practices 
for the use and evaluation of ABMs in geographical analysis. 
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LEFT: Visualizing the space of possible models, with the aim of uncovering plausible models—then 
examining their similarities and differences. TOP RIGHT: Examining the effects of changing parameters 
on model outcomes (left & middle grid), explicitly representing where different outcomes occur (right 
grid). BOTTOM RIGHT: Visualizing the parameters and outcomes in sets of model runs. 
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The complexity of agent-based spatial models 

 
Nigel Gilbert 

Centre for Research in Social Simulation, University of Surrey 
 
In the manuscript for a text that I have just sent to the publishers (Gilbert, 2008), I 
distinguish between abstract, middle-range and facsimile models (Boero & Squazzoni, 
2005) and propose that the requirements for validation differ between these types: 
 

Abstract models aim to demonstrate some basic social process that may lie 
behind many areas of social life.  A good example is Epstein and Axtell’s 
pioneering book on Growing Artificial Societies (Epstein et al., 1996), which 
presents a series of successively more complex models of the economics of an 
artificial society.  … With these models, there is no intention to model any 
particular empirical case and for some models it may be difficult to find any close 
connection with observable data at all.  …  How then might such models be 
validated?  The answer is to see such models as part of the process of 
development of theory, and to apply to them the criteria normally applied to 
evaluating theory.  That is, abstract models need to yield patterns at the macro 
level that are expected and interpretable, to be based on plausible micro-level 
agent behavioral rules, and, most importantly, to be capable of generating further, 
more specific or ‘middle-range’ theories (Merton, 1968).  
 
Middle-range models aim to describe the characteristics of a particular social 
phenomenon, but in a sufficiently general way that their conclusions can be 
applied widely to, for example, most industrial districts rather than to just one. 
The generic nature of such models means that it is not usually possible to compare 
their behavior exactly with any particular observable instance.  Instead, one 
expects to be satisfied with qualitative resemblances.  This means that the 
dynamics of the model should be similar to the observed dynamics and that the 
results of the simulation should reveal the same or similar ‘statistical signatures’ 
as observed in the real world, that is, the distributions of outcomes should be 
similar in shape (Moss, 2002).  
 
Facsimile models are intended to provide a reproduction of some specific target 
phenomenon as exactly as possible, often with the intention of using it to make a 
prediction of the target’s future state, or to predict what will happen if some 
policy or regulation is changed.  For example, a business may be interested in 
finding the consequences for their inventory level of reducing the interval 
between sending out restocking orders.  It is likely to require a model that 
precisely represents all their suppliers, the goods each supplies, and the unit 
quantities of those goods in order to be able to make reasonable predictions.  
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Another, very different example, is the work by Dean et al. (1999) on the Anasazi 
Indians in South West United States.  These people began maize cultivation in the 
Long House Valley in about 1800 BC, but abandoned the area 3000 years later.  
Dean et al.’s model aimed to retrodict the patterns of settlement in the Valley and 
match this against the archaeological record, household by household. 
 
 If such exact matches can be obtained they would be very useful, not only 
as a powerful confirmation of the theory on which the model is based, but also for 
making plausible predictions.  However, … Most social simulations contain some 
element of randomness.  For example, the agents may have initial characteristics 
that are assigned from a random distribution.  If the agents interact, their 
interaction partners may be selected randomly, and so on.  The same is 
presumably true of the social world: there is a degree of random chance in what 
happens.  The effect of this is that running the model a number of times will yield 
different results each time.  Even if the results are only slightly different, the best 
one can hope for is that the most frequent outcome – the mode of the distribution 
of outputs from the model – corresponds to what is actually observed (Axelrod, 
1997; Moss, 2002).  If it does not, one might wonder whether this is because the 
particular combination of random events that occurred in the real world is an 
outlier, and that if it were possible to ‘rerun’ the real world several times, the most 
common outcome would more closely resemble the outcome seen in the model! 

  
I think it is true to say that the majority of agent-based models of complex spatial systems 
fall into the second and third of these categories, that is, they aim to be either middle-
range or facsimile models.  In the workshop, I want to explore the relevance of the first 
category and consider what it might mean to have abstract spatially explicit models.  
Among the implications are: 
 

a. More effort might be put into developing ABMs representing the classic theories 
of geography.  Issues for discussion include: 

1. Which theories? 
2. Is it possible and useful to cast them as ABM? 
3. What progress has already been made? 
4. What benefits might there be in doing this? 

b. The abstract models approach implies a certain kind of epistemology: a realist 
perspective that assumes that there are ‘real’, generative social processes (Epstein, 
2007) that yield the observable features, and that these social processes are 
recurrent in different social phenomena (thus, what I have called ‘abstract social 
processes’).  Examples are:  

1. Markets.  While the observable characteristics of markets vary widely, 
there is some basic, recurrent and abstract underlying social processes 
from which market institutions emerge;  

2. Cooperation in the face of social dilemmas. There are many situations in 
which the long-term socially optimum behaviour is not the individually 
optimum one, but where cooperative behaviour has ‘evolved’.  There is 
now a rather large literature on how this works. 
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Is this epistemology defensible, and how can it be made more precise? 
c. What methodological advice can be offered about how one should develop 

abstract models?  How does one validate an abstract model? 
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Evaluating Agent-Based Spatial Models 
 

Rich Harris 
School of Geographical Sciences and Centre for Market and Public 

Organisation, University of Bristol 
 

 
My interest in Agent-Based Spatial Models is, in truth, driven less by e-science / e-social 
science per se, and more in an on-going curiosity in the extent to which social ‘systems’ 
can or should be modelled, thence predicted and/or ‘explained’ using quantitative and/or 
computational methods. This curiosity is better expressed by Peter Haggett who wrote, in 
1994, that: 
 

there may be limits to the predictability of human behaviour which makes 
prediction in the social sciences fundamentally flawed … But, as one who 
finds continual refreshment from the work of colleagues in physical 
geography, I consider that if the boundary exists it should continue to be 
actively probed (Haggett, 1993: 18)1 
 

In short, then, I am interested in what agent-based spatial models can contribute to 
developing socio-spatial theory: what can they usefully tell us about socio-economic 
systems that was not known already? Alternatively, if the primary purpose of agent-
based spatial models is less to extend theory, than to test it, then my interest is in 
identifying real-world applications and genuine problem-solving for these, as for other 
geocomputational toolkits (noting, in particular, Martin’s 2005 interest in the potential of 
e-social science to support the development of geocomputation).2 
 
If my ‘Bristol upbringing’ explains my interest in the possibilities of computational 
social-science then it also accounts for my caution – exposed, as I am, to the waves of 
postmodernism, post-structuralism, ‘non representational’ theory and other 
epistemological and ontological turns away from the quantitative/computational. Whilst 
it may be simplistic to suggest that contemporary social science is characterised by the 
triad of (1) the theory-led and deductive models of e.g. economics, of (2) the data-based, 
inductive but scientific and mathematically-informed methods of statistics and (3) a 
rejection of structured forms of enquiry and explanation in, for example, some areas of 
human geography, still I would argue that many methods of geocomputation and 
computational e-social science sit away from any clearly identifiable ‘camp’ and that 

                                                 
1 Prediction and Predictability in Geographical Systems. Transactions of the Institute of British 
Geographers, 19, 6-20. 
2 Socioeconomic GeoComputation and E-Social Science. Transactions in GIS, 9, 1-3. 
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may underpin their credibility or potential for uptake (a point that Couclelis made in 
relation to geocomputation back in 1998).3 
 
To put this all another way, what sort of enquiry (knowledge formation) do agent-based 
spatial models support, or are governed by? Do they already or can they be shown to 
have their place within socio-economic research? Do they need to conform to more 
orthodox traditions or to be defended against philosophical fashions? 
 
A third way of looking at this is to ask whether I could demonstrate, to my students of 
Derrida, Foucault, Deleuze and Guattari, the value of agent-based spatial models, and 
convince them of it.? There are two issues, here. One is of a ‘flagship’ model that 
showcases potential and raises interest (it probably exists; my ignorance of such matters 
is not in question here!). The second concerns usability. This becomes increasingly 
important if we consider the potential to mount such models on, for example, the UK’s 
National Grid Service (NGS): a computational grid of high performance machines 
primarily developed under the UK’s e-science research funding.4 From experience – and 
having been on a (so-called) training course – the NGS is in its infancy and extremely 
difficult to use. The computational power is certainly there but using it is far from 
straightforward. 
 
To summarise, I am interested in answering the following questions and thence 
convincing sceptical colleagues: 
 

 What have agent-based spatial models got to do with social science and, in 
particular, human geography? 

 What disciplinary traditions are they founded on, how much so, and are the 
purposes of the models more for developing or for validating theory (then, how is 
this done? Can it be done?5)? 

 How should I use them and what are some of the pedagogic considerations of 
teaching with/about them? 

 How can the potential of the UK’s National Grid Service be harnessed for agent-
based spatial models and other spatial, computational modelling? 

 
Essentially this all amounts to re-stating the aim of the ESRC’s National Centre 
for e-social science: “to investigate how innovative and powerful computer-based 
infrastructure and tools developed over the past five years under the UK e-
Science programme can benefit the social science research community.”6  
 

                                                 
3 In Geocomputation: a primer (eds. Longley, Brooks, McDonnell & Macmillan), Chichester: Wiley, pp. 
17-29. 
4 www.rcuk.ac.uk/escience 
5 What does prediction mean, for example, in the context of an open and changing system (which is not 
actually singular)? 
6 http://www.ncess.ac.uk 
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Modeling Motion Relations for Moving Objects on Road Networks

Kathleen Stewart Hornsby
Department of Spatial Information Science and Engineering
National Center for Geographic Information and Analysis
University of Maine
Orono, ME 04469-5711 USA

Introduction
I have been working on topics relating to spatio-temporal data modeling for some time.
One of these topics, relates particularly well with the focus of this workshop, Agent-
Based Modeling of Complex Spatial Systems. With this research, I am interested in
modeling the semantics associated with different types of moving entities, in particular,
the semantics of moving vehicles on road networks, and the corresponding extensions to
data models that are necessary for next-generation information systems to support vehicle
navigation more fully. The movement semantics that we are examining relate to the
position of one moving vehicle relative to another on the road network. These motion
relations, based on the relative positions of pairs of moving vehicles on roads, capture the
kinds of cognitive semantics that are especially meaningful to drivers and other active
participants (e.g., bicyclists) as they travel and interact with each other on roads. For
example, is the car behind my vehicle a police car? Is that an ambulance coming towards
my vehicle in the other lane? What kinds of vehicles are currently in the vicinity of Maple
Street and 4th Avenue?

For this work, it is assumed that vehicle positional data are collected from a geosensor
network and stored in a spatial database. These datasets are used to compute a set of basic
motion relations including isBehind, driveBeside, and passBy. The motion relations
describe the positions of one vehicle relative to another in lanes of traffic and serve as a
foundation for representing individualized perspectives of dynamic transportation
networks. These perspectives capture details of movement of entities (vehicles) modeled
as objects, for a user-defined spatio-temporal region of interest in the transportation
domain. For example, for any given region of interest and an interval of time, it is
possible to derive the kinds of moving objects and their corresponding relations to each
other with respect to a reference object, affording a refined perspective of the kinds of
moving objects currently in the vicinity of that object. These semantics are important for
understanding, modeling, and querying the behavior of moving entities in a modeled road
network, as well as for annotation and enhanced indexing.

Moving object data from geosensor networks
For this work, a fixed-length linear referencing model is used in conjunction with a point-
location approach to represent traffic movement data. The network of sensors is
distributed along a roadway so that each one observes a specific number of fixed
reference positions. We assume that at any given time t, only one object can be at a
specific reference position for any lane (e.g., one object can not be on top of another
object). Data collection begins when movement is detected. From the initial point of
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movement, a series of sensor readings are collected at a fixed time from one another. The
positions of each individual object within the range of the sensor (relative to a reference
point) are then stored for each reading. Each moving object is assigned a unique
identifier, and the linear extent of the moving object and its midpoint are stored as well.
Based on this framework, a database representation is developed to provide the basis for
supporting queries that describe different kinds of motion relations. A relation SensorDat
with attributes, objectID, sensorID, laneID, position, and time is defined for storing
location readings within the sensor from the network. Details of the moving objects, on
the other hand, are stored in relation ObjData with attributes, objectId, class and length.
The attribute class corresponds to object classes that model the kinds of vehicles moving
on the road network.

Basic motion relations for moving objects
The basic actions of two or more moving vehicles on a road form the foundation for a
typology that distinguishes a set of basic motion relations (i.e., an elementary set of
relations between two moving objects). These movement types are restricted to
movements that result in a change of location. The basic motion relations that are the
focus of this research are isBehind(A,B,T) and its converse relation, inFrontOf(A,B,T),
driveBeside(A, B,T) and passBy(A,B,T) (Figure 1). The relation isBehind(A,B,T) and its
converse relation, inFrontOf(A,B,T) describe the relative spatial relation between two
moving objects A and B (e.g., land vehicles) in the same lane of traffic at time T, such
that no other object is between A and B. The case where one vehicle goes by another in
an adjacent lane of traffic while traveling in the same direction at time T, and assuming
no vehicle is in between, is captured by driveBeside(A,B,T). The alternative case of two
vehicles moving in adjacent lanes of traffic while traveling in opposite directions at time
T , is referred to as passBy(A,B,T). The driveBeside and passBy relations are both
symmetric.

The role of agents
At present, we have been working on the database aspects of this research, formulating
queries in SQL that compute the motion relations for a given set of vehicles. However, it
is very interesting to consider how agent-based approaches could be applied to this work.
For example, each vehicle could have an embedded sensor that allows it to receive
communications from the road sensors. These communications would inform the agents
of the position of the vehicle on the road network. In addition, the onboard sensors would
allow for communication with other vehicles that are around it on the road network. In
this setting, the data streams for the agents would come from within the vehicles
themselves as well as from the sensors in the transportation network. And in this way,
vehicles would be informed by agents about the position and types of vehicles around
them, allowing them to move into the lane of traffic that will facilitate their progress, or
communicate with other vehicles such that they change position with each other. Based
on this, one could foresee scenarios where, for example, service vehicles (e.g., taxis)
could communicate with each other with respect to their position in the network via
agents, and move to optimize their travel routes.
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 Revealing Hidden Dynamics in Spatial Data 

 
Alison Heppenstall, CSAP, Leeds, UK 

 
Over the last 15 years, geography has witnessed an explosion in the provision of both 
computational power and digital spatial datasets. This has brought a greater awareness to 
geographers of the nature and significance of small-scale individual-level dynamics and 
their effect on larger scale complex system dynamics. Geographers are now beginning to 
use concepts and notions from complexity theory to reappraise geographical systems. 
This marks a significant departure from the traditional treatment of complexity - 
aggregation of people to groups, and the accompanying statistical treatment of these 
groups, by empirical techniques for example, regression based models. Such models are 
now recognised as lacking the ability to detail the effects of small-scale and individual 
level histories, interactions, or even, in any realistic sense, behaviour.   
 
Advancement in both computing and understanding has been accompanied by the 
development of new techniques, such as agent-based models (ABM) and 
microsimulation, for simulating complex systems.  These methods have provided us with 
the ability to begin modelling and analysing the impact of individuals and their behaviour 
over both space and time.  The current range of ABM applications in the literature 
demonstrates its vast potential as a tool for dissecting and understanding the inner 
workings of complex systems.  One significant advantage of ABM is its ability to 
produce good simulations without detailed data; unlike our more fortunate colleagues in 
the physical sciences, social scientists are not blessed with detailed temporal and spatial 
data.  However, I feel that more work is required on developing techniques for extracting 
additional information (e.g. system structure and behaviour) from available data to 
enhance our models.  
 
In most ABM applications, information fed into agents is typically drawn from 
observational or simple empirical analysis.  In some cases this may be sufficient, but it is 
inadequate if our goal is to understand structure and dynamics, patterns and behaviour, 
how individuals or behaviour evolves and adapts in our systems.   We simply cannot 
capture the underlying structure and dynamics of the environment that the agents are 
embodied within.  To achieve this we need to be able to unravel system dynamics and 
behaviour of the components of the system, in both real and model data. 
 
Investigations into the applicability of methodologies from other disciplines such as 
physics, chemistry or mathematics, for analysing and modelling complexity in 
geographical systems are largely absent.  This appears to be a significant omission if we 
are to fulfil the potential of ABM for examining the impact of small-scale individual 
dynamics on the larger system.  I feel that we need to be concentrating on (i) developing 
better techniques for analysing real complex systems (to provide more detailed and 
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realistic inputs into ABM) and (ii) developing sophisticated methodologies to analyse the 
results from ABM. 
 
 
I believe that this can be achieved if research is directed towards the development of tools 
for identifying/visualising structure and underlying dynamics/relationships within spatio-
temporal data.  This could lead us to characterise the behaviour of both individuals within 
a system and the entire system.  Through this type of work, we can begin to (i) identify 
the many threads that exist within the systems and how these contribute to the behaviour 
of our systems and (ii) understand which techniques are the most appropriate for our 
analysis. 
 
For characterising individuals and systems, there are several methods that we can borrow 
from mathematics and physics.  For example phase diagrams allow us to chart the 
behaviour of one or many individuals or the whole system.  This can give us insight into 
the whether behaviour is stable, chaotic or entirely random.  Experimentation using ABM 
and the notions of, for example, catastrophe theory and bifurcations may also yield useful 
information. These types of nonlinear behaviour are not produced by “traditional” models 
meaning that these issues have not, to date, been widely addressed in geography. 
 
Wavelets allow us to decompose the system into signals – further work in this area may 
help to identify “noise” or weak signals in data; we have no way of either identifying or 
knowing whether these weaker noisy signals over a period of time stabilise and control 
systems.  Investigation into other methods such as recurrence plots may help us to 
visualise hidden structures and dynamics within data.  The results of this type of work 
may help us to characterise our systems and their behaviour.  
 
The areas briefly alluded to above all have great potential for our understanding by 
providing new information and insights into our systems that we can feed into our 
models.  However, considerable work needs to be done to develop these methods for 
application to spatio-temporal systems.  Many techniques available in other disciplines 
have been specifically developed for time series or spatial data (for example image 
processing).  In geography, the spatio-temporal nature of the data adds additional 
problems.  Available techniques require modification and development for geographical 
applications.  I would like part of the workshop to concentrate on this area. 
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CASA, UCL 

 
 

Agents in Virtual Worlds  
 

My work is focussed on generating a variety of graphic media for various projects in 
CASA ranging from our 3D GIS model of Greater London to panoramic imaging of 
urban environments through to real time monitoring of local urban climates. Much of 
this work is deigned for dissemination to both professionals and less expert 
community groups through primarily web based services. A variety of my work is 
shown on my blog http://www.digitalurban.blogspot.com/ but here I will focus on the 
work I have been doing with virtual worlds and the representation of presence and 
agent behaviour in digital environments. 
 
Agent based modelling is traditionally a 2D discipline in academia which has an 
emphasis on pedestrian and transport simulation within the field of spatial analysis. 
Yet advanced agent based modelling is possible, and indeed common, within 3D 
multi-user environments. We examine the use of these agents, based on our own 
experience, detailing the use of agents in virtual worlds and gaming environments.  
 
We first examine the use of bots in ActiveWorlds, a multi-user environment whereby 
the user is represented as an avatar (Figure 1); this is a common theme throughout 
such systems. 
 

 
Figure 1 – Avatars and Agents in ActiveWorlds 
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Agents can be inserted, with varying degrees of complexity and autonomy, into the 
ActiveWorlds environment. We have examined the use of such agents, detailing the 
ability to relate to shortest path analysis, object construction, artificial conversation 
according to proximity, and spawning behaviour.  
 
The use of such agents in multi-user environments is often controversial and the use 
of Non-Player Avatars or NPC’s, as agents are more commonly known, has been 
banned in many systems. Of note is the ability of agents to build and interact with 
their environment combined with the ability to clone not only objects but also 
themselves through self spawning. This has led to a number of examples of virtual 
world vandalism carried out by autonomous agents, as indeed we note in our 30 Days 
in ActiveWorlds paper. 
 
There are calls for a ban on NPC’s in the environment known as Second Life. Of note 
is the ‘CopyBot’ an agent which can clone any other object, this is significant in terms 
of Second Life as its economic system is based on the purchasing of objects to use in 
the environment – such as a new house or car. CopyBot can be released into the world 
and simply clone any object, including avatars, with additional scripting it is then 
been possible to respawn that object allowing users identity to be stolen and then to be 
surrounded by multiple copies of themselves. In essence this is the base of crowd 
simulation yet a crowd which contains a mix of agents and genuine avatars. 
 
Agents in virtual worlds are therefore controversial, yet one only has to look towards 
the more powerful gaming environments to see where the true development of agents 
is taking place. The most commonly known game with agents is ‘The Sim’s’ where 
you have the ability to toggle ‘Free will’ on and off. Using this function it is easy to 
understand the complexity of agent systems within game engines. 
 
A number of these games ship with their own ‘Sandbox’ mode allowing the game 
engine to be edited and user content added, normally through 3D modelling software 
such as 3DMax. However, it is not only the 3D section of the games that can be 
edited, you can also change and add agents opening up the possibilities to agent based 
modelling in custom made 3D environments. We have examined the possibilities of 
such agent based modelling within the ‘Oblivion’ game engine and the results are to 
date encouraging. 
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Agent-Based Modeling Position Statement            Kevin M. Johnston and David Maguire (ESRI) 
 
This position paper is written from the perspective of ESRI as a developer of commercial-off-the-
shelf GIS products that ship in volume. Our overarching goal is to build software that solves 
important problems in a widely applicable way. As such, solutions must be robust, reliable, 
generic, deliver acceptable performance on large, real world data sets, and be easy to implement. 
 
ESRI has 25 years of experience creating spatial modeling tools for vector and raster analysis. In 
the last five years we have built a geoprocessing modeling environment that synthesizes our 
experience in spatial modeling into an easy to use, flexible framework. Within the framework 
hundreds of spatial modeling functions are available each as individual tools that can be accessed 
from dialogs, the command line, a graphical modeling environment (ModelBuilder), scripting, or 
from any programming language. The framework is fully object–oriented and is built on .Net 
standards. In using ModelBuilder a model is comprised of data that are connected to spatial and 
aspatial tools to create a process to perform some function. Processes can be linked to one another 
to create simple as well as complex models.  This framework has been used extensively to create 
static, cartographic process models that encompass classic map analysis/algebra operations. 
 
In the latest 9.2 release of ArcGIS we expanded the geoprocessing environment, in particular 
ModelBuilder, with looping capabilities and the ability to model stochastic events through a 
series of random number and data creation functions. With these new capabilities we have 
explored how to add time to models and how to create various simulation scenarios in a dynamic 
modeling environment. We have been particularly interested in how to develop process models 
(e.g., a fire growth model), process models with stochastic events (e.g., a fire growth model with 
spotting), error analysis through simulations (e.g., examine the effects of error in a DEM on a 
stream delineation model), and sensitivity analysis (e.g., how does the output change with a 5% 
change in the distance to roads in a housing suitability model). 
 
With a strong interest in agent-based modeling, we worked with Argonne National Laboratories, 
the creators of the RePast ABM system, to build Agent Analyst. Agent Analyst is a free open 
source extension designed to perform ABM within the ArcGIS environment. One of the main 
goals for the integration of a GIS with an ABM is to provide a realistic landscape that can change 
through time on which the ABM runs. Agent Analyst is a mid-level integration of ArcGIS and 
RePast. ArcGIS provides spatial tools to prepare input data, manages the real landscape, displays 
the simulation results for each time step, and hundreds of spatial operations that can be used in 
the ABM. RePast provides the agent control and the scheduler for the ABM. 
 
We created several ABM’s to test the integration of Agent Analyst to ensure the user can perform 
tasks on large realistic datasets. One particular model was a cougar movement model. We worked 
with the USGS in Flagstaff, AZ to explore the interaction of cougars with their landscape and 
encounters with people. The model was performed on a large real landscape dataset (10 GB) and 
the rules were derived from scientists and data collected from collared cougars.  We are aware of 
several other ABM models that have been implemented within this framework. 
 
We found the software performed reasonably well. However the software is quite difficult to use 
especially for non-programmers. There is no easy way to create the rules for an agent other than 
through code. Looking through the future, we are interested to see if it is possible to develop a 
generic ontology that could be used to define agent rules. From this ontology a graphical user 
interface might be created which would greatly widen the audience for ABMs. Second, agents are 
still moved in x, y space independent of the GIS and then linked back to ArcGIS by feature data 
updates. Third, it is somewhat difficult to access the Java ArcObjects from within the ABM. This 
has limitations for future extensions of the framework and for creating more specific models. 
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Through creating and using Agent Analyst we discovered that GIS and ABM integration is more 
synergistic and bi-directional than we anticipated. The GIS provides input for creating agents 
(e.g., a shapefile), creates changing landscapes, and provides spatial modeling tools that are used 
each time step of the simulations. The ABM models and tracks the state changes and the decision 
making of the agents on this changing landscape and utilizes spatial functions (e.g., how far am I 
from something) in the decision making process for each time step.  
 
Our work on Agent Analyst and dynamic modeling has revealed a number of important software 
issues: 

- how to store and manage many outputs from a simulations and scenarios 
- how time is explicitly handled 
- synchronizing input time series data with different time intervals 
- tools to analyze the simulation results 
- metrics to compare and evaluate different scenarios 

 
We are increasingly coming to the view that the distinction between dynamic modeling and ABM 
is fuzzy. Issues that promote the fuzziness include, if in the dynamic modeling framework the 
modeler can change the feature attributes like in the Schelling model is this ABM? With iteration 
and neighborhood notation in Spatial Analyst cellular automata models can be created; is this 
ABM? If Spatial Analyst changes from a passive mode (e.g., can only change your own value) to 
an active mode (e.g., allow the processor change other cell values) a modeler can then model the 
movement of oil from the perspective of the spill exchanging concentrations based on a series of 
neighborhood locations simultaneously and can change cell values beyond the immediate 
neighborhood in a CA model; is this ABM? If features and rasters are processed randomly instead 
of sequentially then situations in which each object changes the decisions of other objects can be 
addressed since the object making the first move is randomly determined. By processing a raster 
randomly the modeler can also perform dynamic allocations such as siting 50 bird nests in the 
most suitable locations assigning restrictions such as no three nests can be within 100 meters of 
one another; is this ABM? Changing states of features and rasters, moving agents based on the 
characteristics at each location on the landscape (grazing models), and cellular automata are 
relatively easy to do in a dynamic modeling environment. To address ABMs where each discrete 
object is aware of how to make complex decisions and changes the decision making process 
through mechanisms such as learning and memory poses a greater challenge for a general 
dynamic modeling environment. 
 
Is ABM a formal modeling procedure or a state of mind derived from the object-oriented coding 
constructs? Castle and Crooks (2007) summarizes several studies defining the functionality of an 
ABM as containing autonomy, heterogeneity, active, pro-active / goal-directed, reactive / 
perceptive, bounded rationality, interactive / communicative, mobility, adaptation / learning.  
ESRI wants to understand what is the necessary functionality to meet these requirements. We are 
interested in understanding how to implement non-linear interactions, stochastic events, and how 
modeling objects make trade offs between multiple criteria in decision making. 
 
By formally defining ABM the requirements for creating ABM models will become more 
obvious. Clearly there is great overlap between dynamic modeling and ABM. What we at ESRI 
are most interested in is the essence of the functionality that is being asked for by both dynamic 
models and ABM. If we can define the essence of the functionality, we would like to create an 
integrated dynamic modeling environment that can hopefully encompass ABM. 
 
Castle, C.J.E., and A.T. Crooks, 2006. Principles and Concepts of Agent-Based Modelling for Developing Geospatial 
Solutions, UCL Working Papers Series, London, UK. 

Agent-Based Modeling of Complex Spatial Systems US NSF / UK ESRC Special Activity E-Science

Santa Barbara, California April 14-16, 2007 59



 
 

GIS and Agent-Based Modeling of Complex Spatial Systems 
 

A Position Paper for the Workshop on Agent-Based Modeling 
of Complex Spatial Systems 

 
Naicong Li 

The Redlands Institute, University of Redlands 
naicong_li@institute.redlands.edu  

 
It has been long recognized that it is difficult to describe and predict the behavior of a 
complex dynamic system with an analytical approach.  In recent years, simulation with 
agent-based modeling has become an attractive alternative for studying complex dynamic 
systems.  A complex system may be analyzed through simulation with a set of agents and 
their environment. Agents act, interact with each other agents, and react to their changing 
environment according to a set of behavioral rules derived from an underlying theory for 
the processes and interactions within a particular system.  Increasingly realistic models 
for the behavior of complex systems can emerge from a cycle of simulation, validation 
and refinement. 
 
Recent development in this area also includes the effort of integrating agent-based 
modeling with GIS to simulate dynamic spatial systems.  Through this integration, 
researchers are able to incorporate detailed real-world environmental data, to simulate 
agent behaviors and processes as change and movement conditioned by GIS data 
representations of space and geography, and to visualize the results in 2D or 3D GIS 
environment.  Furthermore, agent-based models can include real-time GIS data feeds to 
simulate and visualize situations unfolding in real time. 
 
The Redlands Institute at the University of Redlands has been conducting experiments 
with the integration of agent-based modeling and GIS technology. We are exploring the 
potential that this technology integration could offer to the research of modeling and 
simulating complex spatial systems, as well as to identifying and addressing the gaps that 
still exit in meeting such research needs.  Technologies under consideration include 
ESRI’s ArcGIS® coupled with Repast (Recursive Porous Agent Simulation Toolkit1) via 
Agent Analyst (an ArcGIS extension), and Cinema 4D.  We developed several 
experimental prototype models for simulating urban growth, creature movement (such as 
predator and prey interaction), military maneuvers, bird migration, and other phenomena 
such as hurricanes, atmospheric particle dispersion, line of sight terrain reasoning, etc.   
 
At the conceptual representation level, these prototype, spatially-enabled / agent-based 
models combine both object and field modeling.  The environments in these models are 
typically simulated using raster layers from a GIS database, each representing a particular 
environmental factor, or data surfaces derived through geoprocessing.  The agents are 
typically simulated through GIS vector data objects, such as points (e.g. for moving 
                                                 
1 REPAST. http://repast.sourceforge.net/
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creatures) and polygons (e.g. for parcels).  While an ‘agent’ object is not yet a supported 
notion in ArcGIS itself, Agent Analyst, through its connection to Repast, provides a 
framework for easily defining various agent types, their properties, and their behavioral 
rules.  Actual GIS data can easily be “cast” into these agents and their respective property 
values at a particular state. 
 
To simulate dynamic processes, the agents in these models are able to change (at each 
simulation interval) their spatial location (thus affecting movement), their orientation and 
view point, their movement speed, their shape, and the state of their other internal 
properties.  These changes are conditioned programmatically based on behavioral rules 
which ’sense’ and ‘adapt’ dynamically to the current state of other relevant agents, and in 
response to the current state of the environment. The environments in these models may 
change dynamically based on the time factor and/or as a result of the agents’ actions.  
The new state (location, size, various attribute values, etc.) of each of the agents is 
updated on the GIS data surface, and is visualized in ArcGIS dynamically. Depending on 
the rate of visualization, these models can simulate movement and state change in near-
real time.  In effect the role of GIS in this case is to visualize the new state of the model 
at each simulation interval, while the actual model with the agents and their current state 
at any given time are maintained in Repast.  The actual execution of agent behavior rules 
is also done in Repast, but it is possible to pass some of the spatial analysis processing to 
ArcGIS.  The state of each simulation interval could also be saved as time stamped data, 
producing a set of time series data that can be used after the simulation is finished, to be 
replayed in ArcGIS, or to be presented in dynamic graphs (based on a chosen parameter), 
or to be visualized in some other tool, such as ArcGIS Tracking Analyst (to visualize the 
movement trajectory dynamically).    
 
To better represent and simulate various geographic processes, we have also tried to 
identify generic components that are common to all the processes of a similar type.  We 
have done a preliminary analysis of agent movement. We have identified basic 
movement types, by defining their movement path specification in terms of some more 
primitive concepts including: location; distance; direction; the moving agent’s 
orientation; topological relations between the movement trajectory and reference objects; 
the surrounding environment; speed; and temporal sequence of sub-movement processes 
within a complex movement type. The formalization of this study into an ontology is still 
work in progress. 
 
Agent-based modeling of complex spatial systems is one of our main research areas at the 
Redlands Institute.  I have personally participated in this research effort.  I hope to have 
the opportunity to attend this workshop, meet other scientists of the relevant fields and 
learn about their work, and participate in the discussions on the current issues in this 
research area. 
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NSF/ESRC Agenda Setting Workshop on Agent-Based Modeling of Complex 
Spatial Systems: April 14-16, 2007  
 
Infusing geodemographics into agent-based models of social systems 
 
Paul Longley, University College London 
 
I am something of an interloper at this meeting, in that although I co-supervise two Ph.D. 
students with core interests in agent based modelling (Christian Castle and Andrew 
Crooks), my research is focused more around understanding and modelling 
socioeconomic distributions. I am a co-PI with Mike Batty of the UCL GeoVUE 
(Geographic Virtual Environments) Node of the UK National Center for E Social 
Science, and have worked with Richard Milton on the display of various geodemographic 
representations using the Google Map Creator. Christian’s work is focusing upon the 
development of a pedestrian evacuation model for London’s King’s Cross station (the 
new terminal for the international Eurostar service) using Repast. The work investigates a 
range of scenarios, and breaks new ground in the representation of the socioeconomic 
characteristics of users of the transit system at different times of the day and week. Some 
differentiation is achieved through representation of different mobility characteristics 
(e.g. week-end travellers with luggage versus weekday commuters) overlain with 
different demographic characteristics and variable familiarity with the internal structure 
and configuration of the underground structure. 
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Agent-Based Modeling Position Statement            Kevin M. Johnston and David Maguire (ESRI) 
 
This position paper is written from the perspective of ESRI as a developer of commercial-off-the-
shelf GIS products that ship in volume. Our overarching goal is to build software that solves 
important problems in a widely applicable way. As such, solutions must be robust, reliable, 
generic, deliver acceptable performance on large, real world data sets, and be easy to implement. 
 
ESRI has 25 years of experience creating spatial modeling tools for vector and raster analysis. In 
the last five years we have built a geoprocessing modeling environment that synthesizes our 
experience in spatial modeling into an easy to use, flexible framework. Within the framework 
hundreds of spatial modeling functions are available each as individual tools that can be accessed 
from dialogs, the command line, a graphical modeling environment (ModelBuilder), scripting, or 
from any programming language. The framework is fully object–oriented and is built on .Net 
standards. In using ModelBuilder a model is comprised of data that are connected to spatial and 
aspatial tools to create a process to perform some function. Processes can be linked to one another 
to create simple as well as complex models.  This framework has been used extensively to create 
static, cartographic process models that encompass classic map analysis/algebra operations. 
 
In the latest 9.2 release of ArcGIS we expanded the geoprocessing environment, in particular 
ModelBuilder, with looping capabilities and the ability to model stochastic events through a 
series of random number and data creation functions. With these new capabilities we have 
explored how to add time to models and how to create various simulation scenarios in a dynamic 
modeling environment. We have been particularly interested in how to develop process models 
(e.g., a fire growth model), process models with stochastic events (e.g., a fire growth model with 
spotting), error analysis through simulations (e.g., examine the effects of error in a DEM on a 
stream delineation model), and sensitivity analysis (e.g., how does the output change with a 5% 
change in the distance to roads in a housing suitability model). 
 
With a strong interest in agent-based modeling, we worked with Argonne National Laboratories, 
the creators of the RePast ABM system, to build Agent Analyst. Agent Analyst is a free open 
source extension designed to perform ABM within the ArcGIS environment. One of the main 
goals for the integration of a GIS with an ABM is to provide a realistic landscape that can change 
through time on which the ABM runs. Agent Analyst is a mid-level integration of ArcGIS and 
RePast. ArcGIS provides spatial tools to prepare input data, manages the real landscape, displays 
the simulation results for each time step, and hundreds of spatial operations that can be used in 
the ABM. RePast provides the agent control and the scheduler for the ABM. 
 
We created several ABM’s to test the integration of Agent Analyst to ensure the user can perform 
tasks on large realistic datasets. One particular model was a cougar movement model. We worked 
with the USGS in Flagstaff, AZ to explore the interaction of cougars with their landscape and 
encounters with people. The model was performed on a large real landscape dataset (10 GB) and 
the rules were derived from scientists and data collected from collared cougars.  We are aware of 
several other ABM models that have been implemented within this framework. 
 
We found the software performed reasonably well. However the software is quite difficult to use 
especially for non-programmers. There is no easy way to create the rules for an agent other than 
through code. Looking through the future, we are interested to see if it is possible to develop a 
generic ontology that could be used to define agent rules. From this ontology a graphical user 
interface might be created which would greatly widen the audience for ABMs. Second, agents are 
still moved in x, y space independent of the GIS and then linked back to ArcGIS by feature data 
updates. Third, it is somewhat difficult to access the Java ArcObjects from within the ABM. This 
has limitations for future extensions of the framework and for creating more specific models. 
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Through creating and using Agent Analyst we discovered that GIS and ABM integration is more 
synergistic and bi-directional than we anticipated. The GIS provides input for creating agents 
(e.g., a shapefile), creates changing landscapes, and provides spatial modeling tools that are used 
each time step of the simulations. The ABM models and tracks the state changes and the decision 
making of the agents on this changing landscape and utilizes spatial functions (e.g., how far am I 
from something) in the decision making process for each time step.  
 
Our work on Agent Analyst and dynamic modeling has revealed a number of important software 
issues: 

- how to store and manage many outputs from a simulations and scenarios 
- how time is explicitly handled 
- synchronizing input time series data with different time intervals 
- tools to analyze the simulation results 
- metrics to compare and evaluate different scenarios 

 
We are increasingly coming to the view that the distinction between dynamic modeling and ABM 
is fuzzy. Issues that promote the fuzziness include, if in the dynamic modeling framework the 
modeler can change the feature attributes like in the Schelling model is this ABM? With iteration 
and neighborhood notation in Spatial Analyst cellular automata models can be created; is this 
ABM? If Spatial Analyst changes from a passive mode (e.g., can only change your own value) to 
an active mode (e.g., allow the processor change other cell values) a modeler can then model the 
movement of oil from the perspective of the spill exchanging concentrations based on a series of 
neighborhood locations simultaneously and can change cell values beyond the immediate 
neighborhood in a CA model; is this ABM? If features and rasters are processed randomly instead 
of sequentially then situations in which each object changes the decisions of other objects can be 
addressed since the object making the first move is randomly determined. By processing a raster 
randomly the modeler can also perform dynamic allocations such as siting 50 bird nests in the 
most suitable locations assigning restrictions such as no three nests can be within 100 meters of 
one another; is this ABM? Changing states of features and rasters, moving agents based on the 
characteristics at each location on the landscape (grazing models), and cellular automata are 
relatively easy to do in a dynamic modeling environment. To address ABMs where each discrete 
object is aware of how to make complex decisions and changes the decision making process 
through mechanisms such as learning and memory poses a greater challenge for a general 
dynamic modeling environment. 
 
Is ABM a formal modeling procedure or a state of mind derived from the object-oriented coding 
constructs? Castle and Crooks (2007) summarizes several studies defining the functionality of an 
ABM as containing autonomy, heterogeneity, active, pro-active / goal-directed, reactive / 
perceptive, bounded rationality, interactive / communicative, mobility, adaptation / learning.  
ESRI wants to understand what is the necessary functionality to meet these requirements. We are 
interested in understanding how to implement non-linear interactions, stochastic events, and how 
modeling objects make trade offs between multiple criteria in decision making. 
 
By formally defining ABM the requirements for creating ABM models will become more 
obvious. Clearly there is great overlap between dynamic modeling and ABM. What we at ESRI 
are most interested in is the essence of the functionality that is being asked for by both dynamic 
models and ABM. If we can define the essence of the functionality, we would like to create an 
integrated dynamic modeling environment that can hopefully encompass ABM. 
 
Castle, C.J.E., and A.T. Crooks, 2006. Principles and Concepts of Agent-Based Modelling for Developing Geospatial 
Solutions, UCL Working Papers Series, London, UK. 
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Complications of complexity in agent-based models
George Malanson, University of Iowa 
 
I have been working on both computational aspects of complex systems and agent-based 
models.  My background is primarily in simulating vegetation dynamics using individual-
based models (ibm) and cellular automata.  This work includes analysis of the 
computational issues that arise when attempting to use evolutionary algorithms to 
simulate spatial systems that may exhibit self-organization and the difficulties of 
simulating agent decision making with too little data or not the right data to specify the 
decision. I am also involved in agent based modeling of land use decisions both directly 
and indirectly in ongoing funded research. 
 
My perspective is that systems in which feedbacks occur between the spatial patterns and 
the drivers creating them are thus nonlinear, and varied spatial patterns can be produced 
by simple nonlinear processes. These “emergent” patterns that develop are at a scale 
(spatial, temporal or phenomenological) larger than the processes can be trivial unless 
they can be interpreted. Meaningful interpretation will depend on first better 
quantification of the dynamics of pattern and second, necessarily, on the development of 
an explanatory narrative. However, most systems of interest are both nonlinear and 
complicated. A real challenge is to determine to what degree the evolution of patterns is 
determined by the complications or the nonlinearity. 
 
Models of agents are one way in which complexity and complication can be studied and 
perhaps differentiated, but they run the risk of confounding the two. Additionally, for the 
study of real places and people, models based on econometrics will be limited and the 
challenge is to bring narrative information into agent simulations. As well-known in 
ecological ibm, the initial locations of individuals strongly affects the outcome, and many 
agent models are not good at assigning calibrated agents to the right place (in some 
applications privacy issues will actually prevent this). The outcomes of agent models may 
then display results, especially “emergence,” that are at scales that are too coarse and/or 
general to help understand real places – although they may allow comparison with other 
dynamical systems and identify system constraints, which could be useful. 
 
Key insights that I can bring to the table include (references cited are on my bio pages): 
 
In self-organizing systems, evolutionary computation has the potential to help understand 
the broad form of the functions describing system behavior, but self-organization limits 
or perhaps prohibits the determination of a narrow range of function specifications 
(Malanson & Zeng 2004). 
 
Local, nonlinear pattern-process feedback can extend to broader scale linear correlations 
between pattern and process This type of interaction indicates self-organized complexity, 
but the form is yet to be determined (Zeng & Malanson 2006). 
 
The introduction of exogenous drivers of pattern formation into a self-organzing system 
produce a threshold response where the size of the patterns exceeds the spatial extent of 
the self-organizing feedback (Zeng, Malanson, Butler, in review). 
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GIScience and landscape ecology can develop synergies by building on this area of 
geocomputation and complexity theory, as in analysis of attractors in state spaces of 
spatial metrics from spatially explicit simulations and representing their uncertainty; 
visualization is insufficient (Malanson et al. 2006a). 
 
Power-law distributions and/ or alternative approaches in self-organized complexity, 
including self-organized percolation and the inverse cascade model, and highly optimized 
tolerance, based on their common ancestry in percolation theory, might provide insights 
into spatial pattern development (Malanson et al. 2006b). 
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High-resolution constraints on human actions and interactions in space and time 
 

Harvey J. Miller 
Department of Geography 

University of Utah 
 
A recent paper by Boman and Holm (2004) argues for the convergence of three 
approaches for modeling human spatial systems from the “bottom-up”: i) 
microsimulation; ii) agent-based modeling (ABM), and; iii) time geography.  These 
approaches offer complementary strengths for analyzing and understanding human 
phenomena.  Microsimulation offers a tradition of computational approaches to 
understanding how micro-level behavior creates dynamic human phenomena, as well as 
standards for model estimation and validation.  However, microsimulation models 
typically represent human behavior in an aggregate and isolated manner since behaviors 
manifest from cohorts rather than individual actions, interactions among humans, as well 
as interactions between humans and the environment.  In time geography, interactions 
among humans and with the environment are fundamental, but linkages between 
individual behaviors and aggregate social and environmental dynamics are only 
conceptual in nature.  ABM offers a rigorous but rich approach to simulating human 
phenomena from the bottom-up, as well as the concepts of adaptation, self-organization 
and emergence to capture linkages between individual behavior and aggregate dynamics.  
ABM can benefit from time geography’s focus on constraints, as well as 
microsimulation’s adherence to estimation and validation standards.  
 
While time geography has much offer as a conceptual foundation for ABM, a weakness 
is its traditional lack of a rigorous analytical foundation.  Time geographic entities such 
as the path and prism, and relationships such as path bundling, path-prism intersections 
and prism-prism intersections, are described only informally.    Classical time geography 
is not sufficiently developed to support measurement and analysis using high resolution 
technologies such as ABM, as well as data collection using location-aware technologies 
such as the global positioning systems (GPS) or radiofrequency identification (RFID) 
chips.   
 
Rigorous, high resolution constraints on human activities and interactions in space and 
time are possible through temporal disaggregation of time geography.  At a given 
moment in time, entities such as the space-time path and prism are simple geometric 
objects in the low-dimensional space of interest in time geography.  For example, the 
space-time path at a given moment in time is a point object.  Further, the space-time 
prism at a given moment in time is the intersection of three compact spatial sets that have 
simple geometric forms.  Given the low dimensional space of interest in time geography, 
it is easy to solve for the prism, prism-prism and path-prism intersections, as well as other 
relationships such as path bundling (Miller 2005a).  In addition to allowing easy 
solutions, the temporal disaggregation meshes well with the discrete temporal dynamics 
in microsimulation, ABM and LATs.     
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The high-resolution time geographic measurement theory can also be extended to 
encompass virtual interaction.  Using Janelle’s typology of interaction constraints based 
on spatial presence versus telepresence and temporal synchronicity versus asynchronicity 
as a foundation (Janelle 2004), we introduce new time geographic objects: i) a portal 
(locations that allow virtual interaction), and ii) message windows (potential or actual 
communication events represented as time intervals).  Using the well-known Allen time 
predicates that encompass all possible relationships between two intervals of time, it is 
possible to derive the rigorous constraints on communication events within the Janelle 
framework (Miller 2005b). 
 
More recently, we have extended the time geographic measurement theory to the case 
where travel velocities vary continuously across space.  Using the continuous 
transportation modeling or “urban fields” theoretical tradition in geography and regional 
science, we formulate analytical definitions of the space-time path and prism for the case 
where unobserved components are characterized by minimum cost curves through an 
inverse velocity field rather than straight line segments based on a uniform velocity.  The 
theory is more realistic and also links time geography to the continuous space modeling 
tradition in geography and regional science.  In addition to theoretical relevance and 
elegance, the time geographic field approach provides a synoptic summary and 
visualization technique that can provide insights to space-time accessibility patterns.  
Preliminary results suggest that the space-time prism is sensitive to the velocity 
assumption, and the traditional prism based on a uniform maximum velocity assumption 
is only a special case of a family of prisms with a wide range of geometric forms. 
 
Literature cited 
Boman, M. and Holm, E. (2004) “Multi-agent systems, time geography and 

microsimulations,” in Olsson, M.-O. and Sjöstedt, G. (eds.) Systems Approaches 
and their Applications  Dordrecht: Kluwer Academic, 95-118. 

Janelle, D. G. (2004) “Impact of information technologies,” in S. Hanson and G. Giuliano 
(eds.) The Geography of Urban Transportation, 3ed., New York: Guilford, 86-
112 

Milller, H. J. (2005a) “A measurement theory for time geography,” Geographical 
Analysis, 37, 17-45 

Miller, H. J. (2005b) “Necessary space-time conditions for human interaction,” 
Environment and Planning B: Planning and Design, 32, 381-401.  
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NSF/ESRC  Agenda Setting Workshop on Agent-Based Modeling of Complex 

Spatial Systems: April 14-16,  2007 

Richard Milton 
CASA, UCL 

 
Computational Representations and Dissemination  

of Fine Scale Geographic Data 
 

I am working on representing geographic data associated with spatial analysis and 
modelling in forms that enable a wide variety of users to access analytical information. 
This information is in a form that can be mapped thematically as well as information on 
movement that can be animated. Although the technologies we are working on are 
independent of scale (within obvious limits), the recent focus of this work is on fine scale 
data required for agent-based modelling such as remotely sensed data from GPS in 
various contexts ranging from monitoring pollution to tracking children moving from 
home to school.  
 
We are building various tools to display such data in non-proprietary web-based systems 
such as Google Maps and Google Earth. In this note, I will explain our work with Google 
Maps which involved the development of a freeware application to aid with the 
production and publishing of maps on the web. If the data involves movement on the map 
we can display this in a form that links the movement to other critical variables such as 
pollution and energy levels. This project is part of our work on developing new 
computational resources for analysis and modelling in terms of display and dissemination 
which are currently web based services with the potential to utilise grid based services 
when the size of the problem exceeds certain thresholds. 
 
• The Google Map Creator is a Java application designed to make publishing 

thematic data on Google Maps easier. The application takes data in the form of 
a shapefile and colours the areas according to a user defined colour scale. All 
the Google Maps tiles for the area covered by the data are rendered and saved to 
disk, along with an html file. The result is a working web site that can be copied 
to a web server for publishing on the internet. The key feature of this software 
is that it allows maps to be published by a wider range of users than was 
previously possible. The result is a completely file based site that does not rely 
on a web service to create the tiles, so maps can be published by anyone with 
access to web space that they can copy files to. 

 
 The software works with shapefiles containing data in any projection, as long as 

there is a valid projection file. This is achieved by using the Geotools library to 
do the necessary reprojection into the two projections needed to create the tiles 
for the Google Map. Once a colour scale has been chosen by the user, the 
features are rendered to all the tiles covered by the data. This is done outside of 
Geotools, but using some of the Geotools functions to access and transform the 
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data, along with some of the spatial indexing functionality built into JTS. The 
time taken to render all the tiles can be very long, so this part of the software 
had to be threaded to enable the user interface to work while the tile rendering 
is taking place. 

 
• Another application that we developed is the Google Maps Image Cutter. This 

application takes an image and displays it on the web using Google Maps. 
Using Google Maps in this way allows the publishing of very large images such 
as panoramas and gives the user the ability to pan over the image and zoom in 
to see more detail. 

 
• Work has also been done on animating GPS tracked data and publishing it on 

the web. This mainly involves GPS tracked carbonmonoxide data from a 
previous project, but we were also involved in the filming of the BBC 
programme ‘Don’t Die Young’ (screened on 23rd January 2007) where a cyclist 
was tracked through Bristol with a carbonmonoxide sensor. The data is 
published on the CASA web site at the following address: 

 
 http://www.casa.ucl.ac.uk/bbc/dontdieyoung/log_25-09-2006_154206.html   
 

 
 

Further Information about Google Map Creator and related software systems is 
available from: 
 
http://www.casa.ucl.ac.uk/software/googlemapcreator.asp 
 
http://www.casa.ucl.ac.uk/software/googlemapimagecutter.asp  
 
Reference:  
Milton, R., and Steed, A. (2007) Mapping Carbon Monoxide Using GPS Tracked 
Sensors,  Environmental Monitoring and Assessment, 
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Position paper for UCSB workshop “Agent-based modeling of complex spatial systems” 
Dawn Parker, George Mason University 
Feb. 19, 2007 
 
Early successful examples of spatial agent-based models were often highly abstract, and 
were used to demonstrate how particular macro-scale outcomes could emerge as the 
result of decentralized interactions of autonomous decision-making agents.  Examples 
include the demonstration of segregation provided by Schelling’s early models (Schelling 
1971) and the emergence of power-law distributions of wealth from Epstein and Axtell’s 
Sugarscape model (Epstein and Axtell 1996).   Such models had a very simple role: to 
extend theory by demonstrating that a particular set of behaviors and interactions could 
generate a particular macro-scale or emergent outcome (Epstein 1999).  As the discipline 
of spatial-agent based modeling matures, an increasing number of highly empirical 
models (in the style of “Cell 4” models as described by Parker, Berger, and Manson 
(2002) are being constructed.  These models are often developed to support policy 
analysis, and are motivated by a belief that models that include complex dynamics and 
interactions are likely to produce “better” results that models that omit those dynamics.  
While my discussion focuses on models of human-environment interactions (Bousquet 
and Le Page 2004; Grimm and Railsback 2006; Janssen 2003; Parker et al. 2003), such 
empirical spatial agent-based models are also being developed in other areas of social 
science, including epidemiology, sociology, and political science (Castle and Crooks 
2006).   
 
Many scholars have voiced concern that such highly empirical models of complex 
systems are in danger of being black boxes in which the relationships between inputs and 
outputs, and even the behavior of the model itself, are not well understood.  Some argue 
that for these reasons agent-based modeling is appropriate only for highly abstract 
demonstration of theoretical outcomes, and that the push to increase complexity in these 
empirical models may run counter to scientific principles of parsimony in modeling. 
Fundamental questions are raised about where and how agent-based modeling fits into 
the scientific method.  In the contrary view, others argue that the policy environment is 
complex and therefore demands development of complex models, and that policy 
questions we now face, such as potential contributions of land-use and land cover change 
to global climate change, and the potential transmission paths of pandemics, are so 
pressing that any and all practical approaches to obtaining answers must be tried.  A 
separate thread argues that spatial agent-based models may contribute to the development 
of an interdisciplinary theory of spatial social science.  Yet, whatever one’s view of the 
appropriate role for ABM in spatial social science, tensions exist between the need to 
simply build better empirical models (that better represent real-world drivers and 
complex interactions) and goal of building theoretical frameworks that have a more 
formal relationship to the scientific method, which could then contribute to building 
integrated theories of spatial social science. The first goal demands more details and 
realism; the second demands a high-level abstract framework that is generalizable across 
case studies and perhaps even realms of social science.   
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The questions lain out in this position paper attempt to steer the debate from what sorts of 
spatial agent-based models we should be doing to how we might do modeling—both 
theoretical and empirical.  These questions also aim to focus on how agent-based 
modeling can be more closely connected to the scientific method, at both theoretical and 
empirical ends of the spectrum.  While empirical models face additional challenges of 
parameterization, calibration and validation, models constructed at either end of the 
spectrum share a goal of incorporating as much complexity is needed to represent the 
problem under study, but not too much.  And both types of models ultimately seek to 
make substantive contributions to science.   
 
Question 1:  How to identify a just-sufficient level of detail for the model?  The idea 
that the goal of agent-based models is to produce macro-scale emergent patterns through 
micro-level behaviors and interactions is well established.  This idea can, however, 
provide insufficient guidance to create a parsimonious model.  A slight refinement of the 
the model question to “How do particular agent behaviors and interactions at a micro-
level produce patterns observed at a macro-level?” can help focus efforts. Grimm et al. 
(2005) suggest that at a minimum, your model must embed processes of sufficient 
complexity such that it produces the macro-scale patterns of interest.  Further, these 
patterns must of course be non-trivially produced through micro-scale interactions, rather 
than be obvious consequences of the rules specified at an agent level.  Initially, of course, 
a modeler will introduce micro-level behaviors and interactions that she believes are 
linked to macro-scale patterns.  In relation to land-use modeling, I characterize these 
behaviors and interactions into spatial, temporal, and behavioral complex drivers (Parker 
2007).  Grimm et al. (2005) also note that because multiple processes can produce the 
same single observed pattern, often multiple observed output patterns are needed to 
distinguish between competing process models.  In short, identifying a minimum amount 
of complexity requires a clear initial hypothesis that links a micro-scale exogenous driver 
(which could be a model parameter, an agent behavior, or the structure of agent 
interactions) to a macro-scale emergent pattern outcome.  A focus on linkages between 
hypothetical drivers and outcomes, rather than simply on reproduction of observed 
patters, could reunify the process of model building with the traditional scientific method.  
Further, for highly empirical models designed for policy analysis, it brings a focus to 
policy levers whose values may be modified for scenario or sensitivity analysis, thus 
encouraging the development of the model to be driven by its intended use.   
 
Question 2:  What are potential roles for statistical analysis in spatial agent-based 
models?  In Parker et al. (2003), statistical models were characterized very much as 
substitutes for agent-based models.  I have modified that view substantially since that 
paper was first written.  I now see statistical methods as an essential part of the agent-
based modeling process; certainly for highly empirical models, but also for purely 
theoretical models.  In both cases, however, there are yet (to my knowledge) too few 
statistical tools available specifically for analysis of output from complex spatial systems.  
I strongly suspect that these tools exist and await only discovery and better 
communication between currently disconnected groups of researchers.   
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In addition to the roles for statistical models in building empirical agent decision 
functions described in Robinson et al (Forthcoming), I see two potential additional roles: 
 
Application 1:  Pseudo-inductive analysis.  Demonstrating that an ABM can recreate an 
observed pattern is a first step towards using ABM as a substitute for traditional abstract 
mathematical models.  Yet a modeler is likely to have larger goals.  He may want to 
demonstrate that the outcome holds globally, over a large (and reasonable) range of 
parameter values.  He may also want to understand global relationships between 
directions of change of parameters and directions of change of outputs.  The solution to 
this problem has been well articulated in the agent-based modeling literature (Axelrod 
and Tesfatsion 2006): the modeler should create a database of outcomes by sweeping the 
parameter space, then use statistical methods to analyze the generated data. However, 
what has been less well articulated (to my knowledge) is what tools are available that are 
statistically appropriate for analysis of complex systems.  By their nature, complex 
systems are characterized by endogeneity between micro-scale elements and macro-scale 
outcomes due to cross-scale feedbacks.  They are also characterized by non-linear 
response surfaces and thresholds where abrupt changes occur.  These properties violate 
the assumptions of the mostly-linear regression models in the historical toolkit of social 
science modelers.  Although traditional regression techniques have been applied to the 
analysis of output from agent-based land-use models by myself (Parker 2005) and Happe 
et al (2006), both authors acknowledge the limitations of the linear models that they 
employ.  
 
Application 2:  Model validation.  The first application focuses on statistical analysis of 
the relationship between micro-scale drivers and macro-scale measures of pattern 
outcome.  A second potential application (not applied to the author’s knowledge) 
involves statistical analysis of ABM output at the micro level, and comparison of that 
model output to results from the same statistical model applied to real-world data (which 
of course would have to lie outside any data used to build the ABM).  For example, an 
empirically-parameterized agent-based model of residential land markets would produce 
outputs at the micro level similar to those used to estimate spatial econometric models of 
land-use change, including land-use transitions, transaction prices, distance to 
transportation networks, and neighborhood composition at multiple spatial scales.  Such 
data could be used to estimate a land-use change model using techniques similar to those 
described by Bell and Irwin (2002).  If the estimated parameters of the simulated and 
real-world models had the same signs and statistical significance, the model could be said 
to exhibit qualitative agreement with the real world-data.  If the parameter estimates were 
statistically similar, the model would have hit the proverbial “home run” (although likely 
other validation methods would probably also be called for).  This approach goes beyond 
asking if the model replicates spatial outputs such as location, pattern, and composition at 
multiple scales, and rather asks how closely the model replicates the structural 
relationships found in the real-world data.   (Additional thought would be required to 
account for path-dependence and the distribution of simulated model outcomes that 
would be possible (Brown et al. 2005).) 
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Question 3:  What is the role for calibration in empirical agent-based models? 
Calibration (derivation of a set of best-fit model parameters through comparison of 
outcomes at the micro or macro level) has played multiple roles in spatial empirical 
ABMs.   Both statistical and mathematical programming-based agent decision models 
have been calibrated using micro-level outcome data (Balmann et al. 2003; Berger 2001; 
Happe, Kellermann, and Balmann 2006; Schreinemachers and Berger 2006).  Parameters 
of agent decision models have also been calibrated using macro-scale data on land-use 
composition and pattern (Caruso, Rounsevell, and Cojocaru 2005; Evans and Kelley 
2004).  Each of these methods implicitly assumes that the chosen structure of the decision 
function is correct, but that the parameters of that function are uncertain.  Thus 
calibration does not necessarily provide a means to distinguish between competing 
decision models.  If macro-scale pattern outcomes of interest are used for calibration, 
then separate outcome data must be used to validate the model after calibration, 
increasing overall data requirements for the model.  Decision models often contain many 
more parameters than the number of observations available on macro-scale outcomes, 
leading to potential parameter identification problems, and exacerbating the problem of 
distinguishing between alternative decision models, as there may be cases where different 
sets of parameter values for the same decision model may lead to equivalent pattern 
outcomes.  Grimm et al (2005), referring to the calibration process described above as 
“inverse modeling”, propose calibration via multiple pattern outcomes as a means of 
addressing the parameter identification problem.  Calibration may have an important role 
to play for spatial ABM at a later stage of model development and/or in cases where 
agent rules and behaviors are well known (for example, when they have been determined 
via field observation or laboratory experiments).   
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Virtually all current scientific, socioeconomic and security questions depend on geospatial 

information and on the ability of scientists to interact with that information in increasingly flexible 
and holistic ways, whether the problem context concerns, for example, managing urban growth, 
predicting the spread of disease, understanding an evolving world economy in the digital age or 
protecting against terrorist attack. 

The important issues relating to these applications center on the understanding of 
geospatial processes, as entities change over time. The interactions among entities and their 
components within processes tend to be highly dynamic, interlinked, and with complex chains of 
cause-and-effect. For example, environmental water quality is affected by urbanization (housing 
and road density, etc.), which is in turn affected by public policy and economics governing how 
and where things may be built at both local and regional scales. 

Because of the complex and non-deterministic interactions of social and natural 
components, improving our understanding of geospatial processes or deriving specific problem 
solutions generally requires representation and analysis of higher-level, domain-specific human 
knowledge in addition to observational data. The complexity of the processes being investigated 
also requires the application of expertise from multiple knowledge domains.  How do the 
components of a process and the subcomponents of each relate to each other, and at varying 
spatio-temporal scales?  Such questions are addressed via teams of analysts with differing 
domains of expertise and differing views of the phenomenon.  Because of the limitations of 
current tools, their analyses tend to be unlinked and potentially in disagreement. 

Approaches for representation and analysis remain focused on handling observational data. 
The current manifestation of this focus is the emergence of networks for the purpose of linking 
various data sources and software tools, and providing real-time access to these, via what has 
become known as the cyber-infrastructure.  Higher-level, derived knowledge of geographic 
phenomena is rarely stored or utilized by the software.  As pointed out by [1], GIScience has been 
focused on the study of form – of how world looks rather than how the world works.  What can 
be derived from current geospatial software tools is thus limited by the expertise, experience, and 
memories of the specific people using the system at a given time. This can be problematic, 
particularly in an emergency situation when a solution must be quickly derived.  

Formalized ontologies are widely seen as the means to overcoming this situation, and have 
received much attention within GIScience.  Ontologies, in a digital context, provide a basis for 
augmenting data with a common semantics for database integration and sharing, as well as a 
stored knowledge base.  These formalized ontologies are often described conceptually (and 
represented graphically) as concept graphs.  While this approach provides a means of 
representing a level of abstraction above the observational data that is also intuitive for the user, it 
is not without serious shortcomings with regard to representing space-time process, as well as 
refining our knowledge of processes through new observational data. 

Formalized ontologies tend to be built through a manual, custom-tailoring process.  They 
may grow as users add concepts and relationships but the basic concepts and interrelationships 
among them are assumed to be static.  In the real world, however, concepts evolve - the basic 
categorical groupings from which they derive change, concepts can be replaced or completely 
redefined, as well as the relationships among them – as knowledge grows. 

OWL has quickly become the standard language for encoding formalized ontologies.  OWL 
is a Web Ontology Language intended as a tool for providing a means for common understanding 
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across the World Wide Web in the idea of the ‘semantic net.’ OWL was designed to define 
classes and concepts as well as their properties and relationships, and also to allow reasoning 
about these classes and concepts [2].  It, however, is weak in its operational ability to determine 
the need for change in the ontology represented via evidence from new data and to appropriately 
modify it.  The volume of new geospatial data streaming in from various sources, and their 
heterogeneity (with the consequent complexity and variability of possible patterns) makes a focus 
on inductive techniques such as those associated with Data Mining insufficient. Theory-driven 
methods of analysis that are guided by stored knowledge, as well as observational data, are 
required. 

As already stated, ontologies provide a specification of classes, concepts and the structure 
among them.  Recent research has shown how this can be extended to include ontological history 
– explicit storage of new and superseded concepts, these linkages, and description of how 
components originate [3].  Nevertheless, the fundamental mechanisms of the underlying process 
– i.e., how things change and evolve to affect the form of the observed phenomenon and the 
derived, abstracted elements (or concepts) within that process – is not represented within any 
ontology.  A process can be defined functionally as a function that acts on a domain and may or 
may not refer to, or act upon, observed objects applicable to the domain (a specific instance of, 
for example, a city, disease, or multinational corporation) stored within the data.  The process 
could be simple and elemental (e.g., move forward), or could be more complex (shoreline 
erosion), in which case, it is composed from a dynamic set of hierarchically organized functions.  
Generally speaking, such a function incorporates a description of behaviors and their applicable 
context along with defined triggers to specific behaviors.  Such a description would often consist 
of rules.  At an elemental level, a function could be an algorithmic or mathematical 
transformation.   

So, just as it is now acknowledged that storing large amounts of heterogeneous geospatial 
data requires a multi-representation framework, storing higher-level information concerning 
geospatial phenomena and their dynamics also requires a multi-representation approach.  
Moreover, these multiple data and knowledge representations must be functionally interlinked.  
Initial research at Penn State [4] has shown that the use of multiple software agent types linked 
with an ontology and database utilizing a what/when/where schema provides the needed 
combination of representational power.   

There has been growing recent interest in intelligent software agents in GIScience as a 
specific tool in a variety of contexts, including simulation of land-use/cover change [5], 
wayfinding [6], and social simulations [7].   Software agents are not only a natural way to 
represent social aspects (institutions, societies, etc.) as well as natural aspects (climate, 
hydrology, etc.) of geospatial processes, but also to represent the coordinated dynamic behaviors 
of multiple entities constituting complex dynamic processes.  They, in combination, can be 
applied in simulations of space-time processes to provide a key means of representing a specific 
process (or components of a process at a specific scale) in a dynamic way that deals with complex 
interactions [8].   

Cognitive agents, as opposed to reactive agents, maintain an internal state (e.g., goals, plans, 
and state information about the world), and behave by searching through a space of behaviors and 
cooperating with other agents (which in turn may affect their actions)[9].  Key properties of 
cognitive agents with these characteristics are that besides being situated (applicable, or active, 
within specific contexts) and distributed (maintain their own constrained view), they are adaptive 
(learn and improve through experience). Cognitive agents can thus also be viewed as 
corresponding to the expertise of a human expert. Reactive agents tend to be more algorithmic in 
nature and are thus appropriate for dealing with low-level functions.  A middle form (not fully 
cognitive) can also be useful as a flexible means of representing, various components of those 
processes.   
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Such a multiple agent scheme provides a means of representing knowledge about process 
(captured through simulation and verified via linkage with observational data, or explicitly input 
by the user).  Agents, in combination with ontologies, act as knowledge carriers to provide 
qualitative information, derivation of higher-level abstractions, and makes large stores of 
observational data more easily retrievable, reusable, and shareable.  This provides for a powerful 
simulation environment for studying space-time dynamics, but more importantly, such 
simulations provide a means of analyzing “what-if” alternatives to aide the human 
analyst/decision maker, and a fast means of conveying domain-specific knowledge to decision-
makers in time-critical situations. 
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The idiosyncrasy of movement: GIS as a tool for exploring individual 
differences 
 
 
The concept of individual differences continues to gain considerable attention within the 
discipline of psychology. A recent workshop at the 2006 Spatial Cognition conference (in 
Bremen, Germany) made evident that much can be learned by focusing on the individual and 
the particularities of both planned and unplanned navigation. Individuals vary in their ability 
to learn and navigate large-scale environments. These differences however are often treated 
as secondary, aggregated and at times even forfeited for statistical significance testing. 
Researchers in geography, especially those dealing with behaviour and movement, must take 
care to partake in this discussion and continue to develop analytical methods that can account 
for the heterogeneity of human spatial behaviour.  
 
Researchers (Tellevik, 1992; Hill 1993) have used different video coding techniques to 
analyse and identify patterns and strategies used to explore familiar and unfamiliar 
environments. Most of these techniques require the recording of movement with a video 
camera and the isolation of different exploratory strategies by reviewing the recording as a 
sequence of frames. Despite a series of advances in real-time digital tracking technology 
(Schinazi, 2005) some researchers (Gaunet, 1996; Thinus-Blanc & Gaunet, 1999) continue to 
employ video based techniques in their analysis, questioning the academic value of these 
technological novelties. Data acquired from real-time digital tracking devices, much like 
video data, needs to be re-coded in order to be analyzed. The finer precision of GPS systems 
has allowed for tracking data to be collected and automatically coded into GIS software for 
analysis. This type of data collection has recently been used with considerable success in the 
analysis of children’s activity patterns in their local environment (Mackett et al., 2006). GPS 
unfortunately is still not accurate enough to deal with small-scale spaces where satellite data 
cannot capture enough detail on the sequential propinquity of body movement and turn 
angles. Taken together, it seems that changes are necessary not at the data capturing stage 
but during coding and analysis. Zacharias & Schinazi (2003) have used GIS software to code 
and analyse the spatial behaviour in small-scale settings - the corridors of a shopping centre 
in Downtown Montreal.1 However, the movement data for the most part was aggregated and 

                                                 
1 Shopping centres are a good example of GPS unfriendly environment given limited 
strength of satellite signals. 
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coded as layers of polylines representing different spatial distributions and flow patterns, yet 
again overlooking the peculiarities of individual behaviour.  
 
The present study will describe a technique used to examine the locomotor strategies 
employed by individuals who are blind or visually impaired when exploring a complex novel 
environment. Subjects were asked to explore a large-scale maze (45 X 30 meters), locate and 
remember the position of six different targets. They were then put through a series of spatial 
tasks and asked to make heading judgements, estimate distances and complete a cued model 
of the maze. The movement pattern of each subject was recorded and entered into GIS 
software (ArcGis) as individual polylines. The Tracking Analyst extension was used to view 
and isolate the movement patterns into specific space frames for coding. Performance in the 
various spatial tasks was then related to the different identified exploratory strategies.  
 
The talk will conclude with a discussion on the complexity involved in the identification and 
classification of exploratory strategies that are both spontaneous and distinct. Some 
limitations of GIS based tracking analysis will also be presented and these will be evaluated 
in relation to past research and current analytical tools that allow the focus to placed on the 
individual. 
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Agents – Return to a computational science perspective? 
Raja Sengupta, Dept. of Geography, McGill University 
 
(A proposal for the workshop on Agent-Based Modeling of Complex Spatial Systems) 
 
The use of the related terms “agent-based”, “multi-agent”, “software agent” and “intelligent 
agent” have witnessed significant growth in Geographic Information Science (GIScience) 
literature in the past decade. These terms usually refer to both artificial life agents that simulate 
human and animal behavior and to software agents that support human-computer interactions.  
While a computational science perspective does not preclude the former, Distributed Artificial 
Intelligence (DAI) researchers who originally coined the term and provided the semantic 
framework were contemplating the latter.  Therefore, its extension to and usage in complexity 
theory research requires as a first step acknowledgement of ongoing research in the DAI 
community.  In turn, GIScience researchers have much to offer to ongoing work on inter-agent 
communication languages and enforcing stronger notions of autonomy.  But this will require 
GIScience and complexity theory agent modelers to venture into debates located deep within the 
unfamiliar territory of computational science.    
 
Software agent research itself arose from the DAI community. This community was disillusioned 
by monolithic approaches to modeling human intelligence and believed that knowledge could be 
distributed into elemental components that generated emergent and intelligent behavior through 
interaction (Hayes-Roth and Hayes-Roth 1979, Hayes-Roth 1985, Huhns 1987, Bond and 
Graesser 1988). Current research on this topic within DAI builds on this basic idea using recent 
advances in user/software interface development (Etzioni and Weld 1994, Maes 1994), network 
mobility (Kotz and Gray 1999) and Internet data- and information-mining algorithms (Knapik 
and Johnson 1998).  
 
Consensus amongst DAI researchers suggested that to be considered an intelligent agent, the 
software/computer model must possess the following four properties: (a) autonomous behavior, 
(b) ability to sense its environment and other agents, (c) ability to act upon its environment alone 
or in collaboration with others, and (d) possession of rational behavior (Woolridge and Jennings 
1995, Woolridge 1999). To aid in inter-agent collaboration and communication, specific Agent 
Communication Languages, for example, Knowledge Query and Manipulation Language 
(Labrou et al. 1999), have also been developed. Additionally, researchers have pointed out that 
intelligent agents should not only be able to respond to, but also learn from, their environment 
(Maes 1994). Humanistic characteristics such as beliefs, desires, intentions (Shoham 1993), and 
emotions and trust (Maes 1994) also could form a part of agent behavior.  
 
The first area of contribution by GIScience researchers can and should be in the area of inter-
agent communication languages.  For example, the Knowledge Query and Manipulation 
Language (KQML) is designed both as a messaging format and a message-handling protocol to 
support run-time knowledge sharing among agents.  In its current format, it also includes higher 
level communication strategies such as contracts and negotiations.  However, the ability to 
define spatial constructs and objects using KQML is severely limited and often non-existent.   
GIScience researchers, familiar with the spatial query language debate of the early 1990s (e.g., 
Egenhofer 1994), could capture past research on this topic to inform the expansion of KQML 
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into its spatial equivalent (SKQML?) and in turn, enrich their own agent-modelling experience 
by building communicative artificial life agents. 

A second area where GIScience agent researchers can assist DAI research is in implementing a 
“strong” notion of autonomy within artificial life agents, perhaps using virtual environments 
such as “Second Life” (secondlife.com) as test beds.  A weak notion of autonomy suggests that 
agents must, in addition to being reactive, be in control of their state and persist beyond the 
completion of a single task (Tosic and Agha 2004).  But this is true of many common software 
applications such as firewalls and virus scanners, and in the geospatial realm, of Internet Map 
Servers. A strong notion of autonomy requires the agent to have goal-directed behavior and be 
proactive in achieving those goals. Humans or application instantiate them but agents continue to 
run even after the instantiation mechanism has been terminated or is no longer present. Once 
instantiated, the agent must have knowledge of its goals, be in control of its actions, be able to 
make rational decisions in uncertain and open environments without prior knowledge about each 
and every situation they encounter, and require no assistance from human operators.  However, 
in this definition, strong autonomy implies that agents have explicit spatial cognition, combined 
with a spatial ontology, of the virtual environments in which they operate.  Spatial cognition and 
ontology are familiar terms to all GIScience researchers, and therefore topics on which there is 
much to inform the DAI community. 
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Distributed Simulation of Agent-based Models 
 

Georgios Theodoropoulos 
 

School of Computer Science 
University of Birmingham 

 
There has been considerable recent interest in complex systems, which involve dynamic 
and unpredictable interactions between large numbers of components including software, 
hardware devices (such as sensors), and social entities (people or collective bodies). 
Examples of such systems include from traditional embedded systems, to systems 
controlling critical infrastructures, such as defence, energy, health, transport and 
telecommunications, to biological systems, to business applications with decision-making 
capabilities, to social systems and services, such as e-government, e-learning etc. The 
complexity of such systems renders simulation modelling the only viable method to study 
their properties and analyse their emergent behaviour.  Multi-agent systems (MAS) have 
emerged as a particularly suitable paradigm for modelling complex systems. When 
embedded in a real system, a MAS is itself a complex system whose properties and 
emergent behaviour have to be analysed via simulation.   An agent can be viewed as a 
self-contained, concurrently executing thread of control that encapsulates some state and 
communicates with its environment and possibly other agents via some sort of message 
passing.  
 
While agents offer great promise, adoption of this technology has been hampered by the 
limitations of current development tools and methodologies. Multi-agent systems are 
often extremely complex and it can be difficult to formally verify their properties. As a 
result, design and implementation remains largely experimental, and experimental 
approaches are likely to remain important for the foreseeable future.  Over the last two 
decades, a wide range of MAS simulators and testbeds have been developed, and 
simulation has been applied to a wide range of MAS research and design problems, from 
models of complex individual agents employing sophisticated internal mechanisms to 
models of large scale societies of relatively simple agents which focus more on the 
interactions between agents.  However, existing MAS simulations and simulators suffer 
from two key problems.  

 
The first problem is lack of performance. The computational requirements of simulations 
of many multi-agent systems far exceed the capabilities of a single computer. Each agent 
may be a complex system in its own right (e.g., with sensing, planning, inference etc. 
capabilities), requiring considerable computational resources, and many agents may be 
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required to investigate the behaviour of the system as a whole or even the behaviour of a 
single agent. 
 
The second is lack of interoperability. The development of complex MAS simulation, 
usually requires collaborative effort from researchers with different domain knowledge 
and expertise, possibly at different locations. Furthermore, the effort required to develop 
a new simulation from scratch is considerable. There is therefore a strong incentive to 
reuse existing simulation components, toolkits and testbeds for a new problem. However, 
while many simulations have been developed, it is difficult to leverage this investment in 
the development of new agent simulations. Simulations developed for different agent 
simulators typically do not inter-operate, making it more difficult to re-use simulation 
components. This is particularly problematic in the case of spatial agent based models. 
Combining a simulation of an agent architecture developed for one simulator with a 
simulation of an environment developed for another typically involves re-implementation 
of one or both components. If the agent must be simulated in several different 
environments, the problem is compounded.   
 
A solution to both these problems can be found in distributed simulation.  The last decade 
has witnessed an explosion of interest in distributed simulation not only for speeding up 
simulations, but also as a strategic technology for linking simulation components of 
various types at multiple locations to create a common virtual environment. The 
culmination of this activity, has been the development of the High Level Architecture1 
(HLA), a framework for simulation reuse and interoperability developed by the US 
Defence Modelling and Simulation Office. Using HLA, a large-scale distributed 
simulation can be constructed by linking together a number of (geographically) 
distributed simulation components, or federates, into an over-all simulation, or 
federation. HLA, with minor revisions, has been adopted as an IEEE standard (IEEE 
1516) and is likely to be increasingly widely adopted within the simulation community.    

 
Distributed simulation and HLA offer an attractive potential solution to the problems of 
simulation and simulator reuse and simulation performance in MAS simulation. The 
development of HLA compliant agent simulators and simulation components would 
facilitate inter-operation with other simulations, allowing greater re-use of agent 
simulation components. In addition, the ability to distribute agent and other simulation 
components across multiple computers has the potential to increase the overall 
performance of a MAS simulation, given sufficient computational resources and 
favourable simulation characteristics.  However most of the work in this area to date has 
employed various ad-hoc approaches to parallel simulation, e.g., distributing the agents 
over a network of processors interacting via some communication protocol, and has 
yielded relatively poor performance. MAS models present particular challenges for 
distributed simulation. An example key problem in the distributed simulation of spatial 
agent-based models is the efficient distribution of the agents’ environment, namely the 
part of the world (or computational system) ‘inhabited’ by the agent. In simulations of 
situated MAS, the environment is represented by a large shared state space, which may 

                                                 
1 https://www.dmso.mil/public/transition/hla/ 
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be accessed by any of the agents frequently and in dynamic, non-deterministic patterns. It 
is therefore difficult to determine an appropriate simulation topology a priori.  
Encapsulating the shared state in a single process (e.g. via some centralised scheme) 
introduces a bottleneck, while distributing it all across the distributed resources 
(decentralised, event driven scheme) will typically result in frequent all-to-all 
communication and broadcasting.   
 
While the HLA enables interoperability and the construction of large-scale distributed 
simulations using existing and possibly distributed simulation components, it does not 
provide support for collaborative development or configuration of simulation 
applications, nor does it provide any mechanism for managing the resources where the 
simulation is being executed. The emergence of Grid technologies provides exciting new 
opportunities for large scale distributed simulation of agent-based models, enabling 
collaboration and the use of distributed computing resources, while also facilitating 
access to geographically distributed data sets. 
 
How should large-scale environmental data sets be distributed to enable efficient access 
by the agents in a distributed simulation? How can we develop efficient infrastructures to 
support load management, synchronisation, and query routing in large scale MAS 
simulations? How can we support collaborative model development and automated 
composition of simulation components?  Is HLA the answer to interoperability? The 
workshop can discuss some of these challenges, which are at the heart of making agent-
based simulation feasible at a scale necessary to master the challenges ahead of us.    
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APPLICATION FOR THE SPECIALIST WORKSHOP ON AGENT-
BASED MODELING OF COMPLEX SPATIAL SYSTEMS 

Stephan Winter 
Department of Geomatics, The University of Melbourne, VIC 3010, Australia 
winter@unimelb.edu.au

1. PERSONAL PERSPECTIVE ON THE TOPIC OF THE WORKSHOP 

Over the past few years I recognized in my research that the community of agent-based 
modelers of spatial systems on the one hand, and the community interested in complex 
dynamic systems on the other developed more or less independently from each other. And I 
became interested in studying potential relationships between the realms of the communities 
for mutual benefits and discovery of new knowledge. The complex dynamic systems I am 
working on are forms of social networks, more particularly ad-hoc social networks—agents 
that are near to each other and hence can interact. The latter brings in a geographic 
perspective, which can become more relevant if the matter of interaction is solving spatial 
problems, e.g., wayfinding, or spatiotemporal problems, e.g., transportation planning. 

1.1 An Example 

Research on geosensor networks is typically concerned with the efficient extraction of 
information of sensor observations, hence, looking into hardware, protocols, routing of 
messages, and data aggregation, acknowledging that geosensor network nodes are mobile and 
always aware of their location. My research focus is different in three respects. 

• First of all, its focus is on movement of the nodes, not of information. The investigated 
geosensor network consists of nodes that have individual travel intentions. If two 
nodes meet, one of them can ride piggy-back on the other one for reasons such as 
saving fuel or traveling faster, depending on the abilities of the two nodes. We call this 
behavior ride sharing, and are interested in all forms of travel optimization. 

• Secondly, this geosensor network allows for different types of nodes. In applications, 
one will distinguish transportation clients—nodes that can travel piggy-back—from 
transportation hosts—nodes that offer piggy-back traveling. Some clients may be able 
to move only with a host—think of parcels in a freight application—, while other 
clients may be able to move independently, for example pedestrians in an urban 
transport application. There may also be hosts that offer piggy-back traveling not only 
to clients, but also to other hosts, as for example a ferry to vehicles. Even immobile 
nodes can be thought of as part of the geosensor network, participating in the peer-to-
peer communication—think of bus stops in a public transportation application, 
mediating between buses and pedestrians. With all their individuality, nodes can be 
conceptualized as agents. 

• Thirdly, special challenges arise from the typical communication constraints of 
geosensor networks: scarce resources in terms of battery and bandwidth, and of a 
fragile communication network topology due to node mobility. Nodes have to 
communicate with each other to gather current transportation network knowledge for 
trip planning. Being restricted to local communication means that nodes can only 
gather local transportation network knowledge, and hence, find sub-optimal trips. 
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The interesting research questions in this context are on the nodes' communication strategies, 
on their (optimal) trip planning strategies, on competition, on trust and reputation in peer-to-
peer systems, on the general behavior of large transportation geosensor networks considering 
the autonomy and intentionality of the nodes, or on the potential for heterogeneous network 
architectures (wired/wireless), to name just a few. While these questions give a hint of the 
challenges, I will illuminate the questions by a concrete realization: a shared ride system for 
persons traveling by multiple modes in the city. 

The envisioned peer-to-peer shared ride system enables pedestrians to negotiate in an ad-hoc 
manner for ride sharing with diverse vehicles in urban traffic, such as private cars, buses, 
trains, or taxi cabs. In such a system pedestrians are the clients, and vehicles are the hosts. 
Finding rides in an ad-hoc manner is accomplished by local negotiation between these agents 
via radio-based communication. For this purpose, clients collect local real-time transportation 
network information. Based on this information and their preferences for various optimization 
criteria, such as travel fees or travel time, they are able to select hosts that offer optimal trips 
with respect to their limited information. The selected hosts are booked then, and the ride can 
take place. Since the selection was made based on local knowledge, and other opportunities 
could come along, the client revises its travel plans regularly. 

In previous research we have investigated the clients' ability to make trip plans from local 
transportation network knowledge. Optimizing for travel time in this case, the results show 
that local communication is both efficient and effective. It is efficient because it leads to less 
communication messages than for complete current transportation network knowledge, and it 
is effective because it leads to travel times comparable to the travel times of trips computed 
from complete current knowledge. This investigation was realized by simulation of a peer-to-
peer shared ride system, with an immobile and inflexible client agent and homogeneous host 
agents. We were concerned whether the simulation design was elaborate enough to reflect 
sufficiently the behavior of a system deployed in the real world. For this reason, the 
simulation was extended, introducing diverse types of client and host agents with different 
behavior and capabilities, including deterministic mobility models. It turned out that with 
every step to more complexity, local communication is always both efficient and effective 
compared to other communication strategies, even if the trips themselves may change 
significantly. For details on this work see the references in Section 2.2. 

1.2 Some Observations from the Example 

Current multi-agent systems, such as Swarm, Repast, or Ptolemy, are lacking spatial 
awareness. Developing ad-hoc alternative systems seems not a viable solution. 

• On the agenda: engage in public domain projects and contribute spatial abilities to 
multi-agent systems, such as spatial data and knowledge representation, route planning 
and following, or a spatial communication layer. 

Multi-agent systems are perfect tools to simulate mobile sensor networks. Simulations with 
multi-agent systems, in particular in the area of mobile sensor networks, use frequently simple 
mobility models such as random walking models. 

• On the agenda: engage in the development of mobility models better reflecting goal-
oriented behavior of typically repetitive patterns.  

Multi-agent systems that have other mobility models (micro-simulation models) are designed 
for realistic traffic modeling (Nagel 2001; Torrens 2004) or modeling of dynamic urban 
processes (Batty et al. 2003; Benenson and Torrens 2004). 
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• On the agenda: engage in models of cooperation and communication, since real-world 
agents will more and more being ubiquitously connected by some communication 
technology and do interact.  

2. RESUME 

I am Senior Lecturer at the Department of Geomatics, The University of Melbourne, 
Australia. Previously I held positions at the University of Bonn, Germany (1990-97, PhD in 
1997), and the Technical University Vienna, Austria (1997-2003, habilitation in 2001).  

My current research focuses on spatial information theory with a specific interest in spatial 
cognition, wayfinding and navigation. I also look into conceptual route planning, network 
analysis, and, recently, mobile ad-hoc geosensor networks and their application in real-time 
and dynamic route planning. My preferred research approach is simulating complex dynamic 
systems by modeling autonomous agents, and analyzing the decision strategies of the agents 
with respect to optimality or efficiency. I am also member of the virtual sensor network 
laboratory of the University of Melbourne, providing a testbed environment for ideas. 

Currently I am leading a CRCSI project on adapting route information for different user 
groups, and recently I have won an ARC Linkage project on cognitive ergonomic wayfinding 
directions. Another project, on peer-to-peer shared ride systems, runs without major external 
funding. Two years ago I started a collaboration with Silvia Nittel, head of the Geosensor 
Network Lab at the University of Maine, and looked into peer-to-peer shared ride trip 
planning with mobile location-aware sensor networks (Winter and Nittel, 2006). These papers 
explore whether this novel approach to improve urban mobility is feasible, which 
communication strategies and protocols are required and efficient, and what the next research 
questions are. In the next paper, with Martin Raubal, at that time University of Muenster, I 
proposed algorithms from time geography to identify relevant data for shared ride planning, 
by this way reducing peer-to-peer communication to a minimum (Winter and Raubal, 2006).  

Previous research concerned topological relations in presence of location uncertainty. 
Working in this area I applied a model of raster-vector-unification for topological analysis, 
and reused it later for formal specifications for interoperability. Parts of these research results 
were included in the OpenGIS specifications. During this time I participated in several 
research projects on interoperability, before I won European and national research projects in 
the area of navigation and tourist information. 

My publication record notes more than 100 publications over the last 10 years, 42 of them full 
paper reviewed. Among these papers is the most cited GIScience paper (according to Google 
Scholar, September 2005), written together with Martin Raubal. Courses I am teaching deal 
with spatial data management and analysis, webmapping and interoperability, and navigation 
services. 

In 2007 I will chair the Eighth International Conference on Spatial Information Theory 
(COSIT’07), together with Benjamin Kuipers, Texas. In conjunction with COSIT’07, I will 
also chair the first international workshop on social space and geographic space, looking into 
social networks and their geographic conditions. This workshop will be sponsored by the 
ARC Network of Spatially Integrated Social Sciences (ARCNSISS), of which I am founding 
member. I chaired already an ARCNSISS workshop on trust and reputation in ad-hoc local 
communities. In 2000, I chaired the EuroConference on Ontology and Epistemology for 
Spatial Data Standards in France, 2000. I am co-chair of the ISPRS WG II/6: Geo-
spatiotemporal semantics and interoperability, and chaired the Working Group in 
Interoperability in the Association of GI Laboratories in Europe until 2003.  
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2.1 My ten career-best publications 

Claramunt, C.; Winter, S., forthcoming: Structural Salience of Elements of the City. 
Environment and Planning B, accepted for publication in October 2006. 

Raubal, M.; Winter, S.; Tessmann, S.; Gaisbauer, C., forthcoming: Time Geography for 
Intelligent Ad-Hoc Shared-Ride Trip Planning. International Journal of 
Photogrammetry and Remote Sensing (Special Issue on From Sensors to Systems: 
Advances in Distributed Geoinformatics), accepted for publication in December 2006. 

Winter, S.; Nittel, S., 2006: Ad-Hoc Shared-Ride Trip Planning by Mobile Geosensor 
Networks. International Journal of Geographical Information Science, 20 (8): 899-
916. 

Klippel, A.; Winter, S., 2005: Structural Salience of Landmarks for Route Directions. In: 
Cohn, A.G.; Mark, D.M. (Eds.), Spatial Information Theory. Lecture Notes in 
Computer Science, Vol. 3693. Springer, Berlin, pp. 347-362. 

Nothegger, C.; Winter, S.; Raubal, M., 2004: Computation of the Salience of Features. 
Spatial Cognition and Computation, 4 (2): 113-136. 

Winter, S.; Nittel, S., 2003: Formal Information Modeling for Standardisation in the Spatial 
Domain. International Journal of Geographical Information Science, 17(8):721-741.  

Raubal, M.; Winter, S., 2002: Enriching Wayfinding Instructions with Local Landmarks. In: 
Egenhofer, Max J.; Mark, David M. (Eds.), Geographic Information Science. Lecture 
Notes in Computer Science, Vol. 2478. Springer, Berlin, pp. 243-259. 

Winter, S., 2002: Modeling Costs of Turns in Route Planning. GeoInformatica, 6(4): 345-
360.  

Winter, S., 2000: Uncertain Topological Relations between Imprecise Regions. International 
Journal of Geographical Information Science, 14(5): 411-430. 

Winter, S.; Frank, A.U., 2000: Topology in Raster and Vector Representation. 
GeoInformatica, 4(1): 35-65. 

2.2 Any papers already published by me in the area of the workshop contribution 

Winter, S.; Nittel, S., 2006: Ad-Hoc Shared-Ride Trip Planning by Mobile Geosensor 
Networks. International Journal of Geographical Information Science, 20 (8): 899-
916. 

Winter, S.; Raubal, M., 2006: Time Geography for Ad-Hoc Shared-Ride Trip Planning. In: 
Aberer, K.; Hara, T.; Joshi, A. (Eds.), 7th International Conference on Mobile Data 
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Mobile P2P Databases1 
 
 

Ouri Wolfson 
Department of Computer Science 
University of Illinois at Chicago 

 
 

A mobile peer-to-peer (P2P) database is a complex spatial-temporal system, in which 
information is stored in the peers of a mobile P2P network. The mobile peers 
communicate with each other via short range wireless protocols, such as IEEE 802.11, 
Bluetooth, Zigbee, or Ultra Wide Band (UWB). These protocols provide broadband 
(typically tens of Mbps) but short-range (typically 10-100 meters) wireless 
communication. On each mobile peer there is a local database that stores and manages a 
collection of data items, or reports. A report is a set of values sensed or entered by the 
user at a particular time, or otherwise obtained by a mobile peer. Often a report describes 
a physical resource such as an available parking slot. All the local databases maintained 
by the mobile peers form the mobile P2P database. The peers communicate reports and 
queries to neighbors, and these propagate by transitive multi-hop transmissions. 
  
Mobile P2P databases enable matchmaking or resource discovery services in many 
application domains, including social networks, transportation, mobile electronic 
commerce, emergency response, and homeland security. 
 
Traditionally search databases have been implemented by a centralized architecture. 
Google is preeminent example of such architecture. However, mobile P2P databases have 
several advantages over centralized ones, including higher reliability, better privacy and 
performance, lower cost, and independence of a fixed infrastructure. Their disadvantage 
is that they do not guarantee answer completeness. 
 
The concept of mobile P2P database is proposed for searching local information, 
particularly information of a temporary nature, i.e. valid for a short duration of time [1].  
There are two main paradigms for answering queries in mobile P2P databases. One is  
pulling reports by sending queries on search missions in the network, and the other is 
pushing the reports to the right queries. Combination approaches seem most promising. 
 
There are many research challenges in mobile P2P databases: 
 
1. Prolong network lifetime: Currently, some approaches e.g. ranking and cluster-

based-methods, are proposed to prolong the lifetime of sensor networks, mobile ad 
hoc networks, and mobile P2P databases. The future research question is how to 
employ the redundancy of networks and the density of peers in order to maximally 
extend the network lifetime. 

                                                 
1 Research supported by NASA Award NNA06AA25C, and NSF Grants OII-0611017, DGE-0549489, 0513736, and 

0326284. 
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2. Sparse networks: Currently, the performance of many algorithms and systems 
heavily depends on the density of peers in mobile P2P networks. They do not perform 
very well if the network is sparse. Therefore, how to design and develop mobile P2P 
databases for sparse networks is an important and difficult challenge. Recent work 
that heads in this direction includes Delay Tolerant Networks, store and forward 
flooding, and mobile peers whose sole function is to provide connectivity. 

3. Rapid topology changes: Highly mobile peers pose problems, e.g. how to efficiently 
disseminate queries and answers, and how to reconfigure rapidly when the topology 
of networks changes frequently. Stateless approaches seem most suitable to address 
these problems.  

4. Emergent global behavior from local knowledge: Mobile P2P databases can be 
treated as a special type of distributed system. Each peer maintains a local database 
and all the local databases form the virtual mobile P2P database. Therefore, peers can 
only use the local knowledge to predict or affect the global behavior of the whole 
mobile P2P database. The future research direction is how to employ the local 
knowledge and propose adaptive local algorithms to direct or affect the global 
behavior of mobile P2P databases. 

5. (Self-) Localization techniques: Location-based approaches are increasingly popular 
and necessary, and location information of peers is useful for efficiently storing and 
managing information. However, self-localization techniques are still not efficient 
and effective enough due to the limitation of peers or localization techniques. For 
example, GPS is not available indoors and the accuracy of GPS is not enough for 
some mobile P2P databases. Therefore, efficient and effective self-localization 
technique for mobile P2P databases is an important research direction. 

6. Mathematical modeling of data dissemination: Many query processing and data 
dissemination algorithms may benefit from a mathematical model of data 
propagation. For example, a formula giving the number n of mobile peers having a 
report that was generated at time t at location l would be very useful in ranking of 
such a report. The number n is a function of the density of mobile peers, motion 
speed, bandwidth and memory availability at the peers, memory management, etc. 
Related work done in epidemiology about the spread of infectious diseases would be 
a good starting point for this research. Results in random graphs are also applicable. 

 
Other important research directions include incentives for broker participation in query 
processing, transactions/atomicity/recovery issues in databases distributed over mobile 
peers, answering specialized queries that are amenable to specific optimization, and 
integration with the fixed infrastructure. 

[1] B. Xu and O. Wolfson, "Data Management in Mobile P2P Networks", Springer 
Verlag Lecture Notes in Computer Science, Proc. of the 2nd International 
Workshop on Databases, Information Systems, and P2P Computing (DBISP2P'04), 
Toronto, Canada, Aug 2004.  

[2] M. Motani, V. Srinivasan, and P. Nuggehalli, "PeopleNet: Engineering a Wireless 
Virtual Social Network," International Conference Mobile Computing and 
Networking (MobiCom'05), Aug 2005. 
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Personal Perspective on the Workshop on Agent-Based Modeling of Complex 
Spatial Systems 

 
Michael Worboys  

 
In 1988, Mark Weiser, a chief technologist at Xerox's Palo Alto Research Center, 
introduced the term ubiquitous computing, and heralded "the age of calm technology, 
when technology recedes into the background of our lives." This vision is now fast 
becoming a reality. Computing will soon be embedded everywhere in the fabric of 
our lives: in our bodies, phones, homes, and the environments in which we live. 
Physically located sensors will be collecting data from a multiplicity of diverse 
sources using a variety of sensor technologies. Sensors will be mobile and the sensed 
phenomena are dynamic. Computing is expanding from people’s desktops to 
wherever people are, making it an integral part of people’s lives. At the same time, 
computing is also spreading to everywhere independent of the presence of people, 
leading to ubiquitous computing environments. Such anytime-anywhere computing 
revolutionizes the way people will use and interact with computers in the future 
outside their traditional office or home environments. Example scenarios for the use 
of such technology include emergency response, smart transportation systems, and 
real-time environmental monitoring. 
 
Complex spatial models also manifest in dynamic field applications. Natural hazards, 
such as floods, fires, earthquakes, and volcanic eruptions provide significant threats to 
health and the economy. Pollution, such as that caused by carbon dioxide emissions, 
poses similar problems. Some of these phenomena are infrequent, but require 
intensive observation over short periods. Others are chronic and require different 
spatio-temporal patterns of monitoring. What many such phenomena have in common 
is the creation and dispersal of dynamic fields, whether of a gas, a level of 
temperature, of seismic activity, or water level. Ubiquitous spatial computing 
technology, in the form of sensor networks, also provides support for these 
applications. 
 
Does geographic information science have a role to play in these new technological 
developments? My strong belief is that spatial and spatio-temporal issues lie at the 
very heart of ubiquitous computing. Unlike the virtual reality paradigm, ubiquitous 
computing is computing in the real, physical world. Event-based and agent-based 
models are key. 
 
The perspective described here concerns the information-theoretic foundations upon 
which useful explanatory and predictive models of dynamic geographic phenomena 
sensed in ubiquitous computational environments can be based. We see a 
development of these foundations, from sequences of temporal snapshots, through 
object life histories, to event chronicles. A crucial ontological distinction is drawn 
between “things in the world” and “happenings in the world”; that is, between 
continuant and occurrent entities. Up to now, most research has focused on 
representing the evolution through time of geographic continuant entities, whether 
objects or fields. This paper argues that occurrents should be upgraded to an equal 
status with things in models of dynamic phenomena.  
 

Page 1 of 2 
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We propose several approaches to the resulting modeling questions. The underlying 
framework is provided by a formal approach to dynamic topology. The entities under 
investigation here are topological occurrents, such as splitting, merging, hole 
development, and other changes to connectivity relationships. This framework 
provides the basis for developing an approach to dynamic object-based and field-
based views. 
 
It is possible to develop a pure event-oriented theory of space and time, where spatio-
temporal locations and agents situated in the space are all viewed as processes. We 
can then apply algebraic methods, such as the various process and event calculi 
developed by computer scientists. However, so far, it has been difficult to 
demonstrate the scalability of such an approach: the complexities of formal 
representation of even simple real-world events become quite forbidding. 
Nevertheless, we believe that a modular approach to such representations provides a 
way forward in this area, in a similar way that object encapsulation and 
modularisation provided a way forward in object-oriented approaches. The advantage 
of such an approach is that the formalism has a great deal more power, both in terms 
of representing complex processes and in reasoning about them. 
 
Another area of interest in complex spatial systems is the modeling of sensor 
networks in dynamic fields. We have been working on an approach to information 
management that uses a qualitative approach to identifying and tracking continuous 
environmental phenomena such as toxic clouds or oil spills. One of the key elements 
of our approach is the modeling of the information management infrastructure in the 
underlying sensor network by the use of combinatorial maps. A sensor node locally 
stores information about the nodes in its communication neighborhood as a set of 
“darts”. These darts are ordered based on their spatial direction in a cyclic order 
around the sensor. We are researching the underlying theory and algorithms 
associated with this continuously adapting information management infrastructure. 
These algorithms assume no centralized control and are highly distributed. Key 
components of this research are: 

• Detection of qualitative changes to the dynamic field by a sensor or group of 
sensors. 

• Appropriate response to these changes in terms of local reconfigurations of the 
network and data routing. 

 
The common theme throughout this work is models complex, dynamic phenomena, 
with emphasis on models that are: 

• Agent-based, focusing on the processes that agents can perform, and their 
properties. 

• Event-based, focusing on the occurrent entities in the phenomena, and their 
relationships. 

• Distributed, not admitting centralized control, and therefore concerned with 
emergent properties. 

• Rich, allowing a high degree of representational and reasoning power. 
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NSF/ESRC  Agenda Setting Workshop on Agent-Based Modeling of Complex 
Spatial Systems: April 14-16,  2007 

Belinda Wu, Leeds 
 

A Hybrid Approach for Spatial MSM 
 
Computer simulations/models have now become more important in modelling complex 
systems including the social systems.  Modern policy problems often require disaggregate 
information with great details. IBM (Individual Based Model) models the system at the 
individual level. IBM can provide individual characteristics to assist decision making in 
contrast to the traditional models where individual characteristics are often blurred or 
even disappeared.  
 
MSM (Microsimulation Model) and ABM (Agent Based Model) are the two important 
approaches in IBM. MSM is an extensively applied and well proven approach in social 
modelling. Especially in the public policy domains, its application has ranged from tax-
benefit, pension, health to transport policies (Redmond et al. 1998; Sutherland, 2001; 
Curry, 1996; Morrison, 2003; PTV AG, 2000). Spatial MSM simulates virtual 
populations in given geographical areas (Ballas et al, 2005) so that local contexts can be 
taken into account when studying the characteristics of these populations and analysing 
the policy impacts (Birkin and Clarke, 1995; Clarke, 1996).  
 
Although limitations such as data and computation requirements have been greatly 
improved nowadays, two criticism against MSM remain to be addressed: MSM are less 
strong in behaviour modelling and most MSM only models one-direction interactions: the 
impact of the policy on the individuals, but not the impact of individuals on the policy 
(Krupp, 1986; Williamson, 1999; Citro and Hanushek, 1991; O’Donoghue, 2001; Gilbert 
and Troitzsch, 2005). 
 
ABM can provide the capability for behaviour modelling. It allows us to study the 
interactions between the policy and population at both macro and micro levels, as well as 
in both directions. Agent based social simulation can provide insight into the structure 
and effects of policies and can assist in understanding and modifying behaviour and 
interaction patterns (Luck et al., 2003). However, despite the usefulness of the ABM as 
described in previous discussion, being a relatively new technology, sometimes it is felt 
that it can benefit from more refined and well-established theories and concepts of other 
approaches (Gilbert and Troitzsch, 1999; Conte et al., 1998). Such features make the 
MSM and ABM naturally complement each other. 
 
MoSeS proposes a hybrid modelling approach that brings the strength of the MSM and 
ABM together based on four considerations: 

• MSM and ABM complement each other; 
• Geography provides a bridge to link the MSM and ABM; 
• Previous attempts of hybrid approaches have resulted in fruitful outcomes; 
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• This hybrid approach may provide a new angle to view classical problems 
(Boman and Holm, 2004). 

 
References: 
Ballas, D.; Clarke, G.; Dorling, D.; Eyre, H.; Thomas, B. and Rossiter, D. (2005) 
SimBritian: A spatial microsimulation approach to population dynamics, in Population, 
Space and Place 11, 13-34. 
Birkin, M. and Clarke, G. (1995) Using microsimulation methods to synthesize census 
data’, in S. Openshaw (ed.) Census Users’ Handbook. London: GeoInformation 
International, pp. 363–87 
Boman, M. and Holm, E. (2004) Multi-agent systems, time geography, and 
microsimulations, in Olsson, M-O. and Sjöstedt, G. (eds.) Systems Approaches and their 
Application, 95--118, Kluwer Academic. 
Citro, C. and Hanushek, E. (1991) Improving information for social policy decisions: The 
uses of microsimulation modelling, vol. 1, Review and recommendations. Washington, 
DC: National Academy Press. 
Clarke, G.P. (1996) ‘Microsimulation: an introduction’, in G.P. Clarke (ed.) 
Microsimulation for Urban and Regional Policy Analysis. London: Pion, pp. 1–9 
Conte, R. and Gilbert, N. (1995) Introduction, in Gilbert and Conte (eds.) Artificial 
Societies: The Computer Simulation of Social Life, London. 
Curry, C. (1996) PENSIM: A Dynamic Simulation Model of Pensioners’ Income, 
Government Economic Service Working Paper No. 129, Analytical Services Division, 
Department of Social Security, London  
Gilbert, N. and Troitzsch, K. (1999) Simulation for the Social Scientist, Open University 
Press. 
Krupp, H. (1986) Potential and limitations of microsimulation models, in Orcutt et al. 
(eds) Microanalytic simulation models to support social and financial policy, North-
Holland, Amsterdam 
Luck, M. and McBurney, P. and Preist, C. (2003) Agent Technology: Enabling Next 
Generation Computing (A Roadmap for Agent Based Computing). AgentLink. 
Morrison, R.J. (2003) Making Pensions out of Nothing at All, The International 
microsimulation Conference on Population, Ageing and Health: Modelling our Future. 
Moss, S. (2000) Messy Systems - The Target for Multi Agent Based Simulation, In Moss, 
S. and Davidsson, P. (Eds.) Multi Agent Based Simulation, Springer Verlag LNCS series, 
Vol. 1979.  
O’Donoghue, C (2001) Dynamic microsimulation: A methodological survey. Brazilian 
Electronic Journal of Economics 4 (2).  
PTV AG (2000), VISSIM User manual - Version 3.00, Karlsruhe, Germany 
Redmond, G.; Sutherland, H. and Moira Wilson, M. (1998) The Arithmetic of Tax and 
Social Security Reform: A User's Guide to microsimulation Methods and Analysis, 
Cambridge: Cambridge University Press 
Sutherland, H. (2001) EUROMOD: An Integrated European Benefit-tax Model. Final 
Report, EUROMOD Working Paper No EM9/01, DAE University of Cambridge, 
Cambridge.  
Williamson, P. (1999) Microsimulation: An idea whose time has come? the 39th 
European Congress of the European Regional Science Association, August 23-27.  

Agent-Based Modeling of Complex Spatial Systems US NSF / UK ESRC Special Activity E-Science

Santa Barbara, California April 14-16, 2007 101



Temporal GIS for Agent-Based Modeling of Complex Spatial Systems 
By May Yuan, University of Oklahoma 
 
 
Agent-based modeling has become one of the key computational approaches to simulate collective 
outcomes out of individual decisions in complex spatial systems. Much effort has been devoted to 
identifying, formulating, and experimenting with rules of local behavior for discovery of emergent, 
self-organizing global patterns. With emphases on computation, agent-based modeling mostly 
operates on cell-, lattice-, or network-based data structures (Batty 2005; Andersson et al. 2006; 
Andersson et al. 2006; Bithell and Macmillan 2007). While agent-based modeling aims at discerning 
higher orders from complex disintegrated actions, it is limited by these confined data structures that 
restrict neighborhood geometry and possible locations, spatial interaction structures, and local 
spatial scale on actions and interactions. On one hand, agent-based modeling attempts to capture 
spatial complexity, but on the other hand, spatial data structures used for the modeling approach 
inevitably over-simplify the complex nature of geographic space. In this position paper, my premise 
is posited upon the need for temporal GIS representation of complex properties that manifest 
spatiotemporal presence of geographic dynamics.  
 

There are at least three dimensions of complexity in geographic dynamics (Goodchild et al. 
2007): changes to geometry, changes to location (movement), and changes to internal structure. 
Based on the three dimensions, agent-based modeling can be considered a means to simulate 
individual movements in order to examine aggregated changes to geometry and internal structure. 
Therefore, agent-based modeling adds another layer of complexity: the inherited hierarchical nature 
of geographic dynamics that propagates from individuals to the aggregated whole. Furthermore, 
individuals and aggregates are relative concepts. An aggregate at one level may be considered an 
individual in a higher level. For example, a residential district is an aggregate of houses, but a district 
can also be considered an individual that aggregates to a community. Multiple levels of aggregation 
over geographic semantics, space, and time are outcomes of dynamics that operate at and across 
different spatiotemporal scales. A hierarchy of geographic dynamics also suggests the potential for 
distinct rules for actions at different levels in the hierarchy. Group behavior and psychology likely 
depart from individuals’. If temporal GIS representation can capture the intricate, multi-level and 
complex structure of geographic dynamics, the temporal GIS can empower agent-based modeling in 
two significant ways discussed below. 
 

First, rules applicable to different levels of geographic dynamics can be incorporated into 
agent-based modeling. For example, individual drivers can be regarded as fine-grain agents, and 
comparably convoys of vehicles like coarse-grain agents. Fine-grain agents apply different rules of 
actions than coarse-grain agents, even though coarse-grain agents may be aggregates of 
correspondent fine-grain agents. GIS data representing a lower level of geographic dynamics (such 
as traffic signs and traffic counts) provide the basis for agent behavior at a finer grain. GIS data 
representing a higher level of geographic dynamics (such as traffic flows and highway types) offer 
the condition for agents of a coarser grain. Emergent patterns can then be observed at multiple 
levels of detail. Simon (1973) argued that any complex system in the world must be hierarchical, or 
otherwise we would have no way to acquire it. He further elaborated on the importance of 
hierarchical structures to the sustainability of a complex system, for only hierarchies can evolve 
efficiently and successfully in a consistently changing world. While reality may or may not be 
hierarchical, hierarchical structures facilitate observations and understanding (Allen and Starr 1982). 
Agent-based modeling needs to incorporate the hierarchical nature of geographic dynamics, and 
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temporal GIS needs to support the necessary data in forms that enable the simulation of agent 
actions within and across levels of geographic dynamics.  

 
 Second, temporal GIS can provide empirical support if the results from agent-based 

modeling can be stored into a spatiotemporal database for query, retrieval, and analysis. The 
empirical support will allow for comparison of model output and observations and comparison 
between modeling results from different scenarios or rule sets. Such comparisons can be change-
based or development-based. Emphases on change center on the differences in distributions and 
patterns in space and time. Examples include how spatial distributions of pedestrians change over 
time, and how emergent patterns (shape and topology) differ based on different sets of behavior 
rules. Development-based comparisons focus on the evolution of individual agents or groups of 
agents. For instance, an agent adapts to environmental conditions at finer and coarser grains, and a 
forest may diminish and become more fragmented over time. When the results can be stored in a 
temporal GIS database, algorithms can be developed to support queries that seek similarity from 
empirical observations or from model runs with different rules. A temporal GIS representation 
framework that combines field- and object-based models to capture precipitation change and 
rainstorm development (Yuan 2001; McIntosh and Yuan 2005; McIntosh and Yuan 2005) can be 
revised to enable such empirical support to agent-based modeling.   
 
 An integration of agent-based modeling (ABM) and temporal GIS (TGIS) data modeling 
offers both theoretical and empirical improvements to understand spatial complex systems. Agent-
based modeling can effectively represent the distributed nature of actions and reactions at the 
individual levels and transcend the individual, local decisions to identifiable patterns at a higher level 
in a complex spatial system. Temporal GIS data modeling have advanced to represent geographic 
complexity and dynamics and organize spatiotemporal data according to processes 
measured/recorded by these data. Therefore, the ABM-TGIS integration promises novel 
approaches to the study of spatial complex systems.  
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