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Incomplete longitudinal data are common in life-course epidemiology and may induce bias leading to incorrect
inference. Multiple imputation (MI) is increasingly preferred for handling missing data, but few studies explore
MI-method performance and feasibility in real-data settings. We compared 3 MI methods using real data under 9
missing-data scenarios, representing combinations of 10%, 20%, and 30% missingness and missing completely
at random, at random, and not at random. Using data from Health and Retirement Study (HRS) participants,
we introduced record-level missingness to a sample of participants with complete data on depressive symptoms
(1998–2008), mortality (2008–2018), and relevant covariates. We then imputed missing data using 3 MI methods
(normal linear regression, predictive mean matching, variable-tailored specification), and fitted Cox proportional
hazards models to estimate effects of 4 operationalizations of longitudinal depressive symptoms on mortality.
We compared bias in hazard ratios, root mean square error, and computation time for each method. Bias was
similar across MI methods, and results were consistent across operationalizations of the longitudinal exposure
variable. However, our results suggest that predictive mean matching may be an appealing strategy for imputing
life-course exposure data, given consistently low root mean square error, competitive computation times, and few
implementation challenges.

fully conditional specification; Health and Retirement Study; joint modeling; longitudinal data; missing not at
random; multiple imputation; multiple imputation by chained equations; predictive mean matching

Abbreviations: BMI, body mass index; CES-D, Center for Epidemiological Studies Depression scale; HRS, Health and Retirement
Study; LMM, linear mixed model; MAR, missing at random; MCAR, missing completely at random; MI, multiple imputation; MNAR,
missing not at random; NORM, normal linear regression; PMM, predictive mean matching; VTS, variable-tailored specification.

Missing data is common in longitudinal studies and can
reduce precision and bias estimates, leading to invalid infer-
ences. Missing data challenges are particularly salient in life-
course epidemiology, which focuses on understanding the
health effects of social, behavioral, and biological factors
over the lifespan. Life-course studies often require repeated
measures on the same person at specific ages (e.g., ages 50,
60, and 70 years) to define exposures. Missing data at points
of interest necessitates decision-making on how to best use
available data.

Several analytical approaches exist for handling missing
data. Complete-case analysis—discarding observations with
missing data—is the simplest and most common approach

(1–4). However, complete-case analyses are inefficient and
results may be biased (5–8). Imputation strategies include
single imputation (e.g., mean imputation, last observation
carried forward), which typically produces incorrectly small
variance estimates (4), and multiple imputation (MI), which
incorporates uncertainty in imputed values and may use rela-
tionships between measured quantities to impute missing
values. MI methods are preferred and are available in most
statistical software; however, researchers must decide which
MI method to use.

Packages like mice (9) in R (R Foundation for Statistical
Computing, Vienna, Austria) supply several MI methods.
Methods vary predominantly in statistical models used to
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estimate relationships between variables and are often clas-
sified by data type (numeric, binary, ordered, unordered,
or any) and structure (e.g., longitudinal). Additional factors
influencing MI method performance include missing data
mechanism, amount of missing data, distributions of vari-
ables to be imputed, and MI method modeling assumptions.
Choosing an MI method also involves practical consid-
erations, including computational time. However, there is
limited guidance on how to choose an MI method, especially
for longitudinal/life-course data.

Existing MI method comparisons in longitudinal settings
use simulated data sets with simplified joint distributions
among variables (10), and are often conducted using unre-
alistically few covariates (11–13). A few comparisons of
imputation approaches use real data sets (6, 7, 14), but
there is a need for systematic evaluation of MI method per-
formance across missing data characteristics (missing data
mechanism and proportion of missing data) and operational-
izations of exposure variables. We compared performance
of 3 MI methods in a real-data setting under varied induced
missing-data mechanisms and proportions.

METHODS

Overview

We studied MI method performance in a real data set using
the example of estimating effects of elevated depressive
symptoms on mortality among middle-aged and older adults,
with depressive symptoms measured repeatedly, allowing
for different definitions of elevated depressive symptomatol-
ogy (e.g., cross-sectional, cumulative). We acknowledge the
ambiguity in defining depressive symptoms as an exposure;
regardless of concerns about the consistency assumption
(15), depressive phenotypes are commonly used as inde-
pendent variables in research on myriad health outcomes
(1, 16–20).

The main steps of our analysis were: 1) construct a lon-
gitudinal data set without missing data (the “complete sam-
ple”); 2) estimate effect of elevated depressive symptoms on
mortality in the complete sample (“true” effect estimates);
3) induce missingness under several missing data mecha-
nisms and proportions; 4) impute missing data using 3 MI
methods; and 5) compare results from MI methods with
“true” effect estimates from the complete sample. Details of
each step follow.

Step 1. Construct a longitudinal data set without missing
data (the “complete sample”). The Health and Retirement
Study (HRS) is a population-representative cohort study of
US adults aged 50 years or older with biennial follow-up
(21). We identified a sample aged 50–90 years in 1998 with
complete records of depressive symptoms for all 6 study
waves from 1998–2008, adequate data for covariates (details
below), and 2008–2018 mortality data.

Depressive symptoms were measured using the 8-item
Center for Epidemiological Studies Depression scale (CES-
D) (22). Scores ranged from 0 to 8, with higher scores
indicating more depressive symptoms. We defined elevated
depressive symptoms as CES-D score ≥4 (23). Baseline
covariates included sex/gender, age, race/ethnicity, and edu-

cational attainment. Wave-updated covariates included mari-
tal status, body mass index (BMI), self-rated health, smoking
status, drinking behavior, and self-reported diagnosis of
individual chronic conditions: hypertension, diabetes, can-
cer, stroke, heart disease, lung disease, or memory problems.
We used dichotomous variables for each chronic condition
in analytical models and derived chronic condition count
by summing the number of self-reported chronic conditions
per participant at each wave for models used to induce
missingness (described below).

BMI was calculated as height (kg)/weight (m)2 (details in
Web Appendix 1). Educational attainment was categorized
based on self-reported years of education (<12, 12, 13–
15, 16, >16). Marital status was coded as “married/part-
nered” versus “not married/partnered.” Drinking behavior
(no drinking, moderate drinking, heavy/high-risk drinking)
was classified according to the 2020 Dietary Guidelines for
Americans (24). To preserve sample size, we carried forward
the last observation for individuals with missing data on
marital status, drinking behavior, and self-reported chronic
conditions, as there was little intra-individual variation in
these variables over time.

HRS conducts mortality follow-up during regular biennial
waves by contacting all HRS participants from the previous
wave; if participants are unreachable, family members are
contacted. If a participant is reported dead, family members
complete exit interviews that include dates and causes of
death (25).

Web Figure 1 shows the flow diagram for obtaining the
complete sample. Of those with fully observed CES-D mea-
surements from 1998–2008 and mortality data through 2018,
we dropped those aged <50 or >90 in 1998 (n = 524),
those missing race/ethnicity data (n = 1), and those missing
drinking behavior for all waves (n = 1), BMI data at any
wave (n = 370), self-rated health data at any wave (n = 27),
or all ever/never chronic conditions (n = 6) for all waves,
resulting in n = 9,445 participants in the complete sample.

Step 2. Estimate effect of elevated depressive symptoms
on mortality in the complete sample. In practice, “elevated
depressive symptoms” is operationalized different ways (1,
16–20). We used 4 operationalizations: 1) elevated (CES-D
scores ≥4) (23) depressive symptoms at baseline (1998,
dichotomous yes/no); 2) elevated depressive symptoms
at end of exposure period (2008, dichotomous yes/no);
3) proportion of waves (1998–2008) with elevated depres-
sive symptoms; and 4) elevated average depressive symptom
scores, derived by averaging the CES-D measures across
waves (1998–2008) and applying the CES-D cutoff to the
average (dichotomous yes/no). Percent agreement between
exposure operationalizations demonstrated variability in
composition of exposed and unexposed groups (Web Table
1, available at https://doi.org/10.1093/aje/kwad139).

We fitted Cox proportional hazards models in the com-
plete sample to estimate effects of each of the 4 approaches
to operationalizing elevated depressive symptoms on
mortality. We considered effect estimates from the complete
sample to be the “truth,” that is, the effect estimates in the
absence of missing data. We controlled for variables we
conceptualized as potential confounders of depressive
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symptoms and mortality: age, sex, race/ethnicity, educa-
tional attainment, marital status, BMI, drinking behavior,
smoking status, and self-reported diagnosis of hypertension,
diabetes, cancer, stroke, heart disease, lung disease, and
memory problems. We used baseline (1998) measurements
of potential confounders in all models except the model for
elevated depressive symptoms at end of exposure period,
which used end-of-exposure-period (2008) measurements.

Step 3. Induce missingness under several missing data
mechanisms and proportions. We induced record-level
missingness (i.e., missingness for all wave j measures) in
the complete sample using 9 scenarios that combined 3
missing data mechanisms (missing completely at random
(MCAR), missing at random (MAR), and missing not at
random (MNAR)) and 3 proportions missing (10%, 20%,
and 30%).

Under MCAR (probability of missingness is independent
of all covariates), probability of missing wave j was set at
the proportion missing in the scenario for all participants in
all waves. Following examples in literature (7, 10), probabil-
ity of missingness under MAR (probability of missingness
depends on observed covariates) and MNAR (probability
of missingness depends on unobserved values) (5) were
modeled using logistic regression for each wave j. We used
the predicted probability of missingness for individual i at
wave j as the success probability for a Bernoulli random
draw (1 = missing, 0 = not missing). An example of MNAR
missingness would be a participant missing wave j because
they were too depressed to participate (i.e., higher CES-D
scores increased probability of missingness).

MAR and MNAR missingness were induced using mod-
els 1 and 2, respectively. Predictors in each missing data
model were based on conceptual models of what could
cause participants to miss study visits (Web Figure 2). The
MAR model (model 1) used covariates that would still
be observed after inducing missing data for wave j. The
MNAR model (model 2) used covariates that would not be
observed after inducing missing data for wave j, including
depressive symptoms at wave j and an unobserved common
cause of missingness and mortality. To simplify simulations
in MNAR scenarios, we induced missingness consistent
with an unobserved U influencing both missingness and
mortality by allowing mortality to influence missingness
directly. Thus, model 2 is not causal since subsequent mor-
tality affects missing data at previous waves (1998–2008).
We fixed effect sizes in both models for inducing missing
data and obtained intercepts by optimizing for proportion of
missingness in each scenario (Web Table 2). To ensure that
MAR and MNAR missingness scenarios were distinct, we
did not allow values that were ultimately set to missing at
wave j − 1 to impact missingness at wave j.

logit
(
P

(
missingj

)) = β0 + β1CESDj−1

+ β2(chronic condition count)j−1 + β3CESDj−1

× (chronic condition count)j−1 (1)

logit
(
P

(
missingj

)) = β0 + β1CESDj + β2death2018

+ β3CESDj × death2018 (2)

Step 4. Impute missing data using 3 MI methods. All
chosen MI methods use fully conditional specification, a
strategy that specifies separate models for each variable
to be imputed, conditional on other variables in the data
set. The analyses here used the mice (multiple imputation
with chained equations) package in R (R Foundation for
Statistical Computing) (9). Each variable was imputed using
the specified model type; this process was repeated multiple
times, cycling through all variables to be imputed (26).
We evaluated 3 common MI methods: 1) normal linear
regression (NORM) for all conditional models (equivalent
to joint multivariate normal modeling) (26); 2) predictive
mean matching (PMM) for all conditional models; and
3) conditional models tailored to the outcome type (variable-
tailored specification (VTS)). Across methods, we treated
ordinal variables (education, drinking behavior, and CES-
D scores) as having underlying continuous scales and
created indicator variables for levels of nominal categorical
variables (marital status and race/ethnicity). We excluded
participants with missing data at all 6 waves after inducing
missingness; this resulted in dropping <20 participants
(0.2%) from analyses in scenarios with 30% missingness
induced.

NORM treats all variables as continuous and uses normal
linear regression for each conditional model. This can be
implemented in the R (R Foundation for Statistical Comput-
ing) package mice by specifying the “norm” method for each
imputed variable and was implemented in this analysis using
the miceFast package version of the “norm” option (27).
We treated marital status indicators as if continuous, with
imputed values thus interpretable as predicted probabilities
of category membership. Predicted probabilities were then
truncated at (0, 1) and used to impute marital status indi-
cators with draws from Bernoulli distributions with success
probability equal to predicted probabilities. In rare cases
where this procedure resulted in a participant imputed as
belonging to multiple categories, a category was drawn from
the imputed categories at random.

PMM calculates a predicted value of the variable to be
imputed for observed and missing participants using linear
regression. Missing values are imputed by randomly choos-
ing an observed value from a pool of “nearest neighbor”
donors based on proximity between predicted values for
observed participants and predicted value of the missing data
point and user-specified pool size. Thus, PMM guarantees
imputations within range of observed data. PMM can be
implemented in the mice package by specifying the “pmm”
method for each imputed variable and was implemented
in this analysis using the miceFast package version of the
“pmm” option with 10 donors (27).

For VTS, we used the R package mice and imputed
binary variables using logistic regression (“logreg” method)
and continuous variables using linear regression (“norm”
method).

Although not designed for longitudinal data, NORM,
PMM, and VTS can be adapted for longitudinal settings and
preserve within-person correlation by imputing wide data
sets and including all other variables at all other waves in
imputation models (28). We imputed wave-specific values
using all other variables at all other waves and used imputed

Am J Epidemiol. 2023;192(12):2075–2084



2078 Shaw et al.

values to derive 4 operationalizations of elevated depressive
symptoms.

Imputation models are iterative and require a burn-in
period to produce convergence (stable imputed values). The
burn-in period required for convergence varies by imputa-
tion method, data set complexity, and missing data propor-
tion. We monitored plots of means and standard deviations
across imputation runs for each imputed variable and chose
appropriate burn-in periods for each MI method and missing
data proportion combination (26). Burn-in ranged from 10
to 15 iterations across imputation methods and scenarios.
We set number of imputations equal to missing data percent
(e.g., 10 imputations for 10% missing data) as suggested by
Bodner (29) and White et al. (30).

Step 5. Compare results from MI methods with “true” effect
estimates from the complete sample. After inducing miss-
ing data and imputing data sets using 3 MI methods, we fitted
the Cox proportional hazards analytical models described in
Step 2 (estimate effect of elevated depressive symptoms on
mortality in the complete sample) in each imputed data set,
pooled estimates across imputed data sets for each scenario
using Rubin’s rules (31), and compared results with the
“truth” in the complete sample. For comparison, we included
complete-case analyses where missing observations were
dropped instead of imputed. Complete-case analyses for
cumulative exposures (elevated average CES-D, proportion
elevated CES-D) included participants with at least 4 (out of
6 possible) CES-D measures to mimic real-data approaches.

We repeated steps 3–5 (induce missingness, impute miss-
ing data, run analyses) 1,000 times for each scenario. We
summarized effect estimates for each exposure by taking
means across 1,000 simulation runs and calculated 95% con-
fidence intervals by taking means of upper and lower confi-
dence interval values across runs. We measured performance

of each MI method using bias
(
β̂−β

)
; root mean square error(

RMSE =
√

bias2 + variance
(
β̂
))

; and computation time.

We assessed sensitivity of results to prevalence of elevated
depressive symptoms by repeating analyses using CES-D
≥1 to define elevated depressive symptoms.

Analyses were conducted in R (R Foundation for Statisti-
cal Computing) version 4.0.2. MI was implemented using
mice version 3.13.18 (9) and miceFast version 0.7.1 (27)
packages. We used computational and storage services asso-
ciated with the Hoffman2 Shared Cluster provided by UCLA
Institute for Digital Research and Education’s Research
Technology Group.

Linear mixed effects model MI-method case study

NORM, PMM, and VTS were adapted for this longitudi-
nal setting by using a wide data set and including observa-
tions from other waves in imputation models. However, the
mice package includes the linear mixed models (LMM) MI
method for longitudinal data. This MI method posed several
implementation challenges and is therefore presented as
an isolated case study. We used LMM to assess whether
modeling within-person correlation would reduce bias or
increase precision in MI estimates by transforming our data

set from wide (one row per participant) to long (multiple
rows per participant, one for each observed time point) and
specifying the “2l.lmer” method for each imputed variable.
LMM was implemented only for MAR and MNAR missing
data mechanisms at 30% missingness since it required sig-
nificantly more computation time and resources compared
with other MI methods. The burn-in period for LMM was
fixed at 5 iterations for feasibility; convergence was not
achieved for all variables.

RESULTS

Table 1 shows characteristics of the complete sample.
Compared with those without elevated depressive symptoms
at baseline (n = 8,209), the group with elevated depressive
symptoms at baseline (n = 1,236) had a higher proportion
of people who identified as female or as Hispanic or Black,
lower levels of education, a lower proportion of married/
partnered participants, and higher prevalence of chronic
conditions.

We encountered no implementation challenges with
NORM and PMM; however, VTS models did not run with
all variables originally included in imputation models or
when we correctly specified multinomial logistic regression
for nominal categorical outcomes and proportional odds
models for ordered categorical outcomes. Thus, we dropped
auxiliary variables (self-rated health), used indicator vari-
ables for nominal categories, and treated ordered categorical
outcomes as continuous in all MI models. However, there
were still 12 VTS imputation runs (out of 9,000) that did not
complete.

Figure 1 shows estimated effects of elevated depressive
symptoms on mortality according to scenario and MI
method compared with “true” effect estimates in the
complete sample. Bias was minimal in MCAR and MAR
scenarios regardless of MI method. For example, the “true”
effect estimate for elevated average CES-D on mortality
was hazard ratio = 1.27 (ln (hazard ratio) = 0.24); with
30% missing data under an MAR mechanism, the NORM
estimate was hazard ratio = 1.27 (95% confidence interval:
1.09, 1.49), the PMM estimate was hazard ratio = 1.27 (95%
confidence interval: 1.07, 1.48), and the VTS estimate was
hazard ratio = 1.26 (95% confidence interval: 1.08, 1.46)
(Figure 1G). Complete-case analysis was nearly unbiased
for the MAR mechanism but was less precise (hazard ratio =
1.26, 95% confidence interval: 1.04, 1.54). Although bias
was smaller than complete-case analyses, no MI method
recovered “true” effect estimates in MNAR scenarios—
most analyses incorrectly suggested null or protective effects
of elevated depressive symptoms on mortality. Across
simulation scenarios, PMM estimates were least biased
(Figure 1, Web Table 3).

Bias and RMSEs are presented by scenario and MI
method in Figures 2 and 3, respectively. Lower RMSEs
indicate better performance for recovering “true” effect
estimates. RMSEs were consistently highest for complete-
case analyses and consistently lowest for PMM in MAR and
MNAR scenarios.

Figure 4 shows MI method computation time across 1,000
runs by percent missing data, aggregated across missing
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Table 1. Baseline Sample Characteristics, Overall and Stratified by Elevated Scores on the Center for Epidemi-
ological Studies Depression Scale, in the Health and Retirement Study, United States, 1998–2008

Baseline CES-D

Overall
(n = 9,445) Elevated CES-Da

(n = 1,236)
Not Elevated CES-Da

(n = 8,209)Characteristic

No. % No. % No. %

Baseline age, yearsb 63 (8) 62 (8) 63 (8)

Female sex 5,758 61.0 917 74.2 4,841 59.0

Race/ethnicity

Hispanic 659 7.0 194 15.7 465 5.7

Non-Hispanic Black 1,144 12.1 236 19.1 908 11.1

Non-Hispanic White 7,480 79.2 777 62.9 6,703 81.7

Other 162 1.7 29 2.3 133 1.6

Educational level

<12 years 2,149 22.8 501 40.5 1,648 20.1

12 years 3,347 35.4 420 34.0 2,927 35.7

13–15 years 1,908 20.2 183 14.8 1,725 21.0

16 years 936 9.9 63 5.1 873 10.6

>16 years 1,105 11.7 69 5.6 1,036 12.6

Marital status

Married/partnered 6,883 72.9 713 57.7 6,170 75.2

Not married/partnered 1,253 13.3 256 20.7 997 12.1

Widowed 1,309 13.9 267 21.6 1,042 12.7

Self-reported chronic conditions

Hypertension 3,570 37.8 565 45.7 3,005 36.6

Diabetes 937 9.9 184 14.9 753 9.2

Heart disease 1,239 13.1 216 17.5 1,023 12.5

Stroke 316 3.3 67 5.4 249 3.0

Cancer 758 8.0 89 7.2 669 8.1

Lung disease 376 4.0 95 7.7 281 3.4

Memory problems 44 0.5 24 1.9 20 0.2

Chronic condition countb 0.77 (0.88) 1.00 (1.02) 0.73 (0.86)

BMIb,c 28.7 (5.4) 29.7 (6.2) 28.6 (5.3)

Alcohol intake

Heavy alcohol use 951 10.1 110 8.9 841 10.2

Moderate alcohol use 2,234 23.7 177 14.3 2,057 25.1

No alcohol use 6,260 66.3 949 76.8 5,311 64.7

Smoking status

Ever smoked 1,754 18.6 319 25.8 1,435 17.5

Never smoked 7,691 81.4 917 74.2 6,774 82.5

Abbreviations: BMI, body mass index; CES-D: Center for Epidemiological Studies Depression scale.
a Elevated CES-D score defined as ≥4.
b Values are expressed as mean (standard deviation).
c Weight (kg)/height (m)2.

data mechanisms. NORM was consistently fastest and VTS
consistently slowest.

Our alternative cutoff for elevated depressive symptoms
increased prevalence of elevated depressive symptoms at

baseline (1998) in the complete sample from 13.1% to
56.4%. MI methods performed similarly in sensitivity
analyses using the higher prevalence definition of elevated
depressive symptoms (Web Figures 3–6, Web Table 4). In
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Figure 1. Mean point estimates β (ln(hazard ratio)) and 95% confidence intervals for estimated effects of each operationalization of elevated
depressive symptoms on mortality across 1,000 simulation runs according to missing data mechanism, percent missing data, and multiple
imputation method, Health and Retirement Study, United States, 1998–2008. A–D) Missing completely at random (MCAR) mechanism;
E–H) missing at random (MAR) mechanism; I–L) missing not at random (MNAR) mechanism; columns 1 through 4 indicate different
operationalizations of elevated Center for Epidemiological Studies Depression (CES-D) scores.Dashed black lines indicate “true” effect estimates
in the complete sample prior to inducing missing data. Dashed gray lines indicate the null. CC, complete-case analysis; NORM, normal linear
regression; PMM, predictive mean matching; VTS, variable-tailored specification.

simulation scenarios where LMM was assessed (MAR 30%,
MNAR 30%), bias and precision were similar to other MI
methods (Web Figures 7–8, Web Table 3). Root mean square
error was not consistently higher or lower for LMM vs. other
MI methods. (Web Figure 9), but LMM required nearly
quadruple the computation time of other MI methods (Web
Figure 10).

DISCUSSION

Incomplete data is a challenge in life-course epidemiol-
ogy, but relative performance of imputation approaches is
not well characterized. We compared performance of 3 MI
methods in a real data set using the example of estimating
the effect of longitudinally measured elevated depressive
symptoms on mortality. This example represents a real-
istic setting where missing data are plausibly influenced
by the exposure and outcome through complex missing

data processes and inferences may be affected if missing
data are handled improperly. As relevant timing of elevated
depressive symptoms has been debated (20, 32), we con-
sidered multiple operationalizations of elevated depressive
symptoms.

We assessed MI method bias, precision, and feasibil-
ity. We observed minimal bias in complete-case analyses
under MCAR and MAR mechanisms, but the precision
loss would be particularly important when true effects are
small, and imprecise estimates could lead to incorrect infer-
ence. Thus, MI methods outperformed the complete-case
approach across all simulation scenarios and performed sim-
ilarly to each other in terms of bias, but with wide variability
in feasibility. Broadly, PMM imputation had consistently
low root mean square error, fast computation times, and few
implementation challenges.

Researchers must make several choices in analyses
involving missing data. First, they must choose between
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Figure 2. Bias
(
β̂−β

)
in the estimated effect of each operationalization of elevated depressive symptoms on mortality across 1,000 simulation

runs by missing data mechanism, percent missing data, and multiple imputation method, Health and Retirement Study, United States, 1998–
2008. A–D) Missing completely at random (MCAR) mechanism; E–H) missing at random (MAR) mechanism; I–L) missing not at random (MNAR)
mechanism; columns 1 through 4 indicate different operationalizations of elevated Center for Epidemiological Studies Depression (CES-D)
scores. Dashed gray line at 0 indicates no bias. CC, complete-case analysis; NORM, normal linear regression; PMM, predictive mean matching;
VTS, variable-tailored specification.

easy-to-implement but potentially misspecified imputation
models and correctly specified models that are computa-
tionally intensive or may fail to converge. In our study,
MI model misspecification did not have a negative impact
on inferences. For example, the true data structure was
longitudinal, but researchers commonly use MI methods
that impute data cross-sectionally (NORM, PMM, VTS),
using wide data sets to preserve longitudinal information
(33, 34). Explicitly modeling data longitudinally with
LMM imputation required nearly quadruple the computation
time of VTS, the most computationally demanding cross-
sectional method, despite restricting the burn-in to 5
iterations to save computational time, and did not have
smaller root mean square error to the other MI methods.
Additionally, PMM and NORM treat all variables as
continuous, misspecifying binary, categorical, and ordinal
variables; however, both methods performed well across
scenarios and in some cases outperformed VTS, which
correctly specified all variable types.

When data is missing on variables with deterministic rela-
tionships with other variables (e.g., BMI, calculated from
height and weight), researchers can use active imputation
and impute the missing variable directly (e.g., impute BMI)
or use passive imputation and impute missing data in com-
ponent parts and then derive the variable of interest (e.g.,
impute height and weight and then calculate BMI) (26).
Neither strategy performs uniformly better than the other
(35, 36). We chose to passively impute the 4 operationaliza-
tions of elevated depressive symptoms because it guarantees
congeniality (i.e., so there would be no discrepancy between
a participant’s imputed CES-D values and their elevated
depressive symptoms classification).

Variable selection for imputation models is another chal-
lenge. The “kitchen sink” approach—including every vari-
able from analytical models, the outcome variable, and any
auxiliary variables correlated with variables to be imputed—
is often recommended (28). However, this strategy com-
bined with the recommendation above to use multiple waves

Am J Epidemiol. 2023;192(12):2075–2084



2082 Shaw et al.

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

A)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

B)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

C)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

D)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

E)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

F)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

G)

0.00
0.02
0.04
0.06
0.08
0.10

10 20 30
Missing Data, %

R
M

S
E

H)

0.0

0.5

1.0

1.5

10 20 30
Missing Data, %

R
M

S
E

I)

0.0

0.5

1.0

1.5

10 20 30
Missing Data, %

R
M

S
E

J)

0.0

0.5

1.0

1.5

10 20 30
Missing Data, %

R
M

S
E

K)

0.0

0.5

1.0

1.5

10 20 30
Missing Data, %

R
M

S
E

L)

Elevated Baseline CES-D,

1998

Elevated End-of-Exposure CES-D, 

2008

Elevated Average CES-D,

1998−2008

Proportion Elevated CES-D,

1998−2008

M
C

A
R

M
A

R
M

N
A

R

Method

CC NORM PMM VTS

Figure 3. Root mean square error (RMSE) of estimated effects for each operationalization of elevated depressive symptoms on mortality across
1,000 runs by missing data mechanism, percent missing data, and multiple imputation method, Health and Retirement Study, United States,
1998–2008. A–D) Missing completely at random (MCAR) mechanism; E–H) missing at random (MAR) mechanism; I–L) missing not at random
(MNAR) mechanism; columns 1 through 4 indicate different operationalizations of elevated Center for Epidemiological Studies Depression (CES-
D) scores. CC, complete-case analysis; NORM, normal linear regression; PMM, predictive mean matching; VTS, variable-tailored specification.

of data in a longitudinal setting can multiplicatively increase
the number of variables, may lead to convergence issues, and
increases computational time.

The MAR assumption embedded in MI methods (5) is
untestable, and missing data encountered in practice likely
arise from a combination of MAR and MNAR missing-
ness. Evaluating each missing data mechanism separately
provides insight for what to expect when multiple mech-
anisms contribute to missingness; results from a scenario
where missing data arise from a combination of MAR and
MNAR mechanisms would fall between results presented
in this work and would more closely resemble results from
whichever mechanism contributed more heavily to the miss-
ing data structure. As expected, we were not able to obtain
valid inferences using MI methods in MNAR scenarios.
However, inferences were closer to the truth when using
MI rather than a complete-case analysis, and PMM consis-
tently performed the best under MNAR missingness. This
finding aligns with a 2010 simulation study showing that
PMM performed at least as well as theoretically superior

imputation methods (37) and corroborates results from 2005
and 2017 studies that concluded PMM was robust to model
misspecification (7, 38).

A key strength of our study was comparing MI method
performance in a real data set with complex joint distri-
butions among covariates. Our simulation design required
a completely observed data set from which we induced
missingness under known mechanisms. Thus, analyses
were restricted to HRS participants with fully observed
data who survived past 2008, which may have distorted
effect estimates for CES-D on mortality in this sample.
Although this sample would be inappropriate for estimating
population-level effects of CES-D on mortality, it is effective
for assessing whether MI methods can recover inferences
we would have drawn had the sample been completely
observed. Another strength is inclusion of MNAR mech-
anisms. Simulation studies comparing MI methods are
usually limited to MCAR and MAR mechanisms (7, 10–
13, 39, 40), which match MI assumptions and therefore
represent ideal MI method performance. Results from
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MNAR scenarios demonstrate MI method performance
when assumptions are violated, as they likely are in practice.

Performance of a given imputation method may differ
according to data set characteristics and research question.
Our results may not generalize to all other settings; however,
we have increased confidence in their robustness because
we systematically tested combinations of amount and pat-
terns of missingness, considered multiple exposure opera-
tionalizations, conducted sensitivity analyses with increased
exposure prevalence, and drew similar conclusions about MI
method performance across these scenarios.

Researchers may encounter more than 30% missingness
in practice. We attempted scenarios with higher missing data
proportions and encountered implementation issues with
VTS that could only be remedied by significantly reducing
the number of variables in imputation models. This suggests
that NORM and PMM may be especially preferred in sce-
narios with large amounts of missing data.

We conducted analyses using estimated effects of elevated
longitudinally measured depressive symptoms on mortality
as a life-course epidemiology analysis example. Our study
can inform recommendations for researchers facing infer-
ence challenges in the presence of missing data. MI is effi-
cient, widely available across software, and thus generally
considered superior to complete-case analyses even when
MI assumptions are likely violated due to MNAR missing
data mechanisms. In our study, MI methods were robust
to model misspecifications made to improve feasibility, but
more work is needed on systematic comparisons of mod-
eling violations (e.g., imputing highly skewed variables) in
a real data setting. Understanding MI method performance
when exposures are defined based on age at assessment
(versus assessment wave in this paper) is also an important
area. Because study participants are recruited at different
ages, using age as the timescale often increases missing data
proportion, leading to MI implementation challenges, and
potentially introduces cohort effects. Missing data methods

are essential in life-course epidemiology; our results suggest
many established MI methods are computationally feasible
and perform well.
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