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Abstract

A long-standing economic problem is how to incentivize costly but unobservable
effort. Contests and contracts have been used in various settings where output, rather
than effort, is contractible. We conduct a field experiment to compare the effectiveness
of contests and tiered contracts in promoting energy conservation among households.
While both mechanisms achieve similar energy savings relative to a control group (7
to 9 percent reductions), contests reduce energy use at half the cost. We develop and
structurally estimate a model of energy consumption based on our experimental data.
For the same budget, we show that an optimal contest dominates optimal contracts.
We calculate the marginal abatement cost at USD 59.45-76.72/Mt CO2 not accounting
for utility savings or social value of avoided blackouts from peak demand reduction.
Our findings contribute to the design of demand-side management policies in the res-
idential electricity sector, particularly in low- and middle-income countries.
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1 Introduction

Climate change presents significant challenges to global well-being and every credible
pathway to limit carbon emissions to levels that would prevent widespread damage re-
quires decarbonizing the electricity sector. Decarbonizing the energy sector in low- and
middle-income countries (LMICs) is particularly vital because these countries are likely
to drive most of the expansion of global energy demand (Wolfram et al., 2012; Gertler
et al., 2016). However, incorporating clean energy sources such as wind, solar and hydro
into the existing grid poses enormous challenges including intermittency and transmission
constraints that raise wholesale electricity prices (Ryan, 2021).1 Together, these contribute
to blackouts (Jha et al., 2022) with massive economic costs (Allcott et al., 2016).

Although wholesale electricity prices can vary greatly, sometimes even by the hour, re-
tail prices are set well in advance and often highly regulated. In many instances, utilities
may be unable to dynamically change electricity prices. In response to these concerns and
because electricity markets traditionally clear almost entirely on the supply side, policy-
makers and utilities are actively promoting demand-side management initiatives, includ-
ing energy conservation programs in urban households, such as tiered pricing (Ito, 2014),
time-varying pricing (Fowlie et al., 2021), behavioral nudges (Allcott and Mullainathan,
2010; Allcott, 2015; Brandon et al., 2017, 2019; Allcott andKessler, 2019), automation (Blonz
et al., forthcoming) and direct “bonus” payments to keep energy use below a target maxi-
mum. When effective, such programs can mitigate utility losses by curtailing the need to
purchase expensive peak electricity in day-ahead or spot markets, achieve carbon and par-
ticulate emissions reductions from peak electricity production (typically coal, oil or gas)
and reduce blackouts (Callaway et al., 2018).2

Determining a cost-efficient mechanism for incentivizing agents (households) to exert
costly, unobservable effort (energy abatement) is a long-standing and open question in
economics. In many settings, including Hanoi, Vietnam, where we conduct our study, the
principal (Hanoi’s utility) observes a noisy performance measure (energy use) that is cor-
relatedwith an agent’s effort (energy conservation). It is an imperfectmeasure because the
principal is unable to observe the effort directly, and households face idiosyncratic shocks
beyond their control (e.g., malfunctioning appliance, unexpected travel). Economic theory

1Wind, solar and hydroelectric, unlike conventional sources such as coal and oil, cannot always be gener-
ated on demand.

2An extensive literature has documented the negative external costs of particulate emissions, including
those from production of energy from fossil fuels. See Graff Zivin and Neidell (2018) and Aguilar-Gomez
et al. (2022) for recent reviews.
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suggests that rewarding relative rather than absolute performance may be more effective
in delivering aggregate effort, in this case energy conservation (see, e.g. Green and Stokey,
1983). That is, a contest that rewards the best performance relative to other contest par-
ticipants may achieve more cost-effective energy reductions than individual contracts that
reward the absolute savings of each individual household.

Contests and individual contracts create different incentives for household energy conser-
vation. An individual contract provides a predictable reward (e.g., $5 for achieving a 10%
reduction), while a contest offers a larger prize (e.g., $100 to the top saver) but introduces
strategic uncertainty. Some householdsmay be discouraged by contests if they believe they
are unlikely to win. However, a key advantage of contests is that incentives are unaffected
by common shocks—events like extremeweather that impact all households—because rel-
ative performance remains comparable. In contrast, common shocks can affect individual
contracts by making it impossible or too easy for households to meet the reduction tar-
get, which can increase the costs for the principal since most households may achieve the
reduction target due to a favorable shock rather than effort.

Individual contracts and contests present different administrative challenges and financial
implications for the utility. Implementing individual contracts requires the utility to deter-
mine appropriate consumption thresholds and corresponding rewards. This creates uncer-
tainty about the total cost of the program, as it depends on the likelihood that households
achieve the consumption reduction thresholds, which can be affected by common factors
like weather conditions. Organizing a contest, on the other hand, imposes the burden of
setting up the competing groups (e.g., grouping households with similar past consump-
tion patterns), monitoring all participants, and determining the winner(s). However, con-
tests offer more financial certainty for the utility. Contests require only a predetermined
fixed budget for the prizes, eliminating the risk of over-spending or under-spending that
can occur with individual contracts.

In this paper, we examine the effects of contracts and rank-ordered contests on household
energy conservation. We address three key questions. First, what are the effects of rank-
ordered contests and tiered contracts on energy conservation? Second, how cost-effective
are these programs? Finally, under what conditions do contests dominate contracts in
terms of energy conservation per unit cost to the utility?

To answer these questions, we first conduct a randomized field experiment during the
summer of 2023 in Hanoi, Vietnam. We partner with a state-owned electric utility – EVN
Hanoi – and utilize their mobile app as a platform for our energy savings contests and

2



contracts. This collaboration has made it possible for us to recruit around 12,000 house-
holds to participate in our study. Then, we randomize the participants into a control and
three treatment groups. The first two treatment groups receive contracts of different terms
and conditions, while the third treatment group engages in contests. Our treatment period
spans 30 days, commencing from July 15, 2023, and concluding on August 13, 2023.

Hanoi is an ideal setting for this experiment. First, Hanoi relies on hydropower (in addition
to coal and small amounts of oil), which fluctuates on a daily rather than hourly level,
which is the case for solar and wind. Most households in Hanoi and all households in
our sample have smart meters, but the information technology systems of the utility only
record energy use at the daily level (as opposed to hourly or five-minute intervals in, for
example, California). Second, the grid in Hanoi has been increasingly stressed during the
summer months, as high temperatures drive up air conditioning usage, coinciding with
lower water levels, making demand management a priority for the utility. Finally, the
utility has already been deploying low-cost approaches in the form of behavioral nudges.
While these have been cost-effective in delivering demand reductions during peakmonths,
they cannot deliver large enough reductions that the utility needs to avoid startup costs
associated with coal- and oil-based plants.

We utilize the experimental data along with a reduced-form empirical analysis to estimate
the impacts of our experimental contests and contracts. We find that both contests and
contracts effectively promote energy conservation. On average, households in the treat-
ment groups reduce their energy consumption by approximately 7% to 9% in comparison
to the control group. Importantly, we find that the energy savings persist for at least one
week after the end of the experiment before returning to or just below pre-experimental
levels. That is, the energy reductions were additional relative to an otherwise identical
control group.

Next, we leverage our experimental data to estimate a structural model to recover an op-
timal contract and compare it with our cost-equivalent contest. This is important because
it is not feasible to ex-ante determine the payouts under contests and contracts that would
ex-post be equal because it is not clear how many households would achieve the requisite
reductions in energy use under contracts. Additionally, our structural model provides a
means to assess thewelfare implications associatedwith various energy savings programs.

In our model, households consume energy to approximate an ideal consumption level and
dislike paying for energy. Households can be incentivized to reduce energy by individual
contracts or contests. In this setting, for a fixed set of parameters and number of players, the
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comparison of energy consumption for contests versus contracts is generally ambiguous,
which is also the case in other frameworks (see, e.g., Green and Stokey, 1983). However, we
show that when the contest designer can choose the number of participants in each contest
(that is, there is no endogenous entry into contests), then the optimal contest dominates
the optimal contract, assuming the expected payment per household in both mechanisms
is the same. Specifically, the aggregate consumption of all contest participants is lower
than that of the same individuals under individual contracts with average payouts equal
to the contest prize. The experimental results discussed above are in line with our model’s
prediction.

Using the model estimates, we quantify the cost-effectiveness of contests relative to the
optimal contract. We also show that the performance gapwidens as the average payout in-
creases, with the optimal contest always outperforming optimal contracts per dollar spent.
Our model also allow us to recover the first experimental estimate of the short-run price
elasticity of demand in Vietnam. We estimate a short-run elasticity of -0.11, which is larger
than estimates in the United States (Jessoe and Rapson, 2014; Bollinger and Hartmann,
2020) but smaller than in other LMICs such as India (Mahadevan, 2024).

Finally, we estimate marginal abatement costs of CO2 emissions under contests and con-
tracts. When ignoring the foregone profit from reducing electricity demand, emissions
reductions are achieved at USD 59.5-76.7/Mt CO2. These are upper-bound estimates since
they do not account for other positive externalities from demand management such as re-
duced blackouts, avoided capital investments in new power plants or importing electricity.
Generating reliable estimates for these is challenging but are often quoted as reasons for
utilities investing in such programs. We also compute marginal abatement costs consider-
ing the foregone profit from reducing electricity demand—from the utility’s perspective,
these are an indirect cost of the incentive program. When oil is the marginal source of
electricity, there is a business case for contests even without accounting for social cost of
carbon since the production costs of the oil plant far exceed the average retail electricity
price: the marginal abatement cost is negative at USD -85.6/Mt CO2. When coal is the
marginal source of electricity, emissions reductions are achieved at USD 80.5/Mt CO2.

Our paper builds on two distinct areas of inquiry. First, we provide new evidence on a
classic question in the tournaments literature: whether tournaments dominate contracts
(Lazear and Rosen, 1981; Green and Stokey, 1983). Some articles have examined similar
questions but in other contexts, and not in a large-scale randomized control trial (see, e.g.
Knoeber and Thurman, 1994). A strength of our analysis is that the tournament and con-
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tract designs faced by participants are randomly assigned andwe observe a high-frequency
performance measure (i.e., energy use) before, during, and after the competitions. Impor-
tantly, relative to prior work, we provide a large-scale field experiment in a typical major
urban metropolitan city in an LMIC. Furthermore, our paper relates more broadly to a
growing empirical literature on contest design (e.g., Gross, 2017, 2020; Lemus and Mar-
shall, 2021; Bhattacharya, 2021; Lemus and Marshall, 2024).

Second, our paper informs the design of energy conservation policies and the efficiency
in incentivizing behavior to manage demand in the context of LMICs. Prior work has
examined policies and programs aimed at reducing energy consumption in high income
countries (Ito, 2014, 2015; Levinson, 2016; Houde and Aldy, 2017; Fowlie et al., 2018; Ito
et al., 2018; Fowlie et al., 2021), but there is a notable dearth of evidence on such programs
in LMICs.3 This is especially crucial since the marginal source of electricity is much more
likely to be coal and so the reductions in carbon emissions could be greater (Boomhower
and Davis, 2014; Berkouwer and Dean, 2022; Costa and Gerard, 2021; Ta, 2024). Addition-
ally, we provide the first experimental estimates of the short run price elasticity of demand
for electricity in Vietnam and amongst the few that exist for LMICs. Such estimates are
crucial to planning effective grid management.

The paper is organized as follows: Section 2 describe our randomized field experiment.
Section 3 examines the empirical specifications and findings regarding the impacts of our
experimental contracts and contests on electricity consumption, including their heteroge-
neous effects. Section 4 describes our structural model and the estimation process. Section
5 assesses the marginal abatement costs of energy conservation programs. Finally, Section
6 concludes.

2 The Experiment and Data

2.1 Background and context

We conduct our experiment in the city of Hanoi which is situated in the northern part
of Vietnam. Hanoi experiences four seasons with the hottest months being June through

3A number of papers have also evaluated the effects of behavioral nudges such as peer comparisons on
electricity consumption (Allcott andMullainathan, 2010; Allcott, 2015; Brandon et al., 2017, 2019; Allcott and
Kessler, 2019). These interventions are highly cost-effective at delivering reductions of approximately 1%.
Our work complements these existing approaches that are already in place by testing contract designs that
deliver higher aggregate demand reductions over and above conservation from nudges.
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September where maximum temperatures exceed 35◦C (95◦F). Rising temperatures and
demand for air conditioning during thesemonths create complications for the utilitywhich
is increasingly concerned about meeting demand. To avoid blackouts and reduce expen-
sive peak electricity procurement, EVNHANOI, the only utility in Hanoi, has already
been implementing low-cost demand side management programs that employ behavioral
nudges andmoral suasion to reduce energy use during thesemonths. However, these pro-
grams, while highly cost-effective, are unable to achieve large-scale energy savings. The
utility is particularly interested in incentivizing consumers to reduce energy consumption
during thesemonths because the regulator does not allow the utility to employingdynamic
pricing, ostensibly to protect consumers from volatile pricing.

2.2 Experimental Design

In the summer of 2023, we conducted a randomized field experiment in the context of
a residential energy conservation program in Hanoi, Vietnam. Collaborating with EVN-
HANOI, the exclusive electricity provider in the city, we advertised our program and re-
cruited participants through different channels, including the utility’s official website, the
utility’s app, and offline marketing. Given our emphasis on advertising through banners
and ads within the utility’s app, the majority of our study’s sample consists of households
that use the app to monitor energy usage and pay bills.4

During the enrollment period, which ran from June 15th, 2023, to July 6th, 2023, a total
of 16,365 households signed up for the experiment. Subsequently, we narrowed down
the pool of households using the criteria specified in our pre-analysis plan, resulting in
a final cohort of 11,194 participants (Garg et al., 2023). These criteria primarily served
the purpose of eliminating outliers and households with extensive missing or zero daily
energy consumption data.

We randomized each participating household into one of four groups: three treatment
groups and one control group. Two treatment groupswere assigned to contracts, with each
group differing in the thresholds of energy savings they needed to reach to win a prize.
The third treatment groupwas assigned to contests. The duration of the treatments was 30
days, from July 15th, 2023, to August 13th, 2023. The control group was not assigned to a
contest or contract. Participants could use their smart meters to monitor their progress by

4EVNHANOI, has over 2.8 million customers, and all of them have smart meters. About 25% of all house-
holds in Hanoi have installed the utility’s app.
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default, so all households, including the control group, received information about their
past and current daily electricity use on the utility company’s app.

The groups were as follows:

• Treatment 1, Contract with low thresholds (henceforth, ’Contract 1’). This group
was offered $4.35 USD if they conserved 5% of electricity compared to their average
daily energy use during the same treatment period in the previous year, $6.52 if they
conserved 10%, and $10.87 if they conserved 15%. This group also received weekly
text message reminders, saying "There are [insert number] days left in the contract
which ends on [insert end date]. Check the app to see your energy savings.”

• Treatment 2, Contract with high thresholds (henceforth, ’Contract 2’). This group
was offered $6.52 USD if they conserved 10% of electricity compared to their average
daily energy use during the same treatment period in the previous year, $10.87 if they
conserved 15%, and $15.22 if they conserved 20%. This group also received weekly
text message reminders, saying "There are [insert number] days left in the contract
which ends on [insert end date]. Check the app to see your energy savings.”

• Treatment 3, Contest (henceforth, ’Contest’). Households were entered into contests
of 50 households. In every contest, the household that conserved the most energy,
compared to their average daily energy use during the same treatment period in the
previous year, was to receive a prize of $87. This group also received weekly text
message reminders, saying "There are [insert number] days left in the contest which
ends on [insert end date]. Check the app to see your energy savings.”

• Control group, No contest or contract participation. This group was not offered any
incentive to conserve energy. This group received weekly text message reminders,
saying: "Please check the app to see your energy savings.”5

Households assigned to the contest treatmentwere randomized into groups based on their
average consumption in the period between July 15, 2022, and August 13, 2022 (i.e., the
comparison period for the experimental period) to ensure that contest participants were
competing with households that were similar in energy consumption.

5To avoid dissatisfaction and exclusion, we pay out a small amount of about $0.40 USD to participants
selected in the control group and thank them for enrolling in the program after the program ends. We did
do not inform them about this payment until after the program ended.
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The contests and contracts started on July 15, 2023, and ended on August 13, 2023. Af-
ter completing our recruitment, registration, and randomization, on July 15, 2023, house-
holds were scheduled to receive individual information about their specific treatment or
energy savings program through the app display as well as notification that the incentive
period had started. The experiment experienced unexpected delays due to technical issues.
Households needed to update the app to view the specific rules for their treatment. All
households received individual information about their treatment via a text message con-
taining a link to the rules on July 24, 2023.6 In these communications, households were not
informed about the presence of other treatments within our study. OnAugust 17, 2023, the
utility sent text messages to households in the treated group to inform them about the pro-
gram’s culmination and express gratitude for their participation. The utility also informed
participants that the results of contracts and contests will be communicated through app
notifications and text messages within the following 10 days.

We chose this structure of incentives for the treatment groups for two main reasons. First,
our ideal comparison between a contest and a contract fixes the expected payment received
by a household. Without knowing in advance the weather that households will face, any
prediction of the expected payment of a contract is uncertain (recall that contracts give
rewards contingent on achieving certain levels of energy savings against a pre-specified
benchmark – in our case the energy consumption in the same period the previous year).
The same is not true for contests, which are fully predictable in expected payments, as
we know the winner’s payment and that there will always be a winner. Assigning two
treatment groups to a contract allowed us to ex-ante increase the chances of comparing a
contest and a contract with similar expected payments.7

Second, making the contracts have tiers (i.e., different payments for achieving different
levels of savings) ex-ante increases the chances that the contracts will provide households
with marginal incentives (i.e., a non-trivial tradeoff with costs and benefits to saving en-
ergy created by our incentive program). To see this, imagine a scenario in which the ex-
perimental period is significantly cooler than the reference period. Saving 5 percent may
be achieved without effort, but saving 15 percent may require significant effort. If instead,
the weather is warmer during the experimental period, households may find it too costly
to savemore than 5 percent. Having a contract with several tiers thus increases the chances

6Examples of the treatment rules, which are displayed in the app and available through a link in text
messages, can be found in online Appendix A. This appendix includes the rules in both the local language
and their English translation.

7Given our sample size, our power calculations suggested that nomore than three treatment groups were
prudent. With a greater sample size, however, we would have added additional contract treatments.
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that the contract will provide marginal incentives, regardless of the weather.

There are two departures from our pre-specified research plan that are worth mentioning,
although neither affects the validity of our estimates. First, the notification about the start
of the programwas delayed by 10-12 dayswhich resulted in a delayed start of the program.
Second, in the summer of 2023, during our experiment, the electric utility sent numerous
text messages and notifications to all customers, urging them to save energy to protect the
power grid. On average, each customer received 2-3 messages per week. In effect, our
treatment effects could be interpreted as net-of or over and above effects from standard
nudges.

2.3 Data

The main variable of interest is daily electricity consumption at the household level. This
variable is obtained from the utility company, which measures electricity consumption
through smart meters installed in every home. We collect daily electricity consumption
data at the household level for 12 months prior to the start of the experiment and six
months following its conclusion.8 As noted before, data on a household’s electricity con-
sumption within a day (e.g., hourly data) is unavailable as the current IT systems for the
utility in Hanoi do not store such data.

Weather plays a significant role in influencing a household’s electricity consumption and
their likelihood of winning a prize in a contract or contest. As a result, we gather daily
air temperature data for Hanoi from Visual Crossings. This dataset encompasses the air
temperature variable, along with a “feels like” temperature variable, which takes into ac-
count temperature and humidity to provide a more accurate representation of the per-
ceived outdoor temperature. We utilize these data to study heterogeneous responses by
weather conditions on a given day.

To assess the cost-effectiveness and welfare impacts, we also obtain administrative data
from the utility, allowing us to quantify the benefits of energy savings in terms of reduced
energy production, carbon emissions, and the prevention of blackouts and system failures.

8Our attrition rate is notably low, with only 8 out of 11,194 participants discontinuing their involvement.
Attrition occurred since those 8 participants stopped their service with the utility. Also, due to intermit-
tent technical issues, the daily consumption of some households is sometimes not transmitted to the utility
immediately although it is accounted for in the billing cycle. We drop these small number of household-
day combinations for which this occurs and importantly, these are balanced across all treatment and control
groups.
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Table 1: Balance analysis: Past electricity consumption

(1) (2) (3) (4) (5) (6) (7) (8)
Control Treatment 1 Treatment 2 Treatment 3 F-test

Month Mean (kWh) Coeff. p-value Coeff. p-value Coeff. p-value p-value
July 2022 12.388 0.233 0.164 0.111 0.500 0.130 0.430 0.581
August 2022 11.488 0.211 0.170 0.160 0.295 0.154 0.312 0.543
September 2022 10.621 0.140 0.329 0.134 0.350 0.116 0.413 0.733
October 2022 8.441 0.077 0.482 0.123 0.260 0.099 0.366 0.697
November 2022 8.324 0.079 0.462 0.131 0.222 0.133 0.215 0.562
December 2022 8.601 0.097 0.423 0.164 0.174 0.072 0.549 0.594
January 2023 8.814 0.114 0.377 0.223 0.081 0.027 0.827 0.294
February 2023 8.762 0.086 0.480 0.134 0.265 0.079 0.512 0.733
March 2023 8.423 0.116 0.309 0.119 0.286 0.055 0.619 0.677
April 2023 9.053 0.026 0.832 0.168 0.173 0.070 0.566 0.541
May 2023 11.447 0.120 0.439 0.235 0.130 0.214 0.166 0.410

Notes: An observation in each row is a household. Columns 2-7 report the coefficients and p-values from OLS regressions of average
daily consumption on three indicators: treatment 1, treatment 2, and treatment 3. Column 8 reports the p-value from a joint test of
statistical significance of all three indicators.

2.4 Experimental Balance

We assess the balance between the treatment and control groups by examining household
historical electricity consumption data. More precisely, we analyze the average daily elec-
tricity consumption for each month leading up to the intervention, spanning from July
2022 to May 2023, as part of our balance checks. For each of these variables, we run the
following specification:

yi = α +
3∑

k=1
1{treatmenti = k}βk + εi,

where treatmenti is a variable indicating the treatment assignment of household i. The
regression includes indicators for all treatment groups except for the control group (the
omitted category). In our balance analysis, we report estimates for the coefficients {βk},
their standard errors, and the p-value from a joint test of statistical significance of all co-
efficients on the treatments indicators (i.e., a test where H0 : β1 = β2 = β3 = 0) for every
variable listed above. Table 1 presents the outcomes of our balance checks, showing no no-
ticeable disparities in historical electricity consumption patterns between the control and
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Table 2: Treatment effects: Cross-sectional variation

(1) (2) (3) (4)
Daily Daily consumption

consumption (kWh) (kWh) (in logs)
Contract 1 -0.763 -0.914 -0.071 -0.085

(0.180) (0.087) (0.015) (0.009)

Contract 2 -0.538 -0.794 -0.054 -0.074
(0.182) (0.089) (0.015) (0.009)

Contest -0.629 -0.835 -0.055 -0.072
(0.182) (0.093) (0.015) (0.009)

Controls No Yes No Yes
Observations 329752 329192 326283 325724
Mean 12.998 12.999 2.368 2.368
Test 0.454 0.346 0.441 0.272

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects. Columns 2 and 4
include controls for the average daily consumption of the household in each of the months before the experiment (July 2022 to May
2023). Row ’Mean’ reports the mean of the dependent variable in the estimation sample. Row ’Test’ reports the two-sided p-value of
an F-test where the null is that treatments 1, 2, and 3 have equal coefficients.

treatment groups.

3 Experimental Results

In our study, consenting households opted in to participate in the summer energy con-
servation program and were subsequently randomized into a control group, two tiered
contracts and contests. Thus, we estimate average treatment effects on the households in-
terested in participating in our study.

To measure these treatment effects, we use two different sources of variation. First, we
exploit the random cross-sectional variation in treatment assignment during the experi-
mental period and run the following regression:

yi,t = α +
3∑

k=1
1{treatmenti = k}βk +X ′

iδ + γt + εi,t, (1)

where yi,t is the daily consumption of household i on day t during the study period, Xi is
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a set of covariates (one specification includes no covariates, another specification includes
the covariates used in the balance analysis), γt is a day fixed effect, and εi,t is an error term
clustered at the household level.

Table 2 presents the estimates for equation (1). In columns 1 and 2, the dependent vari-
able is daily energy consumption in levels, whereas in columns 3 and 4, the dependent
variable is the natural logarithm of daily energy consumption.9 All specifications include
day fixed effects. Columns 2 and 4 include controls for the average daily consumption of
the household in each of the months before the experiment (July 2022 to May 2023). The
results suggest that households participating in contracts and contests reduce energy use
by approximately 5% to 9% compared to households in the control group. All coefficients
are statistically significant at the 1% significance level. While both contracts and contests
achieved energy reductions that are statistically different from the pure control group, we
cannot reject the null hypothesis that the effects of contracts and contests are identical.10

Next, we exploit the within-household week-by-week variation in incentives to conserve
energy utilizing energy consumption data from before, during, and after the experimental
period. We estimate the following equation:

yi,t = α +
∑

k

∑
t

1{treatmenti = k}1{t = τ}βk,τ + γt + ψi + εi,t, (2)

where yi,t is daily energy use of household i on day t, t ∈ {−T̄ ,−T̄ − 1, . . . , 0, 1, . . . , T̄}
periods relative to the beginning of the study, and βk,τ measures the average impact of
treatment k on electricity consumption τ periods relative to the beginning of the study
(where the control group is the excluded category), γt and ψi are day and household fixed
effects, respectively, and εi,t is an error term clustered at the household level. Note that
given the within-household variation in incentives to conserve energy, equation (2) in-
cludes household effects.

Table 3 shows the estimates of equation (2), using data from before and during the experi-
mental period. We restrict all pre-treatment coefficients βk,τ to zero, and all post-treatment
coefficients to a single time-invariant value, βk. Columns 1 and 2 report estimates in kWh
whereas Columns 3 and 4 report results in logs. Column 1 and 3 consider the full sample
where as Columns 2 and 4 demonstrates robustness to limiting our sample from June 1,

9Less than 0.1% of household days have have zero recorded energy consumption so we obviate the need
for adjustments for logs with zeros (Chen and Roth, 2024).

10The row ‘Test’ reports the two-sided p-value of an F-test where the null is that treatments 1, 2, and 3 have
equal coefficients.
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Table 3: Treatment effects: Within-household variation

(1) (2) (3) (4)
Consumption (kWh) Consumption (kWh) (in logs)

Full sample June 1, 2023 – Full sample June 1, 2023 –
Post * Contract 1 -0.892 -0.969 -0.080 -0.085

(0.100) (0.073) (0.008) (0.006)

Post * Contract 2 -0.740 -0.944 -0.077 -0.078
(0.101) (0.074) (0.008) (0.006)

Post * Contest -0.756 -0.938 -0.072 -0.081
(0.104) (0.075) (0.008) (0.006)

Observations 4430382 718792 4397592 711137
Mean 10.313 13.084 2.131 2.373
Test 0.236 0.910 0.606 0.523

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects and household fixed
effects. Row ’Mean’ reports the mean of the dependent variable in the estimation sample. Row ’Test’ reports the two-sided p-value of
an F-test where the null is that treatments 1, 2, and 3 have equal coefficients. Columns 1 and 3 use the full sample (July 1, 2022 to August
13, 2023). Columns 2 and 4 restrict the sample from June 1, 2023 to August 13, 2023.

2023 onward since households in Hanoi experienced rolling blackouts in May 2023 and
consumption is higher in the summer months. The findings remain consistent across var-
ious specifications, indicating that households engaging in contracts and contests reduce
their energy consumption by around 7% to 9% when compared to households in the con-
trol group. All coefficients exhibit statistical significance at the 1% level. Similar to the
results presented in Table 2, we cannot reject the null hypothesis that the effects of con-
tracts and contests are equal.11

Figure 1 presents estimates for equation (2), where we allow for the treatment coefficients
to vary over time, using data from after the experimental period. Figure 1A illustrates
the difference in energy usage (in kWh) between treatment group 1 (contract with low
thresholds) and the control group over time, as measured by week-level indicators. Like-
wise, Figure 1B and 1C display the energy usage difference (in kWh) for treatment group 2
(contract with high thresholds) and 3 (contests), respectively, relative to the control group
across time. All model specifications incorporate day fixed effects and household fixed ef-
fects. The dataset covers the period from June 1, 2023, to September 22, 2023. Week 0

11According to our power calculation provided our pre-analysis plan, it is highly probable that our sample
size is inadequate for detecting any difference of 3% or less in magnitude.
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Figure 1: Time effects: Within-household variation
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Notes: Standard errors clustered at the household level in parentheses. An observation is a household–day combination. Each figure
plots the differential energy use (in kWh) of the treatment group X relative to the control group over time, measured by indicators at
the week level. All specifications include day fixed effects and household fixed effects. The sample includes data from June 1, 2023 until
September 22, 2023. Week 0 is the week before the experiment started, week 1 is the first week of the experiment and week 4 is the last
one. Weeks -6 and -5 are grouped together, given the sample restriction. Week 4 has 3 additional days, to cover the entire experimental
period.
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represents the week before the experiment commencement, and weeks 1 through 4 corre-
spond to the experiment period (July 15 through August 13).12

The coefficients observed before the treatment period affirm the balance between the con-
trol and treatment groups, providing limited evidence of statistically significant differences
in daily energy consumption across these groups before the experiment. Similarly, the co-
efficients two weeks after the experiment started are not statistically significant, implying
that the treatments do not exhibit any immediate effect within the initial two weeks. As
previously discussed, households received a delayed notification that the incentive period
had started (on July 24, 2023, instead of on the first day of the incentive period, July 15,
2023). This most likely explains the null effect in the first two weeks. The treatment effects
begin to emerge and become more pronounced in week 3, with the most substantial ef-
fects occurring during the final week of treatment. The results suggest that as households
approached the conclusion of their contracts or contests, they intensified their efforts to
enhance their chances of winning a prize. Although most of the treatment effects dissi-
pate two weeks after the end of the treatment period, we observe some evidence of a small
persistent effect. The lower bound of the 95% confidence interval on this estimate is just
above pre-treatment consumption for contracts and just below pre-treatment consumption
for contests with point estimates suggesting a modest persistent effect.

Also noteworthy in Figure 1 (and Tables 2 and 3) is that the treatment effects are statisti-
cally indistinguishable across treatment groups. As we will note later, this is despite the
expected payment of households in the contract treatment groups being 80 to 85 percent
greater than that of households in the contest group. A few explanations could rationalize
this finding. First, it is possible that the treatment effects are different, but we do not have
the statistical power to detect such small differences precisely. Given the precision of our
treatment effects relative to the control group, it is unlikely that such undetected differ-
ences across treatments are economically meaningful. Second, it is possible that house-
holds make discrete choices to conserve energy when offered an incentive and exert fixed
levels of effort (e.g., change the temperature setting in the AC unit by 1 degree) rather than
responding to marginal incentives (i.e., fine tuning effort based on the perceived costs and
benefits of saving an additional kWh). Third, it is possible that there are local limits to
conservation and beyond a certain level, additional incentives will not deliver any further
conservation. Our experiment was not designed to test these different possibilities and
instead focused on the cost-effectiveness of different incentive structures. We explore het-

12Week 4 has 3 additional days, to cover the entire experimental period. Similarly, weeks -6 and -5 are
combined, as week -6 includes only two days, given the sample restriction.
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Figure 2: Household-level electricity consumption reductions, by treatment
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Notes: An observation is a household. Each figure plots the distribution of the ratio between a household’s average daily consumption
during the experimental period (July 15, 2023 through August 13, 2023) and the household’s average daily consumption during the
reference period (July 15, 2022 through August 13, 2022). For presentation purposes, we cap the ratio at 2.

erogeneity and cost-effectiveness in subsequent sections.

To summarize, we find evidence that incentive programs (contracts and contests) reduced
electricity consumption by 7-9% relative to a control group, but we do not detect mean-
ingful differences across the three different incentive programs. Depending on the spec-
ification, the household level treatment effects range between reductions of 21 kWh to 33
kWh.
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3.1 Heterogeneity analysis

In this section, we explore heterogeneity along two dimensions. First, we ask how the en-
ergy use reductions are distributed across participants within a treatment group. Second,
we examine how variation in temperature shapes heterogeneous treatment effects.

To explore how the energy use reductions are distributed across participants, we compute
the ratio between the average daily consumption during the experimental period (July 15
toAugust 13, 2023) and the average daily consumption during the reference period (July 15
to August 13, 2022). A ratio of one or less indicates that the household’s energy use during
the experimental period was less or equal to the energy use during the reference period.
Figure 2 displays the cumulative distribution functions of these ratios, by treatment. The
distribution functions for the treatment groups are smooth and appear to be first-order
stochastically dominated by that of the control group, suggesting that the incentives to
save energy influenced all treated households. The figures also suggest that the energy
reductions we find in Figure 1 are not driven by a subset of households, as the distribution
functions of the treated groups depart uniformly from that of the control group.

Table 4 replicates our within-household analysis in Table 3 but allowing for heterogeneous
effects, where all interaction variables are standardized (mean zero and standard devia-
tion one). Column 1 shows that treated households with a larger daily average consump-
tion during the reference period, on average used less electricity during the experimental
period, but the effect disappearswhen looking at percentage change in electricity use (Col-
umn 4). That is, households that use more can reduce more in levels but the reduction is
similar to other households when measured in percentage terms.

Table D.1 in the Online Appendix shows the results of a similar heterogeneity analysis
where we exploit that there was a delay in notifying participants that the incentive pro-
gram had started. We compute the average daily consumption in the first two weeks of
the experimental period and exclude those two weeks from the regression. Similar to the
results in the previous paragraph, we find that treated households that used more in the
first days of the experimental period (before knowing that the experiment had started)
reduced their energy consumption by more, but this reduction is no different from that of
other households when measured in percentage terms. This suggests that a greater con-
sumption in the early days of the incentive program did not discourage participants from
saving energy later in the experimental period.

Howdoes theweather impact the effectiveness of the incentives? Table 4 shows that house-
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Table 4: Heterogeneity analysis: Within-household variation

(1) (2) (3) (4) (5) (6)
Consumption (kWh) Consumption (kWh) (in logs)

Post * Contract 1 -0.967 -1.227 -1.435 -0.085 -0.110 -0.126
(0.073) (0.114) (0.103) (0.006) (0.009) (0.009)

Post * Contract 2 -0.946 -1.278 -1.462 -0.078 -0.108 -0.121
(0.074) (0.114) (0.103) (0.006) (0.009) (0.008)

Post * Contest -0.938 -1.348 -1.528 -0.081 -0.118 -0.130
(0.075) (0.116) (0.106) (0.006) (0.009) (0.009)

Post * Contract 1 * Reference consumption -0.297 -0.007
(0.063) (0.005)

Post * Contract 2 * Reference consumption -0.156 0.001
(0.057) (0.004)

Post * Contest * Reference consumption -0.244 -0.002
(0.069) (0.005)

Post * Contract 1 * Feels like max 0.311 0.030
(0.103) (0.007)

Post * Contract 2 * Feels like max 0.401 0.036
(0.103) (0.007)

Post * Contest * Feels like max 0.492 0.044
(0.104) (0.007)

Post * Contract 1 * Temp max 0.625 0.055
(0.093) (0.007)

Post * Contract 2 * Temp max 0.695 0.057
(0.093) (0.007)

Post * Contest * Temp max 0.791 0.065
(0.095) (0.007)

Observations 718792 718792 718792 711137 711137 711137
Mean 13.084 13.084 13.084 2.373 2.373 2.373
Test 0.923 0.582 0.666 0.529 0.531 0.524

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects and household fixed
effects. Row ’Mean’ reports themean of the dependent variable in the estimation sample. Row ’Test’ reports the two-sided p-value of an
F-test where the null is that treatments 1, 2, and 3 have equal coefficients. All columns restrict the sample from June 1, 2023 to August 13,
2023. The variables ‘Feels like max’ (maximum feels like temperature), ‘Tempmax’ (maximum temperature), ‘Reference consumption’
(household’s average daily consumption during July 15, 2022, and August 13, 2022) are standardized (mean zero, standard deviation
one).
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holds consumemore energy onwarmer days (measured by themaximumdaily “feels like”
or the actual maximum temperature). This suggests that households adjust their usage
to align with an ideal level of comfort. Despite increased consumption on warmer days,
households still save energy relative to the counterfactual under the incentive programs.
Our estimates suggest that, on average, a one standard deviation increase in the maximum
temperature reduces the daily energy savings by between 0.3 and 0.8 kWh. Moreover,
the treatments generated energy savings even on the hottest days of the treatment period
(roughly a 1.8 standard deviation increase in temperature), which iswhen the utility needs
consumption reductions the most. These findings suggest that the incentive programs are
effective in reducing emissions and managing demand on extremely hot days, which in
turn can prevent blackouts.

3.2 Average payouts, by treatment

In this subsection, we analyze the cost of implementing each of these treatments in terms
of average payouts per household. Although we have found that we cannot reject that the
treatment effects across treatment groups are equal, the cost of each treatment may differ,
creating differences in the cost effectiveness of each intervention.

Table 5 summarizes the details of each treatment together with the average payout per
participant. The table shows that both contracts were similarly costly in terms of average
payout per household ($3.14 and $3.21, respectively, for contracts 1 and 2), and they were
80 to 85% more costly than the contest treatment (average payout of $1.74). This implies
that although the reductions in energy use were similar across the incentive programs, the
contest achieves these reductions for the least amount of money, suggesting that contests
are a substantially more cost-effective way of incentivizing households to reduce energy
demand.

4 Structural Model and Estimation

In this section, we introduce a model to rationalize households’ optimal energy consump-
tion choices under different incentive structures: no incentives (control group), individual
contracts, or contests. Using data from our experiment, we estimate the model parameters
by comparing observed outcomes to the model’s predictions.
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Table 5: Average Payouts and Consumption by Treatment

Contract 1 Contract 2 Contest
Minimum Reduction to Earn Reward 5% 10% 15% 10% 15% 20% –
Prize (USD) $4.34 $6.52 $10.86 $6.52 $10.86 $15.22 $87
Observed winning probability 36% 29% 22% 26% 20% 15% 2%
Number of participants 2,795 2,799 2,799
Average payout per participant (USD) $3.14 $3.20 $1.74
Average monthly consumption (kHW) 375.61 381.66 379.76

Notes: An observation is a household. The threshold and prize rows show the prizes awarded for saving more than x%. There are no
pre-determined thresholds for the contest treatment. The average monthly consumption of the control group during the experimental
period was 396.76.

The structural model complements our experimental results in two important ways. First,
it allows us to compare the performance of a contest against an optimal contract. Using
data from our experiment, we are able to compare the performance of a contest and two
contracts that are potentially sub-optimal because their reward structure was chosen be-
fore the experiment under limited information. Our structural model allows us to find an
optimal contract for a given set of primitive parameters, which we use to provide an upper
bound on how well contracts can do. Second, the structural model allows us to compute
demand functions—both aggregate demand and individual household demand based on
average consumption—and to evaluate the cost-effectiveness of contests and contracts un-
der different conditions (e.g., budget, weather).

4.1 Modeling Household Energy Consumption

A household’s ideal energy consumption is S ≥ 0. The household chooses its energy con-
sumption, e ≥ 0, which is then affected by a shock, ε ∼ F (·) ≡ N(0, σ2), so the actual energy
consumption is ê = e+ ε.13 The household’s expected payoff is

Eε[−γ(ê− S)2 − pê].

This payoff captures that the household values matching its actual consumption with its
ideal consumption but dislikes paying for energy, which is priced at p per kWh. The pa-
rameter γ measures the importance of matching the ideal consumption relative to the cost
of energy. Simple algebra shows that, ignoring a constant σ2, the household payoff can be

13That is, the shock realizes after the choice of e.
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written as
−γ(e− e∗

0)2,

where e∗
0 = S − p

2γ
. We have the following result.

Proposition 1 (No Incentives; Control Group). Without an incentive for energy reduction, a
household’s energy consumption (assuming an interior solution) is given by

e∗
control = S − p

2γ . (3)

The household always consumes less than its its ideal point, S. A high energy price (high
p) or lowvalue ofmatching the ideal consumption (low γ), pushes the household to reduce
its energy consumption further away from S. Conversely, if energy were very cheap (low
p) or if matching S was highly important (high γ), the household would consume very
close to S.

We now consider the use of individual contracts or a contest as an incentive for energy
reduction.

Consider a set of N households with the same preferences, i.e., the same parameters
S, γ, and σ. These households make simultaneous energy-consumption choices. Let
ê = (ê1, ..., êN) be the realized consumption profile, where êi = ei + εi is the realized con-
sumption of household i. We assume that the shocks εi are independent and identically
distributed, εi ∼ N(0, σ2).

Under an incentive program that rewards energy reduction, household i receives a reward
of Ii(ê), which can depend on the realized consumption of all households. Taking the
energy-consumption choices by other household as given, household i choose its energy
consumption to maximize

Ui(ei, e−i) = Eε[Ii(êi, ê−i)] − γ(ei − e∗
0)2. (4)

Individual Contract. Consider first an individual contract. In Appendix B, we show that
a threshold contract is an optimal individual contract to allocate a fixed reward, B. That
is, the household receives a prize B if and only if its realized consumption is below the
threshold ℓ.14 Under an individual contract with threshold ℓ, household i’s chooses its

14It can be shown that not every optimal contract is necessarily a single threshold. That is, other type of
contracts (e.g., multiple thresholds) can also be optimal under some conditions.
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energy consumption to solve

max
ei≥0

B · F (ℓ− ei) − γ(ei − e∗
0)2. (5)

Our focus is on interior solutions of this problem. Households may ignore contracts that
are too demanding, i.e., those that require to very little consumption to receive a relatively
small reward. Alternatively, if the reward is too large, households would “shut down” and
consumer zero. We ignore this corner solution as the monetary incentives we consider are
relatively small.

Proposition 2 (Contracts). Consider a contract that pays B to the household if its realized con-
sumption is below ℓ. An interior solution for (5) is characterized by the fixed point

e∗
contract = e∗

control − Bf(ℓ− e∗
contract)

2γ , (6)

where f(·) is the density of N(0, σ2).

Fixing the individual rewardB, the sponsor of an energy conservation program can choose
a threshold ℓ that minimizes the household’s expected consumption. The optimal thresh-
old, denoted ℓ∗, is characterized by the solution to

min
ℓ≥0

e∗
contract(ℓ).

Proposition 3. If the density of the idiosyncratic shock is satisfies f(ε) = f(−ε), f ′(ε) = 0 if and
only if ε = 0, and consumption is interior at the optimal threshold, then ℓ∗ = e∗

contract(ℓ∗).

Proposition 3 establishes that, as long as the solution is interior, the household reduces its
consumption up to the point of just achieving the reward. This occurs because reducing
energy further from the ideal point is costly. Using this proposition we can also get a
closed-form solution for the household consumption for an optimal contract. Using the
fact that e∗

contract = ℓ∗ in (6) we obtain

e∗
contract = e∗

control − Bf(0)
2γ . (7)

The energy reduction induced by the optimal contract is Bf(0)
2γ

, which depends on the re-
ward,B, the sensitivity to matching the ideal consumption, γ, and the density of receiving
an idiosyncratic shock of zero, f(0). Also note that asB increases, the optimal threshold ℓ∗
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(which equals e∗
contract) decreases. That is, when the reward is larger, the contract becomes

more demanding in terms of energy reduction.

Importantly, the optimal threshold ℓ∗ depends on the preference parameters S and γ. If
a household’s ideal consumption level S varies due to common shocks—such as seasonal
changes throughout the year—implementing an optimal contract becomes significantly
burdensome. This is because it requires tailoring the contract to each household’s expected
ideal consumption point, which may fluctuate over time.

Individual Contest. We now consider the use of a contest to promote energy reduction.
Suppose the sponsor of an energy-reduction program organizes a contest whereN house-
holds of similar characteristics simultaneously make energy consumption choices, ei. The
household with the lowest realized consumption, êi, receives a prize of V .15 Suppose that
every household other than i chooses consumption e∗. Then, household i solves the prob-
lem

max
ei≥0

V ·
∫

(1 − F (ei + εi − e∗))N−1dF (εi) − γ(ei − e∗
0)2. (8)

In this expression, given ei and εi, household i wins the contest by consuming the least
amount amongN households, which occurswith probability (1−F (ei+εi−e∗))N−1. Given
that ei is chosen before the realization of εi, the household computes the expectation of this
probability with respect to εi.

Proposition 4 (Contests). Consider a contest betweenN households. In a symmetric equilibrium
with interior consumption, each household chooses an energy consumption of

e∗
contest = e∗

control − I(V,N ;F )
2γ , (9)

where I(V,N ;F ) = V
∫

(N − 1)(1 − F (εi))N−2f 2(εi)dεi.

For any fixed prize V , as the contest grows large, the competition induced by the con-
test dampens a household’s incentive to save energy.16 Thus, larger contests require larger
prizes to counteract the increased competitive pressure that demotivates individual house-
hold to save energy. It is important to note that the incentive induced by the contest is
independent on the preference parameters S and γ, so the induced reduction is unaffected
by common shocks or seasonal effects.

15When households have equal baseline consumption levels, giving the prize to the household with the
lowest consumption or greatest energy savings is equivalent.

16That is, ∂I(V,N ;F )
∂N < 0.
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4.2 Individual Contracts versus Contests

How does a household’s energy consumption under a contract compare to its energy con-
sumption under a contest? Depending on the model’s parameters, a contest can dominate
individual contracts or vice-versa. This can be readily seen by comparing the optimal con-
sumption in equations (7) and (9).

Let us first compare the energy-saving incentives of an individual household participating
in an optimal contract offering a reward ofB or in anN -household contest offering a prize
of V . The household saves more energy under an individual contract when

Bf(0) ≥ V
∫

(N − 1)(1 − F (εi))N−2f 2(εi)dεi. (10)

In terms of total energy savings, the contest provides energy-conservation incentives to N
households, whereas the individual contract targets a single one. Therefore, an individual
contract (provided to a single household) saves more energy than a N -household contest
when

Bf(0) ≥ NV
∫

(N − 1)(1 − F (εi))N−2f 2(εi)dεi. (11)

In terms of the cost of each energy-conservation program, the expected cost of an indi-
vidual contract (offered to a single household) is BF (0), whereas the (certain) cost of the
contest is V . Imposing that both programs cost the same,BF (0) = V , incentivizing a single
household with an individual contract dominates an N -household contest when

2f(0) ≥ N
∫

(N − 1)(1 − F (εi))N−2f 2(εi)dεi, (12)

where we use that F (0) = 0.5. This condition can only hold when N = 2.17 Therefore, the
N -household contest dominates giving an optimal contract to a single household when
N ≥ 3 and vice-versa whenN = 2. Moreover, an energy-conservation program that offers
an optimal contract to k ≥ 1 households, generates an expected total energy savings of
kBf(0) at cost kBF (0). If we again impose that both programs cost the same (in expec-
tation), the rewards in these programs must satisfy kBF (0) = V . Comparing the energy
savings induced by both programs yields again inequality (12). Therefore, a contest dom-
inates individual contracts when N > 2.

As mentioned, increasing the number of players in a contest decreases a player’s incentive
to exert effort, for a fixed prize. However, imposing that both incentives programs cost the

17When f(0) ≥ f(x) for all x ̸= 0, we have ∫ (N − 1)(1 − F (εi))N−2f2(εi)dεi ≥ f(0).
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Figure 3: Comparing contests and optimal contracts
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Notes: The figures fix B = 2, γ = 0.0016, p = 0.11, and S = 436, and they show the optimal energy use under an optimal contract
and a contest for different values of σ and N . The expected payment per household is equivalent in all comparisons between contests
and contracts. These parameters approximate our average empirical estimates.

same (in expectation), scales the prize of the contest with the number of players. A greater
prize encourages players in a contest to exert more effort, all else equal. In our setting, the
encouragement effect of a greater prize more than compensates for the discouragement
effect of greater competition as the number of players grows, delivering the result.

Figure 3 compares the energy consumption of all the households participating in a N -
household contest with the consumption of a single household under an individual (op-
timal) contract. In every comparison, the expected payout per household is equal across
the contest and contract. The figure also shows the consumption of a household facing
no energy-conservation incentives (“control”). Following the discussion above, the fig-
ure shows that an optimal contract can dominate or be dominated by a contest depending
on the size of the contest. In the figure, when N = 2, the contract dominates, and when
N = 50, the contest does.

4.3 Estimation

In the empirical analysis, we classify each households as one of K = 56 types, each type
denoted by κ = 1, ..., K. We defined types based on energy consumption between July 15
and August 13, 2022—i.e., one year before the beginning of our experiment. Figure D.1 in
the Online Appendix plots the consumption of each type.
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Let Nκ be the number of households of type κ. On average, there are 180.73 households
associated to each type, with some types having as few as 145 households and other as
many as 250.18 In our experiment, households of each type where randomly assigned to
four treatment conditions: control, contract I, contract II, and contest. Nκ,t is the number
of households of type κ assigned to treatment t.

We assume that each household makes monthly energy consumption choices according
to our model in Section 4.1. A household’s type determines its preferences over energy
consumption through the parameters γκ, Sκ, and the distribution of the shocks N(0, σ2

κ).
We assume the shocks are independent. For estimating the parameters, Θκ = (γκ, Sκ, σκ)
for κ = 1, ..., K, we leverage the model’s predictions and the variation in consumption
induced by each treatment.

Our estimation procedure consists of the following steps:

1. Estimation of σκ: To estimate σκ, we compare the consumption of a household of type
κ assigned to treatment t predicted by the model with its observed consumption.
That is, the observed energy consumption of household i assigned to treatment t
according to our model is given by

ei,κ,t = e∗
t,κ(Θκ) + εi,κ,t,

where e∗
t,κ(Θκ) denotes the optimal consumption choice of household κ predicted by

our model, given the parameters. Given that idiosyncratic shocks have mean zero,
taking expectation we obtain E[ei,κ,t] = e∗

t,κ(Θκ). Therefore,

εi,κ,t = ei,κ,t − E[ei,κ,t].

By the law of large numbers, we can estimate E[ei,κ,t] by computing the average con-
sumption of households of type κ in treatment t, i.e.,

E[ei,κ,t] ≈ ēi,κ,t ≡ 1
Nκ,t

Nκ,t∑
j=1

ej,κ,t.

Thus, we can recover σκ by computing the standard deviation of ei,κ,t − ēi,κ,t over i
18The median number of households in each type is 180, and a standard deviation of 21.8.
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and t. Thus, our estimator for σκ is

σ̂κ = St.Dev.[ei,κ,t − ēi,κ,t].

2. Estimation of γκ: To estimate γκ, we rely on an estimate of σk, as well as the price of
energy in our experiment, p = 0.11 USD/kWh, the prize in each contest, $87, and the
fact that our experiment assigned 50 households to each contest. We compare the
energy consumption of households of type κ across the contest treatment using that
from equations (3) and (9) we have

e∗
κ,control − e∗

κ,contest = I(N, V ;Fκ)
2γκ

,

where I(N, V ;Fκ) = V
∫
(N−1)(1−Fκ(εi))N−2f 2

κ(εi)dεi can be computed numerically
givenFκ = N(0, σk),N = 50, and V = $87. We can again estimate e∗

κ,control and e∗
κ,contest

by the average observed consumption for households of type κ assigned to the control
and contest groups, ēκ,control and ēκ,contest, respectively. Our estimator of γκ minimizes
the difference between the model prediction for e∗

κ,control − e∗
κ,contest and its empirical

analog. When γk varies by type, our estimator is given by

γ̂κ = I(N, V ;Fκ)
2(ēκ,control − ēκ,contest)

.

3. Estimation of Sκ: Given an estimate of γκ, Sκ can be estimated by Sκ = e∗
κ,control + p

2γκ
,

using equation (3), or Sκ = e∗
κ,contest +

p+I(V,N ;Fκ)
2γκ

, using equation (9). Since Sκ is over-
identified, we consider an estimator that puts equal weights on these two equations,

Ŝκ = 1
2

(
ēκ,control + p

2γκ

)
+ 1

2

(
ēκ,contest + p+ I(V,N ;Fκ)

2γκ

)
.

4. Practical Considerations. In practice, to gain power in estimating the parameters γκ

and σκ, we group types into four groups: (γκ, σκ) = (γ1, σ1) for κ = 1, ..., 14; (γκ, σκ) =
(γ15, σ15) for κ = 15, ..., 28; (γκ, σκ) = (γ29, σ29) for κ = 29, ..., 42; (γκ, σκ) = (γ43, σ43)
for κ = 43, ..., 56. This grouping requires an estimation of 8 different parameters. We
estimate (Sκ)56

κ=1 separately for each type. Hence, we estimate a total of 8 + 56 = 64
parameters.
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4.4 Estimation Results

Model Estimates. Using our experimental data, we estimate (Sκ, γκ, σκ) for κ = 1, ..., 56.
As mentioned, we constrain the parameters γκ and σκ to be the same for groups of 14 types
to gain statistical power. Table 6 reports our estimates for γκ and σκ, while Figure 4 reports
our estimates for Sκ.

Table 6: Estimates of the model parameters: γ and σ

Type γ St. Error σ St. Error
Type 1-14 0.0024 5.9615e-05 66.343 0.1217
Type 15-28 0.0013 1.7218e-05 65.074 0.0949
Type 29-42 0.0014 3.2103e-05 82.479 0.0995
Type 42-56 0.0009 2.8263e-05 124.41 0.1435

Notes: Bootstrapped standard errors.

Figure 4: Estimates of the model parameters: S
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4.5 Counterfactual Analysis

We use our structural model’s estimates to uncover the short-run price elasticity of de-
mand, as well as to evaluate different programs. It is important to mention that our model
in section 4.1 features a quadratic loss when energy consumption deviates from a house-
hold’s ideal point. This assumption can be reasonable for small deviations relative to the
ideal point but it might be questionable for very large deviations. For this reason, the exer-
cises in this section focus on policies that moderately change consumption, in which case
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our model’s predictions are robust.

Price Elasticity of Demand. Using our structural model’s estimates, we compute the price
elasticity of expected demand for energy. We then use this elasticity to simulate the impact
of a policy solution that includes a price increase. Without an energy-saving incentive, the
expected consumption of household of type κ is given by equation (3). Thus, the expected
energy demand is the weighted sum of energy consumption across households

D(p) =
K∑

κ=1
ακ

(
Sκ − p

2γκ

)
,

where ακ is the fraction of household of type κ, which we compute from our experimental
data according to

ακ = Number of Households of type κ
Total Number of Households .

Assuming a quadratic loss from deviations relative to the ideal consumption imposes a
linear demand function:

D(p) = λ− βp,

where
λ =

K∑
κ=1

ακSκ and β =
K∑

κ=1

ακ

2γκ

.

Then, the price-elasticity of energy consumption is

dD(p)
dp

p

D(p) = −βp
λ− βp

.

Using our estimates for ακ, Sκ, and γκ, and the price of electricity in Vietnam of p = 0.11
dollars per kWh, we get λ = 434.6 and β = 380.8, so we estimate a price-elasticity of energy
consumption at current prices of −0.1067. Figure 5 plots the estimated average demand
for energy (monthly consumption). It shows that at the current price of 0.11 dollars per
kWh, the averagemonthly consumption is 392 kWh. If energy was free, households would
consume 434 kWh on average. A 10 percent increase in the price of a kWh reduces energy
consumption by about 1 percent.

The figure also shows the average consumption level under a contest like the one offered
in our experiment (i.e., 50 households per contest with a prize of $87), which is given by
375 kWh. Instead of providing incentives to save energy, the consumption reduction in the
contest can be replicated via a price increase from $0.11 per kWh to $0.157 per kWh, i.e., a
43 percent price increase.
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Figure 5: Estimated Average Demand Curve
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Table 7: Energy Savings for Expected Payout in Our Experiment

E[Payout] Control ℓ∗-Contract 50-Contest Nκ-Contest
3.1400 392.7142 381.4724 361.0260 354.4635
3.2100 392.7142 381.2218 360.3196 353.6108
1.7400 392.7142 386.4847 375.1545 371.5180

Counterfactual Contracts and Contests. We use our empirical model to simulate the av-
erage household consumption under different energy-saving incentives, keeping the ex-
pected payment per household fixed across incentive programs.

Figure 6 (Panel A) shows the average monthly energy consumption under different pro-
grams when each household receives an expected payout ranging from 0 to 5 dollars. The
figure shows energy consumption under an optimal contract and contests of two different
sizes: 50 households andNκ households (the number of households of type κ in our sam-
ple). As a benchmark, the figure also shows the average consumption when no incentive
is provided (i.e., a control group). The figure shows that contests dominate the optimal
contract and that larger contests induce larger gains.

Table 7 provides similar information but restricting attention to the the actual expected
payouts in our experiment (see Table 5). For instance, using the expected payout of 3.14
dollars per household, which is the average payment in the experiment to households en-
rolled in contract 1, an optimal contract achieves an expected monthly consumption of
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Figure 6: Comparing contests and optimal contracts using our model estimates
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Notes: The figures plot the average energy consumption (Panel A) and average welfare (Panel B) of a household when faced with
various incentive schemes using our model estimates. We measure welfare using the utility function given by equation (4).

381.47. This represents a 2.56 percent reduction relative to the control group. Instead, a
50-household contest achieves an 8 percent reduction. Across payout levels, the contests
dominate the optimal contract and the energy savings increase in the size of the expected
payout.

Figure 6 (Panel B) compares the average welfare of a household when offered an incentive
to save electricity, for a given expected payment, relative to their welfare when offered no
such incentive (i.e., no payment to save electricity). We measure welfare using the util-
ity function given by equation (4). As before, we impose equality in the expected payout
of a contract and a contest, i.e., BF (0) = V/N . The figure shows that for every expected
payment value, the household is better off when incentivized with a contract. This is be-
cause the contract induces less electricity savings (which are a source of disutility to the
household) relative to the contest treatments, for a given expected payment (see Figure 6,
Panel A).19 This is in contrast to the optimization problem of the electric utility, which
would prefer to incentivize households using a contest because it induces more electricity
savings per dollar spent than the optimal contract.

Weather Variation. The cost-effectiveness of a energy-saving program can vary over the
19The expected utility for a household under an optimal contract is Ucontract = BF (0) − γ(e∗

contract − e∗
0)2,

and for one competing in a N -household contest is Ucontest = V/N − γ(e∗
contest − e∗

0)2. Equating expected
payouts, BF (0) = V/N , implies that Ucontract ≥ Ucontest if and only if e∗

contract ≥ e∗
contest.
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Figure 7: Energy reductions of a contest across months
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Notes: The figure plots the energy reduction of a household (in kWh) when households face the contest treatment in our experiment
(i.e., 50 participants, a prize of V = $87, and a price per kWh of $0.11) in different months of the year. The figure also plots the average
maximum “feels like” temperature for each month. Months are enumerated from 1 (January) to 12 (December).

year due to differences in weather. We simulate the energy savings caused by a contest
like the one offered in our experiment (i.e., 50 households per contest with a prize of $87)
across all months one year before the experiment. To compute the energy savings, we esti-
mate values of St,κ and σt,κ using household-level consumption data for period t following
the same estimation procedure discussed above. We assume that the values of γκ remain
constant throughout.20

Figure 7 shows the average energy savings of a household (in kWh) by month, where
months are enumerated from 1 (January) to 12 (December). The figure also plots the
average maximum “feels like” temperature for each month. The figure shows that en-
ergy savings are greatest in the summer months, when temperatures are higher, making
contests most cost-effective in summer months. Incidentally, this is aligned with the elec-
tric utility’s goals with demand management as the grid is most strained in the summer
months.

20We project the estimated values of St,κ and σt,κ on average monthly temperature, average monthly tem-
perature (squared), and type fixed effects, and use the fitted values of St,κ and σt,κ for the analysis.
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5 Marginal Abatement Cost of the Energy Conservation
Program

During four summer months from early May to August 2023, Vietnam faced significant
challenges with its primary energy sources, hydropower and thermal power. The intense
heat and prolonged drought led to a depletion of water levels in lakes and the incapaci-
tation of numerous generating units. The electricity utilities must mobilize many power
plants to meet the demand for electricity and resort to oil-fired sources, despite their sig-
nificantly higher costs compared to other options. Oil power plants are also amongst the
more environmentally polluting source of electricity production. Therefore, energy con-
servation not only enhances power supply reliability and reduces the necessity for deploy-
ing costly electricity sources but also relieves pressure on the country’s investment capacity
and helps mitigate emissions from fossil-fuel electricity generation.

What is themarginal abatement cost implied by the program? Consider the two last power
plants to be turned on on a hot summer day in Hanoi. The last plant burns oil and has a
marginal cost per kWh of $0.2609 and a carbon intensity of 0.00104 tons of CO2 per kWh,
whereas the second to last one burns coal and has a marginal cost per kWh of $0.0913 and
a carbon intensity of 0.001 tons of CO2 per kWh. The average price per kWh collected by
the utility is $0.11.

Consider the contest incentive. Using our estimates from Table 3 (Column 1), we know
that households assigned to a contest on average decrease their consumption during the in-
centive period by 22.68 kWh. If the oil plant is in operation, the contest incentive will cause
a decrease in emissions of 22.68 kWh × 0.00104 tons of CO2 per kWH = 0.024 tons of CO2

per household. The direct cost of the incentive program is the payout of $1.74 per house-
hold. Using these values, the marginal abatement cost of reducing 1 ton of CO2 is then
given byMAC= 1.74/0.024 = $73.76. When using instead the estimates from Table 3 (Col-
umn 2)—which imply an average consumption reduction of 28.14 kWh per household—
the MAC is given by $59.45, as summarized in Table 8. This is well-below widely used
estimates of the social cost of carbon—the U.S. Environmental Protection Agency uses a
social cost of carbon of $190/Mt CO2.

From the perspective of the utility, however, an indirect cost (or benefit) of the program is
the avoided profit (or loss) on the kWhs that households no longer consume as a conse-
quence of the incentive program. When the oil plant is in operation, there is an avoided
profit loss of (0.11−0.2609)×22.68 = −$3.42, where the latter comes from the fact that the
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Table 8: Marginal Abatement Cost Estimates

(1) (2) (3) (4)
Marginal Plant Oil Coal
Consumption reduction (kWh) 22.68 28.14 22.68 28.14
CO2 abated (in tons) 0.024 0.029 0.023 0.028
Payment 1.74 1.74 1.74 1.74
Profit loss (in USD) -3.422 -4.246 0.424 0.526
MAC (in USD) 73.769 59.455 76.720 61.834
MAC, including profit/loss (in USD) -71.327 -85.641 95.420 80.534

Notes: The consumption reduction values are based on the estimates in columns 1 and 2 of Table 8. Consumption reduction, profit loss,
payment, and CO2 abated are measured at the household level. MAC is computed using the formula Payment/CO2 abated (in tons).
MAC, including profit loss (in USD) is computed using the formula (Payment + profit loss)/CO2 abated (in tons). See the discussion
in the text for more details.

marginal cost of generation of the oil plant is higher than the price per kWh (i.e., the utility
saves money by not supplying these kWhs). When considering both the direct (payment
per household) and indirect (profit loss) costs of the program, the marginal abatement
cost of reducing 1 ton of CO2 is then given by MAC = (1.74 − 3.42)/0.024 = −$71.33, im-
plying that reducing emissions saves the utility money. When using instead the estimates
from Table 3 (Column 2), the MAC is given by -85.64, as summarized in Table 8. These
MAC estimates likely represent an upper bound, as they do not account for the value of
power reliability to customers, the safety of electrical grid facilities and equipment, and
the alleviation of pressure on the country’s investment in capacity.

Consider instead the case in which the coal plant is the marginal plant (see Table 8,
columns 3 and 4). The contest incentive will cause a decrease in emissions of 0.023 tons of
CO2 per household when using the estimates from Table 3 (Column 1). As before, the cost
per household has two components: the expected payout of $1.74 per household and the
avoided profit gain of (0.11 − 0.0913) × 22.68 = $0.42, since the utility makes money on the
kWhs conserved. When ignoring the indirect cost (profit loss) to the utility, the marginal
abatement cost of reducing 1 ton of CO2 is given by MAC = 1.74/0.023 = $76.72 (or $61.83
when using the estimates from Table 3, column 2). When instead considering both the
direct and indirect costs of program, the marginal abatement cost of reducing 1 ton of CO2

is then given by MAC = (1.74 + 0.42)/0.023 = $95.42 (or $80.53 when using the estimates
from Table 3, column 2). These MAC estimates, again, are likely an upper bound.

The estimate of the MAC when the coal plant is the marginal plant in operation is higher
than some estimates in the prior literature(Berkouwer andDean, 2022; Jayachandran et al.,
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Figure 8: Emissions reductions under alternative contest designs
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Notes: The figure plots the tons of CO2 abated per month (per 10,000) for different contests using our model estimates. We assume that
the marginal plant is the coal plant with a carbon intensity of 0.001 tons of CO2 per kWh and a marginal cost of generation of $0.0913
per kWh.

2017) but lower than many others (Ito, 2014; Davis et al., 2014). Note that this estimate of
MAC is still greater than zero, meaning that the energy conservation program is costly for
the utility. If we ignore the foregone profit from reducing electricity demand (this is often
in the interest of the utility since the grid is constrained), the MAC ranges from $61.83-
$76.72/Mt CO2 depending on the choice of specification. Although carbon pricing could
make the program viable from the utility’s private perspective, Vietnam has no carbon tax
or offset market. Carbon offset revenue paying at least $80.5 per ton of CO2 could make
the program profitable for the utility.

Could a different contest reduce the marginal abatement cost? We examine whether an
optimized incentive program can bring the MAC down by inducing energy savings in a
more cost-effective way. We use our model estimates to compute the MAC and emissions
reductions for different contest designs, assuming the coal plant is themarginal plant (car-
bon intensity of 0.001 tons of CO2 per kWh and a marginal cost of generation of $0.0913
per kWh). We find that using a contest with 250 households (as opposed to 50 house-
holds in our experiment) can significantly drop the MAC for every level of payment per
household. For example, the MAC in a contest with 250 households with a payment per
household of $1.74 (same as in our experiment) can decrease the MAC by $20 relative to
the MAC when using a contest with 50 households. Figure 8 plots the emissions reduc-
tions for different contests and expected payment amounts, and it shows that the emissions
abated per month are meaningful, suggesting that demand-side incentive programs can
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be a cost-effective tool to reduce emissions.

Our estimates suggest that the energy conservation program should save the utilitymoney
when all plants are in operation. Even when the marginal plant is a more efficient plant,
the marginal abatement cost is less than the many estimates of the social cost of carbon,
implying that the program could plausibly raise carbon offset revenue that would make it
viable.

6 Conclusion

In this paper, we experimentally evaluate the cost-effectiveness of contracts and contests
as instruments for incentivizing energy conservation in Hanoi, Vietnam. We find that con-
tests and contracts achieve similar energy reductions, but contests are nearly twice as cost-
effective. We build amodel of household energy consumption and using our experimental
variation we simulate energy conservation under optimal contracts and contests. We find
that when there is no endogenous entry into contests (that is the number of participants is
fixed) and when effort is only loosely correlated with observed measures of performance,
optimal contests dominate optimal contracts. We use information on carbon intensity of
energy sources to compute marginal abatement cost between $59.45-$76.72/Mt CO2 with-
out accounting for any other benefits from demandmanagement. When oil is themarginal
source of electricity, utility savings from differences in generation costs from oil and retail
prices alone justify demand management. When coal is the marginal source, accounting
for avoided profits from demand reduction implies a marginal abatement cost of $80.50-
$95.42/Mt CO2, well below the EPA’s social cost of carbon of $190/Mt CO2.

Our findings have important implications for the design and implementation of demand
side management programs. First, we show that working alongside utility partners and
tweaking existing programs can deliver potentially large savings. Our finding is partic-
ularly relevant for low- and middle-income countries, where maximizing the impact of
scarce dollars spent on energy conservation is crucial. By developing a framework to com-
pare contests and contracts, we offer evidence that contests are an effective strategy for
managing demand and reducing emissions, particularly in areas dependent on fossil fuels
for electricity. Second, our model relies on minimal data on electricity consumption that is
increasingly available to utilities around the world that are deploying smart meters. Using
our experimental variation, we are able to provide counterfactual simulations that allow
us to comment on the design of optimal contracts and contests. Finally, our contest design
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complements existing “nudge" approaches such as peer comparisons. These have been
shown to be extremely cost-effective given their low implementation costs. However, such
nudges alone cannot deliver large scale demand reductions during peak months which
is much needed by utilities such as the one we work with. Indeed, our results should be
interpreted as over and above any demand reduction from nudge interventions.

Implementing contests at scale for energy conservation requires understanding two impor-
tant parameters. First, what is the “voltage drop” from scaling this program beyond those
who signed up for some program in the first place (List, 2022). The take-up and demand
response could be lower, driving down the cost-effectiveness of these programs. However,
at the same time, number of participants in contests could be expanded to increase cost-
effectiveness. Second, it remains an open question as to whether such demand reductions
can be derived over and over again, especially if there are discouragement effects from not
meeting contract thresholds or not winning the contests. In principle, utilities would like
to be able to rely on such programs each year during peakmonths. We leave tackling these
important questions to future research.
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Appendix A: Proofs

Proof of Proposition 1

Proof. Without an incentive to reduce energy, each household solves:

max
e≥0

−(e− S)2 − pe+ σ2.

The solution to this optimization problem is given in the proposition.

Proof of Proposition 3

Proof. The optimal consumption in an interior solution is characterized by the first-order
condition

−Bf(e∗ − ℓ) = 2γ(e∗ − e∗
0),

where e∗
0 = S− p

2γ
. Using the implicit function theorem and taking derivative with respect

to ℓwe obtain
−Bf ′(e∗ − ℓ)

(
∂e∗

∂ℓ
− 1

)
= 2γ ∂e

∗

∂ℓ
.

Solving for ∂e∗

∂ℓ
we obtain:

∂e∗

∂ℓ
= Bf ′(ℓ− e∗)

2γ +Bf ′(ℓ− e∗) .

Then, using that at the optimum for an interior solution, ∂e∗

∂ℓ
= 0, it must be that f ′(ℓ∗−e∗) =

0 and since f ′(ε) = 0 if and only if ε = 0, we conclude that ℓ∗ = e∗.

Proof of Proposition 4

Suppose there are N households competing in a static contest. Households are ranked
according to their reduction (measured relative to consumption one year ago, epast

i ), from
the largest reduction to the lowest one. The energy reduction for household i is given by
êi − epast

i . With a single prize, V , household iwins the contest if

êi − epast
i < êj − epast

j for all j ̸= i.
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This expression is the same as

ei + εi − epast
i < ej + εj − epast

j ⇔ ei − ej + epast
j − epast

i + εi < εj.

In our experiment, households were grouped according to their past consumption, so in
each contest epast

i = epast for all i. Therefore, household iwins the contest if, for all j ̸= i,

εj > ei + εi − ej.

In a symmetric equilibrium, each household optimally chooses ei = e∗. Fixing εi and given
e∗, player iwins with probability

ψ(ei, εi, e
∗) ≡ (1 − F (ei + εi − e∗))N−1.

Household i chooses her effort before knowing the realization of the shock εi. Then, the
optimal choice of ei solves

max
ei≥0

V
∫
ψ(ei, εi, e

∗)f(εi)dεi + Eεi
[U(ei, εi)].

The FOC yields
−V

∫ ∂ψ(ei, εi, e
∗)

∂ei

f(εi)dεi + Eεi
[U ′(ei, εi)] = 0.

In a symmetric equilibrium we must have ei = e∗. Thus, the contests create an incentive to
reduce energy consumption, I , given by

I = V
∫

(N − 1)(1 − F (εi))N−2f 2(εi)dεi.

The optimal energy consumption solves

e∗ = S − (c+ I)
2γ . (13)

Intuitively, spending energy becomes “more costly” when there is a prize for being the
household with the lowest consumption.
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Appendix B: Threshold Contracts are Optimal

Consider a principal with the objective of minimizing the household energy consumption
subject to a budget constraint. Equivalently, the principal minimizes the household’s ex-
pected consumption since E[ε] = 0.

For household i, the principal considers an individual contract that rewards a household
based on its realized consumption regardless of the consumption by other households, i.e.,
Ii(ê) = W (êi). Moreover, the reward is subject to the constraint 0 ≤ W (êi) ≤ B, where B
is the principal’s per-household budget. Thus, the principal solves

min
ei, W (·)

Eεi
[êi] (14)

subject to

1. ei ∈ arg max
ẽi≥0

− γ(ẽi − S)2 − pẽi + σ2 + Eêi
[W (êi)|ẽi]

2. 0 ≤ W (êi) ≤ B for all êi ≥ 0.

Proposition 5 (Optimal Individual Contract). A threshold contract is an optimal individual
contract

W (ê) =

B ê ≤ ℓ,

0 ê > ℓ.

In other words, the principal’s optimal contract rewards the household whenever the en-
ergy consumption is below an optimal threshold, ℓ, which is determined by the parameters
of the model.

Proof. Let u(e) = −γ(e− S)2 − pe+ σ2 and define

V (e,W (·)) = u(e) +
∫
W (ê)f(ê− e)dê

At the optimal interior solution we have Ve(e∗,W ∗(·)) = 0.

Consider the relaxed problem
min

e, W (·)
e

subject to
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1. Ve(e,W (·)) ≤ 0,

2. W (ê) −B ≤ 0 for all ê,

3. −W (ê) ≤ 0 for all ê,

4. −e ≤ 0.

The Lagrangian of this problem is

L = e+ λ
(
u′(e) −

∫
W (ê)fe(ê− e)dê

)
+ θ(ê)(W (ê) −B) + η(ê)(−W (ê)) + µe

where λ, µ, θ(ê), η(ê) ≥ 0.

Taking FOC w.r.t. W (ê) we get

∂L
∂W (ê) = −λfe(ê− e) + θ(ê) − η(ê).

At the optimal solution we have ∂L
∂W (ê) = 0. Since fe(ê − e) ̸= 0 a.e. we cannot have θ(ê) =

η(ê) = 0 simultaneously when λ > 0. This means that either W (ê) = B or W (ê) = 0 for
all ê ≥ 0. Moreover,W (ê) is non-increasing, since the principal wants to minimize energy
consumption. Lastly, at the optimum incentive compatibility requires Ve(e∗,W ∗(·)) = 0, so
λ > 0 satisfies complementary slackness.
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Appendix C: Treatment rules are provided through the app
and via a link included in text messages

Figure C.1: Treatment rules are provided through the app and via a link included in text message

(a) App’s display (b) Via a link in text messages
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Figure C.2: English Translation of treatment rules

(a) Contract 1

Rules of the program "Saving Electricity - Keeping Summer Green" 

 

EPoint is pleased to congratulate customers who have successfully registered and participated in 
the "SAVING ELECTRICITY - KEEPING SUMMER GREEN" program. You have been 
assigned to the energy-saving competition group based on saving thresholds.  

I. PROGRAM DURATION: 15/07 - 13/08/2023 

II. PARTICIPATION RULES & AWARD STRUCTURE: 

Each customer who reduces their average electricity consumption during the program period 
compared to the same period last year: 

+ by 5% to less than 10% will receive an electricity payment voucher worth 100,000 VND 

+ by 10% to less than 15% will receive an electricity payment voucher worth 150,000 VND 

+ by 15% or more will receive an electricity payment voucher worth 250,000 VND 

The formula for calculating the electricity saving result is as follows: H = (B-A)/A*100% 

In which: 

• H is Daily Electricity Saving Performance 

• A is the total electricity consumption in 30 days from 15/7 to 13/8/2022 

• B is the Total Electricity Consumption in 30 days from July 15 to August 13, 2023 

*Note: 

 Customers who do not incur electricity charges on their registered electricity contract for 
more than 7 days during the promotion period will not be eligible for the reward. 

 On days with missing electricity consumption data, the consumption for that day will be 
calculated based on the average consumption of the other days during the program period. 
 
For the best results in the program, monitor your electricity consumption on EPoint and 
check out suggestions and tips to save electricity more effectively! 

(b) Contract 2

Rules of the program "Saving Electricity - Keeping Summer Green" 

 

EPoint is pleased to congratulate customers who have successfully registered and participated in 
the "SAVING ELECTRICITY - KEEPING SUMMER GREEN" program. You have been 
assigned to the energy-saving competition group based on saving thresholds.  

I. PROGRAM DURATION: 15/07 - 13/08/2023 

II. PARTICIPATION RULES & AWARD STRUCTURE: 

Each customer who reduces their average electricity consumption during the program period 
compared to the same period last year: 

+ by 10% to less than 15% will receive an electricity payment voucher worth 150,000 VND 

+ by 15% to less than 20% will receive an electricity payment voucher worth 250,000 VND 

+ by 20% or more will receive an electricity payment voucher worth 350,000 VND 

The formula for calculating the electricity saving result is as follows: H = (B-A)/A*100% 

In which: 

• H is Daily Electricity Saving Performance 

• A is the total electricity consumption in 30 days from 15/7 to 13/8/2022 

• B is the Total Electricity Consumption in 30 days from July 15 to August 13, 2023 

*Note: 

 Customers who do not incur electricity charges on their registered electricity contract for 
more than 7 days during the promotion period will not be eligible for the reward. 

 On days with missing electricity consumption data, the consumption for that day will be 
calculated based on the average consumption of the other days during the program period. 
 
For the best results in the program, monitor your electricity consumption on EPoint and 
check out suggestions and tips to save electricity more effectively! 

(c) Contest

Rules of the program "Saving Electricity - Keeping Summer Green" 

 

EPoint is pleased to congratulate customers who have successfully registered and participated in 
the "SAVING ELECTRICITY - KEEPING SUMMER GREEN" program. You have been 
assigned to the energy-saving group to compete against other parƟcipants. 

I. PROGRAM DURATION: 15/07 - 13/08/2023 

II. PARTICIPATION RULES & AWARD STRUCTURE: 

Each customer will compete in electricity savings within a group of no more than 50 households. 

Each group will award one electricity voucher worth VND 2 million to the customer who 
achieves the greatest reduction in electricity consumption compared to the same period in 2022. 

The formula for calculating the electricity saving result is as follows: H = (B-A)/A*100% 

In which: 

• H is Daily Electricity Saving Performance 

• A is the total electricity consumption in 30 days from 15/7 to 13/8/2022 

• B is the Total Electricity Consumption in 30 days from July 15 to August 13, 2023 

*Note: 

 Customers who do not incur electricity charges on their registered electricity contract for 
more than 7 days during the promotion period will not be eligible for the reward. 

 On days with missing electricity consumption data, the consumption for that day will be 
calculated based on the average consumption of the other days during the program period. 

 If multiple customers achieve the same energy-saving performance, EPoint will prioritize 
those who registered for the program earlier. 
 
For the best results in the program, monitor your electricity consumption on EPoint and 
check out suggestions and tips to save electricity more effectively! 
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Appendix D: Additional tables and figures

Figure D.1: Definition of “type” based on past consumption
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Notes: Types are defined based on a household consumption during one-month period, one year prior to the experiment. Higher types
typically have higher consumption.
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Table D.1: Heterogeneity analysis II: Within-household variation

(1) (2) (3) (4)
Consumption (kWh) Consumption (kWh) (in logs)

Post * Contract 1 -1.759 -1.742 -0.152 -0.152
(0.089) (0.089) (0.008) (0.008)

Post * Contract 2 -1.716 -1.722 -0.142 -0.142
(0.087) (0.088) (0.008) (0.008)

Post * Contest -1.744 -1.747 -0.150 -0.150
(0.091) (0.091) (0.008) (0.008)

Post * Contract 1 * Consumption first two weeks -0.843 -0.005
(0.084) (0.006)

Post * Contract 2 * Consumption first two weeks -0.712 -0.003
(0.105) (0.006)

Post * Contest * Consumption first two weeks -0.756 -0.011
(0.161) (0.006)

Post * Contract 1 * Reference consumption -0.709 -0.007
(0.075) (0.005)

Post * Contract 2 * Reference consumption -0.612 -0.002
(0.065) (0.005)

Post * Contest * Reference consumption -0.688 -0.007
(0.079) (0.005)

Observations 564187 564187 558264 558264
Mean 12.820 12.820 2.355 2.355
Test 0.878 0.957 0.374 0.377

Notes: Standard errors clustered at the household level in parentheses. All specifications include day fixed effects and household fixed
effects. Row ’Mean’ reports the mean of the dependent variable in the estimation sample. Row ’Test’ reports the two-sided p-value
of an F-test where the null is that treatments 1, 2, and 3 have equal coefficients. All columns restrict the sample from June 1, 2023 to
August 13, 2023, dropping the days between July 15 and July 29, 2023. The variables ‘Reference consumption’ (household’s average daily
consumption during July 15, 2022, andAugust 13, 2022) and ‘Consumption first twoweeks’ (the household’s average daily consumption
between July 15 and July 29, 2023) are standardized (mean zero, standard deviation one).
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