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Abstract

Intrapartum care uses electronic fetal heart rate monitoring (EFHRM) for over 50 years to 

indirectly assess fetal oxygenation. However, this approach has been associated with an increase in 

cesarean delivery rates and limited improvements in neonatal hypoxic outcome. To address these 

shortcomings, a novel transabdominal fetal pulse oximeter (TFO) is being developed to provide an 

objective measurement of fetal oxygenation. Previous studies have evaluated the performance of 

TFO on pregnant ewe. Building on the animal model, this study aims to determine whether TFO 

can successfully capture human fetal heart rate (FHR) signals during non-stress testing (NST) as a 

proof-of-concept. Eight ongoing pregnancies meeting specific inclusion criteria (18–40 years old, 

singleton, and at least 36 weeks' gestation) were enrolled with consent. Each study session was 

15 to 20 minutes long. Reference maternal heart rate (MHR) and FHR were obtained using finger 

pulse oximetry and cardiotocography for subsequent comparison. The overall root-mean-square 

error was 9.7BPM for FHR and 4.4 for MHR, while the overall mean-absolute error was 7.6BPM 

for FHR and 1.8 for MHR. Bland-Altman analysis displayed a mean bias ± standard deviation 

between TFO and reference of −3.9±8.9BPM, with limits of agreement ranging from −21.4 to 

13.6 BPM. Both maternal and fetal heart rate measurements obtained from TFO exhibited a 

p-value<0.001, showing significant correlation with the reference. This proof-of-concept study 

successfully demonstrates that TFO can accurately differentiate maternal and fetal heart signals in 

human subjects. This achievement marks the initial step towards enabling fetal oxygen saturation 

measurement in humans using TFO.
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Introduction

Electronic fetal heart rate monitoring (EFHRM), a surrogate for measuring fetal 

oxygenation, has been in routine obstetric care for over 50 years. In 1970, Paul and 

Hon reported a 75% reduction in primary cesarean births and decreased need for active 

stimulation in high-risk patients when EFHRM was employed [1]. Although initially 

successful, widespread adoption of EFHRM led to increased cesarean rates without 

substantial improvement in neonatal hypoxic outcome [2].

The National Institute of Health–Eunice Kennedy Shriver National Institute of Child Health 

and Human Development proposed a consensus nomenclature for fetal heart patterns, 

categorizing them into three groups (Category I, II, and III) to standardize interpretation and 

communication for the purpose of reducing cesareans for a “fetus-in-distress” [3]. A fetal 

heart rate (FHR) moderate variability pattern represents a nonhypoxic, nonacidotic fetus 

and the continued presence of moderate variability provides reassurance to continue labor 

with surveillance and evaluation [3, 4]. Despite the three-category approach, cesarean rates 

remained unchanged [5]. Additionally, many newborns with clinically relevant metabolic 

acidosis or hypoxic–ischemic encephalopathy fell under the category II FHR pattern, 

without significant decelerations [6, 7]. Significant fetal heart rate decelerations include 

severe variable, late, or recurrent prolonged decelerations, characterized by a width of 60 

seconds and a drop of either 60 beats below the baseline or below 60 beats-per-minute 

(BPM) [8]. Although deterioration of baseline moderate variability may be a suggestion 

of decreasing fetal oxygen saturation, the change from baseline must correlate with the 

physiologic state of the pregnancy and the fetus [29]. To suggest possible pathogenic fetal 

desaturation (hypoxia), the baseline deterioration to minimal/absent variability should be 

persistent beyond the known physiologic fetal heart rate circadian cycles [29].

Although standard intervention for significant decelerations in category II may be 

promising, correlating category II with fetal oxygenation may be helpful to assess fetal 

acidemia risk [8]. Like EFHRM, pulse oximetry has become the de-facto method of 

assessing ex-utero blood oxygen saturation. Pulse oximetry estimates oxygen saturation 

by illuminating the skin and measuring changes in light absorption of oxyhemoglobin and 

deoxyhemoglobin using two light wavelengths: 660 nm (red) and 940 nm (infrared) [9, 10]. 

A transabdominal fetal oximeter (TFO) device was developed based on this principle to 

determine intrapartum fetal oxygen saturation (SpO2) in pregnant ewes [13]. Fetal hypoxia 

was induced in a term pregnant ewe by placing an aortic occlusion balloon below the 

maternal ewe kidneys, gradually decreasing blood flow to the uterus. The TFO reported 

fetal SpO2 strongly correlated with fetal arterial blood gas measurements. Using the same 

TFO device, we hope to translate the findings in human pregnancy. Fetal oxygen saturation 

measurement could increase the accuracy of fetal hypoxia detection with EFHRM. The first 
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step is to extract and discriminate the fetal heart signal from the maternal heart signal to 

enable fetal oxygen saturation calculation.

This study aims to demonstrate and evaluate whether the TFO can successfully acquire the 

human fetal heart signal during routine antepartum non-stress testing (NST).

Materials and Methods

Study Population

This proof-of-concept (POC) study aims to evaluate the TFO device's ability to differentiate 

maternal and fetal heart signals in pregnancies undergoing NST at UC Davis Health's 

antenatal testing unit (ATU). Pregnancies referred to ATU at 34 weeks’ gestation with 

confirmed dating were approached for consent, with the following inclusion criteria: 18+ 

years old, singleton pregnancy, and 36+ weeks’ gestation at the time of TFO data acquisition 

with NST. The pregnancy was excluded for the following: inability to consent verbally, 

non-English speaker without access to professional interpreters for counseling and consent, 

presenting at the ATU with symptoms or signs concerning for rupture of membranes or 

labor, presence of fetal cardiac or intracranial defects that could impact the FHR pattern, 

severe fetal growth restriction (less than the Hadlock fifth percentile estimate of fetal 

weight), presenting to ATU with severe range blood pressure or other medical conditions 

requiring immediate evaluation in labor and delivery, allergies to adhesives or wrapping 

materials used for device placement. Approval was obtained from UC Davis Health 

Institutional Review Board for Human Subjects before study commencement.

Transabdominal Fetal Pulse Oximeter

The device, developed by the Laboratory for Embedded and Programmable Systems (LEPS, 

https://lepsucd.com/) in the UC Davis Department of Electrical and Computer Engineering, 

is a transabdominal prototype offering convenient access to fetal arterial blood oxygen 

saturation (fSpO2) via pulse oximetry. The prototype has been validated in simulations, 

benchtop experiments: pulse detection through bio-phantom materials that mimic tissue 

layers in pregnant humans, and in-vivo pulse separation in overlaid human organs [11, 

12]. In-vivo validation was then accomplished by successfully capturing the fetal signal in 

pregnant sheep models [13].

The transabdominal fetal pulse oximetry system (TFO) includes an optical probe (optode), 

embedded optode control system, and real-time software (Fig. 1) [14]. The optode houses 

two adjustable high-power light emitting diodes (LEDs) at 740nm/850nm wavelengths 

and five photodetectors placed at varying distances to overcome light attenuation and 

patient demographic variability challenges [12]. Variations in patient anatomy and tissue 

composition is expected to impact TFO, as scattering and absorption parameters vary among 

tissue [30]. High scattering and low absorption are desirable for reflectance pulse oximetry. 

Fig. 2 shows a simplified tissue model to visualize these challenges. Near detectors collect 

maternal-only signal from shallow tissue, while farther detectors capture fetal signal from 

deeper tissue. Simulation results showed the optode can sense FHR up to 5 cm depth [11, 

15]. Skin temperature is monitored continuously by TFO, and LED power is adjusted such 
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that the temperature remains within the safety limits (ISO 80601–2-61 standard), enabling 

long term safe use. The LEDs and photodetectors are soldered on a flexible printed circuit 

board (PCB) and placed inside the flexible black silicone housing. The flexible components 

conform to the maternal abdomen for optimal skin contact. The black housing blocks 

ambient light. The embedded optode control system adjusts LED parameters, amplifies/

samples the sensed signal using a programmable gain amplifier and high-resolution analog-

to- digital converter (ADC). The custom real-time software offers control, visualization, and 

data storage capabilities.

Standardized Antepartum Testing Procedure

After obtaining patient demographics and vital signs, patients were positioned supine as 

following UC Davis Health Standard Operating Procedure for NST. The patients’ skin colors 

were compared to a validated scale shown in Fig. 3 (Pantone Skin Tone Guide, Pantone, 

Carlstadt NJ). After determining the abdominal area where the device will be applied, the 

designated ATU nurse or one of the clinical investigators used a bedside SonoSite LX 

ultrasound machine (FujiFilm SonoSite Inc., Bothell WA) to determine placenta location, 

and measure sonographic distances in the sagittal and coronal planes. Fig. 4 shows the 

placement of the monitoring transducer relative to the TFO. The following distances were 

obtained: maternal skin to uterine wall, uterine wall thickness, maternal skin to closest fetal 

part, and presence of fluid pocket. At each study episode, a dataset was collected for the 

entire NST duration. From the cardiotocograph device (Corometrics 250 CX series, GE 

Health Care, Wauwatosa WI), reference maternal and fetal heart rate values were obtained 

for a post hoc comparison with TFO readings. Non-electronic iformation and ultrasound 

images were documented on a study data collection sheet and kept with the attending 

clinical research coordinator. TFO data were saved on a portable computer attached to the 

study device and stored in the university laboratory.

Fetal and Maternal Heart Rate Extraction

FHR is a precursor to computing oxygen saturation via pulse oximetry [9]. In this POC, we 

compared maternal and fetal heart rates (MHR, FHR) collected from a cardiotocograph to 

TFO data. TFO collects mixed PPG waveforms from various sources due to near-infrared 

(NIR) light traveling through maternal and fetal tissues. To isolate the fetal PPG waveform 

for oxygen saturation calculation, additional processing is required.

The steps involved in extracting the fetal signal from the mixed PPG signal (MHR, FHR 

and others) are: (1) bandpass-filtering the mixed-PPG to remove all noise signals with a 

frequency below reference MHR and above 270 BPM; (2) applying Recursive Least Squares 

(RLS) Adaptive Noise Cancellation (ANC) algorithm to reduce maternal signal contribution 

from the mixed-PPG [16, 17]; (3) analyzing ANC output in frequency domain using power 

spectral densities (PSDs); and (4) reporting FHR within the typical range of 110BPM–160 

BPM as the frequency with the highest power in the PSD [18, 19].

To extract the maternal signal, the following steps are applied to the PPG captured by 

nearest detector to the light source on TFO optode: (1) Maternal signal is bandpass-filtered 

between 30 and 270 BPM to isolate the physiological signals of interest; (2) the filtered 
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maternal PPG signal is analyzed in frequency domain by computing its PSD; and (4) the 

frequency between 60 BPM – 120 BPM (typical range for MHR) with highest power in the 

PSD is estimated as MHR [19, 20].

Statistical Analysis

Using MATLAB software version R2020a (Mathworks, Natick, MA), TFO's MHR and 

FHR estimates are compared to cardiotocograph device measurements. The accuracy is 

assessed using root-mean-square error (RMSE) (Eq. (1)) and mean-absolute-error (MAE) 

(Eq. (2)). Reference values outside the typical MHR and FHR ranges are excluded from 

error calculation.

RMSE = ∑i = 1
N FHRTFO i − FHRreference i 2

N

(1)

MAE = ∑i = 1
N FHRTFO i − FHRreference i

N

(2)

MAD = median ∣ Xi − median X ∣
witℎ X = FHRTFO or MHRTFO

(3)

The Bland-Altman plot is used to evaluate the agreement between TFO's FHR estimates and 

the reference values, identifying systematic biases and outliers.

Linear regression analysis is used for correlation between TFO and reference heart rate 

values, with outliers removed using the median method if they are more than three scaled 

median absolute deviation (MAD) (Eq. (3)) away from the median estimated heart rate 

value.

Results

Data from one visit was analyzed for each of the eight enrolled women. The first visit 

data was used for all but two subjects (A and H), whose second visit data was used due 

to accuracy issues with the cardiotocograph readings requiring multiple readjustments to 

TOCO sensor. Participanťs data was recorded for 15 to 20 minutes, with skin temperature 

monitored and kept below the 41°C safety limit (ISO80601–2-61 standard). The TFO 

estimated FHR and MHR values every 30 seconds based on 1-minute averages using the 

furthest detector for FHR and the nearest for MHR.

Fig. 5 is an example of maternal, mixed, and noise-cancelled fetal signal PSDs over time 

(spectrograms) computed on 1-minute-long windows with 30 seconds of overlap. The 

reference and estimated FHR and MHR are plotted on top. Applying ANC to the mixed 
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signal reduced MHR power and its second harmonic, improving the distinction of the 

FHR peak. Canceling the second MHR harmonic is crucial as it can be mistaken for FHR 

in the 110–160 BPM range. The latter misidentification problem can also be present in 

cardiotocograph FHR measurements [21].

The study demographics are presented in Table 1. Participant G had oblique fetal 

presentation, while all other participants had cephalic fetal presentation. Participant E in 

Table 1 does not have results for MHR due to neglecting to connect the reference MHR 

sensor (finger pulse oximeter). The results show that MHR could be accurately estimated 

with an error below 2 BPM in 75% of participants. FHR could also be estimated with decent 

accuracy, with an error below 10 BPM in 75% of participants. The overall RMSE in eight 

patients was 9.7 BPM for FHR and 4.4 for MHR, while the overall MAE was 7.6 BPM for 

FHR and 1.8 for MHR. The FHR is distinctly separated from the MHR.

Fetal depth ranged from 1.72 to 4.46 cm from the abdominal surface where TFO was 

placed. Deeper fetuses did not necessarily result in lower FHR accuracy (see Table 1). Bad 

skin contact or motion artifacts, including movements from the fetus, mother, or external 

interventions, were the primary causes of large errors in FHR or MHR. The most significant 

motion artifacts occurred when readjusting the cardiotocograph sensor. Subject F's data 

shows bright horizontal lines in the spectrograms, indicating motion artifacts (Fig. 6).

Another major artifact causing errors in FHR is the presence of MHR 2nd harmonic within 

the FHR range (110–160 BPM); leading to misidentification by TFO. There are also 

instances where reference cardiotocograph misidentifies FHR as the MHR 2nd harmonic, 

while TFO’s FHR remains accurate (Fig. 7). Between minutes 8–12 of subject B, the 

reference FHR values abruptly rise towards MHR 2nd harmonic values. However, after 

sensor readjustment, the cardiotocograph's FHR misidentification is resolved (Fig. 7). The 

application of ANC reduced the misidentification issue in TFO. However, if FHR is very 

close or identical to 2nd harmonic of MHR, then ANC degrades TFO’s FHR accuracy 

because it cancels the contribution of MHR 2nd harmonic.

Bland-Altman plot (Fig. 8) showed a mean bias standard deviation between TFO and 

referenced FHR measurements as −3.9 ± 8.9 BPM and the limits of agreement were −21.4 

to 13.6 BPM. Visual inspection of the Bland-Altman plot shows the proposed method does 

not have a systemic bias relative to the reference method, since the bias between TFO and 

reference FHR values are randomly scattered around the mean bias.

Linear regression analysis (Fig. 9) showed a strong correlation between TFO and referenced 

MHR measurements (Pearson’s r = 0.91, p < 0.001 after outlier removal). TFO FHR 

estimates were moderately correlated with the reference (Pearson’s r = 0.34 after outlier 

removal), and a highly significant relationship was observed (p<0.001).
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Comment

Principal findings

This proof of concept demonstrates the feasibility of the TFO to identify maternal and 

fetal heart rates separately using an ANC algorithm. The results show that MHR could 

be 6accurately estimated, and FHR could be extracted with reasonable accuracy in human 

subjects with various skin colors and distances from the skin to the fetus.

Results in the context of what is known

Moderate baseline variability in intrapartum fetal heart tracing is an indirect reassurance of 

a nonhypoxic fetus, but any deterioration from this baseline pattern identified as minimal to 

absent baseline variability is an assumption of possible fetal hypoxia [3, 29]. Pulse oximetry 

allows direct estimation of oxygen saturation and if available with EFHRM would likely be 

able to determine if the deterioration of moderate baseline variability is indicative of fetal 

hypoxia versus a physiologic change in the quality of baseline fetal heart rate variability [9].

In a 2000 randomized controlled trial by Garite et al., a fetal oximetry device applied to the 

fetal cheek successfully assessed fetal oxygen saturation. The trial showed a reduction in 

cesarean delivery and timely intervention for fetal hypoxia, however, there was an increased 

number of operative deliveries for labor dystocia [22]. The device required application 

through the vagina, with the criteria of ruptured fetal membranes and the cervix being at 

least 2 cm dilated.

A 2014 Cochrane Systematic Review evaluated the effectiveness of fetal intrapartum 

invasive pulse oximetry in reducing operative deliveries [27]. The review included seven 

randomized controlled trials with a total of 8013 pregnancies. The findings showed that 

the combination of fetal pulse oximetry and CTG did not significantly impact the overall 

rates of caesarean sections. However, when applied in cases where there were existing 

concerns about the fetus’ well-being, fetal pulse oximetry led to a reduction in the number of 

caesarean sections performed specifically for addressing the fetus’ hypoxia risk [27].

Vintzileos et al. demonstrated a noninvasive transabdominal fetal pulse oximeter using 

continuous-wave NIR spectroscopy [23]. Similar to our POC study, the device was applied 

during NST in 6 women, and fetal oxygen saturation was calculated with a mean saturation 

of 61% correlated to an FHR range of 132–165 bpm. They observed wide variability in 

measurements, possibly due to saturation variations or technical errors. Although our TFO 

also utilizes continuous-wave NIR spectroscopy, the differences in our device include the 

specific LED wavelengths, number and type of photodetectors, their respective distance to 

light source, signal acquisition circuitry, and signal processing algorithms. In our study, 

the accuracy of TFO’s MHR and FHR estimates were computed against cardiotocograph 

device’s measurements. By using RMSE and MAE as accuracy metrics, accounting for 

outliers, and excluding reference values outside the typical MHR and FHR ranges, we 

considered all the extraneous factors that may influence the acquisition of the MHR and 

FHR. This approach allowed us to derive a distinct fetal signal separate from the maternal 

signal.
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Clinical and research implications

Isolation of the fetal signal is most essential to accurately calculate the fetal oxygen 

saturation. In our ewe model validation, we had the benefit of providing truth from the lamb 

arterial blood gas (ABG) drawn while segmentally inducing hypoxia. We have developed a 

machine learning based model for fetal oxygenation estimation from TFO readings [24, 25]. 

Ground truth oxygenation is needed for an initial calibration of the model. Once a model 

is calibrated, it can then be used to compute fetal oxygenation in patients without access to 

ground truth oxygenation.

The TFO fetal oxygen saturation highly correlated with the fetal ABG oxygen saturation 

across five ewes (Pearson’s r > 0.61 and p < 0.001), suggesting that the transcutaneous 

measurements are penetrating through the maternal abdomen sufficiently and are expressing 

the underlying fetal tissue physiology [24]. Unlike our ewe model, we have no truths to 

calibrate nor compare our human fetal oxygen saturation computations. The intent of this 

POC is to translate the findings from our ewe model and validate that our algorithm can 

distinctly separate fetal from maternal signal using the same TFO device.

Strengths and limitations

Unlike invasive fetal pulse oximetry, TFO faces limitations as the separation between 

the device and fetal arteries increases due to the presence of the myometrium, maternal 

abdominal wall, and amniotic fluid. As with Vintzileos et al., the strength of our study 

is the confirmation that noninvasive transabdominal fetal oximetry is feasible using NIR, 

even at depths of up to 5 cm in human fetuses. Further, we successfully translated our 

experience from the ewe model to humans, achieving accurate separation of the fetal signal 

from maternal signals and ambient noise. Accurate isolation of the fetal signal is the first 

step in estimating fetal oxygen saturation non-invasively. Although we did not calculate fetal 

oxygen saturation in this study, this decision was deliberate as we lacked a true reference for 

comparison. This POC study’s main purpose is to demonstrate the discrimination of the fetal 

signal above all other signals detected by NIR.

None of our subjects had adverse events from the device application. All subjects completed 

the data acquisition session. The only notable issue was the tolerable heat generated by the 

optode, which did not result in any skin irritation or burns. Unlike the transvaginal fetal 

pulse oximeter require vaginal insertion through a dilated cervix and rupturing of the fetal 

[23], our TFO device offers a non-invasive solution where the reflectance pulse oximeter 

is placed on the maternal abdomen. TFO's ultimate use would be intrapartum. There exist 

limitations in the intrapartum setting in addition to those addressed in this antepartum POC. 

First, uterine contractions during labor introduce motion artifacts and as well as may cause a 

drop in fetal oxygen saturation in peripheral tissues confounding the TFO reading [28].

Second, due to the descent of the fetal head, maternal iliac vessel signals would introduce an 

additional source of error. Third, fetuses at term (>39 weeks) have a lower baseline FHR due 

to the progressive maturation of the parasympathetic nervous system [26]. This may result 

in the smaller difference between the maternal and fetal heart rates potentially increasing 

error. Nonetheless, we expect similar errors as seen in our antepartum study where small 

Kasap et al. Page 8

Reprod Sci. Author manuscript; available in PMC 2025 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difference was observed between FHR and MHR 2nd harmonic. Hence, the discrimination 

of fetal signal remains essential during labor and additional limitations will be assessed in 

future intrapartum studies.

Conclusions

This proof of concept showed that transabdominal fetal pulse oximetry is possible given 

that the fetal heart signal was confidently separated from the maternal heart signal 

simultaneously eliminating the error caused by extraneous signals. The ability to isolate the 

fetal heart signal separate from maternal signal overcomes the first obstacle in developing 

a successful noninvasive method of detecting human fetal oxygen saturation. We are 

conducting the next step of validating our TFO device in the intrapartum setting at the 

same time we continue to refine our algorithm in the ewe model to improve the device 

prototype to reduce the error in detecting FHR.
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Fig. 1. 
A high-level overview of building blocks of Transabdominal Fetal Pulse Oximetry (TFO) 

system prototype
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Fig. 2. 
A simplified tissue model with representative light paths between near-infrared (NIR) light 

source and photodetectors [31]. Representative light paths showing further photodetectors 

from light source capture light that has propagated deeper into the maternal abdomen, 

reaching the fetus. However, intensity of light received is also decreased with higher source-

detector distance
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Fig. 3. 
Patient’s skin color measurement setup [19]. The patient’s skin is compared to a standard 

color tone using a validated skin color scale (Skin Tone Guide, Pantone, Carlstadt NJ) where 

1 is lightest and 10 is darkest possible skin color classification
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Fig. 1. 
Concurrent placement of Transabdominal Fetal Pulse Oximeter (TFO) and Electronic 

Fetal Heart Rate Monitoring (EFHRM) during non-stress testing (NST) visit. Picture of 

measurement set up during the study showing the placement of the monitoring transducer 

relative to the TFO and highlighting different components of the TFO system
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Fig. 5. 
Example spectrogram from subject A [19]. The maternal heart rate (MHR), MHR 2nd 

Harmonic and fetal heart rate (FHR) are outlined. By cancelling the MHR 2nd Harmonic, the 

FHR signal is more evident
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Fig. 6. 
Transabdominal Fetal Pulse Oximeter (TFO) Spectrograms from Subject F showing fetal 

heart rate (FHR) misidentification issue. Notice the wrong reference FHR after minute 16 

and wrong TFO FHR due to misidentification and motion artifacts. Maternal heart rate 

(MHR) 2nd harmonic (in black) is misidentified as FHR
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Fig. 7. 
Spectrograms of Subject B showing reference cardiotocograph fetal heart rate (FHR) being 

misidentified as maternal heart rate (MHR) 2nd harmonic between minutes 8–12. The 

misidentification is resolved after TOCO sensor adjustment (motion artifact identified by 

bright horizontal lines)
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Fig. 8. 
Bland-Altman plot of transabdominal fetal pulse oximeter (TFO) fetal heart rate (FHR) 

estimates vs. Reference device, showing a mean bias of −3.90 beats-per-minute (BPM) and 

limits of agreement between −21.37 to 13.58 BPM.
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Fig. 9. 
Linear Regression Analyses. Transabdominal Fetal Pulse Oximeter’s (TFO) fetal and 

maternal heart rate (FHR & MHR) estimates vs. reference FHR & MHR. High correlation 

is observed between TFO’s MHR estimates and the reference. However, TFO’s FHR 

estimates’ correlation with reference needs improvement
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Table 1

Study Demographics and Results: Estimating Fetal Heart Rate (FHR) & Maternal Heart Rate (MHR) via TFO 

vs. Reference

Vertical fluid 
pocket (cm) FHR MHR

Subject
Gestational 
Age (week) BMI

Skin 
Tone

Fetal 
depth 
(cm)

Est. 
Fetal 

weight 
(kg)

Placenta 
location

At 
device 

site Max
RMSE 
(BPM)

MAE 
(BPM)

RMSE 
(BPM)

MAE 
(BPM)

A 36 30.8 1 1.75 2.47 Posterior 0 6.08 6.66 4.97 1.99 1.54

B 38 28.4 1 1.82 3.32 Posterior 0 5.69 10.98 8.91 1.10 0.79

C 38 38.3 3 4.46 3.94 Posterior 1.89 5.22 10.70 9.45 1.45 0.86

D 36 42.2 6 4.26 2.35 Posterior 0 3.90 6.09 4.71 1.35 0.85

E 36 27.6 1 2.20 1.7 Fundal 0.42 3.77 13.07 11.01 - -

F 38 35.3 1 2.38 - Fundal 0 9.12 12.33 10.07 8.69 4.43

G 36 38.8 1 3.25 2.67 Anterior-
Fundal 0 5.49 6.95 5.63 5.83 2.37

H 36 37.2 2 2.36 2.98 Anterior 0 3.02 10.80 8.93 1.48 0.92

Overall Error 9.72 7.64 4.43 1.79

Overall Error without Outliers 9.53 7.53 2.91 1.33

TFO, transabdominal fetal pulse oximeter; FHR, fetal heart rate; MHR, maternal heart rate; BMI, body mass index; RMSE, root mean square error; 
MAE, mean absolute error; BPM, beats-per-minute; cm, centimeters
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