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Abstract

We study the Markov Perfect equilibrium to a dynamic game in which private
agents choose savings and a planner chooses climate policy. All agents have the same
hyperbolic discount function. Using new algorithms, we solve the game with general
functional forms (apart from isoelastic utility). We also obtain an analytic solution
for a log-linear specialization. With hyperbolic discounting, convex damages lead to
significant strategic interactions across generations of planners. The ability to commit
to policy for over a century significantly increases welfare for the first generation, but
the ability to commit for only a few decades has negligible benefit.
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1 Introduction

A portion of current carbon emissions will remain in the atmosphere for thousands of years.
With such a long legacy, the present discounted value of climate-related damages is highly
sensitive to the discount rate. The pure rate of time preference is an important determinant
of the discount rate and thus important for climate policy. The assumption of constant
time preference was challenged, from its inception, on normative grounds (Samuelson
1937), and it has recently been challenged on empirical grounds. Constant time preference
leads to time-consistent preferences (Koopmans 1960) which simplifies the calculation of
equilibrium behavior. The accompanying advantage is especially helpful when solving
Integrated Assessment Models (IAMs) that combine climate policy and private savings.
Incorporating non-constant time preference (NCTP) into IAMs presents long-recognized
technical challenges: one must compute a subgame perfect equilibrium among generations
(Strotz 1955) and impose a fixed point condition to ensure consistency when modeling
the determination of decentralized savings (Krusell et al. 2002). The paper does both,
providing the first IAM with general discounting and general functional forms.

The choice between constant and non-constant time preference can have a large effect
on the equilibrium carbon tax. A model with constant time preference can match observed
savings rates or it can incorporate concern for distant generations, but it cannot do both.
With NCTP, in contrast, agents may invest in rapidly depreciating capital at observed
rates and also incur significant costs to avoid climate damages in the distant future (Ger-
lagh and Liski 2017). In addition, by creating a conflict between climate policy-makers
at different points in time, NCTP affects how we think about the policy problem. The
conflict among generations gives policy-makers in earlier periods an incentive to develop a
commitment device to constrain future choices, just as in the case of private agents (Strotz
1955, Laibson 1997). We examine the effect of NCTP on equilibrium climate policy and
savings, and we assess the value of commitment.

Arguments for NCTP suggest a path of rates that declines over many periods. Never-
theless, most macroeconomic applications of NCTP use quasi-hyperbolic (β, δ) discounting—
a two-tier step function that approximates a general discount function (Phelps and Pollak
1968, Laibson 1997, Harris and Laibson 2001, Krusell and Smith 2003). Apart from spe-
cial cases, constant discounting, quasi-hyperbolic discounting, and general discounting are
not observationally equivalent, and the different types of discounting can have both a
qualitative and a large quantitative impact on policy.1 The approximation error due to
the restriction to quasi-hyperbolic discounting grows in the decision horizon and is likely
large for climate policy, where the relevant horizon spans centuries. In addition, the quasi-
hyperbolic approximation misrepresents the nature of intergenerational decision conflict
that stems from the difference between the discount rate a future agent uses and the rate
the current agent would like them to use. With quasi-hyperbolic discounting, this conflict
is constant after one period, while with continuously decreasing NCTP, it grows with the
distance between generations.

The paper makes four contributions. First, we develop and implement novel meth-
ods to solve a model with isoelastic utility but otherwise general functional forms. We

1Harstad (2016, pg. 4) illustrates the qualitative impact in an investment game. He notes: “. . . the result
that upstream technologies should be subsidized more does not hold under quasi-hyperbolic discounting—
which is therefore a poor approximation for hyperbolic discounting.” Iverson (2012), the original version
of the current paper, documents the quantitative impact of the quasi-hyperbolic restriction.
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translate the dynamic game that arises with NCTP into a modified finite horizon dynamic
programming problem. This programming problem is hard because the savings decision
must be solved as an equilibrium fixed point problem at every stage, not as a command
problem. The fixed-point problem exacerbates the instability associated with approxima-
tion methods in non-stationary dynamic programs (Judd and Cai 2014). We obtain an
easily approximated, semi-analytic expression for the value function, resulting in a sta-
ble and accurate solution to a difficult numerical problem. Krusell, Kurusco and Smith
(KKS; 2002) and Hiraguchi (2014) solve the one-aggregate-state savings problem under
logarithmic utility and Cobb-Douglass production. Our methods permit a solution with
isoelastic utility, general production and discounting functions, and endogenous climate
policy.

Second, we provide the first assessment of climate policy under arbitrary NCTP. We
explore the role of non-constant discounting in influencing equilibrium savings and climate
policy, while varying the depreciation rate, the elasticity of intertemporal substitution, the
damage function, and TFP growth. Strategic interactions across generations are important
if the damage function is strongly convex in the stock of carbon. In this case, climate
policies are dynamic strategic substitutes, and strong climate policy today reduces the
incentive to invest in climate policy in the future. If damages are roughly linear in the
stock of carbon—as in Nordhaus (2013) and Golosov et al. (GHKT; 2014)—then strategic
incentives across generations are insignificant.

Third, we study the value of intertemporal policy commitment. A decision-maker’s
ability to commit policy in future periods resolves its conflict with those generations. With
continuously decreasing discount rates, the conflict between two generations increases with
the span of time separating them. This feature causes the marginal value of a longer
commitment period to grow with the commitment interval. However, discounting reduces
the present value of the resolution of a more distant conflict. The combination of these
two forces makes the value of commitment initially convex, and later concave in the
commitment period. A third force, arising from strategic interactions, is quantitatively
unimportant. We find that the ability to commit for hundreds of years would indeed be
valuable to today’s generation, but the ability to commit for only a few decades is worth
little. In view of the cost of devising a long period of intertemporal commitment, and the
low value of a short period of commitment, we conclude that searching for such a device
is likely futile.

Finally, we analytically solve a version of the model that adopts the log-linear as-
sumptions in GHKT. Gerlagh and Liski (GL; 2017) extend this model to accommodate
quasi-hyperbolic discounting. We obtain formulae for the equilibrium aggregate savings
rate and the carbon tax under general NCTP. The formulae encompass the constant-
time-preference and quasi-hyperbolic special cases considered in earlier papers. The tax
formula renders transparent the effect of discounting and climate-related parameters on
climate policy. We show explicitly how the log-linear structure decouples decisions across
generations and between savings and climate policy. The decoupling properties give rise
to the model’s analytic tractability, but they limit its ability to shed light on intergenera-
tional conflict and on the links between savings and climate policy. The log-linear results
are robust to the depreciation rate of capital, but not to the elasticity of intertemporal
substitution or the damage function.

The next subsection completes the literature review. Section 2 presents the model and
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defines the equilibrium. Section 3 studies the analytic log-linear model. Section 4 presents
and studies the more general model. Section 5 quantifies the value of commitment. Section
6 presents the new algorithms, and section 7 concludes.

1.1 Literature review

Frederick et al. (2002) conclude that empirical evidence overwhelmingly supports hy-
perbolic discounting over exponential discounting. Table 1 summarizes recent empirical
estimates of present bias (in the quasi-hyperbolic setting, β < 1). In a field experiment,
Augenblick et al. (2015) find evidence of present bias in the domain of consumption. They
also show that subjects value commitment. Survey evidence suggests that people discount
the distant future less heavily than the near future (Cropper et al. 1994, Layton and
Levine 2003, Drupp et al. 2014). Montiel Olea and Strzalecki (2014) provide an axiomatic
foundation for quasi hyperbolic discounting.2

Table 1: Recent estimates of the β, δ model. β < 1 implies present bias.
Article Decision involving β δ

Shui and Ausubel (2005) credit cards 0.8 0.99

Paserman (2008) job search (0.4, 0.9) ≈ 1

Fang and Silverman (2009) labor supply and welfare 0.34 0.88

Mahajan and Tarozzi (2011) technology adoption 0.56 0.79

Fang and Wang (2015) mamography (0.51, 0.79) (0.68, 0.94)

Laibson et al. (2017) consumption over lifecycle 0.504 0.987

Brocas et al (2003) and Bryan et al. (2010) survey the literature on commitment
devices. Examples of these include mandatory pension plans with limited accessibility,
mandatory minimum years worked before retirement, and externally enforced deadlines.
Barro (1999) shows that short run savings falls, and long run savings rises, with the length
of a commitment device.

Karp (2005) and Karp and Tsur (2007) use NCTP in analytic climate models, and
Fujji and Karp (2008) use numerical methods, but these abstract from the savings decision
and include only a rough approximation of climate dynamics. Iverson et al. (2015) use
the formulae in Section 3 to show that, with constant discounting, damages during the
next two centuries are responsible for virtually the entire carbon tax, while with NCTP,
later damages account for a substantial portion of the tax. Rezai and van der Ploeg
(2017) study a partial equilibrium model under the assumption that the initial planner
can commit to the sequence of future policies.

Most of the empirical and macro-theory studies of NCTP take the decision-maker
as a consumer or a firm. However, one of the earliest applications involves a dynasty
consisting of many generations, each of which lives for a single period (Phelps and Pollack,
1968). Climate policy involves both intra- and inter-generational transfers, because current
abatement expenditures can benefit a currently living agent late in their life, and also
benefit people who have not yet been born. Therefore, an overlapping generations (OLG)

2A growing literature studies reasons for non-constant consumption discount rates arising from the
correlation between the returns to climate investments and a market portfolio (Traeger 2014, Gollier 2014,
Giglio et al. 2015) Our deterministic model cannot include this feature.
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structure is particularly appropriate for studying climate policy. We adapt Ekeland and
Lazrak’s (2010) model to the IAM setting.

2 Model

Time is discrete and runs from 0 to infinity. There is no uncertainty.
A unit continuum of identical households discount future utility with arbitrary time

weights {λm}∞m=0, where λ0 = 1. The weights are unrestricted, but we emphasize decreas-
ing time preference rates. Household welfare (assumed finite) in t is the present value of
discounted utility,

∞∑
τ=0

λτu(ct+τ ),

where utility is isoelastic in consumption:

u(c) =

{
c1−η−1

1−η , if η > 0, η 6= 1

ln(c), if η = 1.
(1)

Agent i at t owns capital ki,t, and aggregate capital is

Kt =

∫ 1

0
ki,t di.

We use a representative agent model and drop the agent index when the meaning is clear.
Lower case symbols denote individual levels, while upper case symbols denote aggregate
levels. Symbols in bold denote vectors.

Aggregate carbon emissions, Et, affect the evolution of a vector of climate states, St,
which could include carbon stocks and temperature in different reservoirs. The climate
states evolve according to

St+1 = f (St, Et) . (2)

Output of the final good is
Yt = Ft(Kt, Et,St). (3)

Ft (·) is concave increasing in capital and emissions, decreasing in the climate state, with
constant returns to scale in K,E, and labor (normalized to 1); the subscript t accommo-
dates exogenous technological change. Climate damages arise from output losses, affecting
consumption; we abstract from damage channels directly impacting utility, e.g. a loss in
amenity value.3 Current output equals aggregate consumption, Ct, plus investment,

Yt = Ct +Kt+1 − (1− δ)Kt, (4)

where δ is the depreciation rate for capital.
Most anthropogenic carbon emissions result from burning fossil fuel, whose finite stocks

are, in principle, exhaustible. We ignore stock constraints, making the model appropriate
for coal, but probably not for oil. Section 3.3 discusses this assumption.

3Referees’ Appendix B.2 describes an extension to include population growth and damages directly
affecting welfare.
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2.1 Equilibrium savings and climate policy

Firms maximize profits, hiring capital and labor to equate the factors’ value of marginal
product to the rental rate and wage. With free entry and constant returns to scale,
equilibrium profits are zero. We denote the value of output minus payments to capital as
“transitory income”. Under a carbon tax (or cap and trade), transitory income equals tax
revenue (or quota rents) which are returned to agents in a lump sum, plus payments to
labor. This income is “transitory”, because from the agent’s perspective it is unrelated to
their savings decision. To emphasize the dynamic problem, we leave the static decisions
(firms’ choice of inputs) in the background until Section 4.1. There we follow GHKT in
specifying clean and dirty energy sectors with mobile labor.

We begin with the households’ problem and then consider the planner’s problem. In
period t, agent i earns income from capital, rt, and transitory income, wt. We study the
Markov Perfect Equilibria (MPE) to the savings game: agent i chooses current savings,
taking as given her future savings policies. There are typically many MPE, but we focus
on the unique limit of a sequence of finite-horizon equilibria.4 Agents have zero mass and
rational expectations, so they take as given the trajectories of aggregate capital, aggregate
emissions, and climate states—which depend on equilibrium climate policy.

Suppressing the agent index i, the representative agent in t takes as given its successors’
savings rules, gs (ks,Ks,Ss;Es), s > t, and the current and future aggregate savings rules,
Gs (Ks,Ss;Es), s ≥ t. Current emissions, Es, affects the level of savings via its effect on
current income. The agent chooses kt+1 to maximize

u (rtkt + wt + (1− δ)kt − kt+1) + Ṽ (kt+1, Gt (Kt,St;Es) ,St+1, t+ 1) , (5)

where

Ṽ (kt+1,Kt+1,St+1, t+ 1) ≡∑T
j=1 λju (rt+jkt+j + wt+j + (1− δ)kt+j − gt+j (kt+j ,Kt+j ,St+j)) .

(6)

The optimum defines gt (kt,Kt,St;Es), leading to agent welfare

V (kt,Kt,St, t) ≡ u (rtkt + wt + (1− δ)kt − gt (kt,Kt,St))

+Ṽ (gt (kt,Kt,St) , Gt (Kt,St;Es) ,St+1, t+ 1) .
(7)

In equilibrium, k = K. Agents take as given current and future emissions levels. In
equilibrium, these are functions of the state variable, Kt,St, t. Because the dependence of
equilibrium welfare on future as well as current climate policy is important for describing
the climate problem, we make it explicit:

V e (Kt,St, t; {Es}∞s=t) ≡ V (Kt,Kt,St, t) .

We turn next to the determination of climate policy. In each period a planner chooses
policy to maximize welfare for the contemporaneous representative household. Because
household preferences are time inconsistent, we model climate policy as a Markov perfect
equilibrium of a dynamic game. Planners take the equilibrium aggregate savings rule,

4For both the savings and climate policy decisions, we prove uniqueness in the log-linear model, and
we find no numerical evidence to indicate non-uniqueness in the general model.
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Gt (Kt,St;Et), as given. As above, we study the infinite horizon limit of a sequence of
finite horizon games.

To study the role of commitment, we introduce the following technology.

Definition 1 (Commitment device) A planner in t with a j−period commitment device
chooses climate policy, Es, for periods s = t, . . . , t + j − 1, provided the emissions level
during these periods was not already fixed by a commitment device in an earlier period.

We denote E∗s (Ks,Ss) as the equilibrium emissions policy in period s, as a function of the
state variable.5 The planner in t with j−period commitment anticipates that planners
outside the commitment window choose {Es}∞s=t+j = {E∗s (Ks,Ss)}∞s=t+j ; j = 1 implies

that the planner chooses policy only in the current period. The planner chooses {Es}t+j−1
s=t

to maximize equilibrium welfare for the period- t representative agent. This planner solves

max
{Es}t+j−1

s=t

V e
(
Kt,St, t; {Es}t+j−1

s=t , {E∗s (Ks,Ss)}∞s=t+j
)
. (8)

Combining the capital market equilibrium and the climate policy equilibrium, we define
a Markov Perfect equilibrium as follows.

Definition 2 A Markov Perfect equilibrium satisfies the following for all t:

1. Prices, determined competitively, satisfy

(rental rate) rt = rt(Kt, Et,St) =
∂Ft(Kt, Et,St)

∂Kt
,

(transitory income) wt = wt(Kt, Et,St) = Ft(Kt, Et,St)−
∂Ft(Kt, Et,St)

∂Kt
Kt.

2. The physical constraints in (2), (3), and (4) hold.

3. Individual savings maximizes equilibrium welfare, defined in (5) and (6).

4. Individual and aggregate savings are consistent: gt (Kt,Kt,St;Et) = Gt (Kt,St;Et).

5. The climate policy function solves (8).

The solution to the model consists of time-dated equilibrium aggregate savings rules
and emissions policies. We describe the emissions policy using the carbon tax, τ ≡
∂Ft(Kt,Et,St)

∂E |Et=E∗ , that supports the equilibrium emissions level E∗.

5This policy also depends on the commitment window. We suppress that dependence to avoid compli-
cating the notation.
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3 Analytical solution for the log-linear case

This section presents the log-linear model and explains two properties responsible for
its tractability. GHKT extend Brock and Mirman’s (1972) growth model (log utility,
Cobb-Douglass production in capital, and full depreciation) to include a tractable climate
module. GL use a variation of the model to study climate policy when agents have quasi-
hyperbolic time preferences. We extend their analysis to include general discounting.
We also extend the analysis of decentralized equilibrium savings with arbitrary NCTP
in Hiraguchi (2014). He studies the equilibrium problem in a one-sector, Brock-Mirman
growth model, while we study the augmented climate-economy. The climate component
does not change the equilibrium savings rate, but we require a different proof because
Hiraguchi considers a stationary setting, while ours is non-stationary due to exogenous
technological change and endogenous (time-varying) climate policy.

Assumption 1 The log-linear model
(i) The utility function is logarithmic: u(C) = log(C).
(ii) Capital depreciates 100 percent in every period: δ = 1.
(iii) Output in the final-goods sector is Cobb Douglass in capital with multiplicative

climate damages:
Yt = (1−D(St))K

α
t At (Et) ,

where At (Et) is a time-dependent function that incorporates changes in technology and
labor supply; the damage function is exponential:

1−D(St) = exp
(
−γ(St − S̄)

)
.

(iv) The climate vector, S, affects output only via atmospheric carbon, denoted S, and
S is linear in prior emissions:

Sτ − S̄ =
τ+t+H∑
j=0

(1− dj)Eτ−j ,

where S̄ is the preindustrial stock of atmospheric carbon, 1−dj is the portion of emissions
remaining in the atmosphere after j periods, and 0 ≤ dj ≤ 1.

3.1 Equilibrium without commitment

We first consider the case in which planners choose policy for a single period. Proposition
1 shows that the limit equilibrium is unique, and it provides formulae for the equilibrium
savings rule and the equilibrium carbon tax. All proofs are presented in appendix A. We
define

ρ ≡
∞∑
t=1

λt and λl,m ≡
λm
λl

for m ≥ l.

We assume ρ is finite. λl,m is the amount an agent in t would be willing to reduce utility
in t+ l to obtain a one-unit increase in utility in t+m.

Proposition 1 Suppose Assumption 1 is satisfied and there is no commitment (j = 1
for all periods). Then the limit equilibrium is unique. The equilibrium carbon tax and
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equilibrium savings are constant fractions of income. Equilibrium savings for an individual
in t with capital k is

k′ =
ρ

1 + ρ
rtk;

aggregate savings is

K ′ = sYt, where s ≡ αρ

ρ+ 1
; (9)

and carbon taxes are

τt =

[ ∞∑
k=0

λk(1− dk)γ · Γk

]
Yt, (10)

where

Γk ≡
∑∞

m=0 α
mλk,k+m∑∞

n=0 α
nλn

. (11)

Corollary 1 Intra-temporal decoupling: The equilibrium aggregate savings rate does not
depend on emissions levels; equilibrium emission levels do not depend on the aggregate
savings rate.

Corollary 2 Inter-temporal decoupling: The equilibrium emissions policy in any period
is independent of climate policy in all other periods.

The equilibrium carbon tax is a constant fraction of output, where the constant de-
pends on the path of time preference rates, the damage elasticity parameter, γ, the carbon
cycle parameters, and the Cobb Douglass coefficient on capital in final-goods production.
Notably, the tax does not depend on beliefs about future technology or emissions. The
same features hold for the optimal tax in GHKT with the exception that the formula
there does not depend on the Cobb Douglass coefficient on capital. With constant time
preference, Γk = 1, and the expression in (10) reduces to the tax formula in GHKT. The
formula also reduces to the tax formula in GL when discounting is quasi-hyperbolic. When
time preference rates decline, Γk > 1, so the equilibrium tax is greater than the tax one
would obtain if the constant-discounting time weights in the GHKT formula were simply
replaced with nonconstant-discounting time weights.

The corollaries show how Assumption 1 shuts down interactions between different parts
of the problem. Corollary 1 shows that the savings problem and the climate problem are
in a significant sense decoupled. The stock invariant savings rate does not depend on
the level of emissions in current and future periods, though the level of savings does de-
pend on current emissions through the effect on climate damages and abatement costs.
The equilibrium emission level and the equilibrium tax as a fraction of output are both
independent of the aggregate savings rate. The corollaries are statements about the equi-
librium policy functions, not about arbitrary policy functions. For example, the climate
policy response to a non-equilibrium savings rule that depends on the climate state might
depend on capital and on future savings rules.

3.1.1 Intuition

Taking the corollaries as given, we provide a heuristic derivation of the tax formula that
illustrates the origin of the model’s tractability and provides intuition.
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Corollary 1 implies that the aggregate savings rate is stock invariant. Therefore, capital
accumulates according to

Kt+1 = stAt (Et)K
α
t e
−γ(St−S̄). (12)

Taking logs gives a linear difference equation in log capital. Solving for v ≥ 1 gives

lnKt+v = αv lnKt + αv−1 lnAt (Et)− γ
v−1∑
j=0

αv−j−1 (1− dj)Et + “terms”. (13)

Here, “terms” collects all expressions that do not depend on time-t emissions or capital.
We combine (4), (12), and (13) to get an expression that shows the dependence of future
flow payoffs on current output and current emissions,

lnCt+v = αv lnYt − γ
v∑
j=1

αv−j (1− dj)Et + “terms”. (14)

Next, we use (14) to obtain an expression for the marginal rate of substitution between
a unit of income in t and a future period, viewed by the agent in t. We use this to define
two welfare measures that maintain the time perspective of the agent in t:

Vt (Yt) ≡
∞∑
v=0

λv lnCt+v

and

Vt+k (Yt+k) ≡ λk
∞∑
v=0

λk,k+v lnCt+k+v.

The functions equal agent t′s present discounted value of consumption from t onwards
and t+ k onwards, respectively. Substituting from (14) gives

Vt (Yt) =

( ∞∑
v=0

λvα
v

)
lnYt + “terms”

and

Vt+k (Yt+k) = λk

∞∑
v=0

λk,k+vα
v lnYt+k + “terms”.

Taking the derivative with respect to output gives the shadow value of income in t and
t + k, viewed by the agent in t. The ratio of shadow values gives the marginal rate of
substitution between a unit of income in t and t+ k:

MRSt,t+k ≡
V
′
t+k (Yt+k)

V
′
t (Yt)

=
λk
∑∞

v=0 λk,k+vα
v∑∞

v=0 λvα
v

Yt
Yt+k

= λkΓk
Yt
Yt+k

.

The standard definition of MRS involves the ratio of discounted marginal utility of con-
sumption in two periods, whereas our definition involves the ratio of discounted shadow
values of income. These shadow values, and also their ratio, depend on α because an extra
unit of income increases savings; the resulting increase in future consumption, and thus
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the change in welfare, depends on the productivity of capital, measured by α. Consump-
tion is proportional to income, and marginal utility equals the inverse of consumption.
Therefore, under constant discounting, where λk = λ, a constant, and Γk = 1, MRSt,t+k
simplifies to the standard definition.

Climate damages from an extra unit of emissions in t reduce Yt+k by

dYt+k
dSt+k

dSt+k
dEt

= γYt+k (1− dk) .

Multiplying this loss by the marginal rate of substitution between periods t and t + k
converts the change in units of t + k output to a change expressed in units of time t
output:

γYt+k (1− dk)MRSt,t+k = γYt+k (1− dk)λkΓk
Yt
Yt+k

= γ (1− dk)λkΓkYt.

Summing over k from 0 to ∞ gives the marginal social cost of a unit of emissions, viewed
from the perspective of an agent in t. This infinite sum equals the equilibrium carbon tax
in (10).

Thus, under both constant and non-constant time preference, the carbon tax equals
the stream of future damages (measured in units of the consumption good) due to an extra
unit of emissions, weighted by the marginal rates of substitution. Only the definitions of
the marginal rates of substitution differ, as described above. This simplicity arises from
the fact that in choosing current emissions, the current policy-maker does not have to
think about how the resulting change in the climate state alters future savings and future
climate policies; as the Corollaries state, current emissions do not alter those policies.

3.2 Equilibrium with commitment

Here we consider the problem when the planner in t = 0 chooses policy for j periods. The
equilibrium is equivalent to one in which an appropriately defined sequence of planners
choose policy without commitment, so we can solve for the commitment equilibrium by
applying Proposition 1.

For each period k < j, periods for which policy would be chosen by the initial plan-
ner with commitment, let policy instead be chosen by a hypothetical planner without
commitment, endowed with the sequence of time preference rates that the initial plan-
ner would want them to use. The hypothetical planner at k employs time weights
{λk,k+m}∞m=0. By Corollary 1, changing from the setting without commitment to the
setting with commitment—thus, changing the path of equilibrium emissions—does not
affect the equilibrium aggregate savings rate. The hypothetical planner’s optimized con-
tinuation welfare cannot be higher than the corresponding continuation value if policy
were chosen by the initial generation, because that would contradict optimality of the ini-
tial generation’s policy choice with commitment. Similarly, the continuation value when
policy is chosen by the initial generation cannot be higher, because that would contradict
optimality of the hypothetical planner’s problem. Thus, because optimal policy is unique,
the policy rules are the same.

We obtain the equilibrium with commitment by substituting the discount factors
{λk,k+m}∞m=0 into the definitions in (11) for the first j periods. For simplicity, we present
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the case where planners beyond the initial commitment interval choose policy for one pe-
riod only; however, due to Corollary 2, this assumption does not affect the optimal policy
within the commitment interval.

Proposition 2 Suppose the planner at period t = 0 has a commitment device for j > 1,
and thus can choose policy for periods v = 0, . . . , j − 1. In equilibrium—as for the case
without commitment—savings in every period are determined by the aggregate savings
rule in (9); carbon taxes in periods v > j − 1 are given by (10) (with v = t). Within the
commitment interval (v = 0, . . . , j − 1) equilibrium carbon taxes are given by

τv =

[ ∞∑
k=0

λv+k(1− dk)γ · Γ̃vk

]
Yv (15)

where

Γ̃vk =

∑∞
m=0 α

mλv+k,v+k+m∑∞
n=0 α

nλv+n
.

The two forms of decoupling in the log-linear model simplify the equilibrium construc-
tion. Commitment has no effect on the savings rule, and it alters the tax rule only during
the commitment interval. These changes in the tax rules alter emissions during these
periods, so they change the climate state and the capital stock inherited at period t + j.
Subsequent tax levels, but neither the tax rules nor the emissions levels, change after t+j.

Formula 15 reveals another interesting property of the model. Let t be the time index
at the beginning of a commitment interval of length j ≥ 1. Denote the equilibrium tax in

t given commitment period j as τ
(j)
t .

Corollary 3 The equilibrium tax in the first period of the commitment interval (time t)

is independent of j: τ
(1)
t = τ

(j)
t for j ≥ 1.

The result follows because Γ̃0
k = Γk. The corollary shows that time consistency is not an

issue for near-term policy in the log-linear setting. Time inconsistency arises with NCTP
when the agent incorrectly assumes a commitment device (the “naive” scenario). Without
commitment, the actual decisions of future decision-makers differ from the choices earlier
generations would have made, which typically changes the marginal payoffs of initial-period
actions. But not in the log-linear model.

The result arises because equilibrium flow payoffs are linear in prior emissions. Con-
sequently, changes in future emissions due to commitment do not change the optimal
emission decision at the beginning of the commitment interval. Comparison of (10) and
(15) shows that the full path of carbon tax rules in the two equilibria can differ sub-
stantially when we move beyond the initial period, while staying within the commitment
interval. We return to this observation when studying the value of commitment.

Corollary 3 reflects a more general feature of the log-linear model: today’s policy
decisions are independent of future generations’ time preference paths (Iverson (2012).
This feature has a useful policy implication. If agents know less about future generations’
preferences than about their own, they might entertain a range of assumptions about the
former (Beltratti, Chichilnisky and Heal 1998). In most settings, the initial carbon price
is sensitive to these assumptions, but in the log-linear model it is invariant to them.
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3.3 Modeling Considerations and Robustness

Three aspects of climate change are particularly salient: a portion of carbon emissions
persist in the atmosphere for thousands of years; temperature responds to carbon stocks
with a delay; and some resource stocks are exhaustible. The analytic results in this section
are robust to inclusion of the first two features, but not the third. GHKT show that
Assumption 1.iv (or some other linear structure) accommodates persistent atmospheric
stocks. Traeger (2016) extends GHKT, including a delayed response between temperature
and carbon stocks in a model that is linear in transformed variables.

With constant discounting, Traeger (2016) also shows that the introduction of a bind-
ing constraint on fossil fuel does not affect the form of the carbon tax: it is still a constant
times output, and the constant does not depend on the stock of fuel. However, the
equilibrium emissions level does depend on the resource stock, and other state variables.
Determining the emissions level, and thus the levels of income and of the tax, requires
solving the full dynamic model.

With constant discounting, the planner who uses a carbon tax is in a first best setting,
so the tax is the solution to an optimization problem. In the second best setting arising
from NCTP, we need to solve an equilibrium problem, complicating the introduction of
a binding resource constraint. Just as with constant discounting, the resource constraint
causes the equilibrium emissions levels to depend on the state variables. The analytic
tractability of the log-linear model under NCTP depends on the state-independence of
equilibrium emissions. Because an exhaustible resource (with binding constraint) causes
state-dependence, the proof of Proposition 1, required for all results in this section, no
longer holds.

We develop the methods in Section 6.2 to solve IAMs with NCTP and state-dependent
equilibria. These methods can be modified by adding an additional endogenous function,
the Hotelling rent on the exhaustible resource. We leave this topic to ongoing research
(Iverson and Karp, 2017), because we consider other sources of state-dependence, including
more general utility and damage functions, more important. Also, the need to approximate
the Hotelling rent complicates both the explanation and the numerical implementation of
the extention to an exhaustible resource.

4 The general model

The decoupling properties of the log-linear model (Corollaries 1 and 2) eliminate most
of the linkages between savings and the climate. However, the possible importance of
such linkages motivates the use of a Ramsey general equilibrium model to study climate
policy in the first place. To explore the linkages and to more convincingly assess the effect
of commitment, we relax Assumption 1. A growing literature examines macro economic
and climate linkages in fairly general settings under constant discounting (Nordhaus 2013,
Lemoine and Traeger 2014, Kelly and Tan, 2015, Lontzek, Cai, Judd, 2015). NCTP leads
to a qualitatively different problem.

KKS, for quasi-hyperbolic discounting, and Hiraguchi (2014), for general discounting,
solve for equilibrium savings in the one-state log-linear growth model with one aggregate
state. To our knowledge, no one has solved the full non-log-linear equilibrium problem
even for the one-state growth model with quasi-hyperbolic discounting. Our model accom-
modates arbitrary NCTP, non-stationarity, three aggregate state variables, and a coupled
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equilibrium problem that jointly determines private savings and climate policy.
To proceed, we overcome two technical challenges. First, to solve for the MPE in

a non-stationary setting with arbitrary NCTP, we develop an algorithm that translates
the equilibrium problem into a modified finite horizon dynamic programming problem.
Second, we surmount the well-known instability of polynomial approximations applied
to non-stationary dynamic programs (Judd and Cai 2014). The need to solve a fixed
point problem at each stage, to obtain the equilibrium savings rule, compounds those
instability problems. We exploit structure from the savings problem to obtain a semi-
analytic expression for the equilibrium value function that can be accurately approximated.
These algorithms constitute an important contribution of the paper, but we describe them
only after first presenting the policy-relevant results.

4.1 Assumptions and calibration

To assess the robustness of results from the log-linear setting, we relax the most restrictive
parts of Assumption 1: log-linear damages, log utility, and 100% depreciation of physi-
cal capital.6 We also relax Assumption 1.v, replacing GHKT’s damage function, D (S),
with the convex transformation z (D (S)) ≡ θ1D

θ2 + θ3. This change responds to re-
cent criticisms that mainstream models understate the likely damages arising from higher
temperatures (Weitzman, 2012). It also creates strategic interactions across generations
of climate policy-makers, and links between the savings and climate policies. Damages
are convex in temperature, which is logarithmic in carbon.7 In GHKT’s formulation, the
composition of these two functions is approximately linear, shown by the solid curve in
Figure 1. This damage function implies that a six degree Centigrade rise in temperature
lowers output by 4%. The solid curve in Figure 1 shows the graph of θ1D

θ2 + θ3. We
calibrate the parameters of the transformation function by requiring the level and slope
of the transformed and the original damage functions to be equal at the current carbon
stock and by setting damages associated with a 6 degree C temperature rise at three times
the level under D(S). We refer to the two damage functions as “linear” and “convex”.

We abstract from resource scarcity, so it is enough to model a single composite fossil
energy sector (“coal”; i = 1) and a single composite clean energy sector (“wind”; i = 2).
By choice of units, emissions equal fossil fuel production: E ≡ E1. Following GHKT,
output in each energy sector i is linear in labor,

Ei,t = Ai,tNi,t,

and the CES energy composite equals

Ẽt = (κ1E
ρ
1,t + κ2E

ρ
2,t)

1/ρ.

Net output is Cobb Douglass in capital, labor, and energy,

Yt = [1−z (D (S))]A0,tK
α
t N

1−α−v
0,tt Ẽν .

6Barrage (2013) uses numerical methods to evaluate robustness of the log-linear model to alternative
functional form assumptions under constant time preference.

7We set the climate sensitivity (the change in steady state temperature due to doubling the atmospheric
carbon stock) to 3 degrees. With this assumption, the steady state increase in temperature relative to
preindustrial levels, T , is T = 3.0 ln(S/S̄)/2. A temperature increase of 6 degrees C corresponds to an
increase in atmospheric carbon, S − S̄, of about 1700 GtC.
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Figure 1: Linear climate damages follow calibration in GHKT; convex damages apply the
calibrated convex transformation.

Labor is mobile across sectors with N0,t +N1,t +N2,t = 1.
We obtain a recursive version of the carbon cycle by assuming that atmospheric carbon

in t is the sum of carbon in permanent (S1,t) and transient (S2,t) reservoirs:

St = S1,t + S2,t.

The fraction φL of global carbon emissions enters the permanent reservoir

S1,t = S1,t−1 + φLEt.

Remaining emissions enter the transient reservoir and decay at the rate φ,

S2,t − S̄ = φ(S2,t−1 − S̄) + φ0(1− φL)Et.

We replace the assumption of log utility with the isoelastic utility function in (1), and
we allow for incomplete depreciation of physical capital: 0 < δ ≤ 1. The general model
reduces to the log-linear case when (θ1, θ2, θ3, δ, η) = (1, 1, 0, 1, 1). We use this fact to
validate our numerical code, by comparing the numerical and analytic solutions in the
log-linear case. The solutions coincide almost exactly.

We use a convex combination of two exponentials to represent time preference. Two
interpretations are consistent with this discount function and our savings model: an in-
finitely lived representative agent model or a particular OLG model.8 The OLG inter-
pretation is compelling in the climate context, where policy creates both transfers across
points in time for the same agent, and transfers across generations. A person considering
these transfers might discount them at different rates.9 For expositional convenience, we
refer to the three discounting parameters as the “Nordhaus time preference rate”, the

8Aggregation of agents with different beliefs or time preferences also produces a convex combination of
exponentials, but it requires a different model of the savings decision.

9Ekland and Lazrak (2010) show that an OLG model with paternalistic altruism is isomorphic to an
infinitely lived agent model where the representative agent’s discount function is a weighted sum of ex-
ponentials; this model is isomorphic to one in which agents have pure altruism (Karp 2017). These two
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Figure 2: Comparison of alternative hyperbolic discounting paths.

“Stern time preference rate”, and the “Stern weight”. We set the Nordhaus rate to 3.0%,
generating a real return on capital of 5.5% in DICE under log utility. We set the Stern
rate to 0.1% (Stern, 2007). Holding these rates fixed and varying the Stern weight gen-
erates time preference paths that vary monotonically in the weight; pS = 0 produces the
constant Nordhaus time preference rate and pS = 1 produces the constant Stern weight
(Figure 2).

Following Nordhaus (2013), we assume that TFP grows at a declining rate:

A0,t = A0,t−1(1 + gA,t), gA,t =
gA,t−1

1 + δA
,

where δA and gA,t are decadal rates. To simplify the interpretation of results, we hold
constant the technology terms for energy production, Ai,t, i = 1, 2. We assume that
capital depreciates at 10% per year, implying a decadal rate of δ = 0.65. Table 2 collects
parameter values.

Table 2: Calibration summary
φ φL φ0 α ν κ1 κ2 ρ δ K0

0.0228 0.2 0.393 0.3 0.04 0.2 0.8 −0.058 0.65 164, 030

S0(S1,0) A0,0 gA,0 δA A1,0 A2,0 θ1 θ2 θ3

802(684) 17887 0.1617 0.0616 7, 693 1, 311 40.6 1.82 0.00236

We vary η and the Stern weight across simulations. We also consider both zero and
the calibrated TFP growth, and both the GHKT damage function and its convex trans-
formation. The planning horizon is set to 2000 years, though we follow Barrage (2013) in

papers do not have a savings decision, but Appendix B.4 explains the modification to include privately
owned capital. Schneider et al. (2012) study an OLG model with endogenous capital and finitely lived
agents, but they assume that a planner discounts from the time of an agent’s birth, not from the current
time, thus avoiding the problem of time-inconsistent preferences. Barro’s (1974) OLG model in which
agents attach intrinsic importance to their immediate successor’s welfare, but care about subsequent gen-
erations’ welfare only insofar as it affects the immediate successor’s welfare, also leads to time consistent
preferences.
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Table 3: Optimal tax in current dollars per ton carbon. Assumes Stern weight 0.2, TFP
growth, and δ = 0.65.

η = 1.0 η = 1.5 η = 2.0

Linear damages 126 48 30
Convex damages 151 62 39

assuming that coal becomes fully decarbonized after 300 years. Because carbon persists in
the atmosphere, emissions during the first 300 years affect welfare over the full planning
horizon.

4.2 Equilibrium without commitment

We compute equilibria in the model without commitment, showing the response of equi-
librium trajectories and the initial tax to alternative assumptions. Figure 3 shows the
sensitivity of the first-period tax to η, with (solid curve) and without (dashed curve) TFP
growth, under linear damages. Other simulations (not included) show that relaxing the
assumption of 100-percent depreciation has negligible effect when η = 1, and a slightly
larger but still small impact when η > 1. In contrast, the choice of η and TFP growth is
important.

The income and the substitution effects explain the relation between η and the initial
tax, and also the effect of TFP growth. Where the substitution effect dominates the
income effect (η < 1), agents are more willing to incur sacrifices today to increase future
consumption, so they use a higher carbon tax. Where the income effect dominates the
substitution effect (η > 1), agents are less willing to make sacrifices to avoid future climate-
related consumption losses.

TFP growth lowers the tax when η > 1 and raises the tax when η < 1. For η = 1,
where the income and substitution effects are equal, TFP growth does not affect the tax.
The intuition is the same as under constant discounting (GHKT). Higher TFP growth in-
creases future consumption, lowering marginal utility, and increases future output, raising
damages. Damages are directly proportional to output, while marginal utility is inversely
proportional to output when the savings rate is stock invariant, so the two effects cancel.
Introducing incomplete depreciation does not change the intuition. TFP growth increases
future income. If the income effect dominates the substitution effect (η > 1), growth
leads to a large reduction in the initial tax, because the agent today is unwilling to reduce
current consumption to protect the richer successor from climate damages. Where the sub-
stitution effect dominates (η < 1), the agent is willing to incur even greater consumption
loss to protect the climate, and magnify successors’ consumption gain.

Table 3 shows how changing the damage function affects the initial tax, for different
values of η, with TFP growth. Switching from linear to convex damages increases the
initial tax by 20% when η = 1 and by 30% when η = 2. We consider this effect modest, in
view of the large change in the damage function shown in Figure 1. The next subsection
discusses this result.

Figures 4 (for linear damages) and 5 (for convex damages) graph equilibrium trajecto-
ries for the savings rate, the carbon tax, and the stocks of capital and atmospheric carbon.
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Figure 3: First-period tax for log-linear case and alternatives. Both grey lines have δ =
0.65 and linear damages. Difference between downward- and upward-pointed triangles
shows effect of TFP growth.

Figure 4: Panels show trajectories of policy variables and states for different values of η
when the damage function matches GHKT. In addition, δ = .65, the Stern weight equals
0.2, and TFP growth matches Nordhaus (2013).
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Figure 5: Panels show trajectories of policy variables and states for different values of η
when the damage function is convex. In addition, δ = .65, the Stern weight equals 0.2,
and TFP growth matches Nordhaus (2013).
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Figure 6: Impulse response when first-period emissions are doubled. Vertical axis shows
percentage change in emissions relative to the original equilibrium. Horizontal axis shows
time horizon in decades. Panel columns vary damages. Panel rows vary the consumption
elasticity.

The path of carbon taxes increases only modestly—by about 30%—when switching from
linear to convex damages. The savings rate and accumulation of physical capital are al-
most the same under linear and convex damages. One might expect the higher (convex)
damage function to induce higher capital accumulation. However, the higher carbon tax
under convex damages reduces the accumulation of carbon by about 25%. On balance,
equilibrium damages are only modestly higher with convex damages. The savings rate is
sensitive to the consumption elasticity, but not to damages.

4.3 Strategic interactions without commitment

Corollary 2 notes that the log-linear model shuts down strategic interactions among climate
planners in different periods. Two experiments help quantify the importance of strategic
interactions in the general setting. First, impulse response functions trace the equilibrium
response to an exogenous doubling in first-period emissions. Second, we compare the
first-period equilibrium tax with the tax in a restricted problem that shuts down strategic
interactions.

Figure 6 presents impulse response functions in periods 2 through 10 associated with
an exogenous doubling of first-period emissions relative to the original equilibrium. We
calculate the responses using the equilibrium policy rules of future planners. All simu-
lations assume NCTP (Stern weight of 0.2), TFP growth, and incomplete depreciation
(δ = 0.65). The panels differ in the assumed damage function (columns) and the con-
sumption elasticity (rows).
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Figure 7: Black lines, solid and dashed, compare the equilibrium and restricted taxes
when damages are linear. Grey lines compare the equilibrium and restricted taxes when
damages are convex.

The results are starkly different under linear versus convex damages. With linear dam-
ages, strategic interactions remain quantitatively irrelevant, even as we relax the assump-
tions of 100% depreciation and log utility. With convex damages, in contrast, strategic
interactions are quantitatively significant for all values of η. When η = 2, a 100% increase
in first-period emissions reduces emissions in each of the next 9 periods by roughly 2%.
With convex damages, emissions are dynamic strategic substitutes: higher current emis-
sions cause future generations to face higher marginal damages, inducing them to emit
less.

To quantify the impact of strategic interactions, we consider a restricted problem
that fixes future emissions at their level in the original equilibrium, thereby closing the
strategic channel. We also fix all savings rates at their equilibrium level, thereby limiting
strategic interactions to emission decisions. Comparing the initial tax in the original
and the restricted problems gives a measure of the quantitative importance of strategic
interactions. To solve the restricted problem we fix labor allocations, and thus emissions, at
their equilibrium level. Conditional on the period 1 state, (K1,S1), we use the equilibrium
saving rate and labor allocations and the equations of motion for capital and the carbon
stocks to construct the consumption trajectory, {Ĉt}Tt=1, and the restricted continuation
value, WR(K1,S1) =

∑T
t=1 λtu(Ĉt). The initial decision in the restricted problem solves

max
N0,N1,N2

u(C1) + β1W
R(K1,S1)

subject to the equations of motion for capital and the carbon stocks.
Figure 7 presents the results. Black curves plot the carbon taxes with linear damages,

and grey curves plot carbon taxes with convex damages. Solid curves (and upward-pointed
triangles) identify equilibrium carbon taxes. Dashed curves (and downward-pointed tri-
angles) identify taxes that solve the restricted problem. Comparing the solid black and
the solid grey curves (equilibrium taxes with convex versus linear damages) reinforces the
message of table 3: moving from linear to convex damages has a modest effect on the
equilibrium tax.
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Figure 8: Equilibrium emissions with and without commitment. Log-linear model with
TFP growth and Stern weight of 0.2.

Strong strategic incentives partly explain this modest response: the initial genera-
tion understands that higher abatement on its part would induce future generations to
abate significantly less. This anticipated response lowers the initial tax. Figure 7 shows
that strategic incentives are negligible under linear damages, but are strong under con-
vex damages. These strategic incentives dampen the direct incentive to increase taxes
in response to more convex damages. Under log utility and convex damages, shutting
down the strategic incentive increases the initial tax by a factor of almost three. Higher
values of η increase the consumption discount rate, diminishing the present value of long
run differences caused by strategic interactions. The strategic effect is smaller but still
significant for higher η.

5 The value of commitment

Figure 8 uses the log-linear model to plot the path of emissions in the equilibrium with-
out commitment (upward triangles) and in the full-commitment scenario where the initial
generation chooses climate policy in all future periods (downward triangles). With declin-
ing time preference, future generations do less to combat climate change than the initial
generation would like. Without commitment, emissions are constant at a third the level
of current global emissions.10 With permanent commitment, emissions begin at the same
level, but eventually decline to a third the no-commitment level. The large difference in
emission paths suggests that a commitment device could be valuable.

We find that the value of a commitment technology is almost certainly less than the
(likely) high costs of designing and implementing it. We begin with the log-linear model,
where Corollaries 1 and 2 simplify the computation of commitment value and make it
possible to explain this conclusion. The next subsection shows that the conclusion also
holds in the general setting.

10Absent commitment, emissions are constant because we assume that the TFP paths for coal, {A1,t},
and wind, {A2,t}, are constant. If {A2,t} grew faster than {A1,t}, emissions in the equilibrium without
commitment would decline, as wind becomes relatively cheaper.
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Figure 9: Commitment value as a function of commitment horizon. Log-linear model with
TFP growth and Stern weight of 0.2.

5.1 The log-linear case

We define commitment value as the addition to first period consumption, absent commit-
ment, that leads to equal welfare in the two scenarios. We calculate this equivalent vari-
ation by dividing the uncompensated difference in welfare by the initial period marginal
utility, absent commitment. A permanent commitment device, illustrated in Figure 8,
is worth about 16 trillion USD (2.3% of GWP) for the initial (decade-lived) generation.
For comparison, the value of climate policy in the model—the increase in first generation
welfare in the no-commitment equilibrium compared to welfare without climate policy—
is 13.3 percent of GWP. The value of climate policy is higher than in typical economic
models like DICE (Nordhaus 2013), because under decreasing time preference rates the
initial generation puts relatively higher weight on long run outcomes.

Permanent commitment would be valuable, but likely infeasible. Recent history shows
how difficult it is to achieve cooperation amongst nations even in the short run. Com-
mitment to future climate policy, over long spans of time, requires current policy-makers
to induce their successors to maintain “more cooperation” than successors desire. Figure
8 shows that the difference between future generations’ emissions choice, and the level
the current generation would choose, increases in the commitment horizon. More distant
generations have more incentive to break the commitment device.

A technology with commitment horizon j enables the initial generation to commit
policy for j periods. Figure 9 plots commitment value as a function of the commitment
horizon, showing a convex relation for the first 150 years. The value of commitment
remains near zero for a few decades and reaches one percent of GWP only after 160 years.
Because the value of a short commitment period is small, and the cost of supporting a
long period is probably large, efforts to devise and implement a commitment technology
are likely futile.
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5.1.1 Explanation for convexity

Two forces affect the curvature of the value-of-commitment graph. The first, denoted
“decision conflict” arises because the discount rate falls over time. As a consequence,
the difference between the discount rate that the agent at t applies to evaluate a utility
transfer between t+N − 1 and t+N , and the discount rate that the agent at t+N − 1
uses to evaluate this transfer, grows with N . The disagreement, between the agents at
t and at t + N − 1, about the optimal plan at t + N − 1 therefore also tends to grown
with N .11 From the perspective of the agent at t, a commitment period of N solves this
conflict. Other things equal, the solution to the conflict is more valuable to the agent at
t, the greater is the conflict. This force tends to make the value of commitment convex
in the commitment period. However the serious conflicts also tend to occur farther in the
future, and are thus discounted more heavily, reducing their present value for the agent
at t. This “present value effect” tends to make the value of commitment concave in the
commitment period.

An increase in the commitment horizon from N to N + 1 periods potentially alters
equilibrium climate and savings policy in the first N − 1 periods, creating a third reason
for the slope of commitment value to depend on N . However, Corollaries 1 and 2 show
that this channel does not operate in the log-linear setting. Therefore, the curvature of
the value of commitment depends on the relative strength of the decision conflict and the
present value effect.

Proposition 3 provides a necessary and sufficient condition for convexity, using the
current value continuation payoff. If generation t has an N -period commitment technology,
it can choose policy in periods t through t+N − 1. Let {cNt+s}s≥0 denote the sequence of
equilibrium consumption when the commitment period is N . Generation t’s present value
of the continuation payoff beginning in t+N is

WN
t+N ≡

∞∑
s=0

λN+s ln(cNt+N+s),

and the current value, viewed from the perspective of the generation in t, is

V N
t+N ≡

(
WN
t+N

)
/λN . (16)

The increase in the current value continuation payoff due to an additional commitment
period is

∆V N
t+N ≡ V N+1

t+N − V
N
t+N .

Convexity of the commitment value requires the increment in WN
t+N when moving from

N -period commitment to N + 1-period commitment to increase in N . This condition
holds if and only if the growth rate of ∆V N

t+N exceeds the rate at which the time weight
decays.

Proposition 3 For the log-linear model, a necessary and sufficient condition for the com-
mitment value curve to be convex in the commitment horizon is

∆V N+1
t+N+1 −∆V N

t+N

∆V N
t+N

≥ rN , (17)

11With quasi-hyperbolic discounting, the disagreement conflict becomes constant after a single period.
Therefore, quasi-hyperbolic discounting tends to result in a lower and less convex value of commitment.
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Figure 10: Commitment value curve with TFP growth, δ = 0.65 and Stern weight 0.2.
Black lines show case with linear damages; grey lines show case with convex damages.

where rN is the discount rate applied by the initial generation between period N − 1 and
period N .

The left-side of inequality (17) captures the impact of rising decision conflict, measur-
ing the growth of the increment to the current value continuation payoff, viewed by the
generation in t. The right-side captures the fact that as the added commitment period
occurs further in the future, it matters less because the initial generation discounts it
more heavily. For small N the left side is greater than the right side, and the graph of
commitment value is convex in N . As N → ∞, the growth rate of ∆VN+1 approaches
zero, but the discount rates approaches 0.01 (the Stern decadal discount rate). Therefore,
for large N inequality (17) is reversed, and the value of commitment becomes concave.
Commitment value converges to a constant as the commitment horizon goes to infinity.
In the application, the value of commitment is strictly convex in the commitment period
for 150 years.

5.2 The general case

Figure 10 graphs commitment value in the general setting.12 The solid-black lines vary
the consumption elasticity with linear damages. The dashed-grey lines vary the con-
sumption elasticity with convex damages. Depreciation is incomplete (δ = 0.65) and we
include TFP growth. A higher consumption elasticity decreases the value of commitment,
without changing the graph’s convex shape. With TFP growth, higher η increases the
consumption discount rate, lowering the present value of the higher future utility achieved
by commitment.

Comparing the solid black and dashed grey lines shows that moving from linear to
convex damages does not substantially change the shape or magnitude of the curves. This

12To compute the equilibrium path with commitment, we numerically implement the backward induction
sweep separately for each possible commitment horizon. When choosing policies within the commitment
horizon, we impose time preferences on future decision makers consistent with those the initial generation
would want them to use.

25



Figure 11: Carbon tax trajectory for equilibria with one-, five- and ten-period commit-
ment. TFP growth, η = 1.5, δ = 0.65. Panels differ in terms of damages.
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Figure 12: Tail portion of second panel from figure 11.

insensitivity is somewhat surprising. When damages are convex, absent commitment,
strategic interactions induce the initial generation to emit more than it otherwise would.
Because a commitment device shuts down strategic interactions within the commitment
horizon, we might expect it to confer additional value when the strategic interactions
are significant (i.e., with convex damages). However, those strategic interactions do not
substantially increase the value of commitment, because countervailing forces operate
beyond the commitment horizon. Figures 11 and 12 make this point.13

With linear damages, at the end of a commitment period of either 5 or 10 decades, the
tax drops to almost exactly the no-commitment level. In contrast, with convex damages,
the tax after a commitment interval falls below the no-commitment baseline. Figure 12,
for a 10-period commitment interval, makes this reduction easier to see. Post-commitment
generations abate less, the longer is the commitment period, because they inherit a lower

13The figures presents results for the case with η = 1.5, though the qualitative findings remain the same
for η = 1 and η = 2.
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stock of carbon. The generation operating within the commitment interval anticipates
this response, reducing the value of commitment.

Comparing the three pairs of curves in Figure 10 shows the interaction between η
and the convexity of costs, in determining the value of commitment. The commitment
value is higher under linear compared to convex damages for η = 1, but η > 1 reverses
the ordering. The reversal results from the post-commitment strategic interactions noted
above. Those strategic incentives operate under convex but not linear damages. The
downside of commitment materializes in the future. The future matters less with higher
η, so the post-commitment strategic reaction is less damaging with high η.

In the log-linear setting, we noted that there are no strategic effects. These effects are
present in the general model, and potentially influence the value of commitment. However,
we find that those effects are negligible (Appendix B.6). Therefore, the intuition for the
convex value of commitment, obtained for the log-linear model, remains approximately
correct in the general model.

6 Numerical Methods

Standard dynamic programming methods cannot be used under NCTP because agents in
different periods disagree about the evaluation of subsequent continuation values. Section
6.1 modifies the standard finite horizon dynamic programming algorithm to account for
agents’ distinct time perspectives.

Polynomial approximation methods used to implement continuous state dynamic pro-
gramming may be unstable, especially in non-stationary settings. Repeated iteration of
the dynamic programming equation can amplify small wobbles in the approximated value
function, causing it to “lose shape” (Cai and Judd 2014). For example, the approxima-
tion of a convex function may cease to be convex.14 The instability is heightened in our
problem, where we need to solve a fixed point at each time step to obtain the aggregate
savings decision. Small non-convexities in the value function can cause the search for a
fixed point to fail. In section 6.2, we build on an insight in KKS to devise an alternate
approach. KKS note that the value function for agents with isoelastic utility and a linear
constraint can be expressed in closed form in individual (but not aggregate) capital. They
use this fact to calculate the steady state for a class of models. We adapt it to approximate
the dynamic equilibrium for a broader class. We verify the accuracy of the approach by
comparing the numerical solution with the analytic solution for the log-linear case.

6.1 The generalized dynamic programming equation

To simplify exposition, we present the algorithm for the current model; with additional
notation, it can be used for an arbitrary dynamic model, as in Iverson (2012). To focus on
the savings decision, we take the climate policy as given. In implementing the algorithm
we need to consider the two types of decisions simultaneously. The model has T + 1

14One option is to use linear splines, though this requires many more nodal points than with polynomial
approximation and becomes very time consuming for problems, like ours, with several state variables.
Another approach is to apply shape-preserving spline approximation methods (Cai and Judd 2014), but
so far these methods have only been developed for problems with a single state variable. In any case,
for the problem with NCTP, we cannot guarantee concavity of the value function on a priori grounds, so
imposing it would amount to an ad hoc restriction.
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periods. Working backwards, the iteration index i identifies the number of periods to go.
Fixing the initial period at t = 0, the iteration index also accounts for calendar time, thus
incorporating non-stationarity. The discount factor the agent applies to the flow j periods
in the future is λj ≡ Πj

i=0βi, where βj is the single period discount factor, and β0 = 1.
The function V (i) (k,K,S) denotes the agent’s equilibrium welfare when there are i

periods to go. We construct auxiliary value functions to represent the continuation value
for agents in earlier periods. The value that the agent at T − j attaches to the stream

of payoffs from T − i through T is W
(i)
T−j (k,K,S), for j = i + 1, i + 2...T − 1.15 We

need to track as many auxiliary value functions as there are periods over which the rate
of time preference declines. With quasi-hyperbolic discounting, we need one auxiliary
value function (Harris and Laibson, 2001). In the application, we assume the rate of
time preference declines for 300 years—30 periods—so we need to save 29 auxiliary value
functions at each time step. Because computing the auxiliary value functions requires no
additional optimization, the computational intensity is only modestly greater than for a
comparable-sized dynamic program.

Proposition 4 At iteration i the agent solves

V (i) (k,K,S) = maxk′
(
U (Rik + wi + (1− δ) k − k′) + β1W

(i−1)
T−i (k′,K ′,S′)

)
⇒

k′∗ ≡ arg maxs

(
U (Rik + wi + (1− δ) k − k′) + β1W

(i−1)
T−i (k′,K ′,S′)

)
.

(18)

Using k′∗ to denote the equilibrium savings rule (as distinct from the level of savings), the
updating equation for the auxiliary value function is

W
(i)
T−j (k,K,S) = U

(
Rik + wi + (1− δ) k − k′∗

)
+ βj−i+1W

(i−1)
T−j

(
k′∗,K ′,S′

)
(19)

for j = i+ 1, i+ 2...T − 1 with boundary condition

W
(−1)
T−j (k,K,S) ≡ 0, for j = 0, 1, ...T − 1. (20)

For i = 0 we impose the constraint k′ ≥ 0.

To implement the procedure, we first solve the static problem in the last period and use
the solution to construct numerical approximations for the auxiliary value functions. We
then iterate backwards, using the appropriate auxiliary value function when evaluating
the “next-period outcome” from the perspective of each earlier generations. We have
successfully used this procedure to compute MPE for the command economy, where a
planner chooses savings. But, as noted, the procedure becomes unstable when we try to
use it to solve the competitive equilibrium, which requires finding a fixed point at each
iteration. The next subsection describes an alternate approach.

15With non-constant discounting, W
(i)
T−j (k,K,S) does not in general equal the discounted value of

V (i) (k,K,S), because the agents at T − i and at T − j put different weight on the stream of payoffs from
T − i through T .
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6.2 Semi-analytic numerical procedure

Proposition 5 provides the algorithm for the private agents’ problem, taking as given the
climate policy. Section 6.2.2 explains the modification to determine the climate policy.
Referees’ Appendix B.5 discusses some numerical details needed to impose the identity
between individual and aggregate savings rules.

6.2.1 The private savings decision

Here we include individual capital as an additional state variable, apart from the aggregate
states. Agents have isoelastic utility and face the linear constraint k′ = R (K,E,S,i) k +
w (K,E,S, i) − c + (1− δ) k. The iteration index i captures time. Prices depend on
variables the agent takes as given, including climate policy (Section 6.2.2). We present
the case η 6= 1, relegating the log case, η = 1, to Appendix A.5.

The solution has two important properties: a semi-analytic expression for the auxiliary
value function and a linear savings rule. The auxiliary value functions in (18) have the
following structure:

W
(i)
T−j (k,K,E,S) = bi;j (K,E,S)

(k + fi (K,E,S))1−η

1− η
. (21)

The endogenous functions bi;j (K,E,S) and fi (K,E,S) depend on the aggregate states
and emissions, but not on individual capital k. Equilibrium net saving, si (K,E,S) [k + ξi (K,E,S)],
is linear in the agent’s capital, so gross savings equal k′ = si (K,E,S) [k + ξi (K,E,S)] +
(1− δ) k. We obtain closed form expressions for si (K,E,S) and ξi (K,E,S) in terms of
bi−1 (K,E,S) and fi−1 (K,E,S), which we know from the previous iteration. We also de-
rive an updating rule for bi;j (K,E,S) and fi (K,E,S), and we get a boundary condition
that uses the fact that savings are zero in the last period.

The procedure has three advantages. First, we need to approximate functions that
depend only on the aggregate states, not individual capital, thus reducing by one the
number of state variables. Second, conditional on the climate policy, obtaining the equi-
librium savings rule requires, at each stage, the solution to relatively simple fixed point
problems from <2 → <2 instead of a complicated mapping in the space of functions.
Third, the analytical expression for continuation values captures the curvature that these
functions inherit from the curved utility function. The functions bi (K,S) and fi (K,S)
are quite flat, and thus well approximated by low-dimensional polynomials, leading to a
stable numerical procedure.

Proposition 5 Taking as given the decision rules for climate policy, Ei ≡ Ei(K,S), the
equilibrium savings rule for the agent is linear in own-capital, k′ = si (k + ξi) + 1− δ, and
the auxiliary value function has the form:

W
(i)
T−j (k,K,E,S) = bi;j (K,E,S)

(k + fi (K,E,S))1−η

1− η
, (22)

for i = 0, 1, 2..T ; for each i, the index j runs over i + 1...T − 1. At i = 0 the agent the
agent saves nothing (so net savings equal − (1− δ) k):

s0 = − (1− δ) and ξ0 = 0. (23)
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For i ≥ 1 the coefficients of the savings rule are

si =
Ri − (1− δ)

(
(β1bi−1;i)

− 1
η

)
1 + (β1bi−1;i)

− 1
η

(24)

ξi =
wi − (β1bi−1;i)

− 1
η fi−1

Ri − (1− δ)
(

(β1bi−1;i)
− 1
η

) (25)

The endogenous functions bi;j (K,E,S) ( for j = i+ 1, ...T − 1) and fi (K,E,S) obey
the recursion

bi;j =

(
Ri+(1−δ)

1+(β1bi−1;i)
− 1
η

)1−η [
(β1bi−1;i)

− 1−η
η + βj−i+1bi−1;j

]
fi = wi+fi−1

Ri

(26)

with boundary conditions

f0 =
w0

R0 + 1− δ
and b0;j = (R0 + 1− δ)1−η . (27)

6.2.2 The climate policy problem

The planner takes the aggregate states, (K,S), all savings rules, and future climate policy
rules as given. The equilibrium current savings rule, si (K,E,S) [K + ξi (K,E,S)], de-
pends on current emissions, via its effect on output. The planner chooses current emissions,
E = Ei(K,S), to maximize welfare for the representative agent, so the value functions
and savings rules are evaluated where k = K. The planner’s problem is

max
E

(Ri(K,S,E)K+wi(K,S,E)−K′)1−η
1−η + β1bi−1;i (K ′,S′) (K′+fi−1(K′,S′))1−η

1−η

subject to

K ′ = si (K,E,S) (K + ξi (K,E,S)) + (1− δ)K,

S′ = H(S, E).

.

Current emissions affect the next period states: S′ through the impact on the stock
accumulation equation—here denoted H(·)—and K ′ through the impact of emissions on
current output, and thus on current savings.

6.2.3 Demonstration of numerical stability

Figure 13 plots level sets of bi (K,S) and fi (K,S) in the initial period after iterating on the
numerical procedure for 200 periods, corresponding to the 2000 year time horizon in the
application. Figure 14 plots the corresponding value function that satisfies the analytical
relationship between bi and fi and the value function. The plots show that the numerical
procedure is highly stable, owing in part to the low degree of curvature in the bi and fi
functions, along with the fact that equilibrium welfare inherits concavity directly from the
analytical portion of the semi-analytic expression described in proposition 5.
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Figure 13: The function on the left is fi (K,S), while the function on the right is bi (K,S).
Shown in the initial period when the model is solved with η = 2, δ = 0.65, and a time
horizon of 2000 years.
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7 Conclusion

Climate policy creates costs today in exchange for benefits that accrue to currently living
people later in life and to subsequent generations. If people discount their own future
benefits and the benefits of those born later at different rates, they have non-constant
time preference. We solve the first integrated assessment model with iso-elastic utility, but
otherwise general functional forms, under NCTP. The need to solve the savings decision as
an equilibrium problem, instead of a command problem, creates technical difficulties that
we overcome using two new algorithms. NCTP changes the nature of the policy decision.
Future policy-makers do less to combat climate change than the current generation would
like, so there is an incentive to devise a commitment device to force the hand of future
generations. Although a commitment device lasting hundreds of years would be highly
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valuable, one lasting only a few decades is worth little. Given the difficulty involved, we
conclude that efforts to create and implement such a device are likely futile.

The paper also provides an analytic solution to the log-linear model. Given its con-
venience, it is important to consider the robustness of this model’s policy prescriptions.
We find that the magnitude of the carbon tax is robust to changes in the depreciation
rate, but not to changes in the elasticity of intertemporal substitution or the damage func-
tion. The strong property of the log-linear model, which shuts down strategic interactions
among generations, approximately holds for other values of the elasticity of intertemporal
substitution and of the depreciation rate, provided damages are roughly linear in the stock
of carbon. But if damages are strongly convex, policies are dynamic strategic substitutes,
creating strategic incentives that reduce the equilibrium carbon tax.

Due to its analytic solution, the log-linear model can be extended at little cost to
include temperature delay and uncertainty about damages. The additional state variables
needed to extend the general model give rise to the curse of dimensionality. Nevertheless,
it is worth considering temperature delay and a finite resource stock. Incorporating un-
certainty about future technology would require a more fundamental change, but would
make it possible to quantify the relative importance of two distinct reasons for a declining
consumption discount rate: hyperbolic discounting and changes to the term structure of
interest rates due to uncertainty.
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A Appendix

A.1 Proof of Proposition 1

We solve for the unique MPE that arises in the finite horizon version of the problem, then
take the limit as the time horizon goes to infinity. Lemma 1 presents the equilibrium
savings rule that obtains in the non-stationary, finite-horizon setting. Hiraguchi (2014)
studies the analogous equilibrium problem in a stationary, infinite-horizon (one-state)
economy with general NCTP. To link the savings equilibrium with the climate policy
equilibrium in our setting and to solve for the limit equilibrium, we need to study the
finite horizon equilibrium problem explicitly. In this way, the proof we present differs
significantly from that in Hiraguchi (2014). Nevertheless, because the result coincides
with Hiraguchi (2014) in the infinite horizon limit, we relegate our proof of the lemma to
Referees’ Appendix B.1.

We employ the following notation. The horizon at time 0 is H, so the remaining
horizon at time t is T = H − t.

Lemma 1 Suppose Assumption 1 holds and that climate policy in each period is indepen-
dent of the inherited states. Then the unique equilibrium savings rule is

K ′ = G(K,T )Yt =
αρ (T )

1 + ρ (T )
Yt =

ρ (T )

1 + ρ (T )
rtK (28)

with the definition

ρ (T ) ≡
T−1∑
t=1

λτ . (29)

Building on (28), define

st ≡
αρ (H − t)

1 + ρ (H − t)
. (30)

The climate planner equilibrium is constructed using an inductive proof. In period t,
the inductive hypothesis states that for all subsequent periods τ > t optimal emissions, Eτ ,
are independent of the inherited state variables, Kτ and Sτ−1. In addition, from Lemma 1
the sequence of savings rules {st+j}T−tj=0 are stock invariant so the climate planner in t
takes them as given also.

The hypothesis is easy to verify for the last period. Suppose that in a given period t, it
holds for all subsequent periods. Then the planner in t anticipates capital will accumulate
according to

Kτ+1 = sτKα
τ Aτ (Eτ ) exp (−γSτ ) , τ = t, . . . , T − 1. (31)

Taking logs gives a first-order linear difference equation in the log of capital. Iterating
this equation, the log of capital in τ > t+ 1 can be written

ln(Kτ ) = ατ−(t+1) ln(Kt+1) +
τ−t−2∑
j=0

ατ−t−2−j [ln(st+1+j) + ln(At+1+j(Et+1+j))− γSt+1+j ].

(32)

1



Ignoring variables that are exogenous to the decision-maker in t, this can be written

ln(Kτ ) = ατ−(t+1) ln(Kt+1)−
τ−t−2∑
j=0

ατ−t−2−jγ(1− d1+j)Et + “terms”. (33)

Even though the decision-maker in t does not control the savings rate in t, they still
influence Kt+1 via their influence on Yt. Using (33), the flow payoff in τ can be written

ln(Cτ ) = ln[(1− sτ )Kα
τ Aτ (Eτ ) exp (−γSτ )]

= α ln(Kτ )− γSτ + “terms”

= α[ατ−(t+1) ln(Kt+1)−
τ−t−2∑
j=0

ατ−t−2−jγ(1− d1+j)Et + “terms”]− γSτ + “terms”

Combining gives

ln(Cτ ) = ατ−t ln(Kt+1)−
τ−t−1∑
j=0

ατ−t−1−jγ(1− d1+j)Et + “terms” (34)

Using this and substituting for Yt in the planner’s objective function, the planner’s problem
in t can be written

max
Et

ln

(1− st)Kα
t At(Et) exp

−γ t+T∑
j=0

(1− dj)Et−j

+

T∑
τ=t+1

λτ−t

“terms” + ατ−t ln(stK
α
t At(Et) exp

−γ t+T∑
j=0

(1− dj)Et−j

)−
τ−t−1∑
j=0

ατ−t−1−jγ(1− d1+j)Et


Letting Ft denote the final-good production function in t, the first-order condition with

respect to Et becomes

∂Ft/∂Et
Ft

(
1 +

T∑
τ=t+1

λτ−tα
τ−t

)
=

T∑
τ=t+1

λτ−t

τ−t−1∑
j=0

ατ−t−1−jγ(1− d1+j)

+

(
1 +

T∑
τ=t+1

λτ−tα
τ−t

)
γ(1− d0).

Combining the RHS terms gives

T∑
τ=t

λτ−t

τ−t∑
j=0

ατ−t−jγ(1− dj).

Taking the limit as T →∞, the first-order condition can be written

∂Ft/∂Et
Ft

(1 + θ) =

T∑
τ=t

λτ−t

τ−t∑
j=0

ατ−t−jγ(1− dj). (35)
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Thus,

∂Ft/∂Et =

∑T
τ=t λτ−t

∑τ−t
j=0 α

τ−t−jγ(1− dj)
1 + θ

Yt ≡ Λst . (36)

Standard arguments show that competitive firms will respond to a tax on emissions by
setting ∂Ft/∂Et equal to the tax so the equilibrium tax in t is Λst . Uniqueness of the
equilibrium tax follows by construction.

To verify the inductive hypothesis, rewrite (37) as

A′t(Et)/At(Et) =

∑T
τ=t λτ−t

∑τ−t
j=0 α

τ−t−jγ(1− dj)
1 + θ

. (37)

This gives a deterministic function that defines Et as a stock-invariant quantity that
depends only on model parameters.

Next, we rewrite the expression for Λst to get the formula in the proposition. Specifi-
cally, for the infinite horizon case , we employ the following double sum identity:

∞∑
p=0

p∑
q=0

aq,p−q =
∞∑
m=0

∞∑
n=0

an,m.

The identify can be proved by listing the terms in a two by two grid, where the index of
the first sum comprise the rows and the index of the second sum comprise the columns.
The left-hand side is obtained by summing the rows of the grid, while the right-hand side
is obtained by summing the same set of terms diagonally.

When t = 0 and T =∞,

T∑
τ=t+1

λτ−1

τ−t∑
j=1

ατ−t−jγ(1− dj) =
∞∑
p=0

λp

p+1∑
j=1

αp+1−jγ(1− dj) =
∞∑
p=0

p∑
q=0

λp−q+qα
p−qγ(1− d1+q).

Letting n = q and m = p− q,

=

∞∑
m=0

∞∑
n=0

λm+nα
mγ(1− d1+n)

=
∞∑
m=0

∞∑
n=0

λnλn+1,n+mα
mγ(1− d1+n)

=
∞∑
n=0

∞∑
m=0

λnλn+1,n+mα
mγ(1− d1+n)

=

∞∑
n=0

λnγ(1− d1+n)

∞∑
m=0

αmλn+1,n+m

=
∞∑
n=0

λnγ(1− d1+n)Γ(n),

where

Γ(n) =

∞∑
m=0

αmλn+1,n+m.
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Combining this with (36) gives the expression for the equilibrium tax stated in the ex-
pression.

The corollaries follow from the proof above. Corollary 1 follows from the Lemma 1,
together with the finding that the path of stock-invariant aggregate savings rates drops
out from the determination of the equilibrium tax. Corollary 2 follows from the inductive
hypothesis, which was verified above.

A.2 Proof of Proposition 3

A necessary and sufficient condition for commitment value to be convex in commitment
horizon is for the increment in commitment value when moving from N -period commit-
ment to N + 1-period commitment to increase in N . Suppose commitment is imposed
in period 0. With N -period commitment, the taxes in t = 0 through N − 1 are τNt ,
where the “N” superscript indicates that the tax is chosen by the initial generation with
N -period commitment. After period N − 1, taxes are τ1,N

t , where the “1,N” superscript
indicates that taxes are chosen by the contemporaneous generation without commitment
in the equilibrium in which the initial generation commits policy N periods.

With N + 1-period commitment, the taxes are
(
{τN+1
t }N−1

t=0 , τ
N+1
N , {τ1,N+1

t }∞t=N+1

)
.

It follows from Corollary 1 that τNt = τN+1
t for t = 0, . . . , N − 1 and τ1,N

t = τ1,N+1
t

for t > N . In addition, due to Corollary 2, savings rates are the same in all periods
regardless of commitment horizon. It follows that consumption levels are the same for the
first N periods with N and N + 1 period commitment. Letting cNt denote equilibrium
consumption in t with N -period commitment, we have

cN+1
t = cNt for t = 0, . . . , N − 1 (38)

Define welfare for the generation in period 0 with j period commitment as W̃ j
0 . Then

the value of commitment is16

W̃N
0 − W̃ 1

0 .

Then the increment in commitment value when going from N -period commitment to
N + 1-period commitment is

INCN+1 ≡ (W̃N+1
0 − W̃ 1

0 )− (W̃N
0 − W̃ 1

0 ) = W̃N+1
0 − W̃N

0 .

16For simplicity, we denominate commitment value in utility units here, though the argument is un-
changed when welfare changes are denominated in consumption units.
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Using (38),

INCN+1 = W̃N+1
0 − W̃N

0

=

∞∑
t=0

λt ln(cN+1
t )−

∞∑
t=0

λt ln(cNt )

=

(N−1∑
t=0

λt ln(cN+1
t ) +

∞∑
t=N

λt ln(cN+1
t )

)
−
(N−1∑

t=0

λt ln(cNt ) +

∞∑
t=N

λt ln(cNt )

)

=

(N−1∑
t=0

λt ln(cNt ) +

∞∑
t=N

λt ln(cN+1
t )

)
−
(N−1∑

t=0

λt ln(cNt ) +

∞∑
t=N

λt ln(cNt )

)

=
∞∑
t=N

λt ln(cN+1
t )−

∞∑
t=N

λt ln(cNt )

= λN

[ ∞∑
s=0

λN+s

λN
ln(cN+1

N+s)

]
− λN

[ ∞∑
s=0

λN+s

λN
ln(cNN+s)

]
= λN

[
V N+1
N − V N

N

]
where V N

t is defined in (16). Thus,
It follows that INCN+1 ≥ INCN if and only if

∆V N+1
N+1

∆V N
N

≥ λN−1

λN
≡ 1 + rN , (39)

where rN is the discount rate applied by the initial generation between period N − 1 and
period N . This is equivalent to the stated result since we assumed t = 0.

A.3 Proof of Proposition 4

Proposition 4 generalizes the standard dynamic programming equation. Harris and Laib-
son (2001) use this approach for quasi-hyperbolic discounting. Fujii and Karp (2007) use
a variation as a basis for numerical work for a one-state variable stationary problem with
general NCTP.
Proof. (Proposition 4) We use a proof by induction. At i = 0, (20) and the fact that
there are no subsequent payoffs imply that the agent solves the optimization problem in
the first line of (18) (under the constraint k′ ≥ 0). Therefore, the decision rule is given by
the second line of (18) for i = 0.

The inductive hypothesis is that the first line of (18) holds at iterations i − 1. We
need to establish that this hypothesis and the updating equation 19 imply that the first
line of (18) gives the correct optimization problem at iteration i. To establish this claim,

it is necessary and sufficient to confirm that β1W
(i−1)
T−i is the correct continuation value at

iteration i. The rest of the proof establishes this claim.

The agent’s evaluation, at iteration i, of an arbitrary sequence of flow payoffs
{
U (m)

}i
m=0

is

U (i) + β1U
(i−1) + ...+ (β1β2...βi)U

(0) =

i∑
t=0

(
Πt
n=0βn

)
U (i−t). (40)
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where the equality uses β0 = 1. Denote the equilibrium flow payoff at iteration i as Ũ (i).
The equilibrium payoff at iteration i depends on the agent’s level of capital, and current
and future variables that the agent takes as exogenous (captured by the iteration index).

Thus, the equilibrium values
{
Ũ (m)

}i
m=0

depend on ki and on variables that the agent

takes as exogenous.
Replacing the arbitrary functions U (i) with equilibrium levels of utility, Ũ (i) and using

(19) and (20) and repeated substitution, we write

W
(i)
T−j = Ũ (i) + βj−i+1W

(i−1)
T−j

= Ũ (i) + βj−i+1

[
Ũ (i−1) + βj−i+2W

(i−2)
T−j

]
= Ũ (i) + βj−i+1

[
Ũ (i−1) + βj−i+2

(
Ũ (i−2) + βj−i+3W

(i−3)
T−j

)]
...
...

= Ũ (i) +
∑i

t=1

(
Πt−1
n=0βj−i+1+n

)
Ũ (i−t).

Thus,

W
(i−1)
T−j = Ũ (i−1) +

∑i−1
t=1

(
Πt−1
n=0βj−i+2+n

)
Ũ (i−1−t)

Setting j = i (the largest value of j when the superscript is i− 1) gives

W
(i−1)
T−i (ki−1) = Ũ (i−1) +

∑i−1
t=1

(
Πt−1
n=0β2+n

)
Ũ (i−1−t) ⇒

β1W
(i−1)
T−i (ki−1) = β1

[
Ũ (i−1) +

∑i−1
t=1

(
Πt−1
n=0β2+n

)
Ũ (i−1−t)

]
=
∑i−1

t=1

(
Πt
n=1βn

)
Ũ (i−t).

(41)

Here we include the argument ki−1, the agent’s stock of capital at iteration i − 1, in the

function W
(i−1)
T−i in order to emphasize that the equilibrium sequence of current and future

flow payoffs depend on this stock.
At iteration i, using (40), the agent chooses k′ to solve

maxk′
(
U (i) (k, k′) + β1

∑i
t=1

(
Πt
n=0βn

)
Ũ (i−t)

)
=

maxk′
(
U (i) (k, k′) + β1W

(i−1)
T−i (ki−1)

)
,

where the equality uses (41). This equation establishes that the first line of (18) gives
the correct maximand at iteration i. The agent in the current period can deviate from
equilibrium, so the current flow payoff is U (i) (k, k′). However, the sequence of future flow
payoffs, Ũ (i−t), are evaluated in equilibrium; these payoffs are functions of k′.)

A.4 Proof of Proposition 5

We use Proposition 4 to develop formulae for the endogenous savings rule in the case of
isoelastic utility. The equilibrium is a linear savings rule whose coefficients depend on

6



variables that the agent takes as exogenous. Those variable might be either exogenous or
endogenous to the model (e.g. technological change versus climate change). Single period
utility is

U (c) =
c1−η

1− η
for η 6= 1; U (c) = ln (c) o/w⇒ U ′ (c) = c−η.

A linear net savings rule, si (k + ξi) implies next period capital for the agent is

k′ = si (k + ξi) + (1− δ) k (42)

Consumption is
ci = (Ri − si) k + wi − siξi. (43)

Utility under this linear savings rule equals

((Ri − si) k + wi − siξi)1−η

1− η
=

(Ri − si)1−η
(
k + wi−siξi

Ri−si

)1−η

1− η
(44)

The subscript i recognizes that the net savings rate changes with the iteration number.
That change potentially arises for several reasons: changes in variables that are exogenous
to the model (e.g. technology), changes in state variables that are exogenous to the agent
but endogenous to the model (e.g., climate and climate policy) and also because (for
finite terminal time, T ) the distance from the current to the final period changes with the
iteration index.

For the climate problem it is important to include the climate state and climate policies
as arguments of the endogenous functions, but in the interest of clarity we begin with a
simpler problem in which the only exogenous states (from the agent’s perspective) are
aggregate capital, K, and the index i. In this case, Ri = R (K, i) and wi = w (K, i) are
known functions, depending on aggregate capital stock and i (to capture exogenous-to-
the-model changes).
Proof. (Sketch of Proposition 5) The proof is algebra-intensive, so we relegate the details
to Referees’ Appendix B.3. Here we describe the straightforward logic. We use an induc-
tive proof. In the last period (i = 0) savings equal zero. With this fact, it is easy to confirm
(27) and, for i = 0, equation 22. We then use the inductive hypothesis (equation 22 holds
for i − 1) to write the agent’s saving problem at iteration i. The first order condition to
this problem implies the linear savings rule, with si given by (24) and ξi given by (25).
The agent’s problem is concave iff bi−1;i ≥ 0; we confirm this inequality numerically. We
substitute this savings rule into the agent’s dynamic programming equation to establish
the recursions in the two lines of (26).

A.5 Logarithmic utility

Using the linear savings and consumption rules, equations 42 and 43, utility under loga-
rithmic preferences equals

ln ((Ri − si) k + wi − siξi) = ln
(

(Ri − si)
[
k + wi−siξi

(Ri−si)

])
= ln (Ri − si) + ln

(
k + wi−siξi

(Ri−si)

)
.

(45)
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Proposition 6 The auxiliary value functions have the form

W
(i)
T−j (k,K) = ai;j + bi;j ln (k + fi) . (46)

with coefficients

ai;j = ln (Ri − si) + βj−i+1 [ai−1;j + bi−1;j ln (si + 1− δ)]

bi;j = (1 + βj−i+1bi−1;j) and fi = wi+fi−1

Ri+(1−δ)

(47)

and boundary conditions
a0;j = ln (R0 + 1− δ)

b0;j = 1 and f0 = w0
R0+1−δ .

(48)

At i = 0 gross savings equal zero; for i ≥ 1 the equilibrium savings rule is

k′ = si (k + ξi) + (1− δ) k (49)

with (for i ≥ 1)

si =
(β1bi−1;iRi)− (1− δ)

(1 + β1bi−1;i)
(50)

ξi =
wiβ1bi−1;i − fi−1

(β1bi−1;iRi)− (1− δ)
(51)

Appendix B.3 provides the proof, which parallels the proof for the case η 6= 1.
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B Referees’ appendix: Not intended for publication

This appendix collects technical information, not intended for publication. Appendix B.1
contains the proof of Lemma 1. This lemma provides only a slight generalization to a
result in Hiraguchi (2014). However, we need this result in order to establish uniqueness
of the limit equilibrium in the log-linear model. Appendix B.2 discusses a generalization
of the utility function to include population growth and a climate-related amenity value.
Appendix B.3 provides the detailed proofs of Propositions 5 and 6. Appendix B.4 summa-
rizes Ekeland and Lazrak’s (2010) OLG model, and explains how we modify it to include
privately owned capital. Appendix B.5 explains how we impose the equilibrium condition
that individual and aggregate savings are equal.

B.1 Proof of Lemma 1

The horizon at time t = 0 (the initial period) is H, so the remaining horizon at time t is
T = H − t. The proof uses the formula for the agent’s continuation value function

V e (k,K, t, T ) = (θ (T )− ρ (T )) lnK + ρ (T ) ln (k + ψ (T )K) + Pt (H − t) , (52)

which uses the definitions

ψ (T ) = (ρ (T ) + 1)

(
1

α
− 1

)
and θ (T ) ≡

T−1∑
t=1

ατλτ . (53)

We also show that the agent’s decision rule is

k′ = g (k,K, T ) =
ρ (T )

1 + ρ (T )
r (K) k. (54)

We verify (52)–(54) in the course of the proof. Comparing (28) and (54) shows that the
individual and society at large save the same fraction of income from capital, r (K)K for
society and r (K) k for the representative agent. We define Pt (H − t) in the course of the
proof, merely noting here that this function depends on time-to-go and, via the argument
t, on all state and policy variables apart from own- and aggregate capital. Thus, Pt (H − t)
depends on the trajectory of technology, the climate state, and climate policy.

We define Ãt ≡ (1−D(St))At (Et), so that with Assumption 1 we can write output as
Yt = ÃtK

α
t ; Ãt incorporates all variables, apart from aggregate capital, that the private

agent takes as exogenous.
We use an inductive argument. We start the inductive chain by noting that at t = H

(where time-to-go is T = H − t = 0) individual and aggregate equilibrium savings are
zero. We use the convention

∑0
t=1 yt = 0 for any sequence {yτ}. Using this convention,

ρ (0) = 0, so the individual and aggregate savings rules in (28) and (54) are indeed
equilibrium savings rules. Any other identically zero function is an equilibrium decision
rule at t = H, so there is a trivial multiplicity at t = H, but not at earlier times. Using
PH (0) = 0, (52) gives the equilibrium continuation payoff (zero) at T = 0.

The inductive hypothesis states that: (i) the future aggregate saving satisfies (28);
future own-savings satisfy (54); and the current continuation value function is given by
(52). We need to show that this hypothesis implies that (28) and (54) comprise the unique
equilibrium aggregate and own savings in the current period, and that the continuation
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value, from the perspective of the previous period, t − 1, satisfies (52). The assumption
in the lemma (that current climate policy does not depend on aggregate capital) means

that
{
Ãτ

}H
τ=t

does not depend on values of aggregate capital. Elements of
{
Ãτ

}H
τ=t+1

typically do depend on future climate policy.
Given the agent’s continuation value at t, (52), the agent’s problem at t is

V e
0 (k,K, t, T ) = maxk′ [ln (wt + rtk − k′) +

(θ (T )− ρ (T )) lnK ′ + ρ (T ) ln (k′ + ψ (T )K ′) + Pt+1 (T )].
(55)

The first order condition is

−1

(wt + rtk − k′)
+

ρ (T )

(k′ + ψ (T )K ′)
= 0 (56)

and the second order condition is satisfied:

−
[

1

(wt + rtk − k′)

]2

−
[

ρ (T )

(k′ + ψ (T )K ′)

]2

< 0.

The first order condition implies

k′ + ψ (T )K ′ = ρ (T )
(
wt + rtk − k′

)
. (57)

Using the expressions for the rental rate and transitory income in Definition 2.1, and
Assumption 1,

wt = (1− α) ÃtK
α rt

αÃtKα−1
=

(1− α)

α
Krt. (58)

Using (58) and (53) we can write (57) as

k′ (1 + ρ (T )) = ρ (T ) rtk + ρ (T )
1− α
α

rtK − (ρ (T ) + 1)

(
1

α
− 1

)
K ′ ⇒

k′ =
ρ (T )

(1 + ρ (T ))
rtk +

ρ (T )

(1 + ρ (T ))

1− α
α

rtK −
(

1

α
− 1

)
K ′ (59)

We need to confirm that under the hypothesis about future behavior, there is a unique
aggregate equilibrium savings rule at t. We do this in two steps. First, we use the fact that
in equilibrium, where k = K, the individual and aggregate savings levels must be equal.
Using this fact, we show that there is a unique candidate aggregate savings rule. Next we
show that when the agent takes this candidate as the aggregate savings rule, his optimal
decision is to save the same fraction of own-wealth as society saves of social wealth. Thus,
the unique candidate equilibrium is in fact an equilibrium savings rule at t.

At t, T , society saves some fraction of income, which we denote as G (t, T ):17

K ′ = G (t, T )Yt =
G (t, T )

α
rtKt. (60)

17We could condition the aggregate savings fraction on other state variables, but we see below that S
depends on T , but not on t. Adding additional arguments to S would not change the result that the
equilibrium S depends only on T .
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Using this savings rule in (59) gives

k′ =
ρ (T )

(1 + ρ (T ))
rtkt +

[
ρ (T )

(1 + ρ (T ))

1− α
α
−
(

1

α
− 1

)
G (t, T )

α

]
rtKt. (61)

This relation must hold for all k,K, including at equilibrium, where k = K. Moreover, if
k = K, equilibrium requires k′ = K ′. These facts, and using (60), gives

k′ =

[
ρ (T )

(1 + ρ (T ))
+

ρ (T )

(1 + ρ (T ))

1− α
α
−
(

1

α
− 1

)
G (t, T )

α

]
rtKt =

G (t, T )

α
rtKt = K ′.

This relation must hold for all rtKt, which implies[
ρ (T )

(1 + ρ (T ))

1

α
−
(

1

α
− 1

)
G (t, T )

α

]
=
G (t, T )

α
⇒[

ρ (T )

(1 + ρ (T ))

1

α
− 1

α

G (t, T )

α

]
= 0⇒ G (t, T ) =

αρ (T )

(1 + ρ (T ))
.

Thus, we know that (28) is the unique candidate aggregate savings rule. To establish
that this candidate savings rule is in fact an equilibrium, we need to confirm that it is
consistent with the individual savings rule (61) for k R K. Using the candidate in (61)
gives

k′ =
ρ (T )

(1 + ρ (T ))
rtk +

[
ρ (T )

(1 + ρ (T ))

1− α
α
−
(

1

α
− 1

)
ρ (T )

(1 + ρ (T ))

]
rtK. (62)

Using
ρ (T )

(1 + ρ (T ))

1− α
α
−
(

1

α
− 1

)
ρ (T )

(1 + ρ (T ))
= 0,

in (62) produces the individual savings rule in (54), thus confirming that the unique
candidate savings rule is indeed an equilibrium.

Now we show that the individual and aggregate savings rules produce the continuation
value function shown in (52), for any period. This result implies that this function is indeed
the continuation value function in the previous period, as the inductive argument requires.

First, we solve the difference equation for aggregate capital to write future capital as
a function of current capital.

Kt+1 =
ρ (T )

1 + ρ (T )
αÃtK

α
t ⇒

lnKt+1 = ln
ρ (H − t)

1 + ρ (H − t)
+ ln

(
αÃt

)
︸ ︷︷ ︸

≡yt

+ αKt.

Here we use T = H − t. Note that yt depends on the parameter H, but we suppress that
dependence. The definition

yt ≡ ln
ρ (H − t)

1 + ρ (H − t)
+ ln

(
αÃt

)
recognizes that t affects Ãt and also affects the remaining horizon. Use the fact that the
solution to the difference equation

xt+1 = αxt + yt
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is

xt+τ = ατxt +
τ−1∑
j=0

ατ−1−jyt+j

or

xt+τ = ατ−1xt+1 +

τ−2∑
j=0

ατ−2−jyt+1+j

to write, for integers τ ≥ 1,

lnKt+τ = ατ−1 lnKt+1 +
τ−2∑
j=0

ατ−2−jyt+1+j . (63)

In period t the agent chooses ct which produces next period capital kt+1. The agent at t
might begin off the equilibrium trajectory (where kt 6= Kt) or she might deviation (causing
kt+1 6= Kt+1), but he believes that his successors will follow the equilibrium decision rule,

so he believes that kt+τ
Kt+τ

= kt+1

Kt+1
for all integers τ ≥ 2. Suppressing the parameter H,

we write consumption at t + τ as ct+τ , recognizing that the time index has two types of
effects, via the time-dependent function Ãt and via the time-dependent time-to-go, H − t.
The agent believes that for integers τ ≥ 1

ct+τ = wt+τ + rt+τkt+τ −
ρ (H − (t+ τ))

(1 + ρ (H − (t+ τ)))
rt+τkt+τ

=
(1− α)

α
rt+τKt+τ +

1

(1 + ρ (H − (t+ τ)))
rt+τkt+τ

=

[
(1− α)

α
+

1

(1 + ρ (H − (t+ τ)))

kt+τ
Kt+τ

]
rt+τKt+τ .

We now use the fact that equilibrium beliefs, at time t, imply kt+τ
Kt+τ

= kt+1

Kt+1
. Regardless

of whether the agent enters period t with kt = Kt, he could choose a level of savings that
results in kt+1 6= Kt+1. However, given that future agents use their equilibrium savings
rule, kt+τ

Kt+τ
= kt+1

Kt+1
. This fact allows us to write

ct+τ =

(
(1− α)

α
+

1

(1 + ρ (T − 1))

kt+1

Kt+1

)
Kt+τrt+τ ⇒

ln ct+τ = ln

(
(1− α)

α
+

1

(1 + ρ (T − 1))

kt+1

Kt+1

)
+ ln (Kt+τrt+τ )

= ln

(
(1− α)

α
+

1

(1 + ρ (T − 1))

kt+1

Kt+1

)
+ ln

(
Kt+ταÃt+τK

α−1
t+τ

)
= ln

(
(1− α)

α
+

1

(1 + ρ (T − 1))

kt+1

Kt+1

)
+ ln

(
αÃt+τK

α
t+τ

)
= ln

(
(1− α)

α
+

1

(1 + ρ (T − 1))

kt+1

Kt+1

)
+ α lnKt+τ + ln

(
αÃt+τ

)

4



Using (63),

ln ct+τ = ln

(
(1− α)

α
+

1

(1 + ρ (T − 1))

kt+1

Kt+1

)

+α

ατ−1 lnKt+1 +

τ−2∑
j=0

ατ−2−jyt+1+j

+ ln
(
αÃt+τ

)
= ln

[(
(1− α)

α
Kt+1 +

1

(1 + ρ (T − 1))
kt+1

)
1

Kt+1

]

+

ατ lnKt+1 +
τ−2∑
j=0

ατ−1−jyt+1+j

+ ln
(
αÃt+τ

)
= ln

[(
(1− α)

α
Kt+1 +

1

(1 + ρ (T − 1))
kt+1

)]

− lnKt+1 +

ατ lnKt+1 +
τ−2∑
j=0

ατ−1−jyt+1+j

+ ln
(
αÃt+τ

)
= ln

(
(1− α)

α
Kt+1 +

1

(1 + ρ (T − 1))
kt+1

)
+ (ατ − 1) lnKt+1 +

τ−2∑
j=0

ατ−1−jyt+1+j + ln
(
αÃt+τ

)
= ln

[(
(1− α)

α
(1 + ρ (T − 1))Kt+1 + kt+1

)
1

(1 + ρ (T − 1))

]
+ (ατ − 1) lnKt+1 +

τ−2∑
j=0

ατ−1−jyt+1+j + ln
(
αÃt+τ

)
= ln

(
(1− α)

α
(1 + ρ (H − (t+ 1)))Kt+1 + kt+1

)
+

(ατ − 1) lnKt+1 +

τ−2∑
j=0

ατ−1−jyt+1+j + ln (αAt+τ )− ln (1 + ρ (H − (t+ 1)))︸ ︷︷ ︸
≡zt+τ (t)
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Using the expression for consumption in the definition of the continuation welfare

V e (kt+1,Kt+1, t+ 1, T − 1)

=

T−1∑
τ=1

λτ ln c (kt+τ ,Kt+τ , t+ τ, )

=

T−1∑
τ=1

λτ ln

(
(1− α)

α
(1 + ρ (H − (t+ 1)))Kt+1 + kt+1

)
+

T−1∑
τ=1

λτ (ατ − 1) lnKt+1 +

T−1∑
τ=1

λτzt+τ (t)

= ln

(
(1− α)

α
(1 + ρ (H − (t+ 1)))Kt+1 + kt+1

) T−1∑
τ=1

λτ +

lnKt+1

T−1∑
τ=1

λτ (ατ − 1) +
T−1∑
τ=1

λτzt+τ (t) .

Using the definitions in (29) and (53) and introducing the definition

P (T, t) =
T−1∑
τ=1

λτ (ατ − 1) lnKt+1 +
T−1∑
τ=1

λτzt+τ (t) ,

we confirm that (52) provides the formula for the continuation value of consumption from
T − 1 (t = H − (T − 1)) to 0 (t = H).

B.2 Generalizing the utility function

The agent’s utility at iteration i depends on consumption, ci = Rik + wi + (1− δ) k − k′,
where k is current capital and k′ equals savings (next period capital). If utility at iteration
i depends only on consumption, we write the utility function as U (Rik + wi + (1− δ) k − k′).
There are at least two reasons that we might want to write the utility function more gen-
erally, as Ui (Rik + wi + (1− δ) k − k′), i.e. to allow a direct dependence of utility on the
iteration index:

1. If utility depends explicitly on climate-related variables (or some other state variable
that the agent takes as exogenous), then the subscript i in Ui (·) enables us to take
this dependence into account.

2. We can accommodate exogenous population growth by replacing the representative
agent with a dynasty. Let pi = p (T − i) be the size of the population at iteration
i (calendar time T − i) relative to the size at iteration T (calendar time 0). Now
denoting k as aggregate capital for the dynasty, Rik as the dynasty’s income from
capital, and wi as their aggregate transient income, the individual member of the

dynasty has consumption Rik+wi+(1−δ)k−k′
pi

. The dynasty’s aggregate utility at it-

eration i is piU
(
Rik+wi+(1−δ)k−k′

pi

)
≡ Ui (Rik + wi + (1− δ) k − k′; pi). Thus, by

including an iteration index as an argument of the utility function, we can accom-
modate exogenous population growth.

In the interest of simplicity, we write U instead of Ui.
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B.3 Detailed proofs

Here we provide the algebraic proofs of Propositions 5 and 6.
Proof. (Proposition 5) We use an inductive proof. Using the first line of (18) and (20),
the agent’s problem for i = 0 is

V (0) (k,K) = max
k′≥0

(
U
(
(Ri + 1− δ) k + wi − k′

))
⇒ k′∗ = 0⇒

s0 (K) ≡ − (1− δ) and ξ0 (K) ≡ 0⇒

W
(0)
T−j (k,K) =

((R0 + 1− δ) k + w0)1−η

1− η
=

(
(R0 + 1− δ)

(
k + w0

R0+1−δ

))1−η

1− η

= (R0 + 1− δ)1−η

(
k + w0

R0+1−δ

)1−η

1− η
⇒

f0 (K) =
w0

R0 + 1− δ
and b0;j = (R0 + 1− δ)1−η (64)

for j = 1, 2...T − 1. These equalities confirm (27) and, for i = 0, (22).
Suppose that (22), holds for i − 1 (which, from the previous paragraph, we know is

true for i = 1). Using the first line of (18), the agent’s problem at iteration i is

max
k′

[
(Rik + wi + (1− δ) k − k′)1−η

1− η
+ β1

[
bi−1;i

(k′ + fi−1)1−η

1− η

]]
. (65)

(Note that the second index in the subscript of the endogenous functions is j = i.) Given
η > 0, a sufficient condition for concavity (in k′) of the agent’s objective is bi−1;i ≥ 0; we
can confirm this inequality numerically.(

Rik + (1− δ) k + wi − k′
)−η

= β1bi−1;i

(
k′ + fi−1

)−η ⇒
The first order condition is

(Rik + (1− δ) k + wi − k′)−η = β1bi−1;i (k′ + fi−1)−η ⇒

k′ − (1− δ) k =

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
(

1+(β1bi−1;i)
− 1
η

)
k +

wi−(β1bi−1;i)
− 1
η fi−1

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
 =

= siRi (k + ξi)

with si given by (24) and ξi given by (25).

We use this savings rule in the updating equation for W
(i)
T−j (k,K), (19), together

with the hypothesis (for i − 1), that (22) holds; we also use the equation for equilibrium
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utility—(44):

W
(i)
T−j (k,K) = U (Rik + wi + (1− δ) k − k′∗) + βj−i+1W

(i−1)
T−j (k′∗,K ′)

=
(Ri−si)1−η

(
k+

wi−siξi
Ri−si

)1−η

1−η + βj−i+1

[
bi−1;j

(k′+fi−1)1−η

1−η

]

=
(Ri−si)1−η

(
k+

wi−siξi
Ri−si

)1−η

1−η + βj−i+1

[
bi−1;j

(si(k+ξi)+(1−δ)k+fi−1)1−η

1−η

]

=
(Ri−si)1−η

(
k+

wi−siξi
Ri−si

)1−η

1−η + βj−i+1

[
bi−1;j

[si+1−δ]1−η
(
k+

sξi+fi−1
si+1−δ

)1−η

1−η

]
(66)

To confirm (22) for iteration i we first need to establish that the arguments of the power
functions are the same, i.e.

wi − siξi
Ri − si

=
sξi + fi−1

si + 1− δ
(67)

Using the formulae for si and ξi, equations 24 and 25, in the left side of (67), we have

wi − siξi
Ri − si

=

wi −
Ri−(1−δ)

(
(β1bi−1;i)

− 1
η

)
1+(β1bi−1;i)

− 1
η

wi−(β1bi−1;i)
− 1
η fi−1

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)

Ri −
Ri−(1−δ)

(
(β1bi−1;i)

− 1
η

)
1+(β1bi−1;i)

− 1
η

=

wi − wi−(β1bi−1;i)
− 1
η fi−1

1+(β1bi−1;i)
− 1
η

Ri −
Ri−(1−δ)

(
(β1bi−1;i)

− 1
η

)
1+(β1bi−1;i)

− 1
η

=
wi

[
1 + (β1bi−1;i)

− 1
η

]
−
(
wi − (β1bi−1;i)

− 1
η fi−1

)
Ri

[
1 + (β1bi−1;i)

− 1
η

]
−
(
Ri − (1− δ)

(
(β1bi−1;i)

− 1
η

))
=

wi

[
(β1bi−1;i)

− 1
η

]
+ (β1bi−1;i)

− 1
η fi−1

Ri

[
(β1bi−1;i)

− 1
η

]
+
(

(1− δ)
(

(β1bi−1;i)
− 1
η

))
=

wi + fi−1

Ri + (1− δ)
.
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Making the same substitutions for the right side of (67) gives

sξi + fi−1

si + 1− δ
=

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
1+(β1bi−1;i)

− 1
η

wi−(β1bi−1;i)
− 1
η fi−1

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

) + fi−1

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
1+(β1bi−1;i)

− 1
η

+ 1− δ

=

wi−(β1bi−1;i)
− 1
η fi−1

1+(β1bi−1;i)
− 1
η

+ fi−1

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
1+(β1bi−1;i)

− 1
η

+ 1− δ

=
wi − (β1bi−1;i)

− 1
η fi−1 + fi−1

(
1 + (β1bi−1;i)

− 1
η

)
Ri − (1− δ)

(
(β1bi−1;i)

− 1
η

)
+ (1− δ)

(
1 + (β1bi−1;i)

− 1
η

)
=

wi + fi−1

Ri + (1− δ)
.

We have thus confirmed that

wi − siξi
Ri − si

=
sξi + fi−1

si + 1− δ
=

wi + fi−1

Ri + (1− δ)
. (68)

Using (68), we write (66) as

W
(i)
T−j (k,K) =

(Ri−si)1−η
(
k+

wi+fi−1
Ri+(1−δ)

)1−η

1−η + βj−i+1

[
bi−1;j

[si+1−δ]1−η
(
k+

wi+fi−1
Ri+(1−δ)

)1−η

1−η

]

= 1
1−η

[
(Ri − si)1−η + βj−i+1bi−1;j (si + 1− δ)1−η

] (
k + wi+fi−1

Ri+(1−δ)

)1−η
,

or

W
(i)
T−j (k,K) = bi;j

(k+fi)
1−η

1−η with

fi = wi+fi−1

Ri+(1−δ)

bi;j = (Ri − si)1−η + βj−i+1bi−1;j (si + 1− δ)1−η

(69)
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Using (24) we can eliminate si to write the recursion for bi;j :

bi;j =Ri − Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
1+(β1bi−1;i)

− 1
η

1−η

+ βj−i+1bi−1;j

Ri−(1−δ)
(

(β1bi−1;i)
− 1
η

)
1+(β1bi−1;i)

− 1
η

+ 1− δ

1−η

=

(
1

1+(β1bi−1;i)
− 1
η

[
Ri

(
1 + (β1bi−1;i)

− 1
η

)
−
(
Ri − (1− δ)

(
(β1bi−1;i)

− 1
η

))])1−η

+βj−i+1bi−1;j

(
1

1+(β1bi−1;i)
− 1
η

[
Ri − (1− δ)

(
(β1bi−1;i)

− 1
η

)
+ (1− δ)

[
1 + (β1bi−1;i)

− 1
η

]])1−η

=

(
(β1bi−1;i)

− 1
η

1+(β1bi−1;i)
− 1
η

[Ri + (1− δ)]
)1−η

+ βj−i+1bi−1;j

(
1

1+(β1bi−1;i)
− 1
η

[Ri + (1− δ)]
)1−η

=

(
Ri+(1−δ)

1+(β1bi−1;i)
− 1
η

)1−η [
(β1bi−1;i)

− 1−η
η + βj−i+1bi−1;j

]
(70)

for i = 1, 2...T ; for each i, the index j = i + 1, ..T − 1. We thus have the recursion, the
first line of (26). The second line of (26) merely repeats the second line of (69).
Proof. (Proposition 6) We use an inductive proof. At iteration 0 optimal gross savings
are zero, so optimal net savings equals undepreciated capital: s0 = − (1− δ) and ξ0 = 0.
Therefore,

W
(0)
T−j (k,K) = ln (R0 + 1− δ) + ln

(
k +

w0

R0 + 1− δ

)
, (71)

thus establishing (46) for i = 0, and confirming the boundary conditions in (48). We now
have the basis for the inductive chain.

Suppose that (46) holds for iteration i − 1. This hypothesis and the first line of (18)
imply that the agent’s problem at iteration i is

max
k′

[
ln
(
Rik + wi + (1− δ) k − k′

)
+ β1

[
ai−1;i + bi−1;i ln

(
k′ + fi−1

)]]
(72)

The first order condition is

− 1

Rik + wi + (1− δ) k − k′
+

β1bi−1;i

k′ + fi−1
= 0 (73)

which simplifies to

k′ − (1− δ) k =
(β1bi−1;iRi)−(1−δ)

(1+β1bi−1;i)

(
k +

(β1bi−1;i)wi−fi−1

(β1bi−1;iRi)−(1−δ)

)
= si (k + ξi)

with si and ξi given by equations 50 and 51.
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We use this savings rule in the updating equation for W
(i)
T−j (k,K), (19), together with

the hypothesis that (46) holds for iteration i− 1; we also use the equation for equilibrium
utility, (45):

W
(i)
T−j (k,K) = U (Rik + wi − k′∗) + βj−i+1W

(i−1)
T−j (k′∗,K ′)

= ln (Ri − si) + ln
(
k + wi−siξi

(Ri−si)

)
+βj−i+1 [ai−1;j + bi−1;j ln (si (k + ξi) + (1− δ) k + fi−1)]

= ln (Ri − si) + ln
(
k + wi−siξi

(Ri−si)

)
+βj−i+1 [ai−1;j + bi−1;j ln ((si + 1− δ) k + siξi + fi−1)]

= ln (Ri − si) + ln
(
k + wi−siξi

(Ri−si)

)
+βj−i+1

[
ai−1;j + bi−1;j ln

[
(si + 1− δ)

(
k + siξi+fi−1

si+1−δ

)]]
= ln (Ri − si) + ln

(
k + wi−siξi

(Ri−si)

)
+βj−i+1 [ai−1;j + bi−1;j ln (si + 1− δ)] + βj−i+1bi−1;j ln

(
k + siξi+fi−1

si+1−δ

)

(74)

The right side of (74) has the form as the right side of (46) if and only if (67) holds (so
that the logarithms involving k have the same arguments). This requirement is identical
to the condition obtained for η 6= 1. We establish this equality using equations 50 and 51.
Using these equations to eliminate si and ξi, we have

wi − siξi
(Ri − si)

=
wi − (β1bi−1;iRi)−(1−δ)

(1+β1bi−1;i)
wiβ1bi−1;i−fi−1

(β1bi−1;iRi)−(1−δ)(
Ri − (β1bi−1;iRi)−(1−δ)

(1+β1bi−1;i)

)
=

wi(1+β1bi−1;i)
(1+β1bi−1;i)

− wiβ1bi−1;i−fi−1

(1+β1bi−1;i)(
Ri(1+β1bi−1;i)−(β1bi−1;iRi)−(1−δ)

(1+β1bi−1;i)

)
=

wi (1 + β1bi−1;i)− (wiβ1bi−1;i − fi−1)

Ri (1 + β1bi−1;i)− (β1bi−1;iRi)− (1− δ)

=
wi + fi−1

Ri − (1− δ)
Similarly, we have

siξi + fi−1

si + 1− δ
=

(β1bi−1;iRi)−(1−δ)
(1+β1bi−1;i)

wiβ1bi−1;i−fi−1

(β1bi−1;iRi)−(1−δ) + fi−1

(β1bi−1;iRi)−(1−δ)
(1+β1bi−1;i)

+ 1− δ

=

wiβ1bi−1;i−fi−1+(1+β1bi−1;i)fi−1

(1+β1bi−1;i)

(β1bi−1;iRi)−(1−δ)+(1−δ)(1+β1bi−1;i)
(1+β1bi−1;i)

=
wiβ1bi−1;i − fi−1 + (1 + β1bi−1;i) fi−1

(β1bi−1;iRi)− (1− δ) + (1− δ) (1 + β1bi−1;i)

=
(β1bi−1;i) (wi + fi−1)

β1bi−1;i (Ri + (1− δ))
=

wi + fi−1

Ri + (1− δ)
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These manipulations establish

wi − siξi
(Ri − si)

=
siξi + fi−1

si + 1− δ
=

wi + fi−1

Ri + (1− δ)

Substituting these expressions into the last line of (74) gives

W
(i)
T−j (k,K) = ln (Ri − si) + ln

(
k + wi+fi−1

Ri+(1−δ)

)
+

βj−i+1 [ai−1;j + bi−1;j ln (si + 1− δ)] + βj−i+1bi−1;j ln
(
k + wi+fi−1

Ri+(1−δ)

)
= ln (Ri − si) + βj−i+1 [ai−1;j + bi−1;j ln (si + 1− δ)] + (1 + βj−i+1bi−1;j) ln

(
k + wi+fi−1

Ri+(1−δ)

)
This equation establishes that the value function has the form in (46) with coefficients
given by (47).

B.4 The discount function

This appendix discusses an OLG model that gives rise to a discount function equal to a
convex combination of exponentials. Because the discounting model has three parameters,
we can calibrate it to represent a combination of “Nordhaus” and “Stern” discount rates.

In Ekeland and Lazrak’s (2010) formulation (without privately owned capital) agents’
lifetime is an exponentially distributed random variable with mortality rate θ, giving
expected lifetime 1

θ ; with constant population, the birth rate is also θ. Agents have the
pure rate of time preference r for their own future utility, so their risk-adjusted pure rate
of time preference is r + θ. When an agent dies, a new agent is born. Agents with
paternalistic altruism discount the utility of unborn agents, but possibly at a different
rate. This model is isomorphic to one in which agents have pure, rather than paternalistic
altruism, i.e. they care about their successors’ welfare, not just their utility (Karp 2017).
If agents with pure altruism discount their successors’ welfare at rate λ, the discount factor
for the representative agent is

D(t) =

(
r + θ − λ
r + 2θ − λ

)
e−(r+θ)t +

θ

r + 2θ − λ
e−(λ−θ)t. (75)

We assume that λ > θ and that the utility flow is bounded for each t; these assumptions
imply that welfare is bounded.

The discount rate is

−dD
dt

1

D
=

(r + θ) (r + θ − λ) + θ (λ− θ) e−(λ−2θ−r)t

r + θ − λ+ θe−(λ−2θ−r)t . (76)

The discount rate declines over time if and only if θ + r − λ > 0, as we assume. This
inequality is necessary and sufficient for the discount factor to be a convex combination
(not merely a sum) of exponentials.

To incorporate privately owned capital, we reinterpret Ekeland and Lazrak’s model.
The representative dynasty has capital kt, shared equally among currently living dynastic
members. Members die off deterministically at rate θ and are replaced by new members,
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maintaining a constant population in the dynasty. The number of currently living members
still alive after t units of time is e−θt. Members of a dynasty discount the future utility of
currently living members at rate r and they discount the welfare of unborn members at
rate λ. Agents do not care about other dynasties; they are altruistic with respect to their
own progeny, but not with respect to society at large. When an agent dies, a new agent
is born and inherits the deceased member’s capital.

B.5 Imposing the equilibrium conditions

The factor prices, R and w, and the next period climate state, S′, depend on current
emissions, E. With a view to studying the climate problem, Proposition 5 includes the
argument E in all functions, but we drop it in this section to simplify notation. We also
suppress E from the functions s, ξ, b, and f . We do this while understanding that in
equilibrium E is a function of (K,S). Section 6.2.2 explains how we modify the algorithm
to solve for climate policy.

Equating the individual and aggregate savings rules, while imposing the equilibrium
condition k = K, gives

K ′ = si (K,S)Ri (K,S) (K + ξi (K,S)) . (77)

At iteration i > 1, we have approximations of the functions bi−1;j (K ′,S′) and fi−1 (K ′,S′)
from the previous iteration. To update our approximation, we use an N−element grid over
the three dimensional state space, (K,S), with node n given by (Kn,Sn), for n = 1, 2...N .
We have to solve N fixed point problems at every iteration; these problems are mappings
from <2 → <2 (conditional on K,S), and are straightforward.

We denote the factor prices at iteration i, evaluated at (Kn,Sn), as wni and Rni . Using
(24), (25) and (77), the numbers sni and ξni are solutions to the implicit equations:18

sni =
1

(β1bi−1;i (sni R
n
i × (Kn + ξni ) ,S′))

− 1
η + 1

(78)

and

ξni =
wni − (β1bi−1;i (sni R

n
i × (Kn + ξni ) ,S′))

− 1
η fi−1 (sni R

n
i × (Kn + ξni ) ,S′)

Rni
. (79)

The right side of these equations involve the approximations of the functions bi−1;i and
fi−1 obtained from the previous iteration.

Given sni and ξni , for n = 1, 2...N , we compute the approximations of bi;j (K,S) and
fi (K,S). We introduce addition notation to express the updating equations concisely.
Consistent with the notation above, we use superscript n on the functions bi,j and fi to
denote the value of these functions at node (Kn,Sn). The functions bi−1;j and fi−1, in
contrast, are evaluate at the next-period state (iteration i − 1), which depends on the
current state. We write

bni−1;j = bi−1;j

(
sni R

n
i (kn + ξni , ) , S

′) and fni−1 = fi−1

(
sni R

n
i (kn + ξni , ) , S

′) ,
18As noted above, the next-period climate state, S′, is a function of the current state, identified by the

node n; to avoid further complicating the notation, we do not put an index n on the next period climate
state.

13



 
Commitment horizon

In
iti

al
 ta

x 
($

 p
er

 to
n 

C
)

   
   

   
   

   
   

   
   

 
 

η  = 1.0

5 10110 

120 

130 

140 

Convex damages
Linear damages

 

 

η  = 1.5

5 1040 

45 

50 

55 

 
Commitment horizon

In
iti

al
 ta

x 
($

 p
er

 to
n 

C
)

   
   

   
   

   
   

   
   

 
 

η  = 2.0

5 1025 

30 

35 

Figure 15: First period tax for equilibria with different commitment horizons. Panels
denote different η. All assume TFP growth, δ = 0.65, and Stern weight 0.2.

showing the value of bi−1;j and fi−1 as functions of the current state, (Kn,Sn). The right
sides of these two equations use the approximations obtained at the previous iteration.
Again, we recognize that S′ depends on Sn and current climate policy, a function of
(Kn,Sn). Using this notation, we write the recursion (26) as

bni;j = (Rni (1− sni ))1−η + βj−i+1b
n
i−1;j × (sni R

n
i )1−η , (80)

and

fni =
1

Rni

(
wni + fni−1

)
(81)

(We use (24) to simplify the first line of (26) to obtain (80).) We solve these 2N in-
dependent equations and then use polynomials to obtain the approximations of bij and
fi.

B.6 Impact of commitment on first-period tax

Figure 15 shows that strategic interactions that arise in the general model with com-
mitment are quantitatively negligible. The figures plot the first-period carbon tax as a
function of the horizon of the commitment technology available to the initial generation.
This is show for different values of η.
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