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Bistability in a Leaky Integrate-and-Fire Neuron with a Passive Dendrite∗

Michael A. Schwemmer† and Timothy J. Lewis‡

Abstract. We examine the influence of dendritic load on the firing dynamics of a spatially extended leaky
integrate-and-fire (LIF) neuron that explicitly includes spiking dynamics. We obtain an exact an-
alytical solution for this model and use it to derive a return map that completely captures the
dynamics of the system. Using the map, we find that dendritic properties can significantly change
the firing dynamics of the system. Under certain conditions, the addition of the dendrite can change
the LIF model from type 1 excitability to type 2 excitability and induce bistability between periodic
firing and the quiescent state. We identify the mechanism that causes the periodic behavior in the
bistable regime as somatodendritic ping-pong. Furthermore, we use the return map to fully explore
the model parameter space in order to find regions where this bistable behavior occurs. We then give
physical interpretations of the dependence of the bistable behavior on model parameters. Finally,
we demonstrate that the simpler two-compartment model displays qualitatively similar dynamics to
the more complicated ball-and-stick model.

Key words. ball-and-stick neuronal model, bifurcation, bistability, cable equation, integrate-and-fire neuronal
model, map reduction

AMS subject classifications. 34A05, 34C23, 92C05
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1. Introduction. Neurons are spatially extensive and heterogeneous. They typically con-
sist of a dendritic tree, a soma (cell body), and an axon. The type of model one uses to
represent a neuron depends upon a balance between mathematical tractability and biological
realism and on the issue being addressed. A common technique in neuronal modeling is to rep-
resent the neuron as a single-compartment object that ignores the spatial anatomy of the cell,
e.g., [11, 25, 26]. Although this simplification allows for greater mathematical tractability and
computational efficiency, many neurons are not electrotonically compact. Therefore, single-
compartment models cannot be expected to capture the full spectrum of electrical behavior
of neurons. Dendrites can have substantial effects on the dynamics of individual neurons. For
example, the architecture and ionic channel density of a dendritic tree can alter the firing
pattern and encoding properties of a neuronal oscillator [19, 21, 24], while the additional elec-
trical load due to the dendrite can alter firing frequency [36, 38]. For a full understanding of
this behavior, more detailed models are required.
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The branched structure of a dendritic tree can often be quite complex. However, in a series
of groundbreaking papers, Rall demonstrated that each segment of a dendritic tree can be
modeled as a one-dimensional cable [31, 32, 33]. Furthermore, assuming a certain relationship
between the diameters of the different cables making up the tree, Rall also showed that a
complicated branched dendritic tree can be reduced to a single one-dimensional cable, the
so-called equivalent cylinder [32]. Thus, the dynamics of the membrane potential of an entire
dendritic tree can be modeled using a single partial differential equation (PDE) that governs
the flow of electrical activity in a one-dimensional cable. Rall’s work laid the foundation for
two standard approaches to modeling the electrical dynamics of neuronal dendrites. The first
approach is using PDEs to either model the voltage dynamics of the dendrites between the
branch points or appeal to the equivalent cylinder representation of the dendritic tree and
represent it as a single one-dimensional PDE. Alternatively, the PDEs governing the voltage
of the dendritic tree or equivalent cylinder can be discretized into a finite system of ordinary
differential equations connected by electronic coupling (resistors) to model the neuron as a
multicompartmental object, e.g., [4, 37]. Although this technique allows for greater flexibility
in fitting electrophysiological data, the resulting models can be quite difficult to analyze when
there is a large number of compartments. Therefore, two-compartment models are often used
as a simplification of the multicompartmental approach, e.g., [23, 28]. We will utilize both
the equivalent cylinder and two-compartmental approaches in this article in order to examine
how dendritic properties affect the firing dynamics of neurons.

In previous work [36], we identified the mechanisms by which weak dendritic influences
modulate the firing frequency of a somatic oscillator. We modeled the neuron as an isopo-
tential somatic oscillator attached to a thin passive dendritic cable, i.e., a “ball-and-stick”
model [33], and as an isopotential somatic oscillator compartment electrically coupled to a
passive compartment, i.e., a two-compartment model. We made no assumption about the
dynamics of the somatic oscillator, but we assumed that the dendrite was sufficiently thin so
that the dynamics of the soma were only weakly perturbed. Here, we extend our previous
analysis to examine the effects of nonweak dendritic influences. That is, we make no assump-
tions about the strength of the dendritic perturbation, but we idealize the somatic dynamics
as a leaky integrate-and-fire (LIF) model that explicitly includes spike effects [6, 17, 22]. Us-
ing this framework, we seek to understand how dendritic properties alter firing dynamics.
More specifically, one can characterize the firing dynamics of a neuron in response to con-
stant current input by its frequency-applied current f-I curve, and we therefore examine how
dendritic properties can alter the f-I curve of neurons. The standard LIF model [1] has an
f-I curve typical of Hodgkin’s type 1 neuronal excitability [14]; i.e., it can fire at arbitrarily
low frequencies near the onset of oscillations. We find that the addition of the dendrite can
change the firing dynamics of the standard LIF model to Hodgkin’s type 2 excitability (the
onset of periodic oscillations occurs with a nonzero frequency) and cause the system to display
bistability between periodic firing and the quiescent state, allowing the cell to now behave like
a neuronal switch. In this bistable regime, the periodic behavior arises from a “ping-pong”
effect [2, 39] between the somatic and proximal dendritic membrane potentials. We then
examine how altering system parameters affects the presence of this bistability. Finally, we
demonstrate that the same qualitative behavior is captured in the simpler two-compartment
model.
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The paper is organized as follows. In section 2, we describe the LIF ball-and-stick model.
Section 3 illustrates how the analytical solution for this model can be obtained and used to
derive a return map that captures the dynamics of the system. In section 4 we show that,
under certain conditions, the model can exhibit bistable behavior between periodic firing and
quiescence, and we discuss the mechanisms that lead to this bistability. The parameter space
of the system is then probed using two different functions describing the somatic dynamics
during the spike. Sections 5 and 6 present the two-compartment LIF model and the derivation
of its one-dimensional return map that captures the system’s dynamics, respectively. In section
7 we show that the dynamics of the two-compartment model are qualitatively similar to the
ball-and-stick model. The paper then closes with a discussion in section 8 where we discuss
the relevance of our results and their relationship to previous studies. Finally, we include an
appendix in which we show that the addition of point source dendritic inputs quantitatively,
but not qualitatively, affects the results of the main paper.

2. LIF ball-and-stick model. We model a neuron as an isopotential spherical soma at-
tached to a passive dendrite, i.e., a ball-and-stick model [8]. The dendrite is modeled as a
one-dimensional passive cable of length � using the cable equation [31, 32, 33]

(2.1) Cm
∂V

∂t
=

a

2Rc

∂2V

∂x2
− gLD(V − ELD), 0 < x < �,

where V (x, t) is the membrane potential of the cable at position x and time t, Cm is the
membrane capacitance, gLD is the dendritic leakage conductance, ELD is the reversal potential
of the dendritic leakage current, Rc is the cytoplasmic resistivity, and a is the radius of the
dendrite. Note that the cable can be thought of as a single dendrite or as the equivalent
cylinder of a branched dendritic structure [32, 34].

No current is assumed to pass through the distal end, x = �, of the dendrite, resulting in
the boundary condition

(2.2)
∂V

∂x
(�, t) = 0.

The boundary condition at x = 0 is provided by the somatic dynamics and an application
of Kirchhoff’s law of current conservation. The isopotential soma is modeled as an LIF neuron
that explicitly includes a spike (i.e., an action potential) [6, 17, 22]. The boundary condition
at x = 0 for the “nonspike” portion of the model is described by

(2.3) Cm
∂V

∂t
(0, t) = −gL(V (0, t)− EL) + I +

a2

d2Rc

∂V

∂x
(0, t),

where gL is the somatic leakage conductance, EL is the somatic leakage reversal potential,
d is the diameter of the soma, and I is a constant current applied to the soma. Changes in
ELD can be interpreted as arising from constant input to the dendrites. Note that (2.1)–(2.3)
describe the Rall lumped soma model.

If the somatic membrane potential increases to a threshold potential of V th at time t, a
somatic spike is elicited. If this is the jth spike that has occurred, we set the jth firing time
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510 MICHAEL A. SCHWEMMER AND TIMOTHY J. LEWIS

Table 1
List of all model parameters.

Parameters

Cm membrane capacitance gL somatic leakage conductance
a dendritic radius EL somatic leakage reversal potential

Rc cytoplasmic resistivity I somatic bias current

gLD dendritic leakage conductance V th somatic threshold potential

ELD dendritic leakage reversal potential V R somatic reset potential

� length of the dendrite t
j
S jth somatic spike time

d somatic diameter T a duration of the somatic spike

to be t
j
s = t and change the boundary condition at x = 0 to the “spike” boundary conditions

for the duration of the spike

(2.4) V (0, t) = h(t− t
j
s), t ∈ (t

j
s, t

j
s + T a],

where h(t) is a function that describes the shape of the spike, and T a is the duration of the

spike. At time t = t
j
s + T a, the boundary condition at x = 0 is set back to (2.3), which gives

an effective reset potential of h(T a). For reference, Table 1 lists the definitions of all of our
model parameters.

In nondimensional form, the full LIF ball-and-stick model that incorporates spiking dy-
namics is given by

∂V

∂t
=

∂2V

∂x2
− V,(2.5)

⎧⎨
⎩
V (0, t) = h(t− tjs) if t ∈ (tjs, t

j
s + Ta] [spike],

∂V

∂t
(0, t) = −GLV (0, t) + I + γ

∂V

∂x
(0, t) if t ∈ (tjs + Ta, t

j+1
s ] [nonspike],

(2.6)

∂V

∂x
(L, t) = 0,(2.7)

V (x, tjs) = V j(x),(2.8)

where V = V (x, t) = V (x/λ,t/τD)−ELD

V th−ELD
, λ =

√
a

2RcgLD
is the space constant of the dendrite,

τD = Cm/gLD is the time constant of the dendrite, t = t/τD, tjs = t
j
s/τD, Ta = T a/τD,

h(t) = h(t)−ELD

V th−ELD
, x = x

λ , L = �
λ is the electrotonic length of the dendrite, Vth = V th−ELD

V th−ELD
= 1

is the nondimensionalized threshold potential, and

γ =
a2

d2RcgLDλ
,(2.9)

GL = gL/gLD,(2.10)

I =
I + gL(EL − ELD)

gLD(V th − ELD)
.(2.11)

The parameter γ sets the magnitude of the perturbation to the somatic dynamics caused by
the dendrite.
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The above model can display two types of stable characteristic behavior depending on
parameters: (i) time-independent steady-states, and (ii) steady periodic oscillations.

3. Derivation of return map for the LIF ball-and-stick neuron model. In this section, we
construct an analytical solution for the spatially extended LIF model (2.5)–(2.8). The solution
maps the voltage profile along the model neuron at the onset of the jth spike (V (x, tjs) = V j(x))
to the voltage profile at the onset of the j + 1st spike (V (x, tj+1

s ) = V j+1(x)). Thus, it takes
the form of a return map that can be iterated to capture the full dynamics of the system.
The solution is constructed by piecing together the solution for the case when the soma is
spiking and the solution for the case when it is not spiking. First, we solve the system
(2.5)–(2.8) with the “spike” boundary condition at the soma x = 0 and the initial condition
V (x, tjs) = V j(x) and evaluate this solution at the end of the spike to obtain V (x, tjs+Ta). We
then switch to the “nonspike” boundary condition at the soma and solve system (2.5)–(2.8),
using V (x, tjs+Ta) as the initial condition. Finally, we find the time tj+1

s at which the somatic
membrane potential reaches the threshold potential and initiates a new spike and evaluate the
corresponding voltage profile along the neuron at this time. This yields V (x, tj+1

s ) = V j+1(x).

3.1. Spike solution. We assume that the model neuron reaches threshold and the jth
spike is initiated at time tjs. Therefore, we consider the system (2.5)–(2.8) with the spike
boundary condition at the soma x = 0, the no-flux distal boundary condition at x = L, and
the initial condition V (x, tjs) = V j(x). To obtain the solution over the duration of the spike
(i.e., from time tjs to tjs + Ta), we introduce the change of variables

(3.1) V (x, t) = U(x, t) + h(t− tjs)Ṽ
ss(x),

where Ṽ ss is the steady state solution of (2.5)–(2.8) with the somatic boundary condition set
to V (0, t) = 1, i.e.,

(3.2) Ṽ ss(x) =
cosh(L− x)

cosh(L)
,

and U(x, t) solves the system

∂U

∂t
=

∂2U

∂x2
− U − h′(t− tjs)Ṽ

ss,

U(0, t) = 0,

∂U

∂x
(L, t) = 0,

U(x, tjs) = V j(x)− h(0)Ṽ ss(x).

Separation of variables can be used to find U(x, t). This yields the solution for the neuronal
model during the spike in the form of an eigenfunction expansion

V (x, t) =

∞∑
m=0

(
Ṽ j
m + Ṽ ss

m qm(t− tjs)
)
e−(1+λ2

m)(t−tjs)Ym(x)

+ h(t− tjs)Ṽ
ss(x), t ∈ [tjs, t

j
s + Ta),(3.3)
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512 MICHAEL A. SCHWEMMER AND TIMOTHY J. LEWIS

where

(3.4) Ym(x) = cos(λm(L− x)),

and

λm =
(2m+ 1)π

2L
,

qm(t) =

∫ t

0
h′(s)e(1+λ2

m)sds− h(0),

Ṽ j
m =

〈
V j(x), Ym(x)

〉
〈Ym(x), Ym(x)〉 ,

Ṽ ss
m =

〈
Ṽ ss(x), Ym(x)

〉
〈Ym(x), Ym(x)〉 =

2(−1)mλm

(1 + λ2
m)L

.

Note that the eigenfunctions Ym(x) are orthogonal under the standard L2 inner product on
0 ≤ x ≤ L, i.e., 〈Yn(x), Ym(x)〉 = 0 for n �= m, and thus the series representation of the
solution is guaranteed to converge owing to Parseval’s identity.

Thus, the membrane potential along the neuron at the end of the jth spike is

(3.5) V j+ 1
2 (x) = V (x, tjs + Ta) =

∞∑
m=0

Ṽ
j+ 1

2
m Ym(x),

where

Ṽ
j+ 1

2
m =

(
Ṽ j
m + qm(Ta)Ṽ

ss
m

)
e−(1+λ2

m)Ta + h(Ta)Ṽ
ss
m .

It will be convenient to express this solution as a map that takes
−→̃
V j = [Ṽ j

m]∞m=0 (the vector

of coefficients for the expansion of V j(x) in terms of the eigenfunctions Ym(x)) to
−→̃
V j+ 1

2 =

[Ṽ
j+ 1

2
m ]∞m=0 (the vector of the eigenfunction expansion coefficients of V j+ 1

2 (x))

(3.6) ΦS
Y :

−→̃
V j →

−→̃
V j+ 1

2 = ΩS
−→̃
V j + (ΩSQ+H)

−→̃
V ss,

where Q, H, and ΩS are diagonal matrices with elements

Qmm = qm(Ta),(3.7)

ΩS
mm = e−(1+λ2

m)Ta ,(3.8)

Hmm = h(Ta).(3.9)

3.2. Nonspike solution. To obtain the solution of the neuronal model (2.5)–(2.8) in be-
tween the jth spike and the j+1st spike, we consider the system (2.5)–(2.8) with the nonspike
boundary condition at the soma x = 0, the no-flux distal boundary condition at x = L, us-
ing the voltage profile along the dendrite at the end of the jth spike as the initial condition
V (x, tjs +Ta) = V j+ 1

2 (x). The solution can be decomposed into a steady-state portion V ss(x)
and a time-dependent portion W (x, t),

(3.10) V (x, t) = W (x, t) + V ss(x).
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The steady-state portion of the nonspike solution is

(3.11) V ss(x) = ρ cosh(L− x),

where

ρ =
I

γ sinh(L) +GL cosh(L)
.

The time-dependent portion of solution W (x, t) can be found by using separation of variables,
which yields W (x, t) in the form of an eigenfunction expansion

(3.12) W (x, t) =
∞∑
n=0

Ane
−(1+α2

n)tXn(x),

where

(3.13) Xn(x) = cos(αn(L− x))

are eigenfunctions and the corresponding eigenvalues αn are the solutions to the transcendental
equation

(3.14) αnγ = [GL − (1 + α2
n)] cot(αnL).

Note that (3.14) has an infinite number of isolated solutions (Figure 1). Because the eigen-
functions Xn(x) are even, we need only consider positive αn.

0 2 4 6 8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

10

20

30

40

50

α

(G
L
−

(1
+

α2 ))
/(

α 
γ)

co
t(

α 
L

)−
1

 

 

Figure 1. Graphical representation of the eigenvalues αn. There is an infinite number of solutions αn that
are given by the solutions of (3.14). The solid line plots [GL − (1 + α2

n)] cot(αnL) − αnγ, and the dashed line
is the zero line.

D
ow

nl
oa

de
d 

03
/1

5/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

514 MICHAEL A. SCHWEMMER AND TIMOTHY J. LEWIS

The coefficients An in (3.12) are determined by applying the initial condition corresponding
to the membrane potential along the neuron at the end of the jth spike (i.e., at t = tjs + Ta;
see (3.5)),

V (x, tj + Ta) = V j+ 1
2 (x) =

∞∑
n=0

Ane
(1+α2

n)[t
j
s+Ta] cos(αn(L− x)) + V ss(x).

To compute the coefficients An, the steady-state solution V ss(x) and initial condition V j+ 1
2 (x)

must be expanded in terms of the eigenfunctionsXn(x). Due to the boundary conditions at the
soma (x = 0), Xn(x) are not orthogonal under the standard L2 inner product on 0 ≤ x ≤ L
(unless γ = 0). Therefore, we define a modified L2 inner product under which Xn(x) are
orthogonal [7, 10]

(3.15) 〈f, g〉A =

∫ L

0
f(x) g(x) dx+

1

γ
f(0) g(0),

i.e., 〈Xn(x),Xm(x)〉A = 0 for n �= m. Using this modified inner product, we can write
the subthreshold solution of the neuronal model between the end of the jth spike and the
beginning of the j + 1st spike as

(3.16) V (x, t) =

∞∑
n=0

(V
j+ 1

2
n − V ss

n )e−(1+α2
n)[t−(tjs+Ta)]Xn(x) + V ss(x), t ∈ [tjs + Ta, t

j+1
s ),

where

V
j+ 1

2
n =

〈
V j+ 1

2 (x),Xn(x)
〉
A

〈Xn(x),Xn(x)〉A
,

V ss
n =

〈V ss(x),Xn(x)〉A
〈Xn(x),Xn(x)〉A

(3.17)

=
α2
n

1 + α2
n

(2Xn(0))(I − α2
nV

ss(0))

Lγα2
n + (GL − (1− α2

n))(Xn(0))2
for αn �= 0.

For the special case of αk = 0, V ss
k = I/(γL + 1); this case occurs only when GL = 1. Note

that, like the spiking case, the series representation of the solution of the nonspiking portion of
the model is of the form of an eigenfunction expansion and is also guaranteed to converge [7].

The j + 1st spike time and the corresponding jth interspike interval Δtjs = tj+1
s − tjs are

obtained by setting the somatic membrane potential in (3.16) to threshold (Vth = 1) and
finding the smallest positive solution of the resulting transcendental equation

(3.18) V (0, tj+1
s ) =

∞∑
n=0

((V j
n − V ss

n )e−(1+α2
n)[Δtjs−Ta] + V ss

n ) cos(αnL) = 1.

If no solution to this equation exists, then the interspike interval Δtjs is taken to be infinity,
i.e., the model neuron does not fire again and asymptotically approaches the time-independent
steady-state V ss(x).
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Thus, the membrane potential along the neuron at the initiation time of the j +1st spike
is

(3.19) V j+1(x) = V (x, tj+1
s ) =

∞∑
n=0

V j+1
n Xn(x),

where
V j+1
n = (V j

n − V ss
n )e−(1+α2

n)[Δtjs−Ta] + V ss
n .

We can express the nonspike solution as a map that takes
−→
V j+ 1

2 = [V
j+ 1

2
n ]∞n=0 (the vectors

of coefficients of the expansion of V j+ 1
2 (x) in terms of the eigenfunctions Xn(x)) to

−→
V j+1 =

[V j+1
n ]∞n=0 (the vectors of coefficients of the expansion of V j+1(x)),

(3.20) ΦNS
X :

−→
V j+ 1

2 → −→
V j+1 = ΩNS,j (

−→
V j+ 1

2 −−→
V ss) +

−→
V ss,

where ΩNS,j is a diagonal matrix with elements

(3.21) ΩNS,j
nn = e−(1+α2

n)(Δtjs−Ta).

3.3. The return map. By combining the map defined for the spike portion of the solution

ΦS
Y :

−→
V j → −→

V j+ 1
2 and the map defined for the nonspike portion of the solution ΦNS

X :
−→
V j+ 1

2 →−→
V j+1, we obtain a map that takes the membrane potential along the neuron at the end of
the jth spike, V j(x), to the membrane potential along the neuron at the end of the j + 1st
spike, V j+1(x). However, the solutions for the spike and nonspike portions are expanded in
different sets of basis functions. Therefore, before composing the maps, we first change the
basis for the map for the spike portion of the solution ΦS

Y (3.6), so that coefficients correspond
to expansions of the membrane potentials in Xn(x) rather than Yn(x),

(3.22) ΦS
X :

−→
V j → −→

V j+ 1
2 = PΩSR

−→
V j + P (ΩSQ+H)R

−→
V ss

V ss(0)
,

where the factor of 1/V ss(0) comes from the relation Ṽ ss = V ss

V ss(0) (see (3.2)) and the elements
of the “change of basis” matrices are

Pmn =
〈Ym(x),Xn(x)〉A
〈Xn(x),Xn(x)〉A

=
(−1)n 4πγ(2n+1)L

((2n+1)π)2−(2αnL)2
+ 2cos( (2m+1)

2 π)

cos(αnL)(βn + γL/ cos2(αnL) + 2)
,

Rmn =
〈Xn(x), Ym(x)〉
〈Ym(x), Ym(x)〉

=
2(−1)mλm

(λ2
m − α2

n)L
cos(αnL).

The full map is then

(3.23) ΦX = ΦS
X◦ΦNS

X :
−→
V j+1 = ΩNS,jPΩSR

−→
V j+ΩNS,j

[
P (ΩSQ+H)R− I

] −→
V ss

V ss(0)
+
−→
V ss,
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where Q, H, and ΩS are given in (3.7)–(3.8), ΩNS,j is given in (3.21), and I is the identity
matrix.

This infinite dimensional map takes V j(x) to V j+1(x) in terms of their expansion coeffi-
cients of the eigenfunctions Xn(x) (Figure 2). The matrices in the map capture all filtering
effects of the dendrite and the effects of the somatic spike. By iterating this map, the dynamics
of the full ball-and-stick neuronal model can be assessed. Note, however, that while the map
(3.23) itself is linear, each iteration involves solving the scalar transcendental equation (3.18)
for interspike interval Δtjs, which is needed to evaluate ΩNS,j. Thus, the entire map is nonlin-
ear. Fixed points of this map correspond to either periodic oscillations or quiescent behavior.
However, if (3.18) has no solution, the interspike interval Δtjs is infinity and ΩNS,j is the zero

matrix. In this case, the map takes
−→
V j to

−→
V ss, which corresponds to the time-independent

steady-state of the nonspike solution V ss(x).
In the next section, we use the map to probe the neuronal model’s behavior. Although the

solution is in the form of an infinite series, the coefficients V j
n decay rapidly as n is increased.

Therefore, we truncate the series to include the first 10 terms. To check the accuracy of the
truncated series, we performed direct numerical simulations of the model (2.5)–(2.8) using a
Crank–Nicolson method and found that the two solutions were in excellent agreement.

4. Dynamics of the spatially extended LIF neuron model. In this section, we describe
the behavior of the LIF ball-and-stick neuron model that was found by analyzing the map
derived in the previous section. Two different functions are used to approximate the shape of
the spike, h(t): a “sigmoidal” spike and a “linear” spike. We determine the parameter values at
which the time-independent “quiescent” steady-state ceases to exist and the parameter values
at which stable periodic oscillations appear. We find that the system can display bistability
between periodic firing and quiescence, and we examine how altering various parameters affects
the region of parameter space where bistability exists. Note that the bistability described here
is not possible in the standard LIF model [1] nor in spatially extended LIF models that do
not explicitly include spikes [3, 21].

4.1. The quiescent steady-state. Recall that the steady-state voltage of the ball-and-
stick LIF neuron with the nonspiking proximal boundary condition is given by (3.11). Using
this equation, one can determine the amount of current needed to bring the steady-state
membrane potential of the soma to threshold (Vss(x = 0) = 1)

(4.1) Ith = GL + γ tanh(L).

If the current applied to the soma is less than this threshold current (I < Ith), then there
exists a time-independent voltage profile given by (3.11), i.e., the quiescent steady-state. On
the other hand, if I > Ith, then the steady-state voltage of the soma would be above the
threshold voltage of 1. This implies that the quiescent steady-state does not exist and the
soma will fire repetitively. Note that, because Vth = 1, Ith is equal to the nondimensional
input conductance of the model neuron at the soma [18]. Also, note that the equation for
the threshold current, (4.1), separates the influences of the passive properties of LIF soma
(GL) from those of the dendritic load (γ tanh(L)). Furthermore, as γ → 0 or L → 0, then Ith
approaches the value that would be obtained for the standard LIF model.
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(a)

(b)

Figure 2. Return map for the LIF ball-and-stick model. (a) ΦS
X maps the coefficients of eigenfunction

expansion of the dendritic voltage at the beginning of the jth somatic spike (V j(x); shown on left) to coefficients

of the voltage profile at the end of the jth somatic spike when the somatic potential is reset to VR (V j+ 1
2 (x);

shown on right). For illustrative purposes, in the left figure, we show the voltage profile soon after the soma has
jumped to the value β rather than exactly at the onset of the somatic spike. (b) ΦNS

X maps the coefficients of

eigenfunction expansion of the dendritic voltage from the end of the jth somatic spike (V j+ 1
2 (x); shown on left)

to coefficients of the voltage profile at the onset of the j+1st spike, i.e., the voltage profile when the the somatic
voltage has reached threshold (V j+1(x); shown on right). The composition of the two maps ΦX = ΦNS

X ◦ ΦS
X

effectively maps the membrane potential along the neuron at the onset of the jth spike, V j(x), to the membrane
potential along the neuron at the onset of the j + 1st spike, V j+1(x).

4.2. The sigmoidal spike. For the case of the “sigmoidal” spike, the somatic membrane
potential is instantaneously increased to a value β when the voltage at the soma reaches

D
ow

nl
oa

de
d 

03
/1

5/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

518 MICHAEL A. SCHWEMMER AND TIMOTHY J. LEWIS

threshold. The somatic membrane potential then decreases very slowly until a time t ∼ Ta

when the somatic voltage is quickly, but smoothly, repolarized to a value of VR (see Figure
3). The functional form of the sigmoidal spike is

(4.2) h(t) = β(1− ep(t−Ta))4 + VR(1− (1− ep(t−Ta))4), t ∈ (0, Ta],

where β represents the maximal somatic potential during the spike, Ta is the duration of the
spike, VR is the value of the somatic potential at the end of the spike, and p controls the
rate of repolarization of the spike. We set p = 80 in all of the figures shown. Note that the
function h(t) converges to the Heaviside function as p → ∞. Thus, the sigmoidal spike can
be thought of as a continuous approximation to a box function.

0 0.5 1 1.5 2 2.5 3

0

5

10

15

V
ol

ta
ge

 T
ra

ce
 a

t S
om

a

Time

Figure 3. Voltage trace at the soma (x = 0) with the “sigmoidal” spike function (see (4.2)). The sigmoidal
spike abruptly increases the somatic voltage to a value β, maintains the somatic voltage near this value at
time ∼ Ta, and then quickly, but smoothly, resets the somatic voltage to a value of VR. The parameters used
in this example are β = 18, Ta = 0.2, VR = −2, p = 80, I = 2, γ = 1, L = 1, and GL = 2.

4.2.1. f-I curves, bistability, and somatodendritic ping-pong. The frequency-applied
current (f-I ) curve for the standard LIF neuron, which corresponds to γ = 0 in our model, is
plotted in Figure 4 (a) for GL = 2. In accordance with (4.1), the stable quiescent steady-state
exists only for applied currents I less than Ith = GL, and the neuron fires periodically for
applied currents above this value. The f-I curve monotonically increases from zero as I is
increased. The ability to fire at arbitrarily low frequencies near the onset of oscillations is
characteristic of Hodgkin’s type 1 neuronal excitability [14].

Figure 4 (b) shows an example of an f-I curve in which the dendrite is included (γ = 1). As
expected from (4.1), the stable quiescent steady-state exists for I < Ith ≈ 3, and the neuron
fires periodically when I > Ith. However, unlike the standard LIF neuron, the oscillatory
regime also extends backward beyond Ith. That is, the addition of the dendrite gives rise to a
region of bistability between periodic firing and a stable quiescent steady-state. Furthermore,
the neuron model cannot fire at arbitrarily low frequencies. Instead, it has a minimum nonzero
frequency at the onset of oscillations, which is characteristic of neurons with Hodgkin’s type
2 excitability.

The repetitive firing of the neuron model when I < Ith (as seen in Figure 4 (b)) results
from a ping-pong action between the somatic and dendritic membrane potentials [2, 39]. This
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(a) LIF Model
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(b) Ball-and-Stick LIF Model
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Figure 4. Addition of the dendrite causes bistability in the LIF neuron. (a) Frequency-applied current (f-I)
curve for the standard LIF neuron (γ = 0 in our model) for GL = 2 and VR = −2. For I < Ith = 2, there is
a globally stable quiescence steady-state. For I > Ith, the quiescence steady-state does not exist and the neuron
fires periodically. (b) Frequency-applied current curve for the LIF ball-and-stick model with β = 28, Ta = 0.2,
VR = −2, γ = 1, L = 3, and GL = 2. For these parameters, a stable quiescent steady-state voltage exists,
I < Ith ≈ 3, and the neuron fires periodically for I > Ith. However, there is a range of I below Ith for which
periodic activity stably coexists with the quiescent steady-state.
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Figure 5. Voltage traces of the dendrite at different times during the cycle illustrating somatodendritic
ping-pong for the sigmoidal spike. During the somatic spike, the dendrite is depolarized to a large enough
potential so that, when the somatic potential is reset, the potential difference between the soma and proximal
dendrite causes a depolarizing current to flow into the soma. This current brings the soma back above threshold
even though the applied current is below Ith. The parameters used in this simulation are L = 3, GL = 2, γ = 1,
I = 1.5, β = 28, VR = −2, and Ta = 0.2. Note that for these parameter values, Ith � 3. The arrows indicate
the direction of depolarizing current flow between the soma and the dendrite.

ping-pong effect can be explained by examining the spatial voltage profiles at different times
during the cycle (Figure 5). During the spike, the portion of the dendrite proximal to the
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soma becomes so depolarized that, once the soma repolarizes, the gradient of the membrane
potential between the soma and proximal dendrite causes a large depolarizing current to flow
into the soma. This current from the dendrite brings the membrane potential of the soma
back to threshold even when the current applied to the soma alone is insufficient to bring the
steady-state somatic potential to threshold (i.e., V ss(0) < Vth).

Note that repetitive firing of ping-pong spikes can occur only if conditions are such that
V (0, t) overshoots V ss(0) and V ss(0) is sufficiently close to Vth. Whether or not the overshoot
occurs depends critically on both the spike parameters and the passive neuron properties.
These are in turn determined by both the spike parameters and the passive neuron properties.
Below we explore the parametric dependence of the existence of the quiescent steady-state
and oscillations via the ping-pong effect.

4.2.2. Effects of parameters on the region of bistability. Figures 6 and 7 show two
parameter bifurcation diagrams for the current applied to the soma I, (2.11), versus the
spike parameters (β, Ta) and the passive neuron properties (GL, γ, L), respectively. Solid and
dashed curves partition parameter space into a regime in which only a stable quiescent steady-
state exists (no firing), a regime in which only stable periodic oscillations exist (monostability),
and a regime in which both a stable quiescent steady-state and stable periodic oscillations
exist (bistability).

The solid lines represent Ith, the value of the applied current above which the quiescent
steady-state does not exist and oscillations are guaranteed to exist. Ith is determined directly
from (4.1). Because Ith is determined by the nonspiking dynamics and the value of the
somatic voltage threshold (Vth = 1), it is independent of the spike amplitude β and the
spike duration Ta, as can be seen in Figures 6 (a) and (b). According to (4.1), Ith increases
linearly with γ and GL and increases monotonically with L such that Ith → GL + γ as
L → ∞. These relationships are reflected in Figures 7 (a)–(c). A biophysical understanding
of these relationships follows directly from the interpretation of Ith = GL + γ tanh(L) as
the nondimensional input conductance of the neuron at the soma, where GL is the somatic
membrane conductance and γ tanh(L) is the nondimensional input conductance of dendrite
at the somatodendritic junction [18].

By nondimensionalizing the system, we have lost explicit dependence of the threshold
current Ith on several biophysical parameters including the leakage reversal potential of the
dendrite ELD. The relationships between Ith and dendritic parameters γ and L that were
described above assume that the dendrite acts as a hyperpolarizing “load” on the soma; i.e.,
it assumes that ELD < Vth. By inspecting the dimensional form of Ith

(4.3) Ith = gL(Vth −EL) + γgLD(Vth −ELD) tanh(�/λ),

we can clearly see that, when ELD < Vth, the threshold current Ith increases with increasing
γ and L = �

λ , but when ELD > Vth, the threshold current Ith decreases with increasing γ and
L. This agrees with the physical intuition of the load properties of dendrites. (Note, however,
that this “intuitive” relationship does not hold for all neuronal models; see [36].)

The dashed lines in Figures 6 and 7 represent the value of the applied current above which
periodic oscillations can be sustained via the ping-pong effect. Note that, for all parameters
(β, Ta, γ, L,GL), there exists a critical value below which ping-pong oscillations do not exist.
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Figure 6. Effects of altering spike parameters on the size of the bistable region using the sigmoidal spike.
In this figure and all subsequent figures, the solid line represents Ith (i.e., the curve in parameter space above
which the quiescent solution does not exist), and the dash-dotted line represents the minimum amount of applied
current needed to sustain oscillations via the ping-pong effect (i.e., the curve in parameter space where the stable
oscillatory solution first coexists with the stable quiescent solution). Thus, the spikes that occur in regions labeled
“Bistability” arise for a different reason than spikes that occur in the regions labeled “Monostability.” (a) Two
parameter bifurcation diagram for the current applied to the soma I versus spike amplitude β. Parameters are
Ta = 0.2, VR = −2, γ = 1, L = 1, and GL = 2. (b) I versus spike duration Ta bifurcation diagram. Parameters
are β = 10, VR = −2, γ = 1, L = 1, and GL = 2.

For sufficiently low values of any of the parameters, somatic dynamics dominate the behavior
of the system. Thus, the somatic potential cannot overshoot its steady-state value, and ping-
pong oscillation cannot occur.

Figure 6 (a) shows that a sufficiently large spike amplitude β is needed in order for ping-
pong induced oscillations to occur and bistability to exist. Furthermore, as β is increased, ping-
pong induced oscillations can occur at lower levels of the somatic applied current, and the size
of the bistable region is increased. Thus, larger somatic spikes promote ping-pong oscillations.
A large spike amplitude causes greater depolarization of the proximal dendrite after a spike
and therefore increases the postspike depolarizing current flowing from the dendrite into the
soma. This in turn helps the somatic potential to overshoot the quiescent steady-state, which
leads to ping-pong oscillations.

Figure 6 (b) shows that, as the duration of the spike Ta increases, there is a decrease
in the level of the applied current at which the onset of ping-pong oscillations occurs, and
therefore there is an increase in the size of the bistable region. However, as Ta increases, the
applied current above which ping-pong oscillations can occur approaches a minimal value.
This minimal value can be explained as follows. When Ta is large, the somatic potential is
held at a depolarized value near β for a long time, allowing the dendritic potential to nearly
equilibrate with the somatic potential. Therefore, further increases in Ta will result in only
insignificant increases in the proximal dendritic potential and thus do not further significantly
promote the ping-pong effect.

Figure 7 (a) shows the two parameter bifurcation diagram of the applied current versus
the parameter γ, (2.9). For the ping-pong effect to occur, γ must be above a critical value.
Increasing γ beyond this critical value decreases the amount of applied current needed to
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Figure 7. Effects of altering passive neuron parameters on the size of the bistable region using the sigmoidal
spike. (a) Two parameter bifurcation diagram of the applied current versus the parameter γ, which scales the
influence of the dendrite on the soma. Parameters are β = 12, Ta = 0.2, VR = −2, L = 1, and GL = 2.
(b) Two parameter bifurcation diagram of the applied current versus the electrotonic length of the dendrite, L.
Parameters are β = 16, Ta = 0.2, VR = −2, γ = 1, and GL = 2. (c) Two parameter bifurcation diagram of
the applied current I versus the nondimensional somatic leakage conductance, GL. Parameters are β = 12,
Ta = 0.2, VR = −2, γ = 1, and L = 1.

sustain the ping-pong effect. Note that γ scales the somatodendritic current (i.e., γ ∂V
∂x (0, t)).

For small γ, the somatodendritic current is small and has an insignificant effect on somatic
dynamics; thus ping-pong oscillations cannot occur. As γ increases, the strength of the de-
polarizing current that flows from the dendrite into the soma after the spike increases, and
therefore ping-pong oscillations are promoted.

Figure 7 (b) plots the two parameter bifurcation diagram of the applied current versus the
electrotonic length of the dendrite L. Similar to its dependence on γ, ping-pong oscillations
can occur only above a critical value of L, and the applied current needed to sustain ping-pong
oscillations decreases with increasing L. However, in contrast to the dependence on γ, there is
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an optimal value of L that produces the lowest level of applied current above which ping-pong
oscillations can be sustained. This behavior arises from the spatial properties of the dendrite.
At sufficiently large L, the proximal portion of the dendrite becomes significantly more de-
polarized than the distal portion during the somatic spike. Therefore, immediately after the
spike, current flowing from the depolarized proximal dendrite must be divided between the
soma and the distal portion as opposed to simply flowing into the soma. Thus, increasing L
beyond a critical value deters ping-pong oscillations. Note that, for similar reasons, there will
be an optimal dendritic diameter for promoting ping-pong activity. These results are related
to the results on the optimal dendrite diameter for signal transmission by Holmes [15] and
Nadim and Golowasch [27].

Figure 7 (c) plots the two parameter bifurcation diagram of the applied current versus
the nondimensionalized somatic leakage conductance GL, (2.10). The figure shows that, if the
soma is too leaky, the ping-pong effect cannot occur. Above a critical somatic leakiness, ping-
pong oscillations can occur, but a greater amount of current is needed to drive the oscillations
as GL increases. On the other hand, the size of the region of bistability increases as GL is
increased. When GL is increased, relatively more current is drawn into the soma from the
dendrite after the somatic spike; this acts to facilitate the onset of ping-pong oscillations.
However, there is also an overall increase in the somatic input conductance with increased
GL; thus more current is required to depolarize the soma to threshold and induce oscillations.

4.3. The linear spike. The sigmoidal spike considered in the previous section had an
abrupt repolarization. Here, we explicitly examine the effect of the rate of repolarization on
firing dynamics by considering a spike with a linear repolarization. When the voltage at the
soma reaches threshold, the “linear” spike instantaneously increases the somatic voltage to
a value β and then linearly decreases the somatic voltage at a constant rate VR−β

Ta
until it

reaches VR (see Figure 8 (a)). The functional form of the linear spike is

(4.4) h(t) =

(
VR − β

Ta

)
t+ β, t ∈ (0, Ta].

Once again, β represents the maximum somatic potential during the spike, Ta is the duration
of the spike, and VR is the value of the somatic potential at the end of the spike.

As in the case of the sigmoidal spike, bistability between periodic firing and quiescence
can occur in the model with the linear spike as a result of a somatodendritic ping-pong effect.
In fact, the dependence on parameters as shown by the two parameter bifurcation diagrams
for the linear spike are qualitatively similar to those for the sigmoidal spike except for the
diagrams involving the duration of the spike Ta. Compare the diagram for I versus Ta in
Figure 8 (b) to that of Figure 6 (b). Although the transition to bistability occurs similarly
for both spike types, bistability eventually disappears as Ta becomes too large for the case
of the linear spike. This results from the decrease in the rate of repolarization of the linear
spike as its duration becomes larger. For sufficiently large values of Ta, the proximal dendritic
potential is able to closely track the somatic potential during the spike as it decreases to the
reset potential VR. Thus, at the end of the spike, there is no longer a large gradient in the
membrane potential between the proximal dendrite and the soma, and the ping-pong effect
ceases to occur.
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Figure 8. Ball-and-stick model behavior with the linear spike function. (a) Voltage trace at the soma
(x = 0) with the linear spike function (4.4). After reaching threshold, the somatic potential abruptly increases
to a value β and then linearly decreases to VR. Parameters are β = 38, Ta = 0.2, VR = −2, I = 2, γ = 1,
L = 1, and GL = 2. (b) Effects of altering spike duration on the size of the bistable region using the linear
spike. Parameters are β = 30, VR = −2, γ = 1, L = 1, and GL = 2.

5. Two-compartment LIF model. A standard simplification of the ball-and-stick model
is to lump the passive dendritic cable into a single passive compartment that is electrically
coupled to the soma [2, 9, 23, 28]. This simplification often leads to greater mathematical
tractability while still capturing the essential dynamics of the neuronal model. Here we con-
sider a two-compartment model in which the somatic dynamics are described by the LIF
model that explicitly includes a spike and the dendrite is modeled as a single passive com-
partment. In this case, we are able to reduce the dynamics of the system to consideration of
a one-dimensional map (for a similar approach, see [3]). We then show that the dynamics of
the full ball-and-stick model are well captured by the simpler two-compartment model.

The dendrite is now modeled as a single passive compartment that is electrically coupled
to the soma

(5.1) Cm
dV D

dt
= −gLD(V D − ELD) +

gc
AD

(V S − V D),

where V D and V S are the membrane potentials of the dendritic and somatic compartments,
respectively, Cm is the membrane capacitance, gLD is the dendritic leakage conductance, ELD

is the dendritic leakage reversal potential, gc is the somatodendritic coupling conductance,
and AD is the area of the dendritic compartment.

The soma is modeled as an LIF compartment. The dynamics for the nonspiking portion
of the somatic membrane potential are governed by

(5.2) Cm
dV S

dt
= −gLS(V S − ELS) +

gc
AS

(V D − V S) + I,

where ELS is the leakage reversal potential of the somatic compartments, gLS is the somatic
leakage conductance, I is the applied current to the soma, and AS is the area of the somatic
compartment. As in the previous section, when V S reaches a threshold voltage at time t

j
s
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(V S(t
j
s) = V th), the jth spike is elicited in the soma. The transmembrane potential of the

soma during the spike is given by

(5.3) V S(t) = h(t− t
j
s), t ∈ (t

j
s, t

j
s + T a],

where h(t) is a function that describes the shape of the spike. After a time T a, the somatic

dynamics are switched back to (5.2) at t = t
j
s + T a.

In nondimensional form, the LIF two-compartment model is given by

dVD

dt
= −VD + αg(VS − VD),(5.4) ⎧⎨

⎩
dVS

dt
= −glkVS + g(VD − VS) + I if t /∈ (ts, t

j
s + Ta],

VS(t) = h(t− tjs) if t ∈ (tjs, t
j
s + Ta],

(5.5)

where Vn(t) = V n(t/τD)−ELD

V th−ELD
and n = S,D, τD = Cm/gLD, α = AS

AD
, g = gc

ASgLD
, glk =

gLS/gLD, I = I+gLS(ELS−ELD)

gLD(V th−ELD)
, Vth = V th−ELD

V th−ELD
= 1, h(t) = h(t/τD)−ELD

V th−ELD
, and t = t̄

τD
.

An analysis of the nonspiking portion of system (5.4)–(5.5) shows that the two-compart-
ment model has a unique quiescent steady-state (V ss

D , V ss
S ) given by

V ss
D =

Iαg

g + glk(1 + gα)
,(5.6)

V ss
S =

I(1 + αg)

g + glk(1 + gα)
.(5.7)

This steady-state is always stable for biophysically realistic parameters, but it exists only
when V ss

S < 1, which is the case when the current applied to the soma is less than a threshold
value Ith

(5.8) Ith = glk +
g

1 + αg
.

If I > Ith, then V ss
S > 1, which implies that the steady-state does not exist and the neuron

will undergo repetitive firing. As with the ball-and-stick model, the threshold current Ith is
equal to the nondimensional input conductance and separates the influences of the LIF soma
(glk) and those of the dendrite ( g

1+αg ). Note that, as the coupling conductance g → 0 or the
relative size of the soma compared to the dendrite α → ∞, then Ith approaches the value that
would be obtained for the standard LIF model.

6. One-dimensional map for the two-compartment model. In this section, we derive a
one-dimensional return map that takes the state of the neuron at the end of the jth spike to
the state of the neuron at the end of the j + 1st spike or to the quiescent steady-state. This
one-dimensional map completely captures the firing dynamics of the two-compartment model.

Assume that the neuron model is at the end of the jth spike, i.e., t = tjs+Ta, and that the
somatic voltage is at the reset potential VR and the dendritic voltage is at some potential V j

D,(
VD(t

j
s + Ta)

VS(t
j
s + Ta)

)
=

(
V j
D

VR

)
.
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Until the next spike is elicited (t ∈ (tjs + Ta, t
j+1
s )), the dynamics of the neuron are given by

the solution for the nonspiking portion of the system

(6.1)

(
VD(t)
VS(t)

)
= c1(V

j
D) e

λ1(t−(tjs+Ta)) −→u1 + c2(V
j
D) e

λ2(t−(tjs+Ta)) −→u2 +
(
V ss
D

V ss
S

)
,

where

λ1 =
1

2

(
−(1 + g + glk + gα) −

√
(1 + g + glk + gα)2 − 4(g + glk + gαglk)

)
,

λ2 =
1

2

(
−(1 + g + glk + gα) +

√
(1 + g + glk + gα)2 − 4(g + glk + gαglk)

)
,

−→u1 =
[

1
1+gα+λ1

gα

]
, −→u2 =

[
1

1+gα+λ2

gα

]

are the eigenvalues and eigenvectors of the system and(
c1(V

j
D)

c2(V
j
D)

)
=
[−→u1 −→u2

]−1
(
V j
D − V ss

D

VR − V ss
S

)

are integration constants that depend on V j
D.

Whether or not the neuron reaches threshold and fires the j + 1st spike depends on the
parameter values and the dendritic voltage at the end of the jth spike, V j

D. If parameters are
such that I > Ith, the somatic voltage will always reach threshold and a spike will be elicited.
However, even if the steady-state somatic potential is below threshold (V ss

S < Vth = 1), the
somatic voltage can reach threshold and the cell can fire a spike via the somatodendritic
ping-pong effect, but only if V j

D is above a critical voltage V ∗
D.

The time of the j + 1st spike and the corresponding interspike interval Δtjs = tj+1
s − tjs

are found by setting the somatic voltage to the threshold potential (VS(t
j+1
s ) = Vth = 1) and

finding the smallest positive solution of the resulting transcendental equation for Δtjs

1 = c1(V
j
D) e

λ1(Δtjs−Ta) 1 + gα+ λ1

gα
+ c2(V

j
D) e

λ2(Δtjs−Ta) 1 + gα + λ2

gα
+ V ss

S .

If a positive solution to the above equation does not exist, the neuron evolves to the quiescent
steady-state without firing.

To determine the critical voltage V ∗
D, we first examine the VS , VD phase plane as illustrated

in Figure 9. Note that the trajectory starting at (V ∗
D, VR) separates phase space into two

regions. For VD < V ∗
D, trajectories that start at (VD, VR) evolve to the steady-state (V ss

D , V ss
S )

without crossing threshold VS = 1, indicating that the cell does not spike again. For VD > V ∗
D,

trajectories that start at (VD, VR) eventually cross threshold VS = 1, indicating that the cell
spikes, i.e., VS overshoots V ss

S and Vth = 1. The trajectory starting at (V ∗
D, VR) hits the

threshold VS = 1 but does not cross it. This implies that this critical trajectory hits VS = 1
at the point where it crosses the VS-nullcline, i.e., at (VD, VS) =

(glk+g−I
g , 1

)
. Plugging this

information into the solution for the nonspiking portion of the system (6.1), we obtain a

D
ow

nl
oa

de
d 

03
/1

5/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BISTABILITY IN A SPATIALLY EXTENDED NEURON 527
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−1

0
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2

VD

V
S

dVD

dt = 0
dVS

dt = 0

VD(0) = V ∗
DVR

Vth

Figure 9. Phase plane for the nonspiking portion of the two-compartment model. The thin dashed line
is VS = 1, the thicker dashed line is dVS

dt
= 0, the thick dash-dotted line is dVD

dt
= 0, and the steady-state is

plotted as the grey dot at the intersection of the two nullclines. The trajectory that begins at (V ∗
D, VR) touches

the somatic threshold value of 1 but does not cross it. This trajectory separates trajectories that cross threshold
Vth = 1 and those that directly converge to the steady state without crossing threshold. Note that, once the
trajectory crosses threshold, the dynamics are then governed by the spiking portion of the model after which the
somatic potential is brought back to VR = −2.

system of two transcendental equations[
glk+g−I

g

1

]
= c1(V

∗
D) e

λ1t∗ −→u1 + c2(V
∗
D) e

λ2t∗ −→u2

that can be used to solve for the two unknowns V ∗
D and t∗, where t∗ is the time it takes for

the trajectory to flow from the point (V ∗
D, VR) to the point

( glk+g−I
g , 1

)
.

If the neuron fires a j + 1st spike, the dendritic voltage at the onset of the spike is

(6.2) VD(t
j+1
s ) = φ1(V

j
D) := c1(V

j
D) e

λ1(Δtjs−Ta) + c2(V
j
D) e

λ2(Δtjs−Ta) + V ss
D .

The dendritic voltage at the end of the spike is obtained by solving (5.4) from time t = tj+1
s to

t = tj+1
s + Ta using VD(t

j+1
s ) as the initial condition and the prescribed shape of the somatic

potential during the spike, (5.5),

(6.3) VD(t
j+1
s + Ta) = φ2(V

j
D) := e−(1+αg)Ta

(
VD(t

j+1
s ) + αg

∫ Ta

0
h(s)e(1+αg)sds

)
.
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By convolving the maps for the subthreshold dynamics, (6.2), and the spike dynamics,
(6.3), we can define a map that takes the state of the neuron at the end of the jth spike
(V j

D, VR) to the state of the neuron at the end of the j + 1st spike (V j+1
D , VR) or the steady-

state (V ss
D , V ss

S )

(6.4)

V j+1
D = φ2 ◦ φ1(V

j
D)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−(1+αg)Ta

(
c1(V

j
D)e

λ1(Δtjs−Ta)

+ c2(V
j
D)e

λ2(Δtjs−Ta) + V ss
D + αg

∫ Ta

0 h(s)e(1+αg)sds

)
if V j

D > V ∗
D,

V ss
D if V j

D ≤ V ∗
D.

Note that, when V j
D > V ∗

D, the spike map φ2 is linear, and, in the limit as Ta → 0 and
h(t) → βδ(t), φ2 simply increases VD by a constant βαg [22]. Note also that fixed points of
the above map with V j

D = V ss
D correspond to the quiescent state in the full system, whereas

fixed points with V j
D > V ss

D correspond to periodic firing in the full system.

7. Two-compartment model behavior. We now examine the behavior of the two-com-
partment model with two different spike functions: a square spike and a linear spike. As with
the ball-and-stick model, we find that the two-compartment model exhibits bistable behavior
arising from the somatodendritic ping-pong effect and displays very similar dependence on
parameters.

7.1. Square spike. We describe the spike by a square pulse

(7.1) h(t) =

{
β if 0 < t < Ta,

VR if t = Ta.

The parameter β represents the maximal somatic potential that is reached during the spike,
Ta is the duration of the spike, and VR is the value of the somatic potential after the spike
has completed. Note that the square pulse is the limit of the sigmoidal spike function (4.2)
as p → ∞.

Figure 10 (a) plots an example of the somatic and dendritic membrane potentials found
using square spikes with I = 2.5 < Ith = 2.6. Recall that if I > Ith, the quiescent steady-state
does not exist, and the system is guaranteed to be in the oscillatory regime. However, as
was the case for the ball-and-stick model, stable periodic firing can coexist with the quiescent
steady-state in the two-compartment model for I < Ith. The return map (6.4) corresponding
to the system simulated in Figure 10 (a) is plotted in Figure 10 (b). Note that the map
has two stable fixed points: The lower fixed point corresponds to a stable quiescent state in
the two-compartment model, and the upper fixed point corresponds to stable periodic firing.
Below, we use the return map to determine the regions of parameter space in which a stable
quiescent state exists and stable periodic firing exists in the two-compartment model neuron.

Altering parameters in the two-compartment model with the square spike yields very
similar dynamics to those of the ball-and-stick model with the sigmoidal spike. This is clearly
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Figure 10. The ping-pong effect and bistability in the two-compartment model with the square spike. (a)
Voltage traces of the somatic and dendritic compartments with the square spike as in (7.1). For the parameter
values used, I < Ith = 2.6, and the ping-pong effect between the somatic and dendritic compartment potentials
holds the system in the oscillatory regime. (b) The grey line plots the return map (6.4) derived from the two-
compartment model with the square spike. The black line is identity line V k+1

D = V k
D. The map has two stable

fixed points indicating that the full two-compartment model displays bistability between periodic firing and the
quiescent steady state: The lower fixed point corresponds the quiescent steady state (V ss

D , V ss
S ), and the upper

fixed point corresponds to periodic firing. Parameters for both plots are β = 13, Ta = 0.2, VR = −2, g = 1.5,
glk = 2, α = 1, and I = 2.5.

seen for spike amplitude β and spike duration duration Ta by comparing Figure 11 with Figure
6. The similarities are also seen for the passive membrane parameters by comparing Figures 12
and 7. The physical interpretation of the parameters g and glk in the two-compartment model
corresponds well to the parameters γ and GL in the ball-and-stick model. This correspondence
is seen in the similarities of Figure 12 (a) and (c) and Figure 7 (a) and (c). The ratio of the
somatic-to-dendritic surface areas α in the two-compartment model loosely corresponds to
the inverse of the length of the dendrite 1/L in the ball-and-stick model, as reflected in
the similarities between Figure 12 (b) and Figure 7 (b). It is important to note that all of
the biophysical mechanisms underlying the two parameter bifurcation diagrams described in
section 4 for the ball-and-stick model carry over to the two-compartment model.

7.2. Linear spike. The linear spike is described in (4.4) of section 4.3. Figure 13 (a)
plots an example of the somatic and dendritic voltage traces found using the linear spike.
Somatodendritic ping-pong causes the system to display oscillatory behavior even when the
applied current to the soma is below Ith.

As was the case for the ball-and-stick model, the two parameter bifurcation diagrams for
the two-compartment model with the linear spike and the square spike are qualitatively the
same except for the diagram plotting applied current I versus the spike duration Ta (Figure
13 (b)). Moreover, Figure 13 (b) shows that altering the duration of the linear spike yields
qualitatively similar dynamics to those of the ball-and-stick model with the linear spike.

Thus, we have demonstrated that the two-compartment model captures the qualitative
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Figure 11. Effects of changing spike parameters in the two-compartment model with the square spike. (a)
Two parameter bifurcation diagram of applied current I versus the maximum somatic depolarization during the
spike, β. Parameters are Ta = 0.2, VR = −2, g = 1, glk = 2, and α = 1. (b) Two parameter bifurcation
diagram of applied current versus the duration of the spike, Ta. Both diagrams are qualitatively similar to the
corresponding diagrams generated for the ball-and-stick model with the sigmoidal spike (Figure 6). Parameters
are β = 10, VR = −2, g = 1, glk = 2, and α = 1.

behavior of the ball-and-stick model when considering dependence of the firing dynamics on
parameters.

8. Discussion. In this article, we examine the effects of a passive dendrite on the firing
dynamics of an LIF neuron that explicitly includes a spike. We model the dendrite as either
a passive cable using the cable equation (a ball-and-stick model) or as a single passive com-
partment (a two-compartment model). For each model, we are able to derive the analytical
solution and reduce the system dynamics down to consideration of a return map. Using the
map, we find that dendritic properties can significantly change the firing dynamics of the
system. Under certain conditions, the addition of the dendrite can change the LIF model
from type 1 excitability to type 2 excitability and induce bistability between periodic firing
and the quiescent state. We identify the mechanism that causes the periodic behavior in
the bistable regime as somatodendritic ping-pong. Furthermore, we use the return map to
fully explore the model parameter space in order to find regions where this bistable behavior
occurs. We then give physical interpretations for the dependence of the bistable behavior on
model parameters. Finally, we demonstrate that the simpler two-compartment model displays
qualitatively similar dynamics to those of the more complicated ball-and-stick model. Fur-
thermore, the appendix shows that the analysis we present here can be extended to include
dendritic point source inputs. However, we find that the addition of these inputs does not
change the qualitative dynamics presented in the main paper.

Previous work has examined the effects of dendritic properties on the frequency-input
(f-I ) relationship of neuronal oscillators [3, 21, 24, 36, 38]. In two closely related studies,
Lánský and Rodriguez [21] and Bressloff [3] examined how the addition of a passive dendritic
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Figure 12. Effects of altering passive membrane parameters in the two-compartment model with the square
spike. (a) Two parameter bifurcation diagram for applied current I versus coupling conductance g. Parameters
are β = 5, Ta = 0.2, VR = −2, glk = 2, and α = 1. (b) Two parameter bifurcation diagram for applied
current I versus soma to dendrite membrane area α. Parameters are β = 25, Ta = 0.2, VR = −2, glk = 2, and
g = 1. (c) Two parameter bifurcation diagram for applied current I versus somatic leakage conductance glk.
Parameters are β = 5, Ta = 0.2, VR = −2, g = 1, and α = 1. Note the similarities between these diagrams and
corresponding diagrams generated for the ball-and-stick model with the sigmoidal spike in Figure 7.

compartment can affect the firing dynamics of the LIF neuron. These studies found that
the addition of the dendrite delays the onset of oscillations as input to the soma is increased
and decreases the firing frequency at any given input level. These results are to be expected
when one interprets the dendritic compartment as a passive load on the soma (see, however,
[36]). Here, we show that, in addition to these effects, dendrites can induce bistability between
periodic firing and quiescence. The previous studies did not observe this bistable behavior
because they did not include the effects of the somatic spike on the dendritic compartment.

We have identified the mechanism for periodic firing in the bistable regime as somato-
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Figure 13. Two-compartment model behavior with the linear spike function. (a) Voltage traces of the
somatic and dendritic compartments with the linear spike function. Parameters are β = 15, Ta = 0.2, VR = −2,
g = 1, glk = 2, I = 6, and α = 1. (b) Two parameter bifurcation diagram of applied current I versus Ta.
Note that this diagram is qualitatively similar to the corresponding diagram for the ball-and-stick model with
the linear spike (Figure 8 (b)). Parameters are β = 30, VR = −2, g = 1, glk = 2, and α = 1.

dendritic ping-pong [2, 39]. Somatodendritic ping-pong has been previously described in the
context of neuronal bursting dynamics [2, 9, 20, 28, 39]. Bose and Booth [2] showed that in or-
der for somatodendritic ping-pong bursting activity to occur in two-compartment models, the
coupling conductance between the somatic and dendritic compartments and the integration
time constant of the dendritic compartment must be tightly tuned so as to allow the dendritic
compartment time to be sufficiently depolarized after a somatic spike. The relative simplicity
of our LIF models enables us to expand on these requirements by explicitly examining how
the spike properties and dendritic cable properties affect neuronal firing. For example, we find
that both the size (amplitude and duration) of the somatic spike as well as the rate of repolar-
ization of the soma must be sufficiently large in order for ping-ponging to occur. Furthermore,
increasing the length of the dendrite generally promotes the ping-pong effect up to an optimal
length. Increasing the dendritic reversal potential ELD can promote the ping-pong effect as
well. Note that adding active currents, e.g., a persistent sodium current, to the dendrite in
our system would make it easier for the ping-pong effect to occur.

We have shown that the addition of a dendrite can fundamentally change the f-I curve of
the LIF model. In the standard LIF model, oscillations can occur at arbitrarily low frequencies
and increase rapidly with increasing input. This f-I relationship is characteristic of Hodgkin’s
type 1 neural excitability [14]. Intuitively, if a dendritic load is added to the standard LIF
model, one would expect a rightward shift in the f-I curve while retaining the type 1 neural
excitability [3, 21]. However, we find that when a spike is explicitly included in the LIF model,
the addition of the dendrite can cause the onset of oscillations to arise at a nonzero frequency
that is relatively insensitive to increases in input current. This relationship is characteristic
of Hodgkin’s type 2 neural excitability. The two types of neural excitability are known to be
associated with particular bifurcations. Type 1 neural excitability is associated with the onset
of oscillations arising from an infinite period bifurcation (saddle-node-on-an-invariant-cycle
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(SNIC) bifurcation), and type 2 neural excitability is associated with the onset of oscillations
arising from a Hopf bifurcation [16]. This would imply that oscillations in the standard LIF
model arise from a discontinuous bifurcation that is reminiscent of a SNIC bifurcation (see
Figure 4 (a)). When the effects of the dendrite are sufficiently large and a somatic spike is
explicitly included, the addition of the dendrite can cause oscillations in the LIF model to arise
from a discontinuous bifurcation that is reminiscent of a subcritical Hopf bifurcation (Figure
4 (b)). Thus, the transition between the two types of bifurcations would appear to involve the
discontinuous equivalent of a Takens–Bogdanov bifurcation [16]. Future work must be done
to fully expound the details of the corresponding bifurcation structure of the system and to
show that these dynamics extend to continuous systems.

The influence of dendrites on transitions from type 1 to type 2 excitability, as well as
the associated bifurcations and changes in f-I curves, is of importance to many areas of
neuroscience. For example, (1) the encoding properties of a neuron are reflected in the shape
of its f-I curve [5, 21]. Lánský and Rodriguez [21] showed that the addition of a dendritic
compartment to the LIF neuron can increase its encoding range. However, we show that the
addition of the dendrite can cause the LIF neuron to change from type 1 to type 2 excitability,
which is typically associated with a smaller encoding range than type 1 neurons. (2) Type 2
excitability is often associated with a region of bistability which allows the neuron to behave
like a neuronal switch; i.e., the neuron can change between periodic firing and quiescence in
response to transient inputs. This type of behavior has been observed in parts of the central
nervous system ranging from the spinal cord [30] to the neocortex [13] and is hypothesized
to be closely related to short-term memory. (3) Type 2 neurons respond best to fluctuating
inputs around a characteristic frequency, whereas type 1 neurons summate inputs across a
broad range of frequencies. Types 1 and 2 neurons have therefore been labeled integrators
and resonators, respectively [16, 29]. (4) The phase response curve (PRC) differs between types
1 and 2 neurons [35]; near the onset of oscillations, type 1 neurons display a monophasic PRC,
whereas type 2 neurons can display biphasic PRCs. The different PRC shapes for the two
types of excitability are known to have a critical influence on the synchronization properties
of neuronal networks [12]. Therefore, a deeper understanding of the mechanisms by which the
dendrite causes the transition from type 1 to type 2 excitability, and the associated changes
in f-I curves, will be extremely valuable.

Appendix A. Dendritic inputs in the LIF ball-and-stick model. In this section, we discuss
how point source inputs to the dendrite affect the dynamics we describe in the main paper.
Specifically, by adding point source inputs to our model dendrite in (2.5)–(2.8) we arrive at

∂V

∂t
=

∂2V

∂x2
− V + Idδ(x − xd),(A.1)

⎧⎨
⎩
V (0, t) = h(t− tjs) if t ∈ (tjs, t

j
s + Ta] [spike],

∂V

∂t
(0, t) = −GLV (0, t) + I + γ

∂V

∂x
(0, t) if t ∈ (tjs + Ta, t

j+1
s ] [nonspike],

(A.2)

∂V

∂x
(L, t) = 0,(A.3)

V (x, tjs) = V j(x),(A.4)
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where Id and xd are, respectively, the strength and location of the point source input to the
dendrite.

For the spike portion of the map, the addition of the dendritic point source input can be
accounted for by adding the term GS(x, xd) to (3.1),

(A.5) V (x, t) = U(x, t) + h(t− tjs)Ṽ
ss(x) +GS(x, xd),

where

(A.6) GS(x, xd) =

{
Id sinh(x) cosh(L− xd)/ cosh(L) if 0 ≤ x ≤ xd ≤ L,

Id sinh(xd) cosh(L− x)/ cosh(L) if 0 ≤ xd ≤ x ≤ L

is the Green’s function for the system

−d2GS

dx2
+GS = Idδ(x− xd),

GS(0) = 0,

dGS

dx
(L) = 0.

The solution of the spiking portion of the model (3.3) is then modified to be

V (x, t) =
∞∑

m=0

(
Ṽ j
m + Ṽ ss

m qm(t− tjs)− g̃Sm(x, xd)
)
e−(1+λ2

m)(t−tjs)Ym(x)

+ h(t− tjs)Ṽ
ss(x) +GS(x, xd), t ∈ [tjs, t

j
s + Ta),

where

g̃Sm(x, xd) =

〈
GS(x, xd), Ym(x)

〉
〈Ym(x), Ym(x)〉 ,

and the Ym(x) are given by (3.4). Thus, the membrane potential along the neuron at the end
of the jth spike is

(A.7) V j+ 1
2 (x) = V (x, tjs + Ta) =

∞∑
m=0

Ṽ
j+ 1

2
m Ym(x),

where

Ṽ
j+ 1

2
m =

(
Ṽ j
m + qm(Ta)Ṽ

ss
m − g̃Sm(x, xd)

)
e−(1+λ2

m)Ta + h(Ta)Ṽ
ss
m + g̃Sm(x, xd)

and the spike map (3.22) is now given by

(A.8) ΦS
Y :

−→̃
V j →

−→̃
V j+ 1

2 = ΩS
−→̃
V j + (ΩSQ+H)

−→̃
V ss + (I− ΩS)

−→̃
g S(x, xd),

where Q, H, and ΩS are given in (3.7)–(3.8).
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For the nonspiking portion, we account for the point source dendritic input by changing
(3.11) to

(A.9) V ss
G (x) = ρ cosh(L− x) +GNS(x, xd),

where

GNS(x, xd) =

{
Ida(xd)

[
GL
γ sinh(x) + cosh(x)

]
if 0 ≤ x ≤ xd ≤ L,

Idb(xd) cosh(L− x) if 0 ≤ xd ≤ x ≤ L,
(A.10)

a(xd) =
γ cosh(L− xd)

GL cosh(L) + γ sinh(L)
,

b(xd) =
GL sinh(xd) + γ cosh(xd)

γ sinh(L) +GL cosh(L)

is the Green’s function for the system

−d2GNS

dx2
+GNS = Idδ(x− xd),

dGNS

dx
(0) =

GL

γ
GNS(0),

dGNS

dx
(L) = 0.

Thus, the map for the nonspiking portion is of the same form as in (3.20). The full map of
the system can now be written as

ΦX = ΦS
X ◦ ΦNS

X :
−→
V j+1(A.11)

= ΩNS,jPΩSR
−→
V j +ΩNS,j

[
P (ΩSQ+H)R− I

] −→
V ss

V ss(0)

+ [P (I− ΩS)R]−→g S(x, xd) +
−→
V ss

G ,

where ΩNS,j is given in (3.21), V ss(x) is given in (3.11),
−→
V ss is given by (3.17), I is the identity

matrix,

gSn (x, xd) =

〈
GS(x, xd),Xn(x)

〉
A

〈Xn(x),Xn(x)〉A
,

and the Xn(x) are given by (3.13).
As in the main paper, we can use (A.9) to solve for the bias current applied to the soma

needed to bring the steady-state voltage at x = 0 above 1,

(A.12) Ith = GL + γ tanh(L)− Id
γ cosh(L− xd)

cosh(L)
.

Equation (A.12) is plotted in Figure 14 (a) as a function of xd for different values of Id. As
Id gets larger, Ith greatly decreases for proximal dendritic inputs. However, as the dendritic
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Figure 14. The position of the dendritic input affects both the somatic bias current and the dendritic
input current needed to guarantee monostable firing. (a) Somatic bias current needed to guarantee monostable
firing Ith (A.12) plotted as a function of the position of the dendritic input xd for four different values of the
dendritic input current Id. (b) Dendritic input current needed to guarantee monostable firing Idth (A.13) as a
function of xd for three different values of the somatic bias current I. In both figures, GL = 2, γ = 1, and
L = 4.

input becomes more distal, Ith increases and reaches an asymptote that is close to the value
when Id = 0.

Similarly, we can solve for the dendritic point source input current needed to bring the
steady-state voltage at x = 0 above 1,

(A.13) Idth =
γ sinh(L) + (GL − I) cosh(L)

γ cosh(L− xd)
.

Idth is plotted in Figure 14 (b) as a function of xd for different values of I. Notice that, as the
dendritic input becomes more distal, the value of Idth becomes very large. However, moderate
increases in the somatic bias current act to greatly decrease the value of Idth even when the
dendritic input is very distal.

Figure 15 plots the two bifurcation diagram for the somatic bias current versus the somatic
spike height when Id = .2 and the position of the dendritic point source input is varied. The
figure shows that the bifurcation structure of the system with dendritic inputs is qualitatively
similar to that of Figure 6 (a). Furthermore, the figure also reveals that the addition of the
dendritic input acts to (i) decrease the amount of somatic bias current needed for monostable
firing and (ii) cause the bifurcation to bistability to occur for smaller values of the somatic
spike height. Point (i) occurs because the dendritic input causes the dendrite to source current
to the soma when the voltage is subthreshold, thus allowing it to reach threshold with a lower
bias current. Point (ii) occurs because, during the spike, both the soma and the dendrite are
now sourcing current to the proximal dendrite causing it to become more depolarized and thus
allowing the ping-pong effect to occur for smaller values of the somatic spike height. Note
that this scenario can be different if the somatic dynamics during the spike are allowed to be
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Figure 15. Dendritic inputs do not qualitatively affect the bifurcation structure. Two parameter bifurcation
diagram for the current applied to the soma I versus spike amplitude β (similar to Figure 6 (a)). As in the
previous bifurcation diagrams, the solid line represents Ith (i.e., the curve in parameter space above which the
quiescent solution does not exist) and the dash-dotted line represents the minimum amount of applied current
needed to sustain oscillations via the ping-pong effect (i.e., the curve in parameter space where the stable
oscillatory solution first coexists with the stable quiescent solution). The grey lines represent the bifurcation
diagram when Id = 0, while the black lines plot the bifurcation diagrams when Id = .2 and xd is (in order from
lowest to highest) .2, .5, 1, and 2. In this figure, GL = 2, γ = 1, Ta = .2, VR = −2, and L = 4.
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Figure 16. The ping-pong effect can occur with only dendritic input. Two parameter bifurcation diagram
for the dendritic point source input current Id versus spike amplitude β when (a) xd = 0 and (b) xd = 2 and
the somatic bias current is zero. Other parameters are the same as in Figure 15.

affected by the dendritic dynamics and are not prescribed by a time-varying spike function as
is the case in our model. As the dendritic input becomes more distal, the bifurcation structure
of the system approaches that of the the system with no dendritic inputs, i.e., Id = 0, which
is plotted as the grey lines in the figure. Thus, dendritic inputs appear to not qualitatively
affect the bifurcation structure of the system.

Finally, Figure 16 plots the two bifurcation diagram for the dendritic point source input
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current Id versus the somatic spike height when I = 0. The figures show that bistability can
still occur in the system with current being applied only to the dendrite. Furthermore, as the
dendritic input becomes more distal, the bifurcation diagram remains qualitatively the same
and is only shifted upward.
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