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Abstract

No single neuroimaging technique or sequence is capable of reflecting the functional deficits

manifest in MS. Given the interest in imaging biomarkers for short- to medium-term studies,

we aimed to assess which imaging metrics might best represent functional impairment for

monitoring in clinical trials. Given the complexity of functional impairment in MS, however, it

is useful to isolate a particular functionally relevant pathway to understand the relationship

between imaging and neurological function. We therefore analyzed existing data, combining

multiparametric MRI and OCT to describe MS associated visual impairment. We assessed

baseline data from fifty MS patients enrolled in ReBUILD, a prospective trial assessing the

effect of a remyelinating drug (clemastine). Subjects underwent 3T MRI imaging, including

Neurite Orientation Dispersion and Density Imaging (NODDI), myelin content quantification,

and retinal imaging, using OCT. Visual function was assessed, using low-contrast letter acu-

ity. MRI and OCT data were studied to model visual function in MS, using a partial, least-

squares, regression analysis. Measures of neurodegeneration along the entire visual path-

way, described most of the observed variance in visual disability, measured by low contrast

letter acuity. In those patients with an identified history of ON, however, putative myelin

measures also showed correlation with visual performance. In the absence of clinically iden-

tifiable inflammatory episodes, residual disability correlates with neurodegeneration,

whereas after an identifiable exacerbation, putative measures of myelin content are addi-

tionally informative.

Introduction

Functional impairment can take a long time to manifest in multiple sclerosis (MS) [1, 2].

Shorter-term clinical trials are needed to assess therapeutic efficacy over reasonable time

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235615 August 3, 2020 1 / 8

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Caverzasi E, Cordano C, Zhu AH, Zhao C,

Bischof A, Kirkish G, et al. (2020) Imaging

correlates of visual function in multiple sclerosis.

PLoS ONE 15(8): e0235615. https://doi.org/

10.1371/journal.pone.0235615

Editor: Niels Bergsland, University at Buffalo,

UNITED STATES

Received: January 7, 2020

Accepted: June 19, 2020

Published: August 3, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0235615

Copyright: © 2020 Caverzasi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: Author CC was supported by a Training

Fellowship FISM (Fondazione Italiana Sclerosi

http://orcid.org/0000-0002-0350-0460
https://doi.org/10.1371/journal.pone.0235615
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235615&domain=pdf&date_stamp=2020-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235615&domain=pdf&date_stamp=2020-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235615&domain=pdf&date_stamp=2020-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235615&domain=pdf&date_stamp=2020-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235615&domain=pdf&date_stamp=2020-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235615&domain=pdf&date_stamp=2020-08-03
https://doi.org/10.1371/journal.pone.0235615
https://doi.org/10.1371/journal.pone.0235615
https://doi.org/10.1371/journal.pone.0235615
http://creativecommons.org/licenses/by/4.0/


scales. Imaging methods have been employed for this purpose [3, 4], but the correlation

between imaging metrics and functional impairment remains uncertain and the specific imag-

ing techniques that are best suited for measurement have not yet been defined [5, 6]. This is

particularly important for investigations of neuroprotective and reparative therapies.

The visual pathway is anatomically well defined and functionally discrete, with well-vali-

dated measures that are both quantifiable and reliable. For these reasons, the visual pathway

has long been used as a model for understanding pathological processes (e.g. inflammation,

demyelination, and neurodegeneration) that underlie neurological dysfunction in the disease

[7, 8].

ReBUILD, a double-blind, placebo-controlled trial, demonstrated the effectiveness of clem-

astine fumarate in improving visual-evoked, potential latency and visual function [9]. To fur-

ther explore the relationship between imaging and function, and in particular to overcome the

mismatch between conventional MRI and clinical deficit in MS [6], we performed an analysis

based on optical coherence tomography (OCT) and advanced MRI assessments from the base-

line assessment of the ReBUILD trial cohort [9]. To describe visual impairment in MS, we spe-

cifically implemented a multimodal approach, combining OCT and novel MRI techniques

capable of estimating both metrics for myelin content, such as myelin water fraction (MWF)

[10, 11] and metrics for neurite organization (neurite density (NDI) and orientation dispersion

indexes (ODI)) [12].

Methods

Subjects and clinical evaluation

Fifty relapse-remitting (RRMS) patients underwent baseline assessments as part of the

ReBUILD trial prior to the initiation of treatment (32 females, average age of 40.1 years ± 10.3

SD, median EDSS 2.0 (range 0 to 5.5), and median disease duration of 3.2 years (range 0.4 to

30.4). Either a clinically evident, optic neuritis that had occurred within 6 months before

screening or more than 5 years prior to enrollment in the qualifying eye for the Rebuild study

was an exclusion criterion. For the purpose of this study we considered all patients’ eyes for

which data was available, including those eyes with ON older than 5 years (i.e. eyes that were

not basis for qualification in the study). Visual impairment was measured by low contrast letter

acuity (LCLA; Sloan 2.5% low contrast vision chart; Precision Vision, La Salle, IL, USA). The

single eye measures were averaged with the fellow eye ones to have a single value for each

patient. The study was approved by the UCSF Institutional Review Board and all participants

provided informed consent. The trial was registered at ClinicalTrials.gov (number

NCT02040298) before initiation of patient enrolment. All research was performed in accor-

dance with relevant guidelines/regulations.

MRI acquisition

Each subject underwent brain MRI acquisitions on a 3T Siemens Skyra scanner. The MRI pro-

tocol included standard sagittal T1-weigthed, 3D MPRAGE (1 mm3 cubic voxel), a two-shell,

neurite-orientation dispersion and density imaging (NODDI) [12] protocol (30 & 64 direc-

tions at b = 700 & 2000 s/mm2, 2.2 mm3 cubic voxel) and a multi-echo gradient-echo (MEGE)

sequence for myelin content quantification [10, 11]. Details of the MRI protocol were previ-

ously reported [9].
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MRI analysis

Automated parcellation of T1-weighted volumes was performed using Freesurfer Image Analy-

sis Suite Version 5.6. Total cortex, primary visual area (V1, Brodman area 17), thalami and cere-

bellar cortex were parcellated as volumes of interest (VOIs) from T1-weigthed, 3D MPRAGE

image (Fig 1) [13–15]. Computed volumes were normalized by intracranial volume. Optic radi-

ation (OR) VOIs were obtained from the JHU DTI-based (MNI space) white-matter atlases

[16] and co-registered to the single subject space using linear and nonlinear transformations

(FLIRT/FNIRT) [17, 18]. After correcting for distortions due to eddy current and head motion,

maps of mean diffusivity (MD) were calculated by fitting the diffusion tensor model within

each voxel, using dipy fit tensor [19]. The NODDI model was fitted to the diffusion datasets in

MATLAB (http://mig.cs.ucl.ac.uk/Tutorial.NODDImatlab) and maps of ODI were therefore

computed [12]. MEGE data were instead processed to obtain quantification of the MWF [10,

11]. MD, ODI and MWF maps were co-registered to T1 space, using linear and nonlinear trans-

formations (FLIRT/FNIRT) [17, 18]. The mean value of each MRI metric was calculated for

each VOI (V1, thalami and cerebellar cortex) averaging left and right hemispheres.

Lesion burden. An expert neuroradiologist (EC) assessed the number of occipital cortical

lesions and also segmented the total white-matter-lesion burden within the OR, using the

available FLAIR and T1-weigthed 3D MPRAGE images. We confirmed the location of lesions

by using occipital lobes masks derived by Freesurfer and JHU DTI-based OR registered in the

single subject space.

OCT

Retinal imaging was performed using spectral-domain OCT (Heidelberg Engineering, Heidel-

berg, Germany, eye explorer software version 1.9.10.0) as previously described [7].

Fig 1. MRI analysis methods: Volume of interests. A: Freesurfer pipeline was used to segment specific gray matter regions belonging to the visual network, specifically

thalamus, cerebellar cortex and V1 (primary visual area). Region of interest were identified on each subject. B: probabilistic map of optic radiation from the Juelich

histological atlas (on MNI space).

https://doi.org/10.1371/journal.pone.0235615.g001
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Peripapillary, retinal-nerve-fiber-layer (pRNFL) thickness and macular volume (MV) were

obtained. Intra-retinal-layer segmentation was executed to quantify the Ganglion Cell Layer

(GCL) through the Viewing Module 6.0. We followed the APOSTEL guidelines for reporting

OCT studies (see S1 and S2 Tables) [20].

Statistical analysis. Using a two-tailed t-test, we tested comparisons of demographic char-

acteristics between ON negative and ON positive groups. To describe the variability in MS-

associated visual impairment (LCLA), we performed a PLS to model baseline LCLA. using

demographic (age at disease onset, and at MRI), MRI (normalized volumes, MD, myelin,

ODI) and OCT metrics (GCL, pRNFL, MV), separately considering negative and positive his-

tory of ON. The significance of each predictor was established once the “Variable Importance
in the Projection” (VIP) parameter was greater than 0.8 [21]. Random-forest approach was also

used to test the reliability of the variable selected in the model. K-fold, cross-validation analysis

was performed to test the reliability of each identified model by 4-fold cross-validation with

100 repeats between least absolute shrinkage and selection operator (LASSO) and PLS. The

predictive accuracy was measured by root-mean-square error (RMSE) on both training data

and test data. Model selection, using PLS has the advantage of avoiding co-linearity-related

data inflation, although this approach lacks an efficient method for subset selection. LASSO

was therefore applied to confirm the importance of the identified variables.

Results

Twenty-eight patients had a prior history of optic neuritis (ON), whereas 22 did not. Demo-

graphic and clinical characteristics are reported in Table 1. LCLA scores for the 2 groups (22.9

±10.1 and 23.1±9.2) were lower than the LCLA values for healthy controls in literature (45.48

±11.22) [22]. There was a difference in age between the ON negative and ON positive groups

(p<0.05). MRI and OCT metrics data are reported in S1 Table.

Using partial least squares regression analysis (PLS), we identified model predictors of

LCLA with R-squared values up to 0.43 and 0.39 with or without ON respectively (Table 2).

GCL proved to be the best OCT-related, partial predictor in particularly in cases of a negative

history of ON (Variable Importance in the Projection (VIP) = 1.12 and 0.84 without and with

previous ON, respectively) (S1 and S2 Tables). Lesion burden and OCT metrics appeared to be

more informative for patients with no history of ON. Measures of cortical neurodegeneration

seemed equally informative in both negative and positive history of optic neuritis, contributing

to clinical disability. Thalamic volume was more informative in patients without ON.

Table 1. Demographic and clinical characteristics of the groups with negative and positive history of optic neuri-

tis (ON).

ON negative history group ON positive history group

N# 22 28

Age 43.9 (9.7) 37.1 (9.9)

Sex 14 F (64%) 18 F (64%)

Disease duration (years) 3.5 (0.7 to 14.2) 2.9 (0.45 to 30.4)

Time from ON (years) / 3.0 (0.2 to 15.8)

EDSS 2.0 ± (0 to 5.5) 2.0 (0 to 4)

LCLA 22.9 (10.1) 23.1 (9.2)

VEP 125.7 (8.6) 129.0 (11.4)

Demographic data, LCLA abd VEP are reported as mean (SD) or n (%). Disease duration, time from ON and EDSS

are reported at median (range).

https://doi.org/10.1371/journal.pone.0235615.t001
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Measures of myelin content (MWF) within the OR and thalamus instead gained importance

when we evaluated patients with ON. A random-forest approach confirmed all variables of the

two models except for the whole-brain, cortical, gray matter in the ON positive history model.

Model cross-validation analysis

PLS models showed low RMSE variability on both training data and test data, suggesting that

they yielded stable predictions. Among the two PLS models, 9 out of 10 predictors selected by

PLS also survived in the LASSO models’ subset selection.

Discussion

Evaluating the ReBUILD baseline data set, we identified MRI and OCT metrics-based models

that showed a strong correlation with visual performance and demonstrated good reliability.

Our results employ a more complete analysis of a single pathway because of the depth of data

acquisition, the focus on myelin metrics and the capacity to assess structural injury to the

visual system.

These data indicate that in patients with a history of ON, myelin loss is the main contribu-

tor to clinical, visual disability in MS. In this group, both MRI markers for putative myelin

content (MWF) and neurodegeneration are significantly associated with visual function. By

contrast, in patients without prior episodes of optic neuritis, axonal neurodegeneration

appears to be responsible for most of the clinical disability, together with white matter lesions

within the optic radiations.

There are different potential explanations for these observations. One is that separate pro-

cesses underlie neurodegeneration and myelin damage; i.e. there is a degenerative process act-

ing in MS that is independent of myelin loss. Alternatively, myelin loss and neuroaxonal loss

could be time-disassociated (i.e. neurodegeneration may follow myelin loss by a prolonged

period—even years - and therefore functional impairment from an asymptomatic episode in

the more distant past may be more likely to be related to neuroaxonal loss). The differences

between the models might also be due to damage in the posterior pathway (OR lesions, V1

neurodegeneration), contributing to visual disability particularly in patients without ON.

The strength of our models is their demonstrated robustness. A weakness of our study,

however, is that some of the data may have been influenced by the criteria for inclusion in the

Table 2. Schematic representations of the LCLA model results in subjects with negative and positive history of optic neuritis.

LCLA MODEL Variable VIP Scale Coefficient

LCLA IN NEGATIVE HISTORY OF ON R squared 42.8 GCL 1.12 0.2364

OR lesion volume 1.01 -0.2123

pRNFL 1.00 0.2105

Thalamic volumes 0.93 0.1961

V1 volume 0.92 0.1929

LCLA IN POSITIVE HISTORY OF ON R squared 39.3 Thalamic MWF 1.19 0.22

OR MWF 1.11 0.21

Cortical GM volume 0.96 0.18

V1 volume 0.86 -0.16

GCL 0.84 0.16

We reported the R squared of each model. The significance of each variable selected by PLS is reported as “Variable Importance in the Projection” (VIP). The scale

coefficient, representative of the effect size for each variable, is also shown. ON = optic neuritis; MWF = myelin water fraction; GCL = Ganglion Cell Layer; OR = optic

radiation; pRNFL = peripapillary retinal nerve fiber layer; GM = gray matter.

https://doi.org/10.1371/journal.pone.0235615.t002
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clinical trial [9]. For example, patients with mild visual disability or dysfunction were likely

excluded.

We attempted to address limitations related to sample size and lack of an independent data-

set for validation by using a nested cross-validation of the identified models. The size of the

cohort also forced us to select a subset of the available MRI metrics before performing our

analysis to minimize the risk of redundancy (e.g. using diffusion MRI ODI versus fractional

anisotropy). This means that other similar metrics may perform similarly or better in future

cohorts evaluating the same outcomes. Our failure to identify GM lesion burden as a meaning-

ful factor might also be due to the study design that did not include dedicated cortical MRI

sequences [23] and therefore resulted in poor sensitivity in detecting cortical lesions [24]. In

order to be applied in observational and clinical studies, the obtained predictive models need

to be replicated in larger populations.

In conclusion, we have demonstrated that combinations of advanced multiparametric MRI

sequences within the visual network and OCT correlate with visual performance, adding to

our understanding of the underlying pathological mechanisms responsible for clinical dys-

function. These measures should be candidates for observational and clinical studies in the

visual pathways in MS, as our field shifts its focus on regenerative medicine.

Supporting information

S1 Table. Schematic representations of the LCLA model results looking at the entire

cohort. We reported the R squared. The significance of each variable selected by PLS is

reported as “Variable Importance in the Projection” (VIP). The scale coefficient, representative

of the effect size for each variable, is also shown. ON = optic neuritis; MWF = myelin water

fraction; GCL = Ganglion Cell Layer; OR = optic radiation; pRNFL = peripapillary retinal

nerve fiber layer; GM = gray matter.

(DOCX)

S2 Table. OCT and MRI metrics values are reported for subject with negative and positive

history of ON. Data are mean (SD). Volumes are reported as (mm3). MD 10−3 mm2/s.
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22. Ayadi N, Dörr J, Motamedi S, Gawlik K, Bellmann-Strobl J, Mikolajczak J, et al. Temporal visual resolu-

tion and disease severity in MS. Neurol—Neuroimmunol Neuroinflammation. 2018; 5: e492. https://doi.

org/10.1212/NXI.0000000000000492 PMID: 30175166

23. Petracca M, Cordano C, Cellerino M, Button J, Krieger S, Vancea R, et al. Retinal degeneration in pri-

mary-progressive multiple sclerosis: A role for cortical lesions? Mult Scler Houndmills Basingstoke

Engl. 2017; 23: 43–50. https://doi.org/10.1177/1352458516637679 PMID: 26993116

24. Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, Barachino L, et al. Detection of cortical

inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple

sclerosis. Arch Neurol. 2007; 64: 1416–1422. https://doi.org/10.1001/archneur.64.10.1416 PMID:

17923625

PLOS ONE Visual function in MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0235615 August 3, 2020 8 / 8

https://doi.org/10.1016/s1361-8415%2801%2900036-6
http://www.ncbi.nlm.nih.gov/pubmed/11516708
https://doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
http://www.ncbi.nlm.nih.gov/pubmed/24600385
https://doi.org/10.1212/WNL.0000000000002774
http://www.ncbi.nlm.nih.gov/pubmed/27225223
https://doi.org/10.1016/j.aca.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23473249
https://doi.org/10.1212/NXI.0000000000000492
https://doi.org/10.1212/NXI.0000000000000492
http://www.ncbi.nlm.nih.gov/pubmed/30175166
https://doi.org/10.1177/1352458516637679
http://www.ncbi.nlm.nih.gov/pubmed/26993116
https://doi.org/10.1001/archneur.64.10.1416
http://www.ncbi.nlm.nih.gov/pubmed/17923625
https://doi.org/10.1371/journal.pone.0235615



