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Using Hierarchical Bayesian Methods to Examine
the Tools of Decision-Making

Michael D. Lee

Department of Cognitive Sciences
University of California, Irvine

Ben R. Newell

School of Psychology
University of New South Wales

Abstract

Hierarchical Bayesian methods offer a principled and comprehensive
way to relate psychological models to data. Here we use them to
model the patterns of information search, stopping and deciding in a
simulated binary comparison judgment task. The simulation involves
20 participants making 100 forced choice comparisons about the rela-
tive magnitudes of two objects (which of two German cities has more
inhabitants). Two worked-examples show how hierarchical models can
be developed to account for and explain the diversity of both search
and stopping rules seen across the simulated individuals. We discuss
how the results provide insight into current debates in the literature on
heuristic decision making and argue that they demonstrate the power
and flexibility of hierarchical Bayesian methods in modeling human
decision-making.

Keywords: Hierarchical Bayesian models, Bayesian inference,
heuristic decision-making, take-the-best, search rules, stopping rules

Introduction

To the cognitive scientist individual differences in behavior can be both intrigu-
ing and annoying. We are all familiar with the participants in our experiments who
“don’t do what they are supposed to do”. Sometimes these different patterns of
behavior are simply noise (the participant was on their cell phone during the exper-
iment), but often they are due to legitimate responses that our theories and models
failed to anticipate or cannot explain.



The field of judgment and decision making is no exception to the challenge
of individual differences. As Brighton and Gigerenzer (2011) mention in passing,
even the Nobel Prize-winning model Prospect Theory (Kahneman & Tversky, 1979)
typically predicts only 75%-80% of decisions in two-alternative choice tasks, and many
models do much worse. How should we, as a field, treat these individual differences
and the challenges they present for our models and theories?

One emerging approach for tackling these issues is to use hierarchical Bayesian
methods to extend existing models, and apply them in principled ways to experimen-
tal and observational data (e.g., Lee, 2008, 2011; Nilsson, Rieskamp, & Wagenmakers,
2011; Rouder & Lu, 2005; van Ravenzwaaij, Dutilh, & Wagenmakers, 2011; Wetzels,
Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010). This approach not only pro-
vide tools for interpreting individual differences, but also facilitates theory building
by providing a model-based account of why individual differences might arise. We
think it is an especially interesting, important, and promising approach, because it
deals with fully developed models of cognition, without constraints on the theoretical
assumptions used to develop the models.! Taking existing successful models of cog-
nition and embedding them within a hierarchical Bayesian framework opens a vista
of potential extensions and improvements to current modeling, because it provides a
capability to model the rich structure of cognition in complicated settings.

To demonstrate the application of hierarchical Bayesian methods to the model-
ing of heuristic decision-making, we use a standard experimental setup that requires
participants to make judgments about the relative magnitudes of two objects (size,
distance, fame, profitability, and so on). To perform these judgments it is often as-
sumed that participants search their memory, or external sources of information, for
‘cues’ to help differentiate objects. For example, an inference about the relative size
of two cities might be facilitated by cues indicating which of the two cities is a capital,
has an airport, a university, and so on (Gigerenzer & Goldstein, 1996). Judgments
are then determined by rules that use the presence or absence of cues to provide
estimates of the desired criterion (i.e., number of inhabitants).?

Such tasks, although apparently simple, incorporate several important features
that need specification in theories and models that wish to describe how participants
perform them. In this paper, we present two simple case studies: the first focuses
on information search, and the second focuses on stopping rules. We show how
Bayesian inference allows information about these psychological processes at the level

!Note, in particular, that we are not requiring the models of decision-making we consider to
be so-called ‘rational’ models that assume people are Bayesian reasoners (e.g., Griffiths, Kemp,
& Tenenbaum, 2008). We are not using Bayesian inference as a metaphor for human cognition.
Rather, we are using it as a statistical and modeling tool to relate process models of cognition to
behavioral data (Kruschke, 2010; Lee, 2011). In fact, it is the hierarchical (or multi-level) aspects of
our modeling that provide the important theoretical capabilities, with the Bayesian inference simply
providing a complete and effective approach for analyzing these models.

2Though see Brown and Tan (in press), Gléckner and Betsch (2008) and Juslin and Persson
(1999) for alternative conceptions of the judgment process.



of both individuals and groups to be extracted from basic behavioral data, and how
hierarchical extension of the models allow deeper psychological questions about why
there is variation in search and stopping to be addressed.

Modeling Search

Our case studies rely on an environment widely used in the literature, in which
83 German cities are described by 9 different cues, and the task is decide which of
two cities has the larger population (Gigerenzer & Goldstein, 1996). In a binary
comparison task like this there are different properties of cues that are relevant to
the likelihood of aiding judgment, and thus to the order in which one might search
through cues. For example, the cue “Is the city the national capital?” is often very
useful because in most cases capital cities are the largest in the country (with notable
exceptions, such as Canberra), so if the capital cue is present it is highly likely that
the city with that cue has more inhabitants. However, for the vast majority of cases a
comparison on this cue will draw absent values for both cities,because the majority of
cities in a country are not the capital. Thus, in terms of how often a cue will provide
you with diagnostic information, the ‘capital’ cue is not at all useful.

Formally these qualities of cues can be thought of as the validity and discrimi-
nation rate of a cue in a binary comparison. Discriminability is the rate at which a
cue distinguishes between two objects. Validity is the rate at which a cue, given it
discriminates, indicates correctly which of two objects should be chosen. There is ev-
idence from experimental investigations of search rules (e.g., Newell, Rakow, Weston,
& Shanks, 2004; Rakow, Newell, Fayers, & Hersby, 2005) that both discriminabil-
ity and validity can be relevant to search, and that individual differences and task
constraints might influence the extent to which one or the other, or some combi-
nation of the two dictates search through cues (e.g., Martignon & Hoffrage, 1999).
Our modeling of search in this case study uses the different emphasis people might
give to discriminability and validity as a theoretical bases for individual differences in
search, and shows how this theory can be formalized within the hierarchical Bayesian
approach.

Data

Figure 1 shows the experimental design and simulated data.The top left panel
shows how the 83 city ‘objects’ are defined in terms of the 9 cues. The objects are
ordered (left to right) in columns from highest to lowest in terms of the population de-
cision criterion. The cues correspond to rows, and the presence of a dot indicates that
a cue belongs to an object. A few objects are depicted with vertical lines intersecting
each cue that they possess (labeled ‘ol” to‘08’); these are used in our subsequent
worked examples to illustrate different patterns of search, stopping and choice. For
example, the first object is highlighted as ‘o1’, and has cues 1, 2, 4, 5, 6 and 7. The
top right panel shows how the 9 cues vary in terms of their discriminability (i.e., the
proportion of stimulus pairs for which one has the cue and the other does not) and
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Figure 1. Stimuli defined in terms of cuxes (top left), with different cue discriminabilities
and validities (top right). The bottom panel shows artificial decision-making data for 20
subjects on 100 problem pairs, indicating when the first stimulus in the pair was chosen.
The highlighted objects ‘01’ to ‘08" and the problems in which they are compared (e.g.,
‘01’-’08’) are used to indicate individual differences in behavior. See main text for details.

validity (i.e., the proportion of pairs for which the stimulus with the cue is higher on
the criterion, given that the cue discriminates). Each of the 9 cues is represented by
a red cross, showing the discriminability and validity of that cue. For example, the
first cue (corresponding to ‘national capital’ in the German cities dataset) has a very
low discriminability (because for most city pairs, neither is the national capital), but
a very high validity (because when one city is the national capital in a problem, one
of those cities is Berlin, and it is always the largest city).

The bottom panel of Figure 1 shows the decisions made by 20 simulated subjects
completing 100 two-alternative forced-choice problems. The problem set was chosen
so that every object was included at least once, each problem pair was unique, and
the cue validities and discriminabilities based on the problems were similar to the
validities and discriminabilities obtained by considering all possible object pairs. The
simulated data indicate when subjects chose the first of the presented objects. Again,
some of these problem pairs are labelled, to help with later examples. For example,
when objects ‘01’ and ‘02’ are presented as a pair, the blue dots in the highlighted



column show which subjects chose ‘01’ (i.e., all subjects except 6, 9 and 15).

These data were generated by simulating subjects who always applied a one-
reason decision process, but used different search orders. That is, we used the take-
the-best (TTB: Gigerenzer & Goldstein, 1996) decision rule, which stops search as
soon as one discriminating cue is found, but used orders other than the standard TTB
one that strictly follows decreasing cue validity. To simulate the data, we assumed
every subject used the same search order for all their problems, but different subjects
used different orders.®> We discuss exactly how these search orders were chosen once
we have described the modeling results.

For now, some hint of the individual differences in the raw data can be gleaned
from Figure 1. For example, in the highlighted problem that compares the objects la-
beled ‘01’ and ‘02’, subjects make different decisions. This could arise, for example, if
some subjects (e.g., subject 1) were using a validity based order of search, and so used
cue 1 to make a decision thereby choosing object ‘01’ because only object ‘01’ has cue
1 (see top left panel). In contrast, other subjects (e.g., subject 6) might incorporate
discriminability into their search order, and so consider cue 3 before cue 1 and thus
chose object ‘02" because only object ‘02’ has cue 3. For other problems, however, like
the highlighted ‘03-04’ comparison, there is consistency across all subjects with all
choosing ‘03’, presumably because the cues that ‘o4’ possesses are a subset of those
possessed by ‘03’. This subset relation can be seen clearly in the upper left panel of
Figure 1, because ‘03’ has cue 4 and cue 7 whereas ‘04’ has only cue 7.

Thus, the modeling challenge is to take the information in Figure 1, and make
inferences about the search orders individual subjects use, and how these search orders
vary across the subjects.

Models

Figure 2 shows the two search models we apply to the decision data. On the left
is a non-hierarchical model, and on the right is a hierarchically-extended model. Both
models are shown using the formalism provided by graphical models, as widely used
in statistics and computer science (e.g., Koller, Friedman, Getoor, & Taskar, 2007).
A graphical model is a graph with nodes that represents the probabilistic process
by which unobserved parameters generate observed data. We use the same notation
as Lee (2008), with observed variables (i.e., data) shown as shaded nodes, and un-
observed variables (i.e., model parameters to be inferred) shown as unshaded nodes.
Discrete variables are indicated by square nodes, and continuous variables are indi-
cated by circular nodes. Stochastic variables are indicated by single-bordered nodes,
and deterministic variables (included for conceptual clarity) are indicated by double-
bordered nodes. Encompassing plates are used to denote independent replications of

3The current assumption that a single subject uses the same search order for all problems is a
strong one, that could easily be relaxed in an extended hierarchical model. The basic idea would be
for trial-by-trial variability in search orders for a subject, sampled from an overarching distribution
on possible orders. This is an interesting direction for future work.
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Figure 2. Graphical models for the simple search estimation model (left side), and the
hierarchically extended search model (right side).

the graph structure within the model. Further details and tutorials aimed at cogni-
tive scientists are provided by Lee (2008) and Shiffrin, Lee, Kim, and Wagenmakers
(2008). The advantage of graphical model implementation is that it automatically
allows a fully Bayesian analysis for inferences relating the model to data, and can han-
dle large and complicated joint distributions of parameters, as needed, for example, to
examine combinatorial spaces of search orders. We achieve this using standard Win-
BUGS software (Spiegelhalter, Thomas, & Best, 2004), which applies Markov Chain
Monte Carlo computational methods (see, for example Chen, Shao, & Ibrahim, 2000;
Gilks, Richardson, & Spiegelhalter, 1996; MacKay, 2003) to make inferences about
model parameters and data. WinBUGS scripts, Matlab code, and all the relevant
data for all of our models and analysis are provided as supplementary materials along
with this paper on the journal homepage http://journal.sjdm.org/vol6.X.html.

In the non-hierarchical model on the left of Figure 2, the decision made by the
ith subject on the jth problem is y;; = 1 if the first object (object ‘a’) is chosen, and
y;; = 0 if the second object (object ‘b’) is chosen. Because these data are observed, the
node is shaded, and because they are discrete, it is square. The cues for the objects in
the jth problem are given by the vectors a; and b;, and are also known and discrete.



If the ith subject searches the cues in an order given by the vector s;, then the TTB
model will choose either a; or b;, depending on which has the first discriminating
cue in the search order s;, or will choose at random if there is no discriminating cue.
This choice is represented by the node ¢;;, which is double-bordered because it is a
deterministic function, defined as

5 if TTBs, (a;,b;) = a
tij = 1—~ if TTB, (a’j> bj) =b
0.5 otherwise,

where TTB;;, (a;, b;) is the TTB model, and + is a decision parameter controlling the
probability that the deterministic TTB choice is made. From this generative process,
the decision data are distributed as y;; ~ Bernoulli(¢;;). Using this model of the
data, it is possible to infer a posterior distribution for the unknown search order for
each participant. In other words, this model provides an ability to estimate search
order from decision data, at the level of individual participants.

The model on the right in Figure 2 shows how a hierarchical Bayesian approach
can ask the deeper psychological question of why different people might have different
search orders. In this model, search orders are generated by weighting information
about both cue validity and discriminability. Formally, the ¢ subject has a weight w;
that combines the validity v, and discriminability di of the kth cue to give w;vx +
(1 — w;) dy, and the order of these weighted sums gives the search order over the
cues. Under this approach, purely validity-based search, as in TTB, corresponds to
one extreme where w; = 1, whereas purely discrimination-based research corresponds
to the other extreme where w; = 0. The model assumes that the weights follow a
population-level normal distribution (i.e., different people have different weights, but
there is a still a pattern at the population level), so that w; ~ Gaussian (p, 0)1(071),
with weakly informative priors u, o ~ Uniform (0, 1).

We use a v ~ Uniform (0.5, 1) prior, reflecting the assumption that decisions
will generally follow T'TB. This corresponds to an assumption about the decisions
that follow at the termination of search. In the literature, decision rules are perhaps
less controversial, since most models simply state that one chooses the option pointed
to by one (or more) of the cues. However, the extent to which such a rule should
be applied deterministically or with some probability of error remains an area of
contention. This is, for example, one of the issues in the debate between Brighton
and Gigerenzer (2011) and Hilbig and Richter (2011). Here, we make a probabilistic
assumption, consistent with the ‘accuracy of execution’ formulation used by Rieskamp
(2008).

The most interesting psychology in the modeling is that the hierarchical ex-
tension gives a theory of individual differences, as coming from different emphasis
being placed on cue validity and discriminability in determining cue search order. It
also naturally combines these individual differences with the idea of population-level
structure, not letting the weights vary arbitrarily, but explaining them as coming



from an overarching distribution. Thus, using the hierarchical model, the decision
data can be used to infer group parameters like p and o, and individual parameters
like the weights w; and search orders s;.

Results

Figure 3 summarizes some of the main results of the modeling.* Each panel
corresponds to a subject, and the ‘true’ search order used to generate their data is
shown at the top of the panel. The histograms show how close the inferred search
orders are to this truth, using the standard Kendall Tau measure of distance between
order (i.e., how many pair-wise swaps it takes to change the inferred order into the
true order). The yellow (light) distribution corresponds to the non-hierarchical model,
while the green (dark) distribution corresponds to the hierarchical model. Inset within
each figure is the posterior over the w; weight parameter for each subject, with its
true data-generating value shown by the line.

Subjects 4 and 20 are good examples to focus on to discuss the general results.
These two subjects give different emphases to discriminability and validity, reflected
in their weights and search orders. Subject 4 tends to search cues that are higher
in validity first (cues 2,3,1), according to the subject’s higher value w; = 0.66. In
contrast, subject 20 searches the cue with the highest discrimination rate first (cue
7) since they place less emphasis on validity, as shown by the lower value w; = 0.48.

The hierarchical model is able to infer these weights reasonably well (the distri-
butions around the true value are relatively narrow), and produces excellent estimates
of the search order (the greatest mass is on the ‘true’ order). The modal inferred order
is exactly correct, and the remainder of the inferences are within one or two swaps. It
is clear for these subjects, and more generally across all subjects, that the hierarchical
model inferences of search order are superior to those provided by the non-hierarchical
model. This is because, in the hierarchical model, what is learned about one subject
can be used to assist inferences about another, and is a good example of what is
called “shrinkage” or “sharing strength” in statistics (e.g., Gelman, Carlin, Stern, &
Rubin, 2004).

Not shown in Figure 3 are the inferences made about the other parameters. For
both models, the expected posterior of the decision parameter v = .95, and for the
hierarchical model, expected posteriors for the overarching group distribution over
the relative emphasis on validity and discrimination were p,, = 0.54 and o, = .10.
These are all close to the true generating values of 0.5 and 0.1 for the mean and
standard deviation, and 0.95 for the decision parameter. These results show how the
models can make inferences about decision processes, and group-level properties of
the subjects.

4All of our modeling inferences in this paper are based on running 2 chains of 10,000 samples,
after a 100 sample burn-in (i.e., samples that are generated, but not used in inference). We checked
convergence using the standard R statistic (Brooks & Gelman, 1997) for every parameter, and always
found it to be between 0.99 and 1.01, indicating convergence.
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Figure 4. Artificial decision-making data for 20 subjects on 100 problem pairs, indicating
when the first stimulus in the pair was chosen. The comparisons between objects ‘05— "06’,
and ‘07’—08’ highlight individual differences, and are discussed in the main text.

Modeling Stopping

In our first example all simulated participants used a one-discriminating cue
stopping rule. The accuracy and robustness of such rules has been discussed at great
length in the context of heuristics like TTB and recognition (e.g., Czerlinski, Gigeren-
zer, & Goldstein, 1999; Gigerenzer & Goldstein, 1996; Katsikopoulos, Schooler, &
Hertwig, 2010). These simple rules are often contrasted against rules that require
more information, including tallying and weighted-additive (WADD) rules, but do
not necessarily improve the accuracy of predictions.

However, experiments that have investigated the stopping rules adopted by
participants reveal mixed evidence: some participants use frugal rules often, some less
so, some never (e.g., Newell & Shanks, 2003). Environmental factors dictate their use,
to some extent, such as the presence of costly cues increasing the use of frugal rules
(Newell, Weston, & Shanks, 2003), but there are always individual differences across
participants in the same decision environment (e.g., Lee & Cummins, 2004; Newell &
Lee, in press). Our second example examines how such patterns might arise.

Data

In our second example, we generated data by simulating subjects who always
used the same search order (the 7,2,3,4,6,5,1,8,9 order used by subject 20 in our
search example), but used different stopping rules. In particular, we used stopping
rules using minimal cue search or encouraging extensive cue search. We describe the
exact nature of the simulation process once we have presented the modeling results.
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Figure 5. Graphical models for the simple stopping estimation model (left side), and the
hierarchically extended stopping model (right side).

For now, the data are shown in Figure 4. Again, some indication of the different
stopping rules can be gleaned from the raw data. While there is consistency in
problems like the highlighted ‘05’06’ comparison, which is not surprising given that
object ‘06’ has absent values for all cues (see top left panel of Figure 1 ), problems like
‘07'—08’ show individual differences (6 subjects chose ‘07’ with the remainder choosing
‘08"). Looking at the cue structure of ‘07’ and ‘08" (top left panel of Figure 1 ), it
is clear that cue 7 provides some early evidence for ‘08 in the search order, but this
evidence would later be compensated by the greater evidence cue 3 provides for ‘o7’
if a more conservative stopping rule was used to allow for longer search.

As for our search example, the modeling challenge is to take the information in
Figure 4, and make inferences about the stopping rules individual subjects use, and
how these rules vary across the subjects.

Models

Figure 5 shows the two models we applied to the stopping data. On the left is
a simple mixture model that assumes every subject either uses a TTB strategy, in
which a decision is made from the first discriminating cue, or a WADD strategy, in
which all cues are used, and a decision is made based on the total evidence. ° In this

5We measure evidence on the natural log-odds scale, so that the increment provided by a dis-

criminating cue with validity vy is log 175




graphical model, the z; parameter functions as an indicator variable, with z; = 1 if
the ith subject uses TTB, and z; = 0 if they use WADD. This indicator variable is
distributed according to an (unknown) base-rate of TTB subjects in the population,
so that z; ~ Bernoulli (¢). The deterministic node 6;; for the ith subject is then given
by

if TTBs (a;,b;) =a and z; =1
—v if TTBs(a;,b;) =band z; =1

if WADD; (@, b;) = a and z; =0
—v if WADD; (aj,b;) =band z; =0
D otherwise,

Qij =

O~ R W

with y;; ~ Bernoulli(§;;). We use a ¢ ~ Uniform (0.25,0.75) prior, reflecting the
assumption that we believe there are significant numbers of both TTB and WADD
subjects, but we do not know the exact proportions.® We use a v ~ Uniform (0.5, 1)
prior on the decision parameter, as before.

The hierarchically extended graphical model on the right of Figure 5 provides
an account of why people have different stopping rules. It uses the idea that people
search until they have some criterion level of evidence in favor of one stimulus over
another, as per sequential sampling interpretations of decision-making in cue search
tasks (Lee & Cummins, 2004; Newell, 2005). This theoretical conception is consistent
with accounts of simple decision-making that emphasize desired levels of confidence
as key mechanisms, as in the pioneering work of Vickers (1979) and later similar ideas
in Hausmann and Lége (2008).

Formally, the criterion evidence level is e; for the ith subject, and is assumed
to come from one of two group-level Normal distributions with means and standard
deviations pi1, p2, 01, 02. The z; indicator variable now controls which distribution the
ith subject draws their evidence criterion value from, so that e; ~ Gaussian (u.,, 0, ).
We again place weakly informative priors on the means and standard deviations, and
include an order constraint in the priors on the means, so that p; < pus.

The deterministic decision now follows the sequential sampling model, so that

9” _ y lf SEQ(&ei) (a'J’ bj)
T\ 1-7 if SEQq., (a;, b))

a
b,

where SEQ s .,y (a;, b;) gives the choice (a or b) that the sequential sampling model
makes using a search order s to criterion level of evidence e; on stimuli a@; and b;.

Results

Figure 6 summarizes the results of applying the two stopping models to the
artificial data. The top row corresponds to the simple mixture model. The top-left

6We include this assumption not because it follows from any aspect of the current simulated data,
but because it demonstrates how a reasonable substantive assumption can easily be incorporated in
a Bayesian analysis.
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Figure 6. Performance of the two stopping models. The top row shows the inferences
about TTB and WADD strategy use, and the base-rate (¢) and decision () parameters
for the mixture model. The middle row shows the same inferences for the hierarchically
extended model. The bottom row shows the distribution of evidence values inferred by the
hierarchical model (bottom left), and their interpretation as threshold levels of evidence
within a sequential sampling of stopping for the problem ‘0708’ (bottom right).

panel shows the inferences about whether each subject used TTB or WADD, as given
by the posterior of z;. It is clear that 8 subjects were classified as using a T'TB stopping
rule, with the remaining 12 using WADD. The other panels in the top row show the
posterior distributions over ¢ and <, corresponding to inferences about the base-
rate of TTB use, and the probability of following the deterministic TTB and WADD
strategies in making decisions. These results show how a simple hierarchical Bayesian
mixture model provides a complete and principled approach to identifying which
subjects use different stopping rules, which is a common methodological challenge in
the heuristic decision-making literature (Broder & Schiffer, 2006; Newell & Lee, in
press; Rieskamp & Otto, 2006).

The middle row of Figure 6 presents the same analyses for the extended se-
quential sampling model based on evidence accumulation. The results are extremely



similar, highlighting that the same information about stopping rule use can be ex-
tracted within the sequential sampling framework. The bottom row shows some of
the additional psychological information gained by moving to this framework. The
bottom-left panel shows the group-level distribution of evidence for the two distri-
butions, with the green (dark) distribution corresponding to the low evidence (es-
sentially, TTB) group, and the yellow (light) distribution corresponding to the high
evidence (essentially, WADD group). These evidence values are then interpreted in
sequential sampling model terms in the bottom right panel, showing the evidence
bounds needed for decision-making on the ‘0708 problem’s pattern of evidence ac-
crual. The dotted black line sums the evidence provided by cues as search progresses.
The green (dark) evidence threshold is relatively low, so a single discriminating cue
provides sufficient evidence for the ‘08" decision. The yellow (light) evidence threshold
is very high, so that all cues are searched, leading to ‘o7’ being chosen.

The results for the hierarchical model tell us something about different levels of
evidence people may require, to explain their different stopping rules. But the results
also tell us something about what we do not know, because of limitations in the
environment used in the experiment. The actual distributions of evidence parameters
we used to generate the data had means of 1 and 10 for the TTB and WADD groups
respectively, with standard deviations of 0.2 and 3, and a decision parameter of 0.95.
The inferences in Figure 6 are consistent with these generating values, but are not
very precise. In particular, the diffuse distribution for the high evidence group in the
lower-left panel of Figure 6 shows that, once a threshold level of about 2 is required,
the sequential sampling stopping rule shown in the lower-right panel leads to all
cues being examined, as per the WADD strategy. If people are using finer-grained
intermediate evidence values, as they were in these simulated data, the environment
used in the current experiment is not able to make this distinction. The fault here
lies with the environment, rather than the inference method. The cue structure of the
problems available in the German cities domain simply do not allow for diagnosis of
some range of evidence values from decision-making behavior.One way to overcome
this limitation would be to use environments with cue validities that allow for more
compensatory decisions. In the current setting, the diffuse inference distributions are
appropriate, showing both what is and is not known about underlying parameters
from the available behavioral data.

Conclusion

We hope to have demonstrated that hierarchical Bayesian modeling can provide
a principled way to understand and explain the diversity found in a standard judg-
ment task. One of the most compelling features of the hierarchical Bayesian approach
is that it encourages deeper theorizing and the construction of more psychologically
complete models (Lee, 2011), because the graphical modeling framework makes it easy
to implement and evaluate new ideas. For example, it is natural to ask whether the
extended model of search we presented, weighting both validity and discriminability, is



more accurate than the original T'TB validity-only approach. Both accounts are easy
to implement as graphical models, and easy to compare directly, using the Bayesian
model comparison approach described by Wagenmakers, Lodewyckx, Kuriyal, and
Grasman (2010). As another example, it is straightforward to develop a model that
incorporates both the searching and stopping processes, which we considered sepa-
rately. This would constitute a more complete model of heuristic decision-making,
and allow information about both searching and stopping operate, and how they
interact, at both the individual and group level, to be inferred from behavioral data.

There is also, however, clearly still more that we need to understand. For exam-
ple, while the models we have considered can explain why one might see individual dif-
ferences in search and stopping rules (e.g., because individuals weight discrimination
and validity differently), they cannot reveal how people arrive at those different search
orders. In other words, while our hierarchical extensions involve theoretical accounts
of searching and stopping, they are necessarily incomplete theories. A fuller account
would presumably incorporate aspects of individual differences related to intelligence,
personality, and so on, describing how they relate to differences in decision-making
behavior (Broder, 2003; Hilbig, 2008). More complete theories incorporating these
factors could naturally be incorporated within the hierarchical Bayesian approach.

Whether one conceptualizes the tool(s) that people use for tasks of this kind as
comprising numerous heuristics contained within a toolbox (e.g., Gigerenzer & Todd,
1999) or a single ‘tool’ that can incorporate heuristics as special cases (Glockner,
Betsch, & Schindler, 2010; Lee & Cummins, 2004; Newell, 2005; Newell & Lee, in
press), both need to provide accounts of how different heuristics are selected for
different decision tasks (Gigerenzer & Gaissmaier, 2011; Rieskamp & Otto, 2006),
or analogously, how and why new and successful parameter combinations are set for
each type of problem (Marewski, 2010; Newell & Lee, in press).

We are optimistic that using the hierarchical Bayesian methods demonstrated
here will provide a window on this process and in so doing bring a new perspective
to the debates between ‘toolbox’ and ’single-tool” interpretations of decision making
(e.g., Gigerenzer & Gaissmaier, 2011; Glockner et al., 2010; Hilbig, 2010; Newell,
2005; Newell & Lee, in press). More importantly we hope that other researchers see
the potential for these methods to advance understanding across the wide range of
higher-level cognitive phenomena that are relevant to judgment and decision making
(e.g., Lee, 2008; Nilsson et al., 2011; van Ravenzwaaij et al., 2011).
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