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Abstract

The neural mechanisms supporting flexible relational infer-
ences, especially in novel situations, are a major focus of cur-
rent research. In the complementary learning systems frame-
work, pattern separation in the hippocampus allows rapid
learning in novel environments, while slower learning in neo-
cortex accumulates small weight changes to extract system-
atic structure from well-learned environments. In this work,
we adapt this framework to a task from a recent fMRI experi-
ment where novel transitive inferences must be made accord-
ing to implicit relational structure. We show that computa-
tional models capturing the basic cognitive properties of these
two systems can explain relational transitive inferences in both
familiar and novel environments, and reproduce key phenom-
ena observed in the fMRI experiment.
Keywords: neural networks; cognitive maps; complementary
learning systems; structure learning; transitive inference

Introduction
Humans and non-human animals are capable of navigating ef-
ficiently in both novel and familiar environments. For exam-
ple, in a well-learned environment like one’s hometown, it is
easy to navigate to new goal locations and plan novel routes.
When traveling in a new city, it is also possible to navigate to
a novel location by reasoning over recent experiences — even
those accumulated on the same day. In both cases, efficiency
requires processes or representations that allow generaliza-
tion beyond previous experience. This kind of generalization
has been a long-standing issue in cognitive science, and was
integral to early arguments against behaviorism, where it was
claimed that a simple stimulus-response mapping could not
account for such behaviors (Tolman, 1948).

More recent work has investigated the computational and
neural mechanisms underlying cognitive maps, or represen-
tations that capture the structure of the environment and
thereby support generalization (Park, Miller, Nili, Ranganath,
& Boorman, 2020; Whittington et al., 2020; Behrens et al.,
2018). This work has emphasized the importance of certain
neocortical areas such as the entorhinal cortex (EC) for spa-
tial reasoning and vector-based navigation (Moser, Kropff,
& Moser, 2008). Furthermore, it has been argued that these
structured spatial representations may be leveraged for other
kinds of abstract relational reasoning in humans (Behrens et
al., 2018). Relatedly, although neural networks have enjoyed
massive success on difficult machine-learning tasks in recent
years these models are known to fail on out-of-distribution or
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extrapolation problems (Lake, Ullman, Tenenbaum, & Ger-
shman, 2017) such as those requiring transitive inferences.

Here, we apply the well-supported complementary learn-
ing systems (CLS) framework (McClelland, McNaughton,
& O’Reilly, 1995; O’Reilly, Bhattacharyya, Howard, &
Ketz, 2011) to explore two qualitatively different neural
mechanisms underlying spatially-grounded relational reason-
ing abilities in novel and familiar environments. The CLS
framework has emphasized the computational justification for
learning mechanisms unfolding on two different timescales,
as supported by separate brain areas. Slow learning in neocor-
tex allows for the development of more abstract representa-
tions that integrate across many experiences and can be lever-
aged to make novel inferences. However, this kind of learning
is not possible in naturalistic environments where sequences
of events are not presented in an interleaved or random or-
der, as when one explores only one part of an environment
at a time. This is due to the well-known catastrophic forget-
ting phenomenon, where previous learning is erased by new
experiences when learning occurs too quickly or training is
not sufficiently interleaved (McClelland et al., 1995). The
CLS framework proposes that fast learning can occur in the
hippocampus due to its pattern-separated, sparse representa-
tions. These representations have little overlap across exam-
ples, and therefore allow fast learning of novel episodes, i.e.,
episodic memory (Yonelinas, Ranganath, Ekstrom, & Wilt-
gen, 2019), to occur without catastrophic interference.

In the CLS framework, slow cortical learning is needed
to build up structural or relational representations over time,
which provide the foundation for systematic inferences.
However, for more unfamiliar situations, rapid hippocam-
pal learning is required. Previous work has found evidence
suggesting a role for the hippocampus in rapid generaliza-
tion (Eichenbaum, 2004; Zeithamova, Schlichting, & Pre-
ston, 2012), and that a hippocampal model informed by the
CLS framework can explain these findings when it is aug-
mented with a recurrent similarity-based computation, pro-
posed to be supported by “big-loop” recurrence between the
hippocampus and the neocortex and within the hippocampus
itself (Kumaran & McClelland, 2012).

Here, we build on this work and investigate the interplay
between slow generalization in neocortex and rapid general-
ization in the episodic memory system with computational
models based on the principles of the CLS framework. Our
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model of the episodic memory system is similar to previous
work (Kumaran & McClelland, 2012) in that it allows rapid
generalization in unfamiliar environments, but relies on dif-
ferent computational mechanisms to do so (see Discussion).
Our models of the cortical system and the episodic mem-
ory system were both tested on a novel non-spatial structure-
learning paradigm from a recent fMRI experiment (Park et
al., 2020). Importantly, the task required transitive inferences
based on learning over two different timescales: training ex-
perience over multiple days, and training examples given on
the same day as the inference test. In the following, we briefly
outline the key findings of the experiment and offer a concep-
tual framework that integrates them with the CLS perspec-
tive. We then describe the computational models that were
built to capture the basic properties of the proposed concep-
tual framework, and show that these models are capable of
performing transitive inferences in the same task and repro-
duce other key findings from Park et al. (2020).

fMRI Experiment
Park et al. (2020) studied the neural mechanisms underly-
ing transitive inference performance on the structure-learning
task illustrated in Figure 1. Participants learned to make judg-
ments about the “popularity” or “competence” of 16 people
through pair-wise comparisons along one of these two axes
at a time. Unknown to the participants, these 16 faces were
arranged in a 4x4 2D grid, and were implicitly separated into
two groups. In the first two days of training participants only
learned about within-group pairs that different by a rank of 1
(see Figure 1A). On the third day of the experiment, partic-
ipants learned about between-group pairs containing certain
faces that acted as hubs between the two groups (see Fig-
ure 1B). This training provided sufficient evidence to allow
participants to integrate their previously separated cognitive
maps, but was conducted on the same day as fMRI scanning.
In the scanner, participants performed a transitive inference
test in which unseen pairs of faces from different groups were
compared (see Figure 1C). For each of these test pairs, one of
two corresponding hubs could be used to make the transitive
inference. The results we focused on in our work can be sum-
marized as follows:

1. Participants exhibited good transitive inference perfor-
mance, achieving 93.6% mean accuracy on the unseen
pairs tested in day 3.

2. Map-like representations were found in several brain ar-
eas, including ventromedial prefrontal cortex (vmPFC) and
entorhinal cortex (EC). Patterns of activity in these areas
demonstrated sensitivity to the ground-truth Euclidean dis-
tances between faces in the implicit grid. However, these
effects were significantly reduced when the analysis was
restricted to between-group pairs that were not encountered
during training.

3. A repetition-suppression analysis in hippocampus sug-
gested that one of the two relevant hubs was retrieved from
episodic memory at the time of inference.

Taken together, these findings suggest that cortical learn-
ing systems in vmPFC and EC were able to integrate across
the pairs of faces encountered during training to form map-
like representations that would be useful for making transi-
tive inferences within groups. However, the effects in these
areas were reduced when the analysis was restricted to novel
between-group pairs, and participants seemed to retrieve the
relevant hubs from episodic memory in hippocampus during
the transitive inference test. Thus, although the within-group
pairs were well-learned over the first two days of training,
these groups may not have been fully integrated into a single
coherent cognitive map at the time of testing. This may have
forced participants to rely instead on hippocampal retrieval
of recently-learned between-group training episodes (which
always included a hub) to generalize during the transitive in-
ference test. Thus, there appear to be two separable cognitive
mechanisms that allow for relational transitive inferences to
be made in this task: 1) if given enough training time, cor-
tical areas such as vmPFC and EC can learn representations
that reflect the implicit relational structure of the grid, and 2)
an episodic retrieval mechanism can ensure good transitive
inference performance with pairs that were seen only on the
same day as the test. Below we outline a general framework
that integrates these findings, and the apparent redundancy in
these two systems, with the CLS perspective.

Complementary Structure-Learning Systems

The CLS framework explains how the brain can support inte-
grative representation learning without suffering from catas-
trophic forgetting (McClelland et al., 1995; O’Reilly et al.,
2011). However, the CLS framework also emphasizes other
important reasons for fast learning in an episodic memory
system. In particular, slow cortical learning may be insuf-
ficient to allow for efficient adaptation in relatively unfamil-
iar environments (Kumaran & McClelland, 2012). The find-
ings from Park et al. (2020) suggest that humans are capable
of making novel transitive inferences using experiences ac-
quired on the same day. Furthermore, they show that these
inferences are mediated by hippocampal retrieval of the in-
termediate states (i.e., hubs) that would allow such inferences
to occur. Taken together, these findings suggest that the dual-
process view emphasized in CLS may explain the apparent
redundancy in structure-learning mechanisms studied in neu-
roscience and psychology (see Table 1).

In the case of spatial navigation, slow cortical learning can
integrate across many experiences to form map-like represen-
tations. This system is capable of directly utilizing its integra-
tive representations without further processing, and can thus
make inferences rapidly. However, this system would not be
able to make inferences in a newly learned environment if
it did not have time to integrate across particular episodes
(Kumaran & McClelland, 2012). This may have been the
case in the transitive inference test conducted on the same
day as the between-group training in the fMRI study (Park
et al., 2020). Fast episodic learning, on the other hand, can
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Figure 1: Experimental paradigm used in Park et al. (2020). Participants learned the relative ranks of pairs of faces on an
implicit grid with two axes: competence and popularity. These faces were split into two groups (shown in green and orange).
A) Over the first two days, participants were trained on within-group pairs that differed by a rank of 1 along each designated
axis. Example pairs on the popularity axis are shown with orange lines (within group 1) and green lines (within group 2). B)
On the third day, participants learned between-group pairs containing exactly one hub linking the two groups. There were a
total of 8 hubs, and each was associated with a certain axis (shown by red and blue outlines). Each hub was paired with the 4
faces from the other group that differed by a rank of 1 along the designated axis. Examples of such pairs are shown for two
hubs with blue lines (indicating the popularity axis). C) The third day included the fMRI experiment and transitive inference
test. Participants were tested on pairs of faces from different groups that could be connected through one of the two hubs on
the appropriate axis. Green, orange, and blue lines indicate the training pairs (2 within-group and 2 between-group, which are
shown in A and B) that could be used to make the transitive inference for the pair indicated by the black dotted line.

Table 1: Complementary structure-learning systems.

System Properties
Cortical learning • Learns slowly through small, in-

cremental weight changes
• Inference is fast and less effortful
with map-like representations

Episodic memory • Learning can be fast due to sparse,
pattern-separated representations
• Inference is slower, requiring cog-
nitive control for deliberate, goal-
directed retrieval

immediately store memories of individual experiences, allow-
ing inferences to be made in unfamiliar environments based
on few such experiences. However, the episodic nature of
its representations do not allow the sort of direct inferences
that are available to the cortical system. Instead, transitive
inferences require a slower, more deliberate process of goal-
directed retrieval and further processing of the stored mem-
ories (Zeithamova et al., 2012). An organism equipped with
both systems would be capable of making novel inferences in
both familiar and unfamiliar environments. In the following,
we provide evidence from models that capture, on a computa-
tional level, the basic properties of the proposed complemen-
tary structure-learning systems, and show that these systems
reproduce key findings from Park et al. (2020).

Modeling Framework
We simulated each of our models on the training and test-
ing procedure used in the task, including its within-group
and between-group structure and transitive-inference test. In
particular, each trial consisted of a presentation of two faces
and the axis along which the judgment should be made (i.e.,
“competence” or “popularity”). The models were required to
make a binary judgment about whether the first face ranked
higher or lower than the second face along the specified axis.

Cortical Map-Building
The cortical representation-learning system should accumu-
late small updates over many trials to build map-like repre-
sentations that can be directly utilized to make transitive in-
ferences. We modeled this process with a simple feedforward
neural network with two convolutional layers (see right side
of Figure 2). Face images were taken from the same database
used in the fMRI experiment (Strohminger et al., 2016), and
were downsampled to 64x64 and grayscaled for faster simula-
tion. The within-group and between-group hub samples were
all trained simultaneously (i.e., the pairs that were trained
on different days of the fMRI experiment were trained si-
multaneously in the model). This is because the purpose of
our model of the cortical system was to show that, if given
enough training time, it could perform transitive inferences
based on its learned representations, and allow fast inference
in familiar environments. Each face was processed with the
same convolutional neural network, and the axis variable, en-
coded as a one-hot vector, was embedded with a linear layer.
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Figure 2: Model architecture. (Left) The episodic memory
system stores representations of individual training trials in
a key-value memory. New inferences are made by querying
the memory to retrieve the relevant trials, which are then pro-
cessed by an MLP to generate an answer. (Right) The cortical
learning system was modeled as a simple feedforward net-
work with convolutional layers to process the images. This
system relies on its learned representations to perform transi-
tive inferences.

These three embeddings were then concatenated and passed
through a multi-layer perceptron (MLP) with rectified linear
unit (ReLU) activation functions. This network captures the
basic properties of slow cortical learning in that it accumu-
lates small updates to its synaptic weights over many trials,
and makes inferences directly based on its learned represen-
tations of each face.

Goal-Directed Episodic Memory Retrieval

The episodic memory system should learn quickly by stor-
ing individual training episodes, and make inferences by re-
trieving the previous trials that are relevant to the current one
(McClelland et al., 1995; Kumaran & McClelland, 2012). For
this purpose, we used a neural memory system (see left side
of Figure 2) with a soft retrieval mechanism (Botvinick et al.,
2019). This memory system immediately stores each trial (xi)
seen during training as a key, value pair: ki =Wkxi, vi =Wvxi,
where ki is the key, vi is the value, and xi is the trial, which is
a concatenation of a one-hot encoding of each face, the axis
variable (a), and the correct answer (y) of the ith trial. One-
hot encodings were used for faces under the assumption that
what is stored in the episodic memory system should be a
highly processed, sparse encoding (McClelland et al., 1995).
To make an inference, the model generates a query according
to the current pair of faces: q j = Wqx−j + bq, where x−j indi-
cates the jth test trial with the same components but excludes
the correct answer (y). This query is then used to retrieve the
memories most relevant to the current trial:

v̄ j = softmax
(
q jKT )V (1)

where K and V are matrices containing all of the stored mem-
ories. Finally, the retrieved memories v̄ j are passed through
an MLP to produce the final answer: ŷ j =MLP(v̄ j). This net-
work captures the basic properties of a fast-learning episodic
memory system in that each training episode can be stored in
memory immediately upon presentation, and must later be re-
trieved in a goal-directed way to make a transitive inference.

An interesting problem in modeling episodic memory con-
cerns the learning mechanisms involved in goal-directed
memory retrieval. We assume that the human participants re-
cruited for the Park et al. (2020) study had extensive prior
experience with goal-directed memory retrieval and everyday
transitive inferences. We therefore adopted a meta-learning
strategy (Santoro, Bartunov, Botvinick, Wierstra, & Lilli-
crap, 2016) to model this prior experience, and pretrained the
episodic memory system to learn to solve new transitive in-
ference problems sampled from a distribution of such tasks.
This pretraining consisted of slow, incremental changes to the
weights responsible for mapping into and out of the episodic
memory itself, and should thus be thought of as occurring in
memory-related cortical areas rather than in the hippocampus
proper (McClelland et al., 1995). The system was pretrained
on a distribution that was generated by permuting the posi-
tions of each face in the 4x4 grid. For each new task, the
memory system stored training samples in its memory and
used them to make transitive inferences in the testing phase,
where it accumulated errors that were then used to update
its learnable parameters. The model was then tested on how
well it could generalize with a new configuration of faces it
had never seen before.

This kind of meta-learning strategy was adopted from pre-
vious work (Lake, 2019), and shares with it the limitation
that the pretraining tasks are unrealistically similar to the fi-
nal test — future work will examine the extent to which the
model can generalize when trained on substantially different
goal-directed retrieval and transitive inference tasks. Addi-
tionally, although the resulting goal-directed retrieval mecha-
nism in this model does not capture the hypothesized proper-
ties of being deliberative and requiring cognitive control (thus
making inferences slower), a more biologically grounded ap-
proach involving frontal cortical executive function systems,
planned for future work, would do so. Our purpose in the
current study was to show that this system was capable of
making transitive inferences in a structured environment.

Implementation Details

Models were built using PyTorch. Models were trained with
a cross-entropy loss function and Adam optimizer (Kingma
& Ba, 2015) with a batch size of 32 and a learning rate of
0.001.1 The cortical system was trained for 100 epochs with
a batch size of 32. The axis embedding (ea) had 32 dimen-
sions. Convolutional layers had no padding, a kernel size of 3,

1Note that the “learning rate” for the episodic memory refers to
the weight updates in the pre-training phase. During training, it im-
mediately stored experiences upon presentation.
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a stride of 2, and 4 and 8 channels in the first and second lay-
ers, respectively. Each convolutional layer was followed by
a max-pooling layer with a kernel size of 2. The CNN con-
tained a linear layer to produce flat 72-dimensional vectors e1
and e2, which were passed to the final MLP, which had 128
hidden units. The episodic memory system was pre-trained
on 10,000 permutations. Queries, keys, and values were all
32-dimensional, and the final MLP had 64 hidden units.

Results
Both systems proved to be capable of performing transitive
inferences in the task environment from Park et al. (2020):
each system achieved 100% accuracy on the held-out test set
in which unseen between-group pairs were tested. This val-
idates the idea that the two qualitatively different kinds of
learning system outlined above are capable of reproducing
human transitive inference performance on the task. To inves-
tigate how these qualitative differences might have affected
each model’s inference strategy, we performed analogues of
key analyses done in the experiment (Park et al., 2020) to
interpret the behavior of each system, and to evaluate them
against empirical results obtained in the fMRI experiment.

Cortical Representations Reflect Task Structure
To understand how the cortical system had learned to repre-
sent each of the faces, we conducted analyses on the embed-
dings of each face obtained from the CNN. Visualization of
these embeddings with principal components analysis (PCA;
see Figure 3) showed that the cortical system had learned to
represent the faces in terms of their structured relationships,
i.e., it had learned map-like representations. These top two
principal components explained 95.1 % of the variance in the
embeddings, indicating that the model had learned to repre-
sent the faces on a near two-dimensional grid.

Figure 3: Visualization of embeddings learned by the corti-
cal system. Embeddings for each face was projected into two
dimensions using PCA, and then rotated by a fixed angle for
illustration purposes. The relative positions of the representa-
tions indicate that the model has learned to represent the faces
in terms of their implicit relational structure.

In addition to the PCA, we conducted an analysis simi-
lar to those done in the fMRI experiment (Park et al., 2020),
where patterns of activity in vmPFC and EC were found to be
sensitive to Euclidean distances in the ground-truth grid. We

measured the Pearson correlation between ground-truth Eu-
clidean distances in the grid and the observed distances be-
tween each pair of embeddings. A strong correlation was ob-
served (r(118) = .910, p < 0.001), indicating the same sen-
sitivity to structured relationships in the grid.

Episodic Memory System Retrieves Hubs

In the original fMRI experiment, a repetition-suppression
analysis suggested that participants were retrieving the rel-
evant hubs from hippocampus during the transitive infer-
ence test (see Figure 1C). Although the episodic memory
model did not have analogous neural adaptation dynamics
that would allow us to model repetition suppression, we con-
ducted an analysis on the retrieved memories to see how the
hubs were being used to make transitive inferences. The soft
episodic retrieval mechanism shown in equation (1) uses a
softmax to produce a probability distribution over all of the
items in memory. For each test trial, we directly analyzed
the weights applied to the memories for the relevant hub tri-
als and compared these weights to the irrelevant memories
(see Figure 4). Memories were counted as relevant if they
included one of the two possible between-group hubs for the
given pair of faces, and connected this hub to one of the two
faces from the current trial (see Figure 1C). This revealed
that the weights applied to the relevant hub memories were
usually the largest (i.e., the hub trials were retrieved more
than the irrelevant trials). Furthermore, an additional analysis
found that in every test trial, one of the two possible “paths”
connecting the first face to the second face (e.g., in Figure
1C, the path through the blue line and green line or the path
through the blue line and orange line) was in the top 5% of
retrieved memories.

Figure 4: Histograms of relevant and irrelevant trials retrieved
from the episodic memory during testing. Relevant memo-
ries, which always contained a hub, made up the majority of
those with the highest weights. This reproduces the fMRI
finding that the hubs were retrieved during the inference test.
Note that it was not necessary to retrieve every relevant mem-
ory to get the correct answer, which may be why the relevant
memories were not always retrieved with the highest weights.
Counts were normalized to probability densities.
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Discussion

The CLS perspective emphasizes the need for two qualita-
tively different learning systems in the brain: fast learning can
occur in the hippocampus due to its pattern-separated repre-
sentations, while learning in the neocortex must be slow due
to its overlapping representations (McClelland et al., 1995).
Here, we investigate this conceptual framework in the do-
main of structure-learning and relational transitive inference
(Kumaran & McClelland, 2012), and propose an analogous
distinction. The episodic memory system can learn quickly
and generalize in relatively unfamiliar environments, but re-
quires a more deliberate goal-directed retrieval process. The
cortical system learns slowly but can make fast inferences in
familiar environments from its learned representations. As in
the traditional CLS framework, an organism equipped with
both systems would retain the benefits of each, allowing gen-
eralization in both novel and familiar environments. Our
computational models provide evidence that each of the two
proposed systems are able to perform well on a difficult rela-
tional transitive-inference test under different circumstances:
the cortical system can make these inferences once extensive
experience with an environment has been accumulated, while
the episodic system can do so quickly, as long as it has had
sufficient prior exposure to similar tasks. Our models also
reproduce the basic findings from a human fMRI experiment
(Park et al., 2020): the cortical system learns map-like repre-
sentations that encode the implicit relational structure of the
grid, while the episodic memory system learns to query its
memory for the appropriate hubs connecting the two groups.

Kumaran and McClelland (2012) investigate rapid general-
ization in a hippocampal model based on the principles of the
CLS framework. The model allows retrieval-based inferences
to be made — despite the nature of its pattern-separated rep-
resentations — by incorporating a recurrent similarity com-
putation that can perform associative linking (Eichenbaum,
2004; O’Reilly & Rudy, 2001). This computation is hypoth-
esized to be supported by “big-loop” recurrence (Koster et al.,
2018). Our model of the episodic memory system is not in-
consistent with hippocampal retrieval-based inferences based
on dynamic similarity computation, and in fact the fMRI ex-
periment showed evidence of the presence of such similarity
structure in the hippocampus (Park et al., 2020). In addition,
the strategy used by our model to solve transitive inference
problems appeared consistent with the associative linking ex-
hibited by the model of Kumaran and McClelland (2012), as
shown by the retrieval of hubs linking the two groups (see
Figure 4). However, in our model this strategy emerged over
the course of (meta-)learning the structure of transitive in-
ference problems, suggesting a more general mechanism that
could be applied to goal-directed retrieval tasks that are not
solvable with an associative linking strategy. This learning
mechanism has been shown to be useful in the context of one-
shot learning (Santoro et al., 2016), and compositional gen-
eralization (Lake, 2019). More work is needed to investigate
whether hippocampal involvement in rapid generalization oc-

curs when such a strategy is not possible, and whether our
model would benefit from the recurrent computation intrinsic
to the model of Kumaran and McClelland (2012).

Our modeling framework shares important properties with
the Tolman-Eichenbaum Machine (TEM) (Whittington et
al., 2020), which also incorporates meta-learning and mod-
els structure-learning in EC. A critical difference between
these two models is that in TEM, structure-learning depends
on backpropagating error signals through the hippocampus,
whereas the CLS framework holds that slow cortical learn-
ing can operate independent of the hippocampus to facilitate
inferences, consistent with the remarkably intact abilities of
early developmental amnesics (Vargha-Khadem et al., 1997).

Our proposed framework integrates ongoing empirical
findings about cognitive maps with the CLS perspective, but it
also shares some similarities to other prominent dual-process
views in cognitive science. For example, prominent theo-
ries emphasize a distinction between habitual and controlled
processing (O’Reilly, Nair, Russin, & Herd, 2020), fast and
slow thinking (Kahneman, 2011) and model-free and model-
based RL (Botvinick et al., 2019). Our conceptual framework
proposes a similar distinction between the deliberative, goal-
directed retrieval that must occur in the episodic memory sys-
tem to make transitive inferences, and the more automatic or
vector-based generalization that can occur in the cortical sys-
tem in familiar environments.

There are some important limitations of our current com-
putational models that must be addressed in future work.
First, although the two proposed cognitive systems are hy-
pothesized to be realized in the hippocampus and cortical
areas such as EC, we have not focused on the interactions
that should occur between the two systems. For example, the
representations stored in episodic memory should be directly
informed by the slowly changing representations learned in
cortex, reflecting cortical inputs to the hippocampus. The
fMRI study found that map-like representations were also
present in the hippocampus (Park et al., 2020), perhaps due
to interactions with nearby cortical areas (Kumaran & Mc-
Clelland, 2012). A more integrated model would show how
map-like representations in cortex can influence hippocampal
processing, and how reliance on the episodic memory early
in learning shifts to reliance on the cortical system later in
learning. This shift may occur due to the cognitive demands
imposed on an episodic retrieval mechanism required to rea-
son over individual past experiences. The current episodic
memory system does not capture the cognitive control hy-
pothesized to be required for inferences to be made; future
work will address this with a more integrated model that de-
ploys an episodic retrieval mechanism with costly sequential
processing. Finally, the neural networks used in our models
biologically implausible in a number of ways, e.g., the use of
a slot-based episodic memory and the standard backpropaga-
tion algorithm. Future work will focus on more biologically
plausible learning algorithms and more detailed biology of
the neocortex and hippocampus.
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