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Factors Influencing Host Plant Choice and Larval
Performance in Bactericera cockerelli
Sean M. Prager*, Isaac Esquivel, John T. Trumble

Department of Entomology, University of California Riverside, Riverside, California, United States of America

Abstract

Among the many topics of interest to ecologists studying associations between phytophagous insects and their host plants
are the influence of natal host plant on future oviposition decisions and the mechanisms of generalist versus specialist host
selection behavior. In this study, we examined the oviposition preferences, behavior and larval development of the tomato/
potato psyllid, Bactericera cockerelli. By rearing psyllids with two distinct geographically-linked haplotypes on different host
plants, we were able to examine the role of natal host plant and potential local adaptation on host plant usage. Choice
bioassays among three host species demonstrated that psyllids from California had clear preferences that were influenced
by natal plant. We further found that patterns in choice bioassays corresponded to observed feeding and movement
responses. No-choice bioassays demonstrated that there is little to no association between development and host-plant
choice for oviposition, while also indicating that host choice varies between haplotypes. These findings support the concept
that mothers do not always choose oviposition sites optimally and also add support for the controversial Hopkins’ host
selection principle.
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Introduction

Studies suggest a general pattern in which most herbivores have

a diet restricted to one or a few host plant species [1,2], the

presumed result of coevolution between these species [3–5].

However, some species are generalists that use multiple plants for

feeding and/or oviposition [1]. This plasticity is important for

many herbivorous insects, and may be an evolutionary adaptation

permitting them to adapt to variable environments [6–10].

Unfortunately, the mechanisms of host-plant choice are not

always easily delineated. Many aspects have been considered as

determinants or factors in an herbivore’s host range including

ability to detect hosts, larval physiology, natural enemies, and

reproductive behaviors [2,11–13]. Although there are theories to

explain host plant choice in herbivores, probably the most

common explanation is the ‘mother knows best’ principle

[14,15], which is alternatively known as the optimal oviposition

theory [16,17] and classically as the preference–performance

hypothesis [18]. These hypotheses are based on the concept that

juvenile life stages are frequently limited in their ability to move

among plants, and therefore a female should choose the best

possible host plant on which to oviposit and for her offspring to

develop. This concept is therefore evaluated in terms of juvenile

performance, whose correlates include survival rates, development

to a particular stage or in some instances morphological size, but is

frequently evaluated as developmental time [19]. However, it is

important to consider that a female may make host choice

decisions to maximize her own performance rather than that of

her offspring [19]. Such decisions may be based on factors

influencing her survival, such as nutritional quality of the plant

[20]. Additionally, factors such as risk spreading, predation, and

proximity to other resources may all influence oviposition choices

[17,19,21,22]. Because of these associations, studies typically

examine either ‘preference traits’ that determine willingness to use

a host plant, or ‘performance traits’ that encompass the ability to

grow, survive, and develop on a host plant [23]. In these

alternative scenarios, insect species fail to make the seemingly

optimal choice to oviposit on the plant species that will result in

optimal growth and development for their offspring [14].

Hopkins’ host selection principle is the rather controversial

observation that ‘‘a species which breeds on two or more hosts will

prefer to continue to breed on the host to which it has become

adapted’’ [24]. The concept was first applied to mountain pine

beetles (Dendroctonus monticolae Coleoptera: Scolytidae Hopkins), but

has since been refined many times [25–28]. Further, there are

numerous empirical studies both supporting [29] and refuting [30]

the validity of the concept. Most studies have demonstrated that

experience as an imago following emergence from the pupal stage

is the key factor in developing this type of preference. This has

been termed the neo-Hopkins’ principle [25]. Notably, this

concept would be restricted to holometabolous insects in which

the brain is likely to be restructured during metamorphosis.

Psylloidea (jumping plant lice) typically have narrow host ranges

consisting of a single genus or family [31–33]. This is not the case

with the potato psyllid, Bactericera cockerelli Šulc, which has a

reported host range of over 40 species in 20 families and a general

preference for the Solanaceae [34–36]. Wallis [35] reports that

potato psyllids can ‘breed’ on plants from three families, Solanaceae,

Convolvulaceae and Lamiaceae. This includes the important vegetable
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crops: bell pepper ( = capsicum) (Capsicum annum L.), potato

(Solanum tuberosum L.), eggplant (Solanum melongena L.), and tomato

(Solanum lycopersicum L.). However, some discrepancies do exist.

Knowlton and Thomas [37] reported failure of potato psyllid

nymphs to mature when presented with bell pepper, while Yang

and Liu [38] report relative success on bell pepper, as do Liu and

Trumble [39]. Additionally, Liu et al. [40] reported that

geography influences life history of potato psyllids collected in

California versus those collected in Texas, but only with tests on

tomato. It has subsequently been demonstrated that these two

geographic locations (California and Texas) contain genetically

different potato psyllid haplotypes [41–43]. Differential patterns of

host use are not exclusive to bell pepper, as it has been reported

that host plant (eggplant or bell pepper) influences fecundity of

Texas collected potato psyllids, with more eggs laid on bell pepper

[44]. Additionally, both tomato cultivar [39] and potato variety

(Prager et al., in press) influence the attractiveness to potato

psyllids. Lastly, Prager et al. (in press) demonstrated that the

developmental stage of potato plants influences attractiveness for

feeding. It has been suggested that the physiological state of the

plants is responsible for this variation in attractiveness.

Bactericera cockerelli is a pest for three distinct reasons. First,

honeydew accumulation in some crops, especially pepper, results

in sooty mold that interferes with photosynthesis and can

contaminate the fruit. Second, B. cockerelli feeding on tomato and

potato can result in an infection of unknown cause called ‘psyllid

yellows’ [36]. Third, B. cockerelli transmits Candidatus Liberibacter

solanacearum (syn. ‘‘Ca. L. psyllaurous’’) (CLso) [45–47] a

bacterial pathogen that infects and causes disease in multiple

solanaceous plants including tomatoes, potatoes, peppers, egg-

plants and tobacco [45,48–50].

In this study, we examined the host plant preference and

performance of Bactericera cockerelli on three plant species known to

serve as hosts: the closely related potato and tomato, and the more

distantly related bell pepper. We used choice bioassays to

determine oviposition and settling preferences among plant

species. We then follow up these assays with observations of

feeding, cleaning (grooming of the wings and head with the legs)

and movement and no-choice bioassays to examine performance

on preferred and non-preferred hosts. Additionally, we examined

psyllids reared on multiple host plants to examine the effect of

natal plant on host-choice behavior and performance. Combined,

these experiments are the first to directly examine host plant

preferences for a psyllid with a wide host range, and among the

first to relate these preferences to performance on host plants.

Additionally, this is one of the first studies to examine the effect of

haplotype on psyllid host plant preferences.

Materials and Methods

Insects and plants
Studies were conducted using three plant species: tomato

(Solanum lycopersicum esculentum L., variety ‘Yellow Pear’), bell pepper

(Capsicum annuum L., variety ‘Cal Wonder’), and potato (Solanum

tuberosum L., variety ‘Atlantic’), commonly used for laboratory

studies and rearing of potato psyllids. Plants for colony mainte-

nance and bioassays were all maintained under identical

conditions. Tomato and bell pepper plants were grown from seed

in 10.16 cm pots with UC soil mix [51], fertilized with Miracle

Gro nutrient solution (Scotts Company, Marysville, OH) at label

rate, and watered daily. Potatoes were grown from seed pieces in

15 cm diameter pots with UC soil mix, watered and fertilized with

Miracle Gro nutrient solution ad libitum.

Original insect source material for these experiments came from

two colonies each maintained at the University of California,

Riverside for a minimum of five years. The first colony (henceforth

‘Texas’) was collected from tomato and potato fields near Weslaco,

TX and was maintained on tomato. The second colony

(‘California’) was collected from fields of bell pepper in Orange

County, California and was maintained on bell pepper. Both

colonies were tested for genetic haplotype using the methods of

Swisher et al. [43]. California was confirmed to be the ‘western’

haplotype, while Texas was the ‘central’ haplotype. Both colonies

were maintained in multiple mesh tents (Bugdorm, BioQup,

Rancho Dominguez, CA) at conditions of 21–26uC and 40–60%

relative humidity, and maintained under ambient light conditions.

Texas and California populations were housed in spatially distinct

locations to prevent cross-contamination. In order to conduct no-

choice bioassays that considered the effect of ‘‘natal’’ host plant,

colonies of B. cockerelli were established by transferring nymphs and

adults from the main source colonies (California or Texas) into

cages with the alternate host plants (potato, tomato, or bell

pepper). We were unable to establish a colony from California

reared on potato, thus that combination is excluded from all

studies. To ensure that all psyllids used in bioassays were from eggs

laid on the new host plant, colonies were maintained for a

minimum of three full generations prior to use. All psyllids used in

these studies were from colonies infected with CLso, and the

presence of CLso was confirmed periodically via a Taqman based

real time PCR assay with the methods of Butler et al. [52].

Voucher specimen from the B. cockerelli colonies have been

deposited in the University of California, Riverside Entomology

Research Museum.

Three-choice bioassays
Three choice bioassays were conducted in arenas consisting of

two pieces of 5 mm thick foam each glued to one side of a square

25625 cm piece of plastic. Each piece of foam, had a 20 cm hole

cut into the center. Foam pieces were glued to each other on the

corners and along all sides, with the exception of a 5 cm long

segment through which plant stems were placed. The resulting

arena consisted of a sandwich with the two foam pieces on the

inside and the clear plastic on the outside. In setting up bioassays,

one stem with one terminal leaf or leaflet each from a whole intact

pepper, potato, and tomato plant was haphazardly assigned to a

side of the arena; the fourth side contained no plants and was

taped shut. Leaves were placed into the arena through the 5 cm

slit, which were then sealed using metal ‘duckbill’ hair clips

(Supporting Information S1).

To perform bioassays, psyllids were removed from colonies,

separated into size 1 gelatin pill capsules (CapsluCN International

Co., China) and sorted by sex. Five male: female pairs of post-

teneral psyllids were then aspirated into the arenas. In choice

bioassays, B. cockerelli typically take 48 h to acclimate and settle

onto plants (Prager, unpublished data). Consequently, the location

of all potato psyllids (on pepper, tomato or potato) was recorded

48, 72 and 96 h after being placed into the arena. Following the

96 h psyllid count, potato psyllids were removed and the numbers

of eggs on each leaf were counted. Three choice bioassays were

replicated 10 times each with B. cockerelli from California

maintained on tomato and on pepper.

In these experiments, oviposition preference was examined

using generalized linear models (GLM) with negative binomial

probability distributions. The dependent variable was number of

eggs on each plant with fixed terms for natal and host plant

species.

Bactericera cockerelli Host Choice
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Since a psyllid can only be on a single plant at a time, location

data are somewhat correlated. Consequently, settling behavior (the

plants on which psyllids were observed) was first examined using

‘‘permutational MANOVA’’ (PERMANOVA), a method of

partitioning sums of squares analogous to parametric MANOVA

[53,54] but robust to non-normality. The model examined

included the number of psyllids on a given host plant summed

across days as a response variable and an independent factor of

natal host plant. This was then followed up using a generalized

linear model with a negative binomial probability distribution.

The response variable was again summed psyllids and the

predictor was the exposure plant.

Behavioral observations
Behavioral observations were conducted according to the

methods of Liu and Trumble [55]. Briefly, assays were conducted

on whole intact plants in arenas created by layering a 9 by 12 cm

Plexiglass rectangle stage, a 1 by 3 by 6 cm square piece of foam

with a 2 cm hole and a clear glass cover. This resulted in a

chamber that contained the leaflet and psyllid while providing

visual access to the leaflet and the psyllid. A newly emerged post-

teneral adult female was introduced to the arena and allowed a

5 min acclimation period to adjust to the microenvironment.

Following the acclimation period, a 15 min observation period

began during which we recorded behaviors routinely used in

studies assessing insect activity [56]. Studies by Liu and Trumble

[55] indicated that the 15-min observation period was adequate

for the psyllids to exhibit the complete range of behaviors. Because

the time period is adequate for multiple occurrences of all

behaviors, the insects will have sufficient time to abandon the leaf

if it is not acceptable. The observations were recorded using the

Observer XT (Noldus Information Technologies, Wageningen,

Netherlands) software program, which records data on the

cumulative duration of each behavior as well as the number of

occurrences of each behavior. Specific behaviors recorded

included cleaning, jumping, resting, off leaf (exiting or abandoning

the leaf surface), walking, probing and feeding. Feeding in B.

cockerelli requires accessing the phloem, which can take in excess of

4 hours from insertion of the proboscis [57]. Consequently, we

measure behaviors (feeding and probing) that are part of the series

of behaviors associated with feeding rather than entire feeding

bouts. Each natal plant by test plant combination was replicated

10 times using only psyllids collected in California.

Since all behaviors were recorded simultaneously within an

observation period, and since some are mutually exclusive, it is not

possible to assume independence among behavioral responses.

Additionally, many of the behaviors examined as durations of 15-

minute observation periods had non-normal distributions. Conse-

quently, we analyzed these data using PERMANOVA. The

specific model featured fixed effects for the exposure plant and the

natal plant in addition to an interaction term. We were also unable

to transform frequencies to normality and again used PERMA-

NOVA to look for an overall effect. Significant effects on

frequencies of behaviors were followed up by generating individual

univariate GLMs fit with either a negative binomial or Poisson

probability distribution, chosen based on Akaike information

criteria (AIC) values and evaluated with an adjusted p-value

calculated with Bonferroni’s method.

Performance/development bioassays
To examine patterns of performance and development, we

conducted no-choice bioassays by caging two male: female pairs of

post-teneral B. cockerelli onto a terminal leaflet of a plant using

white 10.16615.25 cm mesh sachet party favor bags (JoAnn

Fabric and Craft Stores). One sachet and pair of B. cockerelli was

used per plant. Cages were placed on a leaf on the top third of

plants. Plants were maintained in a climate controlled insect

rearing room at 21–26uC and 40–60% relative humidity for

48 hours after which B. cockerelli were removed and the number of

eggs was counted. Plants were then inspected daily for the

numbers of eggs, small (1st or 2nd instar) nymphs, large (3th, to 5th

instar) nymphs, and adults until all potato psyllids either removed

as adults or died. Instar was determined by approximating body

width or presence of wing pads as in Liu and Trumble [39]. No-

choice bioassays were replicated a minimum of 10 times with each

combination of natal plant (pepper, potato, tomato) by test plant

(pepper, potato, tomato) by haplotype of B. cockerelli colony

(California or Texas). The sole exception is that no colony of the

California collected B. cockerelli could be established on potato and

so the relevant combinations were not tested.

Patterns of oviposition were tested using GLM with a negative

binomial distribution. The model included the numbers of eggs as

a response variable and the independent factors: natal host plant,

exposure host plant, and haplotype, in addition to all interactions.

Models were subsequently simplified via backwards selection.

We examined the proportion of eggs that hatched using a series

of GLMs. Analyses were conducted on the arcsine square-root of

the proportion of eggs that hatched, as the proportion that hatched

was non-normally distributed. The transformed hatch proportion

was analyzed using a model that included terms for: natal host

plant, exposure host plant, and haplotype, in addition to all

interactions. Models were subsequently simplified via backwards

selection.

To determine the effect of host plant on psyllid development, we

calculated growth index (GI), defined as the sum of the highest

growth stage individuals would achieve in an ideal control

population, using the method of Zhang et al. [58]. GI ranges

from zero to one, with one indicating most individuals survived to

adult while zero indicated no insects survived beyond the first

stage. This model was fit using general additive modeling (GAM)

[59] because GI was slightly bimodal. Since GAM cannot account

for interactions between terms, we performed a follow-up analysis

using GLM. Initially, we examined a model with the terms natal

host plant, exposure host plant, and haplotype. This model was

subsequently simplified using reverse model selection. To cope

with non-normality of GI, we analyzed both raw GI and GI

replaced with ranks. Since model results were nearly identical, we

report results from the untransformed analysis. Finally, it may be

expected that GI would be correlated with numbers of eggs, since

females should lay more eggs when her offspring will perform

better. We examined this using a generalized linear model with a

negative binomial probability distribution. We initially used a full

model with the dependent variable eggs and the factors GI,

exposure plant, natal plant, haplotype, and all interactions. This

was simplified using stepwise backward selection and eventually

resulted in a model that included all the main effect terms and the

interaction of exposure plant and haplotype. It is not possible to

calculate a standard R2 in for this type of GLM model, and so the

adjusted pseudo-R2 was used as a measure of variation explained.

Statistical Analyses
All analyses were performed using the R statistical language

version 2.3.0 (R Development Core 2008). Linear mixed-effects

models with negative binomial error were implemented using

MASS package [60]. Type II analysis of variance tables were

calculated using the car package [61]. Permutated MANOVA was

implemented using the adonis function of the vegan package

[53,62], and 1000 permutations. GAM was implemented with the

Bactericera cockerelli Host Choice
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R package mgcv [59]. Adjusted pseudo-R2 values were calculated

using the R package vegan [62,63].

Results

Three-choice bioassays
Analyses indicated no effect of natal plant on B. cockerelli settling

behaviors (PERMANOVA: F1, 18 = 0.7, P = 0.5). However, follow

up analyses demonstrated an overall preference for settling among

the different plant species in the choice arena (x2
2 = 8.9, P,0.05)

(Figure 1a). Examination of contrasts indicates that more B.

cockerelli settle onto tomatoes than onto potatoes (Z = 22.8, P,

0.001), but that they are equally likely to settle on pepper as

tomato (Z = 21.9, P,0.054) and equally likely to settle onto

potato as pepper (Z = 20.96, P,0.34).

In examining host-plant choice for oviposition, we found a

significant effect of the natal host plant (x2
1 = 6.3, P,0.05) and a

significant natal by test plant interaction (x2
2 = 8.4, P,0.02), while

the effect of the exposure plant species was slightly insignificant

(x2
2 = 5.4, P,0.067) (Figure 1b). Similar to the patterns displayed

in settling behavior, B. cockerelli reared on pepper oviposited less on

potato than the other plants. Conversely, those reared on tomatoes

laid more eggs on tomato and laid fewer eggs on pepper.

Behavioral observations
When behavioral events were examined as the duration of a

15 min. observation period during which they were performed,

there was no effect of exposure plant (PERMANOVA: F2,

77 = 1.65, P = 0.155) or of the natal host plant (F1, 77 = 0.63,

P = 0.5) on behavior; however, the interaction term was significant

(F1, 77 = 4.9, P,0.05). When the numbers of behaviors performed

(frequencies) were tested, there was a significant main effect of the

exposure plant (PERMANOVA: F2, 77 = 3.6, P,0.001) and also a

significant interaction between the host and natal plants (F1,

77 = 4.4, P,0.001); there was no significant main effect of the natal

host plant (F1, 77 = 1.08, P = 0.36). When these significant effects

were followed up using individual tests, there was a significant

effect of the test plant on resting (x2
2 = 16.4, P,0.0001) (Figure 2a)

and walking (x2
2 = 7.9, p,0.05) (Figure 2b). When examined

using individual contrasts, differences in walking were due to

differences with pepper while differences in resting were between:

pepper and potato, pepper and tomato, and potato and tomato. B.

cockerelli exposed to potato rested and walked less than those

exposed to tomato or pepper. Those exposed to pepper walked

more than those exposed to other plant species. There was also a

significant interaction of natal and exposure plants on probing

(x2
2 = 4.2, P,0.05), feeding (x2

2 = 5.7, P,0.05) and jumping

(x2
2 = 6.0, P,0.05). Overall, these patterns would suggest that

psyllids are more apt to settle and search for feeding sites on the

plant species they were reared on.

Figure 1. Oviposition and settling behavior in three-choice
bioassays. a. The mean number (standard error) of psyllids on pepper,
potato and tomato in three-choice bioassays. Identical capital letters
above bars indicate no significant difference in contrasts. b. The mean
number of eggs on pepper, potato and tomato in three-choice
bioassays, when reared on either pepper or tomato.
doi:10.1371/journal.pone.0094047.g001

Figure 2. Behavioral responses to different host plants. Mean
number of resting (a) or walking events (b) observed when B. cockerelli
are exposed to pepper, potato or tomato. Identical capital letters above
bars indicate no significant difference in contrasts.
doi:10.1371/journal.pone.0094047.g002

Bactericera cockerelli Host Choice
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No-choice bioassays
Bactericera cockerelli plant preference for oviposition was examined

with a model that included individual terms for the natal plant

(x2 = 3.4 df = 2, P = 0.18), exposure plant (x2 = 2.4 df = 2, P = 0.29)

and B. cockerelli haplotype (x2 = 0.2 df = 1, P = 0.6). In the model

none of the main effects were significant. However, there was a

significant natal plant by haplotype interaction (x2 = 5.3, df = 1,

P,0.05) (Figure 3). This interaction effect is apparently driven by

those instances where B. cockerelli were ‘‘switched’’ from the plant

on which they were initially collected onto another natal host

plant. B. cockerelli from Texas reared on tomato laid more eggs than

any other combination, while regardless of haplotype, the fewest

eggs were laid by psyllids reared on pepper. These results again

indicate that haplotype influences oviposition, and that they are

particularly sensitive to differences involving bell pepper.

We found a complicated pattern with respect to the hatching of

eggs with multiple significant main effects and interactions

(Figure 4). Specifically, there were significant effects of haplotype

(x2 = 7.5, df = 1, P,0.01) and exposure host plant (x2 = 12.4,

df = 2, P,0.01). Additionally, there were significant two-way

interactions between haplotype and natal plant (x2 = 9.1, df = 1,

P,0.01) and haplotype and exposure plant (x2 = 9.4, df = 2, P,

0.01). Among the patterns revealed, eggs laid by B. cockerelli from

California reared on and exposed to pepper hatched more often

than the other California combinations. Also, only California B.

cockerelli had a combination in which no eggs hatched. These

results indicate that a B. cockerelli ’s natal host influences how

successfully her eggs will hatch, but that this effect is also

influenced by her haplotype. This may reflect differences in egg

quality that may, in turn, reflect differences in nutritional quality

among host plant species.

To evaluate the performance of B. cockerelli on different host

plants, we calculated growth index (GI) for each no-choice

bioassay combination. This was again examined via GLM and the

analyses revealed a significant effect of exposure plant (F = 20.001,

df = 2, P,0.0001) (Figure 5a), natal plant (F2 = 13.221, P,0.0001)

(Figure 5b), and also haplotype and exposure plant interaction

(F2 = 12.0, P,0.001) (Figure 5b). B. cockerelli reared on potato most

successfully became adults, while those on tomato were least

successful. However, B. cockerelli exposed to tomato achieved

adulthood most often regardless of haplotype. B. cockerelli from

California exhibited lower GI values on potato than those from

Texas. The fixed main effect of haplotype was not significant

(F1 = 2.2, P = 0.13).

Finally, the numbers of eggs deposited can be significantly

explained by growth index. Specifically, there was a significant

effect of GI (x2
1 = 6.7, P,0.001), as well as haplotype (x2 = 15.8

df = 1, p,0.0001) and the interaction of exposure plant and

haplotype (x2
2 = 24.5, P,0.0001); there was no effect of exposure

plant (x2
2 = 1.9, P = 0.37). While it is not possible to calculate a

traditional R2 value with a linear model of this nature, the adjusted

pseudo-R2 is 0.23, suggesting a rather poor association between

oviposition and larval development. Moreover, it indicates that

there are multiple other factors influencing a female B. cockerelli’s

oviposition decisions.

Discussion

Theoretically, herbivorous insects should prefer host plant

species that will maximize their fitness, while eschewing those hosts

that result in lower fitness. The mechanism for these choices is

formally described by various hypotheses that link preference for

oviposition to performance of the insect. Preference-performance

type hypotheses predict maximum oviposition on plants with

optimal larval success. However, occasionally an insect species will

choose different plant species for oviposition from those that they

can complete development on [64–67]. This can be the result of

multiple factors including a mistake on the mother’s part and a

differential suitability among life stages. In the latter, a plant

species that is suitable for feeding by adults may not provide

optimal nutrition for nymphal development. Our results suggest

that Bactericera cockerelli have host plant preferences that cannot be

explained by performance alone.

In a previous study comparing Bactericera cockerelli from

California and Texas on both bell pepper and tomato, Liu and

Trumble [40] demonstrated that the psyllids from Texas

performed better than the California population with respect to

survivorship, growth index, and development time. Additionally,

the California population showed more variability with respect to

host plant use, with greater performance on tomato than on

pepper, even though the psyllids had been collected on pepper. In

this study, we expanded upon the Liu and Trumble results by

rearing and testing B. cockerelli on different plant species including

potato, bell pepper and tomato. This expanded study revealed

some intriguing new patterns. First, three-choice bioassays

indicated that psyllids have clear host plant preferences and these

exist for both settling behaviors and oviposition. Interestingly,

settling preference was a function of the host plant alone, while the

Figure 3. Mean eggs laid on pepper, potato, and tomato by B.
cockerelli reared on pepper, tomato, and potato when collected
in California or Texas.
doi:10.1371/journal.pone.0094047.g003

Figure 4. Mean proportion of eggs that hatched. Treatment
combinations are abbreviated as: California or Texas (C or T), then natal
host plant (T = Tomato, P = Pepper, S = Potato), and then exposure host
plant (T = Tomato, P = Pepper, S = Potato).
doi:10.1371/journal.pone.0094047.g004
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natal plant influenced choice for oviposition. This pattern was

further noticed in behavioral observations where a complicated

but similar pattern of host and natal plant influence was observed.

Overall, these patterns suggest that psyllids prefer their natal host

plant, both for settling and oviposition.

Variability in B. cockerelli host preference has management

implications. Prager et al. (in press) noted that spatial distribution

in B. cockerelli varies among crops and subsequently developed

individual sampling plans for each of tomato (Prager et. al, in

press) and pepper [68], while Butler and Trumble [69] published a

sampling plan for potatoes. These results help explain this pattern,

which likely results from a combination of B. cockerelli’s preference

for the particular plant and other factors such as the plant’s age.

The latter has been shown to influence choice among potato

varieties (Prager et. al, in press). Additionally, this solidifies the

concept that sampling and management strategies must be crop

specific.

To determine if behavioral preferences reflect B. cockerelli

performance (development), we conducted no-choice bioassays

with B. cockerelli reared on one of three host plant species and

exposed to a given host plant species. These experiments were

conducted on B. cockerelli collected from two distinct geographic

locations, and with genetically distinct haplotypes. Similar to the

three-choice bioassays, we found that natal plant affects oviposi-

tion. These experiments further indicated that oviposition

behavior is also a characteristic of haplotype. This would indicate

that B. cockerelli from different locations differ in their host

preferences. We also found that the proportion of eggs that

hatched and the ability to develop from egg to adult are also

influenced by haplotype and/or natal and exposure host plant

species. Overall, our studies indicate a complicated relationship in

which B. cockerelli exhibit a preference for their natal host plant, but

also have preferences associated with haplotype.

Although the majority of herbivorous insect species are thought

to be specialists [2,19,70], plasticity in host plant selection is not an

unknown phenomenon. For example, cotton leaf worms (Spodoptera

littoralis) strongly favor their larval host plant when it is presented

as an option [71]. Similarly, many studies in Lepidoptera [72–75]

reveal differential host plant use. We found that B. cockerelli can use

potato, tomato and pepper; however, they do not use them equally

or with the same success. Broadly, the finding of differential host

plant use is similar to the findings of Wallis [76] who examined B.

cockerelli from the Colorado-Nebraska-Wyoming area on multiple

host plants and found fewer eggs on eggplants, potato and tomato

relative to many weedy plant species. Wallis found that among the

crop species examined, potato (Solanum tuberosum L.) had fewer eggs

than both tomato (Solanum esculentum Mill) and bell pepper

(Capsicum frutescens L.), which is similar to the patterns we found

for California collected psyllids. B. cockerelli have also been

examined in New Zealand, where Martin [77] reports on eight

suitable host plants including bell pepper, tomato and potato.

Martin cites bell pepper as the most suitable of all plants

examined, equal to tomato and to potato. Interestingly, B. cockerelli

in New Zealand are invasive and genetic studies suggest they are

the same haplotype as those from California [78].

In keeping with the findings reported here, several other studies

have found variation in B. cockerelli performance on different host

plants. Yang and Liu [38] examined potato psyllids on multiple

host plants and found that egg to adult survival differs between

eggplant and bell pepper, with adults emerging approximately two

days sooner when eggs were laid on eggplant. Yang and Liu also

found that females start to oviposit approximately 8 to 9 days after

emergence and that this preoviposition period was not influenced

by host plant. Knowlton and Thomas [37] also examined multiple

plant species and reported substantial differences in the ability of

eggs to hatch or develop. In some instances, nymphs reached

second or third instar before dying, findings that would result in

non-zero GI values less than one, which are what we calculated for

B. cockerelli on various host plants.

The response of an insect to a host plant is not necessarily

restricted to oviposition or settling. An insect might demonstrate

numerous behavioral responses to a host plant including feeding.

We examined such responses via a series of observational bioassays

and found that host plants influenced most behaviors. The

exception was that no effect was found in the walking behavior

and the probing behavior was only significant as duration. Perhaps

the most important behavioral trend we detected was with respect

to time spent off leaf, where B. cockerelli reared on pepper spent

substantially more time off the leaf than those reared on tomato.

This is in opposition to feeding-like behaviors (feeding and

probing) which are more common when B. cockerelli were reared

on tomato or when pepper was not involved with the assay (i.e.

reared on tomato and tested on potato or tomato). While we did

not detect a significant effect of resting when measured as

duration, when examined as a frequency, there was a significant

effect seemingly driven by B. cockerelli reared on pepper resting less

frequently regardless of the exposure plant. Taken as a whole, the

behavioral observations suggest that potato psyllids reared on

pepper are less ‘‘settled’’ and may be more likely to search for

Figure 5. Development of B. cockerelli. a. Mean growth index for B.
cockerelli exposed to pepper, tomato, and potato when collected in
California or Texas. b. Mean GI for B. cockerelli reared on pepper, tomato
or potato.
doi:10.1371/journal.pone.0094047.g005
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alternate hosts. The results of this experiment would be well suited

to follow up studies using the electrical penetration graph

technique that can specifically measure and quantify feeding and

probing events [57].

In our no-choice bioassays, we found only a weak association

between development and oviposition. This would suggest that

while B. cockerelli choose to oviposit on more suitable host plants,

they are rather poor at making these decisions and are influenced

by many other factors. Additionally, the finding that nymphs can

develop on nearly all the plants offered, the exception being B.

cockerelli from California reared on pepper and presented potato,

would indicate that the cost of a ‘‘mistake’’ may be relatively low in

this species. This may be particularly important if availability is

variable and optimal plant species are not available, as might be

the case with annual crop species or if B. cockerelli originally evolved

to use uncultivated species of plants.

We found that natal plant influences future host plant choice

decisions. However, this trend only exists when haplotype is also

considered. In order to conduct these experiments, we reared B.

cockerelli on multiple host plants, which necessitated switching them

from the host they had been collected and previously reared on.

To minimize the possibility of maternal affects, we waited a

minimum of three generations before using insects from these new

colonies. Interestingly, the haplotype/geographic origin differenc-

es persisted. That is, when B. cockerelli were reared on a host plant

species and exposed to that same species, there was generally a

preference for that species. This may indicate that B. cockerelli learn

to prefer the plant they develop on. However, oviposition and

development also differed between haplotypes, and this may

indicate that some portion of host plant range is genetic in basis

and fixed. Such a genetic component may be a precursor to, or

early indication of, local adaptation [13,79]. If this pattern of

variability in haplotype preferences occurs in other insects, then it

could explain at least some of the exceptional variability reported

in the literature that has led to considerable and contentious

debate over topics such as Hopkins’ host selection principle.

Additionally, these combined results suggest that host choice in

these psyllids is a combination of genetic and learned effects.

In studies with the moth Spedoptera littoralis, Thoming et al.

(2013) found a preference for the larval host plant when it was

present, despite its ability to use other hosts. This pattern reached

an extreme when the moth was offered clover, a pattern that has

been explained by the abundance of clover in the agroecosystem

[71]. Potential mechanisms for such preferences for larval host

plant are varied and controversial. For example, it has been

suggested that information may transfer from larvae to adults via

neural tissue that is retained throughout metamorphosis [80–83].

Another explanation is that chemicals from the larval host that are

associated with diet ‘‘prime’’ the emerging adult and establish a

preference [84]. Finally, Thöming et al. [71] suggest these

behaviors may result from learning as larva or early adults.

Unfortunately, the specific mechanisms for host choice are difficult

to distinguish in our experiments, but are clearly in need of further

investigation.

Bactericera cockerelli is a vector for the fastidious alphaproteobac-

terium Candidatus Liberibacter solanacearum [45,48,85]. In

addition to its psyllid vector, CLso is associated with many

solanaceous host plants, including eggplant, bell pepper, tomato

and potato. Because CLso is known to cause disease in at least

three of these species, especially potato, associations between CLso

and potato psyllids have been the subjects of limited study. Gao et

al. [86] examined the ability of B. cockerelli reared for multiple

generations on tomato, potato and eggplant to transmit CLso into

healthy plants and concluded that the ability to transmit CLso is

independent of population. However, they also observed that B.

cockerelli reared on bell pepper and eggplant caused more severe

disease symptoms in both leaves and tubers of potato, and

speculated that this was an effect of populations reared on different

host plants. That conclusion is consistent with other studies that

reported differences in development with respect to population

[40] and tomato cultivar [87]. Here we report that not only do

potato psyllids demonstrate preferences among suitable host

plants, but also that both haplotype and natal plant can influence

these preferences. This result suggests that the variability in CLso

infection observed by Gao et al. [86] may result from differential

use of the plants. Supporting this concept, Underwood [88] found

different responses between closely related plant cultivars because

of the length of insect feeding, while Rashed et al. [89] have shown

that the number of potato psyllids on a plant influences disease

symptoms and acquisition.

In their review of heritable insect symbionts, Hansen and

Moran [90] discussed the possibility that symbionts enable insect

hosts to utilize phloem and xylem sap as food. They further note

that while it is unknown if symbionts play a role in determination

of host range, such an effect would depend on the symbionts

ability to change plant nutrient profiles. In a study of potato

psyllids and CLso effects on tomato immune response genes,

Casteel et al. [91] determined that B. cockerelli alone result in

suppression of jasmonic and salicylic acid signaling. When tomato

plants were exposed to both CLso and B. cockerelli there again was

a reduction of defensive host responses. If CLso does reduce plant

defense against insects, it may influence host range, especially if

this response is variable among plants. In our studies, we used

exclusively B. cockerelli infected with CLso. There was, though,

variability in CLso haplotype within the Texas derived colonies

while all B. cockerelli from California demonstrated the same CLso

haplotype (Prager, unpublished data). These factors have two

consequences. First, we are unable to assess the influence of CLso

on host plant choice. Second, we cannot fully determine if CLso

haplotype is contributing to the geographic origin/psyllid haplo-

type effect we observed in no-choice bioassays. These elements will

require further study.

Conclusions
This study has revealed some interesting and important patterns

about Bactericera cockerelli host plant use. Both no-choice and three-

choice bioassays confirmed B. cockerelli’s ability to use multiple

common crop plant species as hosts. However, these bioassays also

demonstrated that multiple factors influence host plant suitability,

including haplotype and natal host plant. Moreover, no-choice

bioassays suggest that preferences are only weakly associated with

larval performance. These results suggest that B. cockerelli host

range may vary due to local adaptation, that they may be ‘‘family’’

specialists rather than species or genus level specialists, or that

there is a large contribution of learning to their host plant choices.

A final consideration is that this study was conducted using potato

psyllids from only two of the four known B. cockerelli haplotypes and

all B. cockerelli were infected with CLso. Future studies are

necessary to determine how additional haplotypes will factor into

host preferences and whether CLso infection influences potato

psyllids host plant selection.

Supporting Information

Supporting Information S1 Experimental setup used for
three-choice bioassays.
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