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Structural Models of the Effects of the Commute Trip 

on Travel and Activity Participation 

Thomas F. Golob 

and 

Ram M. Pendyala 

Abstract 

Travel demand is viewed as being derived from the demand for out-of-home activities. 

The journey to work can have a significant impact on the travel and activity patterns 

of workers and other household members. The objective of this research is to model 

the relationships between travel and activity participation and examine how these 

relationships are influenced by the time a worker spends commuting between home 

and his or her worksite. Causal hypotheses are tested using data from approximately 

140 workers who responded to two waves of a panel survey collected as part of the 

State of California Telecommuting Pilot Project. These data contain detailed 

descriptions of all travel by the survey respondents over three working days in each 

of two years, 1988 and 1989. A structural equations model is specified in which the 

durations of four exhaustive categories of out-of-home activities - work, personal 

business, shopping and social/recreation - generate needs for time spent traveling, and 

the activity durations and travel times are interrelated in a complex causal structure. 

The effects of the reduction in travel times for work by telecommuters in the second 

wave of the panel are captured in terms of additional structural parameters. Results 

indicate that telecommuting leads directly to increases in shopping activities and 

decreases in travel for social/recreational activities, and leads indirectly to changes in 

travel for all purposes. A general modeling framework in which activities and travel 

relationships can be studied is also discussed. 
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1. Introduction 

The principle underlying the activity-based approach to travel demand analysis is that 

household travel is a manifestation of the need to perform activities. These activities 

may be characterized by their frequency, location, timing, duration, and degree of 

flexibility. The characteristics of some activities may be dependent on those of other 

activities. Understanding the interdependencies among activities could provide 

valuable insights into household travel behavior. It is proposed that structural 

equations models, in which the relationships among several activities and their 

associated travel characteristics are specified in one comprehensive system of 

equations, is a useful starting point for testing causal hypotheses involving activities 

and travel. 

Some activities are inherently less flexible than others. For example, the work activity 

is usually pursued at a fixed work location at a fixed time for a certain duration (say 

from 8:00 am to 5:00 pm). Work is usually mandatory and does not provide flexibility 

with respect to location, duration, and timing. On the other hand, a visit to a local 

park may be done at one's discretion at several possible locations, times and for 

varying durations. However, a discretionary activity is limited in its flexibility by the 

constraints imposed by a mandatory activity. In the above example, visiting the park 

during the working hours of the day is not possible. It must be done either before or 

after work. In this way, discretionary activities are dependent on and influenced by 

the nature of mandatory activities. Goulias and Kitamura [1989] have found that the 

frequencies of discretionary trip types (e.g., social recreation and shopping) are 

dependent on frequencies of mandatory trip purposes (e.g., work and school). 

Work and the associated commute trip play an important role in determining how a 

person plans other activities and trips. The activity and travel plans of one person may 

in turn influence the activity engagement patterns of other household members. At 

the aggregate level, the relatively inflexible timing of the commute trip largely 

contributes to traffic congestion during the morning and evening rush hours. 

The importance of the commute trip in individual and household travel behavior and 

its effect on aggregate traffic conditions have lead planners to devise travel demand 
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management strategies that aim at reducing the rigidity of the work trip. For example, 

flexible work hours, four day work weeks, and telecommuting (working outside the 

conventional office so as to reduce or eliminate the usual commute trip) are all 

concerned with altering the work trip so as to reduce peak period traffic congestion. 

However, whether or not these strategies yield overall traffic, energy, and air quality 

benefits depends on how individuals and households use the increased flexibility 

and/or discretionary time made available to them. An evaluation of the potential 

effectiveness of these strategies as transportation control measures hinges upon our 

understanding of the relationships among work and other activities and travel of 

households. 

The modeling framework used here attempts to identify the effects of the commute 

trip on the participation in other activities and the travel supporting these activities. 

Specifically, relationships between the work trip and other activities and trips are 

hypothesized and tested in a simultaneous equation framework using the method of 

structural equations. The data set is drawn from the State of California 

Telecommuting Pilot Project which was conducted to determine the impacts of 

telecommuting on household travel. When a person telecommutes, the usual 

commute trip is eliminated. The two-wave panel data set which consists of an 

experimental telecommuter group and a control group allows a before-and-after impact 

analysis of telecommuting. The data set provides a unique opportunity to study and 

isolate the effects of the commute trip on household travel and activity engagement. 

Moreover, the longitudinal nature of the study provides the potential benefits 

associated with panel analysis [Kitamura, 1990]. The results of the analysis show 

that the elimination of the commute trip has a positive effect on the pursuit of 

shopping and social recreational activities and travel. 

This paper is organized as follows. In the next section, various hypotheses of travel 

behavior relating work and other activities and associated trips will be presented. The 

third section presents an overview of the data, its advantages, limitations and sample 

composition. The fourth section provides a preliminary descriptive analysis of 

demographic and activity/travel characteristics of the study sample. The fifth section 

is an overview of the formulation of the structural equations modeling methodology. 

Empirical analysis and model results are the subject of Section 6. Finally, directions 
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for further research are presented in Section 7 while concluding remarks and 

discussions are presented in Section 8. 

2. Hypotheses of Household Activity-Travel Behavior 

In this study, the effects of the work trip on household travel behavior is examined 

by observing households before and after the introduction of telecommuting for one 

member of the household. In this case, the work trip has been eliminated after the 

introduction of telecommuting. Many hypotheses can be formulated about the 

possible effects of the elimination of the commute trip on household travel; for related 

discussions, see van Wissen, et al. [1989] and Pendyala, et al. [1991]. Some of 

these effects may be observed in the short-term while others may be observable only 

in the long-term. 

The most direct short-term hypothesis is that the elimination of the twice-daily 

commute trip will reduce the total number of trips made by that person. Moreover, 

as work trips are primarily made during the peak period, a reduction in peak-period 

trips will probably follow as a direct consequence. 

When a person does not commute to and from work, additional discretionary time and 

monetary savings become available. One may then hypothesize that these changes 

prompt new discretionary out-of-home trips such as social-recreational and shopping 

trips. Indeed, if it is assumed that a person maximized his or her utility from out-of­

home activities subject to budgets on time and money available for travel, then the 

eliminated commute trips may be replaced by new trips, or the destinations and timing 

of existing non-work activities could be altered so as to pursue them at more desirable 

locations and at more convenient times, using up some or all of the time and money 

originally expended on the eliminated trips [Golob, et al. 1981 ]. 

The absence of a commute trip, by itself, may lead to changes in destination choice 

and timing of out-of-home activities. For example, grocery shopping which used to 

be done on the way home from work at a location along the commute route, may now 

be performed at a suburban residential neighborhood grocery store during the late 
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morning or early afternoon (outside the peak period). One may surmise that the 

spatial distribution of trip ends may be more concentrated around the home location 

when the commute trip is eliminated. Moreover, the temporal distribution of trips may 

be more evenly spread during the day. This redistribution of trips may have significant 

effects on suburban congestion and air quality. 

An important consequence of the elimination of the commute trips is the removal of 

work-related constraints. For example, when a person works conventionally, work 

begins at 8:00 am, a lunch break must be taken from 12 noon to 1 :00 pm, and work 

ends at 5:00 pm. Relaxation of these constraints is likely to reduce the need to link 

trips into multi-stop trip chains (home-to-home journey). In fact, Goulias, et al., 

[1990] found that people increase their linking of trips under tighter constraints. 

Then, with the removal of constraints, there may be an increase in the number of 

single-stop trip chains, leading to less efficient travel patterns and more cold starts 

(having serious air quality implications). 

At the household level, the presence of a telecommuter at home with a flexible work 

schedule may result in a reallocation of tasks among household members. This may 

streamline the travel patterns of the entire household and increase efficiency in trip 

making. On the other hand, household members now have more discretionary time 

(as the person who did not commute has taken up some tasks) and an additional 

available car. This can possibly lead to increased car trips. 

Several long-term hypotheses are also conceivable. The reduced need to commute 

may prompt a household to reduce car ownership. Also, elimination of the 

time-bound regular commute reduces the need to live close to work. Households may 

choose to change residential location further away from work in search of affordable 

and more pleasant neighborhoods. Testing such long-term hypotheses is however 

beyond the scope of the reported research. 

This section reflects the many changes that are possible as a result of changes in the 

commute patterns of one household member. Some of the changes may be beneficial 

while others may not. It is absolutely necessary to see how people use the additional 

discretionary time and flexibility that results from the elimination of the commute trip. 
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Such an analysis will provide valuable information about the potential benefit or 

disbenefit of travel demand management strategies that promote flexibility of the 

commute trip for the purpose of peak period traffic congestion relief. be tested. 

3. The State of California Telecommuting Pilot Project Panel Data 

As this research is concerned with the effects of the commute trip on travel behavior, 

it was necessary to identify a data set in which variations in commute patterns are 

present. The State of California Telecommuting Pilot Project offers such a unique data 

set. 

The project was intended to determine the impacts of telecommuting on household 

travel behavior. Telecommuting is the partial or total substitution of the commute to 

work through the use of telecommunications. Volunteer employees from state 

agencies were selected to participate in this project. The employees were divided into 

two groups--the telecommuter group and the control group. The project involved 

conducting a two-wave longitudinal (panel) survey before and after the introduction 

of telecommuting. In the first wave (conducted in 1988), all the employees were 

commuting conventionally to work. In the second wave (conducted in 1989), the 

telecommuter group had commenced telecommuting while the control group 

continued to commute conventionally. The presence of the control group allows the 

isolation of the effects of telecommuting on travel behavior. 

Three day travel diaries were filled out by the state employees and driving age 

members of their households in both waves. In the second wave, telecommuters 

were requested to fill out the travel diary on three successive days such that at least 

one day was a telecommuting day (working at home). These travel diaries contained 

information on all trips made by the individual over the three day period. This 

information included trip beginning and ending times, origin, destination, length, 

freeway use, mode, and vehicle occupancy. In addition, selected demographic 

information was also collected.· This included household car ownership, household 

size, and employment status, age, and gender of each individual respondent. 
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The travel survey involved households of State employees from 14 agencies. The 

participants live and work mostly in the Sacramento and Bay Areas. The first wave 

sample consisted of a total of 430 respondents. 252 respondents were state 

employees, and 178 were driving-age members of the employees' households. Of the 

252 state employees, 137 (54.3%) were scheduled to telecommute in the second 

wave, while the remaining were assigned to the control group. 

In the second wave, attrition was evident. Of the 430 persons who responded in the 

first wave, only 219 persons responded in the second wave. The others left the 

survey for various reasons [Kitamura, et al., 1990] which may have included 

retirement, promotion, family issues, lack of interest, and changing jobs. The 

additional 38 persons in the second wave survey constituted refreshments. The 

sample of 219 persons who responded in both waves shall be referred to as "stayers" 

in this paper. As travel patterns for various commute patterns are available before 

and after telecommuting for these households, this sample is used in the model 

estimation. The composition of the sample in each wave and the stayers is presented 

in Table 1. 

Multi-day travel diary information from these 219 persons was used to construct 

trip-activity profiles which organize all trips and activities (with associated 

characteristics) in chronological order. These profiles were used to construct a data 

set with combined travel and activity characteristics. These characteristics are based 

on 2706 first wave trips and 2235 second wave trips. Details on the construction of 

the combined activity and travel data set can be found in Pendyala, et al. (1991 ]. 

The data set is potentially well suited for structural modeling. The longitudinal nature 

of the data set helps avoid problems associated with cross-sectional data sets 

[Kitamura, 1990]. It allows an observation of how changes in commute patterns lead 

to changes in travel behavior for the same household over time. As such the 

identification of causal and dynamic relationships becomes more amiable while 

controlling for unobserved individual effects that do not change over time. Also, the 

presence of the control group allows us to isolate the effects of the elimination of the 

commute trip on household travel behavior. 
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However, there are severe limitations associated with the data. First the sample is 

made up of volunteers selected to participate in the project; and the employees are 

all drawn from public agencies. The sample is therefore not representative of the 

general population. As the project was of a pilot nature, the sample size is small. 

This was further aggravated by the high rate of attrition, which also contributes to 

possible biases. Also, the use of a multi-day travel diary may have seen diary fatigue 

where reporting accuracy diminishes as the survey days progress. Therefore, the 

model estimation results must be interpreted with care. 

4. Preliminary Descriptive Analysis of the Study Sample 

In this section, descriptive characteristics of the stayer sample used in this study are 

presented. Table 2 presents the average values for various demographic 

characteristics for the two employee groups by wave, while Figures 1 through 6 show 

comparisons of average travel and activity characteristics across the groups. 

Indications in Table 2 are that the telecommuter and control groups do not differ 

substantially. In fact, none of the statistics were found to be significantly different 

between the two groups at the .05 level. However, it is noteworthy that the control 

group exhibits consistently smaller numbers in all statistics. The control group 

employees show a slightly lower average age, smaller numbers of adults, teenagers, 

and children, and lower car ownership. However, while the control group employees 

showed a slight increase in their car ownership across the two waves, the 

telecommuter group did not. 

In Figures 1 and 2, the average trip frequencies by purpose are compared for each 

group across the two waves. For the telecommuter employees, the second wave 

characteristics are further divided into telecommuting day and commuting day 

characteristics. The telecommuter employees show relative stability in their trip 

frequencies between the first wave and the commuting days of the second wave. On 

telecommuting days, as expected, they make no commute trips and make fewer home 

trips. However, on average, they pursue a marginally larger number of personal 

business and shopping trips while reducing their recreational trips. This is rather 

interesting and unexpected as one would hypothesize that telecommuting might 
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induce additional recreational trips. The control group employees show stability 

across the two waves for all trip purposes except home trips. There is a reduction in 

their home trips; the reason for this is unclear and would need further investigation. 

Figures 3 and 4 compare total average daily travel durations for different trip types. 

The telecommuters show decreases in home and work travel durations between the 

first wave and second wave commuting days. This is quite an unexpected result. 

The control group employees show a similar decrease in their work travel duration, but 

no such decrease in their home travel duration. As the control group employees also 

showed the reduction in work travel duration, it is possible that an external stimulus 

(such as an improvement in the transportation supply characteristics) contributed to 

this reduction. Travel times for other activities are similar across the two waves for 

both groups. Obviously, telecommuters exhibit reduced home-to-work travel durations 

on telecommuting days. While the frequency of personal business trips on second­

wave commuting days showed no increase, travel times for this trip purpose shows 

an increase. 

Figures 5 and 6 show total average activity durations per day for different purposes. 

These figures represent activity engagement in hours per day. Telecommuters' 

activity engagement is as expected. On telecommuting days, they spend an additional 

eight hours at home when compared with commuting days of the first or second 

waves. This probably corresponds to the eight hours of work. As expected, 

out-of-home work activity does not exist on telecommuting days. The personal 

business, shopping, and social recreation show no increases on telecommuting days 

suggesting that increases in discretionary activities do not take place. Slight increases 

in personal business and shopping activity durations are observed on second wave 

commuting days. The control group employees show no change in their activity 

durations. 

In summary, the elimination of the commute trip on telecommuting days does not 

contribute to increases in the pursuit of non-work activities, at least in the short term. 

As such, when we model work activity versus non-work activity engagement, we 

would not expect to see differences in model indications across the two waves. This 

hypothesis will be tested in the modeling effort that follows. 
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5. Modeling Methodology 

The method used to model activity and travel relationships is structural equations 

modeling with limited-dependent variables. The estimation method is due to Muthen 

[1979, 1983, 1984], who extended the classical linear structural equations model 

with unlimited continuous variables [Joreskog, 1973] to situations with ordered 

categorical, censored and truncated dependent variables. 

This method has been chosen for various reasons. They are: 

The model must accommodate multiple endogenous variables that are 

interacting with one another. This will allow the simultaneous depiction of 

several activity and travel times and relationships among them can be 

determined. 

The methodology must allow the depiction of recursive as well as non-recursive 

relationships. This is necessary in order to be able to test alternative causal 

hypotheses regarding relationships among different activities and travel times. 

The model should be able to handle limited-dependent variables as activity and 

travel times are censored from below at zero. 

The modeling method should facilitate a comparison of behavior across 

different sample groups. 

The method of multiple-group longitudinal structural equations with limited-dependent 

variables satisfies the above requirements and more over, is easy to implement via 

readily available software such as LISC0MP [Muthen, 1987], EOS [Bentler, 1985], 

and a combination of PREUS and LISREL 7 [Joreskog and Sorbom, 1987]. Structural 

equations models have seen increasing use in various fields of behavioral research. 

In transportation, researchers have used this method to study various aspects of travel 

behavior such as mode choice [Lyon, 1984; Golob, 1988], travel times and car 
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ownership [Golob, 1989], car ownership and utilization [Golob and van Wissen, 

19891, and fuel type choice [van Wissen and Golob, 1991 ]. 

The structural equation system can be formulated in two components. The first 

component is the latent variable model while the second component links the latent 

variables with their observed counterparts. 

The latent variable component with p continuous and limited-dependent variables and 

m exogenous variables may be written as 

where 

y* =By*+ rx + s 

y* = (px 1) vector of latent endogenous variables 

B = (pxp) matrix of structural effects among the latent variables 

x = (mx 1) vector of exogenous variables 

r = (pxm) matrix of structural effects of x on y* 

( 1 ) 

s = (px 1) vector of disturbance terms with variance-covariance matrix 

4J = E{ss'} 

The second component links the latent endogenous variables with their observed 

indicators. This is done to transform the observed non-normal variables into normal 

latent variables so that asymptotically distribution free (ADF) methods can be used to 

estimate parameters [Browne, 1984]. This transformation component of the model 

system is referred to as the measurement model. It is discussed in further detail 

below. 

For a continuous variable, the measurement model linking the observed indicator, y, 

with the latent variable, y*, is simply given by 

y = y* (2) 

However, for the present application, it is more appropriate to treat non-work activity 

and travel times as variables censored from below at zero. For each activity or travel 
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time, y, it is presumed that there is a latent variable y* which measures the true 

propensity of a person to expend time on a certain trip or at a certain activity. If this 

latent variable is greater than zero, the actual time expended is observed; if it is less 

than or equal to zero, no time is observed. Then, the measurement model can be 

written as, 

y = y* if y* > 0 

y = 0 otherwise (3) 

The latent variable is assumed to be normally distributed with meanµ and standard 

deviation a. For values below the threshold value, in this case zero, the mean of the 

normal score of the latent variable in this interval is assumed, given by: 

z = µ - cr <l>(-µ/cr) 
<I>(-µ/cr) 

(4) 

where the mean value is conditional upon the exogenous x variables in the structural 

equation system. A solution for the unknown distributional parameters in (4) was 

originally proposed by Tobin( 1958), and this censoring model is now called a tobit 

{Tobin's probit). The present estimation uses the maximum likelihood solution 

described in Maddala [1983], pp. 151-159. A similar use of tobit variables in a travel­

demand structural equation model is found in van Wissen and Golob [1990]. 

The complete set of latent variables are thus assumed to be multivariate normally 

distributed. A simple way of computing the variance-covariance matrix of the 

transformed variables is to use the normal scores from the marginal distributions of 

the variables. However, this is not an optimal solution. By using bivariate 

information of all pairs of variables, polyserial correlations can be computed; these 

are consistent estimates of the underlying population statistics [Muthen, 1984]. 

Having defined the model system composed of equations {1) through (4), the 

structural parameters in B and r and the elements of y can be estimated using the 

Generalized Weighted Least Squares Method developed by Browne [1984]. The 

covariance matrix of exogenous and latent endogenous variables S is the object of 
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analysis. The hypothesized model structure implies a covariance matrix l:(B,G,() for 

each group. The parameters are estimated such that l:(B,G,() is as close to S as 

possible. Parameter estimates with all desirable asymptotic properties are generated 

by minimizing a fit function which is: 

where 

(5) 

s = vector of ½ (p + m)(p + m + 1) elements obtained by placing the non­

duplicated elements of S in a vector 

u = vector of ½ (p + m)(p + m + 1) elements obtained by placing the non­

duplicated elements of :r in a vector 

W = ½ (p + m)(p + m + 1) x ½ (p + m)(p + m + 1) positive definite weight matrix 

The matrix S consists of all sample variances and covariances among exogenous and 

latent endogenous variables for each group. Consistent estimators of these underlying 

population statistics are obtained by using bivariate information of all pairs of 

information to generate polychoric and polyserial correlation matrices. These 

correlation matrices provide correlations among underlying multivariate normal latent 

variables rather than the ordinal or censored observed indicators. Olssen, et al. 

[1982] describe maximum likelihood estimation procedures of polychoric and 

polyserial correlations. Estimation of parameters using polyserial correlations provides 

consistent estimators of structural parameters [Bollen, 1989]. 

An important result of Browne [1984] is that if the weight matrix, W, is chosen to be 

a consistent estimator of the asymptotic covariance matrix of s with s, then the 

estimates of B, rand 41 are asymptotically efficient. Each of the elements of Wis a 

sample estimator of the fourth-order moment of the observed variables distribution. 

An estimator of Wis provided by Muthen [1984]. 

The value of the objective function F, multiplied by the sample size N, is an overall 

measure of goodness of fit. It is distributed asymptotically as x2 with degrees of 

freedom (p + m)(p + m + 1) - r where r is the number of free parameters to be 

estimated in the model system [Bollen, 1989]. The difference in x2 statistics for two 
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nested models {where two models are exactly identical except for one or more 

constrained parameters) is distributed as a new x2 statistic with degrees of freedom 

equal to the difference in degrees of freedom between the two models. This provides 

a convenient method for testing the significance of hypotheses. 

An important distinction in simultaneous equation systems is that between direct, 

indirect and total effects. Direct effects are given in the B and r matrices. Indirect 

effects may exist if a variable a is related to b, which in turn is related to c. Then, 

there is an indirect effect from a to c through the causal path involving b. Total 

effects are simply the sum of direct and indirect effects. The formulas for calculating 

these effects are: 

y* toy* X toy* 

Direct Effects 8 r 
Indirect Effects (l-8)" 1 - 8 - I (1-8)-1 r - r 
Total Effects (1-8)" 1 - I (I-Bl"1 r 

6. Model Results 

A structural equation system with censored endogenous variables was specified and 

estimated on a pooled sample of telecommuters and control group workers from both 

waves of the panel. The wave pooling was necessary in order to increase the sample 

size. A dummy exogenous variable was used to indicate whether or not the person 

was a telecommuter in the second wave was included. Formally, it is defined as, 

D = 1 if telecommuter in second wave 

= 0 otherwise. 

The model relates work, personal business, shopping and social recreational activities 

and the travel time durations for these activities along with the dummy variable 
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defined above. There were a total of 274 observations (one telecommuter was 

eliminated from both waves due to missing information). The model variables, eight 

endogenous and one exogenous, are described in Table 3. 

There are 20 free parameters in the estimated model, representing twelve causal links 

between endogenous variables (non-zero /3 elements of the B matrix in equation (1 )), 

three regression links from the exogenous telecommuting variable (non-zero v 
elements), and eight disturbance term variances (I/I elements in the variance­

covariance matrix of(). The model x2 value, computed from objective function (5), 

is 30.122. For 20 parameters, the x2 statistic has 24 degrees-of-freedom, yielding 

a p value of .1807: The model cannot be rejected at the p = .05 level. 

The coefficient estimates and associated z-statistics are listed in Tables 4 and 5. All 

of the structural coefficients in Table 4 are significant at the p = . 05 level for one-tail 

tests, and all but one coefficient are significant at the p = . 01 as well. 

As an aid in interpreting the causal structure implied by the coefficient estimates of 

Table 3, a flow diagram of the model is provided in Figure 7. Each non-zero element 

in either the B or r matrix of equation ( 1) is represented by an arrow in such a flow 

diagram, the arrow showing the direct effect of one variable upon another. In Figure 

7, such direct effects are shown in bold with corresponding z-values shown in 

parentheses. Total effects (discussed at the end of Section 5) are shown in italics in 

Figure 7; the corresponding indirect effects implied by the model are depicted in Figure 

8. 

The pursuit of activities leads to travel and therefore the arrows between activity and 

travel variables in Figure 7 are from activities to travel. While the out-of-home work 

activity variable has a direct effect only on work travel, work travel in turn has 

negative direct effects on personal business travel and social/recreational travel and 

a positive direct effect on shopping travel. Consequently, work activity affects all 

other travel, and work activity duration affects all other travel through work travel. 

This model is also indicative of the following relationships not involving the exogenous 

telecommuting variable: 
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All links from activities to travel are strongly positive, which indicates that 

demand for travel is indeed the manifestation of the demand for activities. 

One hour of work activity generates about 0.045 hours of commute. In other 

words, for an eight hour work day, this sample commutes approximately 20 

minutes. 

Similarly, 10 minutes of personal business generate travel of 4 minutes 

duration, 10 minutes of shopping generate a shopping travel of 3 minutes, and 

10 minutes of social recreation generate 2 minutes of travel. Note that these 

observations pertain only to working days. As such, we would not expect 

employees to make long trips to pursue non-work activities. 

Shopping and recreational activities are positively associated with each other. 

This might result from a tendency to link shopping and recreational activities. 

People with longer work travel tend to pursue shorter personal business trip 

durations. 

However, work travel and shopping travel are linked by a positive coefficient 

and so are personal business and shopping. This suggests that people with 

longer commutes are making longer shopping trips. Similarly, people who 

pursue personal business are likely to associate it with a shopping trip too. 

Finally, work travel negatively influences travel for social/recreational purposes. 

Telecommuting reduces out-of-home work activity (by definition), but the link between 

work activity and work travel captures the effect of telecommuting on work travel. 

This indicates that, for this sample, telecommuters and non-telecommuters have 

similar relationships between work activity and work travel. Telecommuting has 

pervasive influences on most other activities and travel: 
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Telecommuting has a positive influence on shopping activity. The increase in 

shopping activity is related to the decrease in work activity on approximately 

an eight to one basis. This increase in shopping activities leads to an increase 

in social/recreational activities through the link from shopping to 

social/recreational activities. 

Telecommuting influences travel for social/recreational purposes through its 

strong link to work activity and an additional negative direct effect to 

social/recreational travel. The net influence on recreational travel is slightly 

positive, due to the indirect effects through work activity. The negative direct 

effect from telecommuting to social/recreational travel serves to compensate 

for the positive effect that reducing work out-of-home activity has on 

social/recreational travel. 

The effect of telecommuting on personal business was found to be 

insignificant. 

The estimates of the disturbance term variances, the diagonal elements of the 4J 

matrix of equation set (1 ), are listed in Table 5, together with the sample variances 

for the y* variables and the implied R2 values. The R2 value for personal business 

activity duration is zero because there are no causal links to this variable in the model; 

the deviation between the sample variance and the estimated variance is due to the 

very good, but imperfect, fit of the model. Two of the other endogenous activity 

durations, for work and shopping, exhibit low R2 values because they are explained 

in part only by the telecommuting dummy variable; additional exogenous variables, not 

available in the data set, are needed to explain work and shopping activity duration. 

However, a significant proportion (approximately 12 percent) of the remaining 

social/recreational activity duration variable is explained by shopping activity duration. 

With respect to explanation of the travel time variables, travel time for work is poorly 

explained by work activity duration. In contrast, approximately 60 percent of the 

variance in personal business travel time is explained (directly by personal business 

activity and work travel and indirectly by telecommuting and work activity). 
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Moreover, the model structure explains 80 percent of the variance in shopping travel 

time and 75 percent of the variance in social/recreational travel time. This indicates 

that activity analysis can be an effective approach to demand forecasting of non-work 

travel: if activity durations can be explained, so can travel times. 

7. Further Research 

The model specification has been restricted by limitations of sample size, the lack of 

socio-demographic variables in both waves, and the observation of trips only on 

working days. The small sample sizes of 73 telecommuters and 65 control group 

employees does not provide a large enough data source to estimate dynamic model 

structures linking the activity and travel participation durations across the waves. As 

trips were observed only on working days, the occurrence of discretionary activities 

and trips is rare and discerning a pattern of linkages among activities in a dynamic 

context becomes an arduous task. Despite these limitations, the models presented 

in the previous section show significant links among activities and travel and the 

effect of telecommuting on travel when the observations across the two waves and 

two groups are pooled. 

In this section, we present a general framework in which activity and travel 

characteristics could have been assessed in the structural equations framework had 

the data not been a limiting factor. This is based on the concept of multiple-group 

longitudinal structural equation modeling. Muthen [1989] extended the structural 

equations method to allow comparisons across multiple-groups. The multiple-group 

structural equation system follows the formulation presented in Section 5 and consists 

of two components. The first component is the latent variable model while the 

second component links The latent variables with their observed counterparts. 

The latent variable component with p continuous and limited-dependent variables, m 

exogenous variables, and G sample groups, may be written as 

(6) 
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where 
y*(g) = 
slgl = 
x(g) = 
rlgl = 
rg) = 

g = 

(px1) vector of latent endogenous variables 

(pxp) matrix of structural effects among the latent variables 

(mx1) vector of exogenous variables 

(pxm) matrix of structural effects of x on y* 

(px1) vector of disturbance terms with variance-covariance matrix 

lJJ(gl = E{ r9l s,(g)} and 

sample group 

The second component links the latent endogenous variables with their observed 

indicators and is exactly similar to equations (2) and (3). 

Having defined the model system composed of equations (5), (2), and (3), the 

structural parameters in B(g) and r(g) and the elements of lJJ(g) can be estimated using 

the Generalized Weighted Least Squared Method developed by Browne [1984]. The 

covariance matrix of exogenous and latent endogenous variables s(g) is the object of 

analysis. The hypothesized model structure implies a covariance matrix 

I:(g)(B(g), r(g), lJ.1(9)) for each group. The parameters are estimated such that 

I:(g)(B(g) ,G(g) ,lJ.1(9)) is as close to s(g) as possible. Parameter estimates with all 

desirable asymptotic properties are generated by minimizing a fit function which is a 

weighted combination of the fit for all groups. 

The estimation procedure is the same as described in Section 5. The sample size N 

multiplied by the function Fis distributed asymptotically as a x2 statistic with degrees 

of freedom ½ (G)(p + m)(p + m + 1) - r, where r is the number of free parameters to be 

estimated in the s(g), r(g), and lJJ(g) matrices. As before, the difference in x2 between 

two nested models can be used to test hypotheses of parameter equality (restrictions) 

across groups and/or across waves. 

Also, ideally the first and second wave observations in a panel survey should not be 

treated as independent observations. In fact, activity and travel characteristics from 

the first wave represent lagged dependent variables with the characteristics of the 

second wave being dependent upon those of the first wave. Similarly, hypotheses 
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that relationships among activities and travel characteristics are stable can be tested 

by performing nested x2 tests using parameter equality restrictions across waves. 

A longitudinal multi-group structural equations model could be used to capture the 

effects of telecommuting. The approach is to specify the cross-sectional model such 

as the one described in Section 6, minus the telecommuting exogenous variable, at 

two points in time. This doubles the number of endogenous variables in the model. 

The two cross-sectional models are linked with state-dependence structural links and 

error-term autocorrelations [Golob, 1989]. Importantly, such a dynamic structure 

allows the specification of individual-specific (random effects) terms, as accomplished 

by Golob et al. [1991] and van Wissen and Golob [1991 ]. Such a model can then be 

estimated as a two-group structure (equation set (6)), with the groups being 

telecommuters and the control group. Structural parameters for the two groups can 

be set equal at the first point in time (pre-telecommuting), and tested for equality at 

the second point in time (post-telecommuting). This is a particularly flexible 

specification, because it is possible to detect whether or not the relationships among 

the various activity and travel times changes when telecommuting is introduced. 

The Telecommuting Pilot Panel Data did not support such a longitudinal two-group 

specification due to the relatively small sample size. There are simply too many free 

parameters in a dynamic two-group model for the number of observations in the data 

set. This remains a topic for further research. 

8. Conclusions 

It has been shown that various activities and the travel they generate can be 

interrelated in a structural equations framework. The specific model estimated here 

is used to examine the effect of the commute trip and out-of-home work activity on 

other activities and travel. Estimates are generated using data from the State of 

California Telecommuting Pilot Project. In this Pilot Project, a group of state 

employees had begun working from home for a part of the week. Their travel 

characteristics were observed along with that of a control group at two time points 

(before and after the introduction of telecommuting). 
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Results showed that the elimination of out-of home work (telecommuting) reduced 

work travel, but increased shopping and social recreational activities. These 

indications were not clear from the descriptive statistics, which did not show 

significant differences. It is therefore important to study the relationships using a 

structural model, such as the one presented in this paper, because descriptive 

statistics and reduced-form models might not reveal causal relationships. 

The positive influence of reduced commuting on shopping and recreational activities 

and their associated travel suggests that people use a part of their discretionary time 

to pursue non-work activities. This partially mitigates the congestion relief, air 

pollution reduction, and energy savings advantages attributed to telecommuting. 

However, further research is suggested before policy implications are drawn from this 

study. It is possible that telecommuters have taken over the tasks of other household 

members. If that is the case, the net amount of travel generated by the household 

would not increase. Moreover, telecommuters are likely to make such trips at 

non-peak periods [Pendyala, et al. 1991 ]. It would be fruitful to identify trade-offs in 

activity participation among household members which would provide insights into 

such a possibility. 
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Figure l 

Trip Frequencies for Telecommuter Employees (N=73) 
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Trip Frequencies for Control Group Employees (N=65) 
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Figure 3 

Travel Durations for Telecommuter Employees (N=73) 
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Travel Durations for Control Group Employees (N=65) 
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Figure 5 

Activity Engagement for Telecommuter Employees (N=73) 
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Figure 7. Model Structure (N=274) 

0.045 0.045 
WORK-ACT (6.462) WORK-TRY 

-0.054 
(-4.390) 

0.015 
-0.054 (2.118) 

PSBN-ACT 0.406 0.406 PSBN-TRY 
(7.695) 

0.059 0.0118 
(4.141) 

0.059 

SHOP-ACT 
0.315 

(15.435) 
0.315 

SHOP-TRY 

0.598 -0.058 
(3.094) (-1.727) -0.009 

0.598 0.0055 (-4.662) 

-0.009 

0.205 0.205 
RECN-ACT RECN-TRV 

(11.171) 

Notes: 
ACT- Activity Duration; TRY - Travel Duration; WORK - Working outside home; PSBN - Personal Business; SHOP - Shopping; RECN - Recreatior 
TELE-DUM=l for telecommuters in second wave. 
Direct effects are in bold. Structural parameter estimates to standard error ratios (pseudo t-valucs) are in parentheses. Total effects are in italics. 
Chi-square= 30.122; df = 24; p = 0.1807. Model cannot be rejected at the 0.05 level of significance. 



Figure 8. Indirect Effects in Model (N=274) 
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Table 1. Composition of the Sample 

Group Wave 1 Wave 2 Stayers 

Telecommuter Employees 137 79 73 
Control Group Employees 1 1 5 75 65 
Telecommuter Household Members 93 56 45 
Control Group Household Members 85 47 36 

Totals 430 257 219 

Table 2. Descriptive Statistics for the Stayer Employee Samples 

Characteristic 

Age 
No. of Adults in Household 
No. of Teenagers in Household 
No. of Children in Household 
Household Car Ownership 

Telecommuters 
(N=73) 

Wave 1 Wave 2 

44.1 n/a 
1.83 n/a 
0.21 n/a 
0.48 n/a 
1.83 1.83 

Table 3. Variable Definitions 

Variable 

Endogenous variables 
Activity duration - work 
Activity duration - pers. bus. 
Activity duration - shopping 
Activity duration - soc.free. 
Travel Time - work 
Travel Time - pers. bus. 
Travel Time - shopping 
Travel Time - soc.free. 

Exogenous variable 
Telecommuting dummy 

Abbreviation in 
Flow Diagrams 

WORK-ACT 
PSBN-ACT 
SHOP-ACT 
RECN-ACT 
WORK-TRV 
PSBN-TRV 
SHOP-TRV 
RECN-TRV 

TELE-OUM 

29 

Control Group 
(N = 65) 

Wave 1 Wave 2 

41.2 n/a 
1.75 n/a 
0.15 n/a 
0.37 n/a 
1.66 1.69 

Treatment 

Continuous 
Censored at 0. 
Censored at O. 
Censored at 0. 
Continuous 
Censored at O. 
Censored at O. 
Censored at O. 



Table 4. Structural Parameter Estimates 

From To Coefficient Z-statistic 

Links between endogenous variables (B matrix elements) 
Activity duration - work Travel time - work 
Activity duration - pers. bus. Travel time - pers. bus. 
Activity duration - shopping Activity duration - soc.free. 
Activity duration - shopping Travel time - shopping 
Activity duration - soc.free. Travel time - soc.free. 
Travel time - work Travel time - pers. bus. 
Travel time - work Travel time - shopping 
Travel time - work Travel time - soc.free. 
Travel time - pers. bus. Travel time - shopping 

Links from exogenous to endogenous variables ( r matrix elements) 
Telecommuter dummy Activity duration - work 
Telecommuter dummy Activity duration - shopping 
Telecommuter dummy Travel time - soc.free. 

.045 

.406 

.598 

.315 

.205 
-.054 
.015 

-.009 
.059 

-4.278 
.504 

-.058 

6.46 
7.70 
3.09 

15.43 
11. 71 
-4.39 
2.12 

-4.66 
4.14 

-5.77 
2.80 

-1.73 

Table 5. Disturbance-term Parameter Estimates, Sample Statistics, and R2 Values 

Endogenous variable 

Activity duration - work 
Activity duration - pers. bus. 
Activity duration - shopping 
Activity duration - soc.free. 
Travel Time - work 
Travel Time - pers. bus. 
Travel Time - shopping 
Travel Time - soc.free. 

Estimated error 
variance (lJI param.) 

30 

30.690 
3.512 
1.525 
8.176 
2.295 

.317 

.041 

.108 

Sample variance 

31 .552 
3.456 
1.584 
9.284 
2.323 

.784 

.210 

.431 

.027 

.000 

.037 

.119 

.012 

.596 

.805 

.749 




