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Abstract1

Little is known about the nature or extent of everyday variability in voice quality.2

This paper describes a series of principal component analyses to explore within- and3

between-talker acoustic variation and the extent to which they conform to expecta-4

tions derived from current models of voice perception. Based on studies of faces and5

cognitive models of speaker recognition, we hypothesized that a few measures would6

be important across speakers, but that much of within-speaker variability would be7

idiosyncratic. Analyses used multiple sentence productions from fifty female and8

fifty male speakers of English, recorded over three days. Twenty-six acoustic vari-9

ables from a psychoacoustic model of voice quality were measured every 5 ms on10

vowels and approximants. Across speakers the balance between higher harmonic11

amplitudes and inharmonic energy in the voice accounted for the most variance (fe-12

males=20%, males=22%). Formant frequencies and their variability accounted for13

an additional 12% of variance across speakers. Remaining variance appeared largely14

idiosyncratic, suggesting that the speaker-specific voice space is different for different15

people. Results further showed that voice spaces for individuals and for the pop-16

ulation of talkers have very similar acoustic structures. Implications for prototype17

models of voice perception and recognition are discussed.18

Keywords: acoustic voice variation, within-speaker variability, between-speaker vari-

ability, prototype models of voice perception, speaker recognition, voice quality.
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I. INTRODUCTION19

What makes your voice yours? Individuals’ voices, their “auditory faces” (Belin et al.,20

2004), provide significant clues to personal identity along with information about talkers’21

long-term physical, psychological, and social characteristics, based on the variability these22

factors introduce into voice. Because even small changes in emotion, social context, and23

physiologic state can cause significant variability in voice, no speaker ever says the same thing24

in exactly the same way twice, whether quality is intentionally or incidentally manipulated25

(see Kreiman and Sidtis 2011, for extended review). However, the extent and nature of26

within-speaker variability in voice are unknown, despite the fact that the acoustic signal27

serves as input to the perceptual system, which must be able to cope with this variability in28

order to achieve a stable percept and/or recognition. Information about acoustic variability29

is thus critical for formulating models of voice quality and talker recognition. This paper30

describes a series of analyses exploring within- and between-talker acoustic variation and31

the extent to which they conform to expectations derived from current models of voice32

perception.33

Although listeners can cope to some extent with acoustic variability to establish stable34

identity percepts, across voices and listeners many studies have shown that within-speaker35

variability makes voice recognition and discrimination challenging tasks. In forensic contexts,36

for example, an earwitness’s ability to identify a person from a voice lineup diminishes when37

vocal variability is introduced. Listeners often fail to reliably discriminate between talkers38

when exposed to voices disguised using falsetto, hyponasality, creaky voice, or whispering39
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(Hirson and Duckworth, 1993; LaRiviere, 1975; Reich and Duke, 1979; Reich et al., 2005;40

Wagner and Köster, 1999); and changes in a speaker’s emotional state substantially impair41

listeners’ abilities to recognize Saslove and Yarmey 1980; cf. Read and Craik 1995) or42

discriminate among talkers (Lavan et al., 2019). Within-talker variability can also interfere43

with a listener’s ability to judge that samples come from the same (rather than different)44

talkers. In a “telling voices together” task, listeners frequently judged that exemplars from a45

single talker came from multiple speakers when samples were drawn from different speaking46

situations with varied interlocutors (Lavan et al., 2018).47

Facial recognition poses similar challenges to viewers, who must cope with changes in48

lighting, expression, and orientation in order to identify or discriminate among faces (Hill49

and Bruce, 1996; O’Toole et al., 1998; Patterson and Baddeley, 1977). Because similarities50

exist in voice and face processing (Stevenage et al., 2018; Yovel and Belin, 2013), recent51

findings from the face perception literature may provide insight into mechanisms for coping52

with acoustic voice variability. In particular, facial identity learning improves when viewers53

are exposed to highly but naturally varying sets of images of one person (for example, with54

changes in orientation or emotion) during training (Kramer et al., 2017; Murphy et al.,55

2015; Ritchie and Burton, 2017). This suggests that variation in the same face provides56

useful person-specific information and thus is important in identity learning and perception57

(Burton, 2013; Burton et al., 2016; Jenkins et al., 2011). To our knowledge, no parallel58

studies have appeared for voice learning, but some classic findings suggest acoustic variability59

may also provide important information to listeners. These studies have reported that60

increasing phonological length (i.e., the number of individual phonemes; Schweinberger et al.61
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1997) or acoustic duration (Bricker and Pruzansky, 1966; Cook and Wilding, 1997; Legge62

et al., 1984) of the voice samples leads to more accurate vocal identity processing, due to63

the increased variety in speech sounds available in longer stimuli or the longer duration64

(or both), which provide listeners with added articulatory and acoustic variability (cf. e.g.65

Lively et al. 1993, for similar effects in learning phonological categories).66

Taken together, these studies of faces and voices suggest that listeners need to learn67

how a particular voice varies in order to recognize it accurately and efficiently. At first68

glance, this claim appears consistent with prototype-based models of the cognitive and69

neural processes underlying voice identity perception (Latinus and Belin, 2011a; Lavner70

et al., 2001; Papçun et al., 1989; Yovel and Belin, 2013). In these accounts, listeners encode71

and process voice identity in relation to a population prototype, which is a context-dependent72

“average-sounding” voice, defined as a central tendency in a distribution of exemplars (Patel,73

2008) that resides at the center of a multidimensional acoustical ‘voice space.’ Each voice is74

further represented in terms of its deviations from that group prototype, stored as a unique75

‘reference pattern’ for that identity and passed on for further analysis (Latinus and Belin,76

2011b; Papçun et al., 1989). On further consideration, however, it becomes apparent that77

these models are underspecified with respect to two important issues. First, the relationship78

between between-talker variability in quality and the population prototype is unknown.79

Although it is commonly assumed that prototypes are statistical averages derived from80

multiple samples of a given talker’s voice (e.g., Latinus and Belin 2011a; Maguinness et al.81

2018), to our knowledge no data exist about how much detail (and what kind of detail) about82

quality is actually needed to specify the prototype, and how much is reserved as “deviations”83
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from the prototype. Second, the nature (or even the existence) of similar reference patterns84

for individual talkers and the way in which within-talker variation affects formation of these85

patterns have not to our knowledge been addressed, although such patterns would seem to be86

essential for the formation of stable representations of voices and thus for voice recognition87

(Lavan et al., 2018).88

Existing cognitive and neuropsychological models of voice perception and recognition89

have not been fully exploited to generate clear hypotheses about the nature and extent90

of even between-talker acoustic variability in voice, which has been studied far more than91

within-talker variability. As discussed above, these models posit the existence of an acoustic92

voice space organized around a population prototype, so that voices are encoded and later93

recognized in terms of their distance from the prototype and the manner in which they94

deviate from this (presumed) population average. Because voice production and perception95

have co-evolved, it follows that if the perceptual models are correct, then there should be96

some acoustic features that consistently explain significant between-talker acoustic variance97

across all the talkers in a population. These features would characterize the central cat-98

egory member for the population of talkers, consistent with the existence of a perceptual99

space organized around a prototype, and would also specify the location of each voice in100

the space with respect to the prototype. Remaining differences between voices should be101

idiosyncratic, so that the features that differentiate pairs of talkers depend on the precise102

acoustic information involved in each comparison (e.g., Kreiman and Gerratt 1996). This103

would be consistent with what has been found for faces (Maguinness et al., 2018; Stevenage104
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et al., 2018; Yovel and Belin, 2013), although we cannot assume that faces and voices are105

perceived in similar ways at all processing stages.106

Predictions are less clear for variation within a single talker across utterances, although107

studies of variation in faces may again offer some clues. Principal component analyses exam-108

ining how images of a face vary across different photographs of that person (Burton et al.,109

2016) showed that the first few components (left-to-right head rotations, angle to camera,110

the direction of lighting; and changes in expression like smiles, eye movements, mouth open-111

ing, or lip rounding during speech) emerged consistently across individuals and accounted112

for the most variance in different photos of the same person. Dimensions appearing in later113

principal components (from the fourth onward) did not generalize well from one person to114

another, so that some features were shared across faces, and some dimensions of variability115

were idiosyncratic to specific faces. Given the many similarities between face and voice116

processing in identity perception (see Yovel and Belin 2013, for review), this suggests that117

voice spaces for individual talkers should be similarly structured. If “prototypes” for individ-118

ual talkers are characterized by the same features across talkers, then these features would119

naturally characterize a population prototype against which each individual voice could be120

assessed.121

Results from our preliminary studies (Keating and Kreiman, 2016; Kreiman et al., 2017)122

are also consistent with the hypothesis that voice spaces for individual talkers are struc-123

tured similarly to population voice spaces. In those experiments, we used linear discrimi-124

nant analyses to identify the acoustic features that maximally distinguished a large number125

of individual voices. A small number of variables (F0, F4, the root mean square energy126
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calculated over five pitch pulses [energy], the relative amplitudes of the first and second127

harmonics [H1-H2], and the amplitude ratio between subharmonics and harmonics [SHR])128

proved important for distinguishing both male and female voices, but these accounted for129

only about 50% of the acoustic variance in the data, the remaining variance being explained130

by different variables depending on the particular voices being compared.131

In the present study we focused on the acoustic attributes that characterize different voice132

samples from individual talkers, as well as on the population of talkers as a whole. Following133

Burton et al. (2016), we used principal component analysis to assess voice variation both134

within and across speakers. The components that emerge from such analyses can be thought135

of as forming dimensions of an acoustic space specific to a given voice, in which that voice136

varies, in contrast to the discriminant analysis approach in our previous work. Based on137

Burton et al. (2016) and on prototype models of voice processing, we hypothesized that138

a few common acoustic dimensions would consistently emerge from analyses of individual139

speakers as explaining the most within-talker acoustic variability, but that much more of140

what characterizes vocal variability within a speaker would be idiosyncratic. Because voice141

quality is inherently dynamic, we tested the above hypothesis against multiple sentence142

productions from 100 native speakers of English, using a set of acoustic measures that143

combine to completely specify voice quality (Kreiman et al., 2014). This approach contrasts144

with previous studies of vocal acoustic spaces (e.g., Baumann and Belin 2010; Murry and145

Singh 1980; Murry et al. 1978), which used limited sets of steady-state vowels. Finally,146

we compared the dimensions characterizing acoustic variability across speakers to those147

characterizing within-speaker acoustic variability, also in contrast to previous work.148
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II. METHOD149

A. Speakers and voice samples150

In this experiment, the voices of 50 female and 50 male speakers were drawn from the151

University of California, Los Angeles Speaker Variability Database (Keating et al., 2019).152

All were native speakers of English, similar in age (F: 18-29, M: 18-26), with no known153

vocal disorder or speech complaints, and all were UCLA undergraduate students at the time154

of recording. As noted previously, virtually nothing is known about acoustic differences155

between different populations of speakers. For this reason, in this initial study we opted to156

control for possible systematic differences between populations by studying a homogeneous157

group, so that we would be able to unambiguously attribute acoustic differences to within- or158

between-speaker factors, without the added complication of differences between populations.159

Recordings were made in a sound-attenuated booth at a sampling rate of 22 kHz using a160

Bruel & Kjaer 1
2
” microphone (model 4193) securely attached to a baseball cap worn by the161

speaker.162

The database provides significant within- and between-speaker variability. Speakers were163

recorded on 3 different days and performed multiple speech tasks including reading, un-164

scripted speech tasks, and a conversation. In order to control for variations due to differences165

in phonemic content or emotional state across talkers, this initial study used recordings of 5166

Harvard sentences (IEEE Subcommittee 1969; Table I), read twice each day for a total of 6167

repetitions per sentence over 3 recording sessions on different days. Variability reported in168
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this paper was calculated across sentence productions (different repetitions, sentences, and169

days), and its scope is limited to the reading task.170

TABLE I. Reading materials.

Harvard sentences

A pot of tea helps to pass the evening.

The boy was there when the sun rose.

Kick the ball straight and follow through.

Help the woman get back to her feet.

The soft cushion broke the man’s fall.

B. Measurements and data processing171

Acoustic measurements were made automatically every 5 ms on vowels and approximants172

(i.e., /l/, /r/, /w/) excerpted from each complete sentence, using VoiceSauce (Shue et al.,173

2011). Following the psychoacoustic model of voice quality described in Kreiman et al.174

(2014), acoustic parameters included fundamental frequency (F0); the first four formant175

frequencies (F1, F2, F3, F4), the relative amplitudes of the first and second harmonics176

(H1*-H2*) and the second and fourth harmonics (H2*-H4*); and the spectral slopes from177

the fourth harmonic to the harmonic nearest 2 kHz in frequency (H4*-H2kHz*) and from178

the harmonic nearest 2 kHz to the harmonic nearest 5 kHz in frequency (H2kHz*-H5kHz).179

Values of harmonics marked with ‘*’ were corrected for the influence of formants on harmonic180

amplitudes (Hanson and Chuang, 1999; Iseli and Alwan, 2004). Our preliminary studies181

(Keating and Kreiman, 2016; Kreiman et al., 2017) showed substantial correlations between182
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the relative amplitude of the cepstral peak prominence in relation to the expected amplitude183

as derived via linear regression (CPP; Hillenbrand et al. 1994) and the 4 measures of the184

shape of the inharmonic (noise) source spectrum included in the psychoacoustic model, so185

for simplicity CPP was used as the only measure of spectral noise and/or periodicity in these186

analyses.187

Several additional modifications were made to adapt the model to automatic measure-188

ment of continuous speech. Formant dispersion (FD, often associated with vocal tract length189

[Fitch 1997]) was calculated as the average difference in frequency between each adjacent190

pair of formants (cf. Pisanski et al. 2014 for related measures). Amplitude was measured191

as the root mean square energy calculated over five pitch pulses (energy). Period doubling,192

which is not included in the original psychoacoustic model but is common in the speech193

of UCLA students, was measured as the amplitude ratio between subharmonics and har-194

monics (SHR; Sun 2002). Finally, dynamic changes in voice quality were quantified using195

moving coefficients of variation (moving CoV = moving σ
moving µ

) for each parameter. In choosing196

this measure, we assumed that listeners do not generally rely on exact pitch and amplitude197

contours or on the precise timing of changes in spectral shape when telling speakers apart,198

although such details can be salient when discriminating among speech tokens from a single199

speaker. This approach has the added advantage that quantifying the amount of variability200

is straightforward, whereas there is no obvious way to quantify and objectively compare201

exact patterns of acoustic variation. Table II provides a complete list of variables.202

Data frames with missing or obviously erroneous parameter values (for example, impos-203

sible 0 values) were removed. Next, for each speaker, the obtained values of each acoustic204
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TABLE II. Acoustic variables.

Variable categories Acoustic variables

pitch F0

formant frequencies F1, F2, F3, F4, FD

harmonic source spectral shape H1*-H2*, H2*-H4*, H4*-H2kHz*, H2kHz*-H5kHz

inharmonic source/spectral noise CPP, energy, SHR

variability coefficients of variation for all acoustic measures

variable were normalized with respect to the overall minimum and maximum values from205

the entire set of voice samples from males or females, as appropriate, so that all variables206

ranged from 0 to 1. Then, for each sentence production, a smoothing window of 50 ms207

(10 observations) was used to calculate moving averages and moving coefficients of varia-208

tion for the 13 variables during that sentence. Across speakers, the above winnowing and209

post-processing steps resulted in about 515k data frames (F: 266k, M: 249k).210

C. Principal component analysis211

In principal component analysis (PCA), variables that are correlated with one another212

but relatively independent of other subsets of variables are combined into components, with213

the goal of reducing a large number of variables into a smaller set which is thought to re-214

flect internal structures that have created the correlations among variables. As moderate215

correlations were expected between variables, we employed an oblique rotation to create the216

simplest possible factor structure for our data (Cattell, 1978; Thurstone, 1947). Analyses217

were conducted separately for each speaker (within-speaker analyses) and for the combined218
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male and female speakers as groups (combined speaker analyses). For within-speaker anal-219

yses, PCA was performed separately on each individual talker’s acoustic measurement data220

(26 variables: moving averages for 13 variables + moving coefficients of variation for the221

same 13 variables) to reveal the dimensions of the acoustic variability space for that partic-222

ular voice. For combined speaker analyses, PCA was performed separately on the acoustic223

data (all 26 variables) from females and males, pooling the 50 speakers’ data in each analy-224

sis. PCs were restricted to the resulting factorial solutions with eigenvalues greater than 1,225

ensuring that each retained factor accounted for an interpretable amount of variance in the226

data (Kaiser, 1960). Results were also visually confirmed with Scree plots (Cattell, 1966).227

Following usual practice, variables with loadings (weights) at or exceeding 0.32 on a given228

component were considered to form a principal component (Tabachnick and Fidell, 2013).229

III. RESULTS230

Although all 26 acoustic variables were entered simultaneously into the analyses, for231

brevity and clarity results are first described with respect to 5 categories, following Kreiman232

et al. (2019): i) F0; ii) formant frequencies (F1, F2, F3, F4, FD); iii) harmonic source233

spectral shape (H1*-H2*, H2*-H4*, H4*-H2kHz*, H2kHz*-H5kHz); iv) spectral noise (CPP234

plus energy and SHR); and v) the coefficients of variation for all measures (CoVs) (Table II).235

Detailed analyses follow these summary descriptions. We first present results from within-236

speaker PCA analyses, followed by analyses of the combined male and female speakers.237
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A. Within-speaker PCAs: Common dimensions and speaker-specific patterns238

Analyses for individual speakers resulted in 6-9 principal components (PCs) having eigen-239

values greater than 1. Most speakers showed 7 (31/100 speakers) or 8 (59/100 speakers)240

extracted PCs. These components accounted for 65%-74% (M =69%) of the cumulative241

acoustic variance for individual female speakers and 62%-73% (M =68%) for individual male242

speakers (see Appendix A for details). While all individual PCs were included in subse-243

quent analyses, because the higher order PCs accounted for very small amounts of acoustic244

variability (Appendix A), only the first 6 are reported in detail.245

We first counted the number of times each acoustic category appeared in a within-speaker246

solution, cumulated across the 50 speakers in each group. Fig. 1 shows the distribution of247

variables with respect to weight in the first six components. The first component accounted248

for 17%-23% (M =20%) and 20%-25% (M =22%) of the variance for females and males,249

respectively. For both females and males, the combined coefficients of variation emerged250

most frequently in PC1 across individual speakers (blue bars in Fig. 1).251

Sub-analyses of factors contributing to the first PC are shown in Figs. 2 and 3. For252

most speakers, PC1 represented the combination of variability (measured by CoVs) in253

source spectral shape (F: 41/50 speakers, M: 46/50 speakers) and in spectral noise (F:254

45/50 speakers, M: 47/50 speakers), which usually emerged together (F: 40/50 speakers, M:255

44/50 speakers) (Fig. 2). An additional analysis (Fig. 3) revealed that across speakers all256

4 CoV measures of source spectral variability (H1*-H2*, H2*-H4*, H4*-H2kHz*, H2kHz*-257

14
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FIG. 1. Distribution of acoustic parameters plotted (stacked histogram) against the rotated com-

ponent loadings (weight) for the first 6 PCs. Upper panel: female speakers. Lower panel: male

speakers.
15
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H5kHz) emerged in the first component, but H2kHz*-H5kHz predominated; spectral noise258

variability was mostly related to coefficients of variation for CPP.259

FIG. 2. (Color online) Distribution of variability parameters in PC1 plotted against the rotated

component loadings (weight) for female speakers (upper panel) and male speakers (bottom panel).

‘CoV’ = coefficient of variation.

For most of the remaining speakers (F: 10/50 speakers, M: 4/50 speakers), formant fre-260

quency CoV was the most representative variable in the first component. Lastly, two male261

speakers showed source spectral shape alone as the primary variable associated with this262

PC.263

PC2 accounted for an average of 12% of acoustic variability, for both male and female264

speakers (ranges: females = 10%-16%; males = 10%-14%.). For both females and males,265

formant frequencies (F: 50/50 speakers, M: 41/50 speakers) and/or their CoVs266
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FIG. 3. (Color online) Distribution of spectral source variability parameters in PC1 plotted against

the rotated component loadings (weight) for female speakers (upper panel) and male speakers

(bottom panel). ‘CoV’ = coefficient of variation.

(F: 21/50 speakers, M: 30/50 speakers) emerged most frequently as the second PC267

(Fig. 1). Sub-analyses are shown in Fig. 4; bars in this figure include both formant fre-268

quencies and coefficients of variation for each formant. Formant dispersion (F: 37/50269

speakers, M: 28/50 speakers) and F4 (F: 35/50 speakers, M: 28/50 speakers) appeared most270

important and frequently appeared together as a pair across speakers.271

PC3-PC6 combined to account for an average across voices of 29% (females) and 28%272

(males) of the acoustic variance in the data (see also Appendix A), but in contrast to the273

first two PCs, this variance was largely idiosyncratic, and no particular acoustic category274

predominated (Fig. 1). For PC3-PC6, the distributions of the five variable categories and275

17
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FIG. 4. (Color online) Distribution of formant frequency parameters in PC2 plotted against the

rotated component loadings (weight) for female speakers (upper panel) and male speakers (bottom

panel). Each figure reflects values derived from both moving averages and moving coefficients of

variation for each formant frequency measure. ‘FD’ = formant dispersion.

their weights overlapped highly, for both male and female speakers, reflecting differences276

across voices in the amount of variance explained by each measure. As shown in Fig. 1,277

most of the variables are approximately evenly distributed across PCs, with the exception278

of F0 (red bars), which emerged only sporadically. In other words, the component in which279

each variable appeared differed across individuals, ranging from PC3 to PC6(∼9) across280

individuals; and no single component accounted for substantial variance.281

Notably, F0 and/or its CoV only emerged in the first two components for 4/100 speakers282

(2 female and 2 male). Among those 4 speakers, only one (male) speaker showed F0 as the283

most weighted variable within the PC (red bar in PC1, Fig. 1, bottom panel).284
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Interim summary and discussion285

To summarize, variability (measured by coefficients of variation) in source spectral shape286

and spectral noise, especially in H2kHz*-H5kHz and CPP, accounted for the most acoustic287

variability within individual speakers. Across speakers, the next most frequently emerging288

variables were means and variability for formant dispersion and F4. The first two PCs289

were largely shared across voices, and together accounted for slightly more than half of the290

explained variance in the underlying acoustic data (32%-34% total). The remaining PCs291

differed widely across voices, and cumulatively accounted for slightly less than half of the292

explained variance (28%-29% total).293

The general picture that emerges from these results is one of surprisingly similar acoustic294

organization across talkers. This pattern of a common core of variables shared by virtually all295

voices, accompanied by unique deviations from that central pattern, is consistent with what296

might be required as input to a recognition/perception system organized around prototypes,297

and suggests that such a model applies to between-talker variability as well as to within-298

talker acoustic variability. The analyses in the next section test this hypothesis.299

B. Between-speaker group PCA: “General” voice spaces300

As described above, a second set of PCAs examined the structure of the acoustic space for301

the combined groups of female and male speakers. Eight PCs were extracted for both speaker302

groups, accounting for 67% of the cumulative variance for female speakers and 66% for male303

speakers. Not surprisingly, given how consistent results were across individual speakers,304

patterns of acoustic variability in these multi-talker spaces largely mirrored the patterns305
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found within speakers. Fig. 5 shows the group results, and details of the analyses are included306

in Appendix B. The first PC weighted most heavily on variability (measured by CoVs)307

in source spectral shape and spectral noise, accounting for 18% and 20% of variance308

across females and males, respectively. As in the within-speaker analyses, coefficients of309

variation for H2kHz*-H5kHz and CPP were the most important components of this310

PC.311

The second component accounted for 11% of acoustic variance in female voices and cor-312

responded to formant frequencies (F4, FD, F3). For males, spectral slope in the313

higher frequencies (H4*-H2kHz*, H2kHz*-H5kHz) and F2 accounted for 10% of314

variance in the combined acoustic data. The opposite was observed for the third compo-315

nent: an additional 10% of the variance was accounted for by spectral shape in the higher316

frequencies and F2 for females; formant frequencies accounted for 9% of the variance in317

male voices. F0 only emerged in later components (PC5 for females, PC4 for males) with318

noise and spectral shape variables, and accounted for very little variance in the data (6% for319

females, 7% for males). CoVs for F0 and noise measures emerged in PC6 for female speakers320

and PC7 for male speakers and accounted for 5% of acoustic variance across speaker groups.321

IV. DISCUSSION322

Acoustic variability is a key factor in models of voice perception and speaker identification,323

because perceptual processes must cope with variable input in order to achieve perceptual324

constancy. Using principal component analysis (PCA), this study identified voice quality325

measures that accounted for perceptually-relevant acoustic variance both within individual326
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FIG. 5. Acoustic parameters emerging in 8 PCs for female speaker group (upper panel) and male

speaker group (bottom panel). Variables within each PC are ordered from the highest absolute

value of rotated component loadings (weight) to the lowest value. See also Appendices B 1 and B 2

for variance accounted for by each PC. ‘CoV’ = coefficient of variation.
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speakers and for pooled groups of speakers. Unlike previous studies of vocal variation,327

which typically use sustained vowels produced in isolation by relatively small numbers of328

talkers, this study included multiple complete sentences from large numbers of female and329

male talkers, and thus reflected vocal variation within and across utterances and multiple330

recording sessions.331

As hypothesized, results of analyses of within-speaker acoustic variability paralleled find-332

ings for individual faces (Burton et al., 2016), in that a small number of components emerged333

consistently across talkers. For both females and males, variability in higher-frequency har-334

monic and inharmonic energy (often associated with the degree of perceived breathiness or335

brightness; Samlan et al. 2013) combined to account for the most variance within talkers.336

These two measures generally emerged as a pair within the same PC, consistent with the337

manner in which they covary in controlling the perceived levels of noise in a voice (Kreiman338

and Gerratt, 2012). The second PC was consistently associated with higher formant fre-339

quencies and with the average interval between formant frequencies (i.e., formant dispersion).340

These measures have been associated with speaker identity (e.g., Ives et al. 2005; Smith et al.341

2005) and with vocal tract length and perception of speaker size (Fitch, 1997; Pisanski et al.,342

2014), but appear to be relatively independent of vowel quality (Fant, 1960).343

However, an equal amount of within-talker acoustic variability was in fact specific to in-344

dividual voices. The talker-specific dimensionality of the derived voice spaces differed across345

different talkers, and different measures, different combinations of measures, or different or-346

derings of the same sets of measures emerged in PCs after the first two. This suggests that347
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each individual “auditory face” is indeed unique, allowing for the formation of person-specific348

patterns/representations for a particular voice.349

Similar dimensions also emerged in the first three components from group PCAs com-350

bining the 50 male and 50 female speakers into separate group analyses, with the balance351

between higher-frequency harmonic and inharmonic energy again accounting for the most352

variability. Frequencies of higher formants, formant dispersion, and mid-frequency measures353

(near the F2 range) emerged in the second and third components, with only differences in354

order of emergence across groups. As with analyses of individual voices, later components355

included very different measures across the two groups. Although this finding may appear356

trivial given the homogeneity of the individual results, in fact there is no a priori reason357

why individual solutions should coincide as they did, and no a priori reason why individ-358

ual and group acoustic spaces should be so similar. However, prototype models seemingly359

require that acoustic spaces for individual talkers and population spaces be structured simi-360

larly, so that listeners can evaluate the location of each voice with respect to the population361

prototype. This result thus provides strong evidence consistent with such models.362

Two limitations of this work must be noted. First, acoustic measures were based on read363

speech, not on spontaneous vocalization or conversation. This has the advantage of control-364

ling for variations due to differences in phonemic content or emotional state across talkers,365

while still sampling variability across utterances and recording sessions within talkers, but366

clearly does not represent the full range of acoustic variability that occurs within a talker367

in an average day’s phonation. The UCLA Speaker Variability Database (Keating et al.,368

2019) also includes a recording of an unscripted telephone conversation for each talker, and369
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analyses are underway to determine how well the present findings extend to more natural370

utterances. Second, the sample of speakers studied was restricted with respect to speakers’371

ages (a limitation of the database) and native languages (a design decision). For this initial372

study, we view both of these limitations as necessary: No information is available about dif-373

ferences in acoustic variability across different populations of speakers, and even speculation374

is lacking with regard to how many and what kinds of populations exist, so no basis exists375

for distinguishing variability within a population from variability across populations. The376

methods presented here offer a means of investigating this question, which will be important377

for further development of models of voice perception. Similarly, the manner (if any) in378

which within- and between-speaker acoustic variability interact with linguistic factors such379

as tone and phonemic voice quality differences remains unknown, again making it desirable380

to control this factor in the present study. A systematic investigation of the interactions381

among these factors is also underway.382

The fact that F0 did not emerge early among the principal components extracted for383

either the within-speaker or group analyses is counter-intuitive, given how important F0 is384

to many aspects of voice perception (e.g., Baumann and Belin 2010; Kreiman et al. 1992;385

Murry and Singh 1980; Murry et al. 1978; Walden et al. 1978; see Kreiman and Sidtis 2011,386

for review). The lack of a major F0 component in our results may be an artefact of our387

normalization technique, which was based on acoustic ranges but did not take into account388

differences in perceptual sensitivity to different variables. However, we note that previous389

studies reporting an F0 factor have used similar normalization procedures and steady-state390

vowels (e.g., Baumann and Belin 2010). We additionally note that F0 may vary in limited391
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ways during reading, reducing its contributions to both within- and between-speaker acoustic392

differences. However, F0 did emerge as important for discriminating among voices for both393

females and males in our previous studies using linear discriminant analysis (LDA) and the394

same voice stimuli (Keating and Kreiman, 2016; Kreiman et al., 2017), making it unlikely395

that our results are due to the use of read speech in this study. (Future studies using396

spontaneous speech will test this possibility directly.) Finally, LDA and PCA differ in the397

nature of the questions they ask: LDA provides insight into the variables that maximally398

separate stimuli, while PCA can reveal the structure of the acoustic space in which the stimuli399

vary, somewhat analogous to “telling voices apart” versus “telling voices together” (Lavan400

et al., 2018). These different emphases may partially explain differences in the importance of401

F0 across experiments. In any event, this apparent discrepancy between acoustic structure402

and perceptual data requires further consideration.403

These results have implications for current prototype-based models of voice processing404

(Kreiman and Sidtis, 2011; Lavner et al., 2001; Yovel and Belin, 2013), which as previously405

noted are underspecified with respect to within-person variability in voice. Perceptual pro-406

cesses must be adapted to the acoustic input they receive, so understanding the structure407

of acoustic voice spaces can provide insight into why and how voice perception functions408

as it does. Converging evidence from different scientific disciplines has shown that assess-409

ing who is speaking utilizes both featural and pattern recognition strategies. Perceiving410

unfamiliar voices requires both reference to a population prototype and evaluation of the411

manner in which the voice deviates from that prototype, while familiar voices are recognized412

using holistic pattern recognition processes (Schweinberger et al. 1997; Van Lancker et al.413
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1985; see Kreiman and Sidtis 2011, for review). Our results suggest that reference patterns414

for individual speakers are mainly computed over the balance of higher-frequency harmonic415

versus inharmonic energy in the voice and over formant dispersion, and are located in a416

group voice space with similar structure. However, this shared structure accounts for only a417

fraction of either within- or between-speaker acoustic variability, with most variability being418

idiosyncratic. Thus, it may be misleading to think of prototypes as “average tokens” com-419

puted across complete acoustic signals. Our results suggest instead that they are specified420

by a very small number of acoustic attributes.421

These results further suggest that for unfamiliar voices, “deviations from the prototype”422

include two different kinds of variability: differences within talkers from their own prototype,423

and deviations of representations for individual speakers from a group prototype. Listeners424

who are unfamiliar with the voices should be adept at assessing the second kind of variability425

(“telling voices apart;” Lavan et al. 2018), given that the same acoustic features appear to426

characterize both group and individual prototypes. However, listeners who are unfamiliar427

with a talker’s voice should have difficulty in associating different tokens of a single talker’s428

voice with each other (“telling voices together;” Lavan et al. 2018), given their unfamiliarity429

with the specific idiosyncrasies that characterize that talker’s overall acoustic variability.430

The present data allow us to make specific acoustic-based predictions about which voice431

samples from different talkers will be confused and which samples from the same talker will432

fail to be correctly recognized as coming from the same talker. These predictions will be433

explored in our ongoing work.434
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Finally, these results suggest that learning to recognize a voice involves learning the435

specific manner(s) in which that voice varies around its prototype—in other words, variability436

in voice may be essential to learning, in the same way that it is essential for learning437

faces (Kramer et al., 2017; Ritchie and Burton, 2017) and categories of any kind. Previous438

studies have suggested that familiar voices are unique patterns, such that a given feature439

may be essential for recognizing one voice, but irrelevant for another (Lattner et al., 2005;440

Schweinberger, 2001; Van Lancker et al., 1985). The present data are consistent with this441

view; but familiarity with a voice involves much more than knowledge of acoustic variability.442

Mental representations of familiar voices are linked to faces (e.g., Schweinberger 2013), and443

hearing a familiar voice activates a plethora of personal information about the speaker,444

possibly organized in “person identity nodes” (see Kreiman and Sidtis 2011, section 6.6, and445

Barton and Corrow 2016, for review). Thus, the manner in which voices become familiar,446

and even what familiarity entails, remain unknown, although the present data shed some447

light on possible mechanisms of acoustic learning.448

V. CONCLUSION449

Principal component analysis identified measures that characterize variability in voice450

quality within and between speakers and provided evidence for how voice spaces—individually451

and generally—may be formulated with reference to acoustic attributes. Among the large452

array of vocal parameters available for each individual voice, a few components (the bal-453

ance between high-frequency harmonic and inharmonic energy in the voice, and formant454

dispersion) emerged consistently across talkers, but most within-speaker acoustic variability455
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in voice was idiosyncratic. Results further showed that the measures that were frequently456

shared by individual talkers also characterized voice variation across talkers, suggesting that457

individual and “general” voice spaces have very similar acoustic structures. This aligns well458

with the input seemingly required by prototype models of voice recognition. Our results have459

implications for unfamiliar voice perception and processing, specifically providing evidence460

for the nature of reference patterns and deviations from “average-sounding” across voices,461

in individual and universal voice spaces. Going forward, it will be essential to consider462

how listeners organize these identified measures of within-person variability into a personal463

identity and how that relates to perceived differences between talkers.464
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APPENDIX A: AVERAGE PERCENTAGE OF ACOUSTIC VARIANCE EXPLAINED473

BY EACH PC AS A FUNCTION OF THE NUMBER OF PCS, FOR474

FEMALE AND MALE SPEAKERS. NUMBERS IN PARENTHE-475

SES INDICATE THE NUMBER OF SPEAKERS FOR WHOM476

THAT NUMBER OF PCS WAS EXTRACTED.477

PC
9 PCs

(F: 8/50, M: 1/50)

8 PCs

(F: 29/50, M: 30/50)

7 PCs

(F: 13/50, M: 18/50)

6 PCs

(F: 0/50, M: 1/50)

1
F: 19% (17%-21%),

M: 21%

F: 20% (18%-23%),

M: 22% (20%-25%)

F: 20% (18%-23%),

M: 22% (20%-25%)

F: N/A,

M: 22%

2
F: 12% (10%-13%),

M: 10%

F: 12% (11%-16%),

M: 12% (10%-14%)

F: 13% (11%-14%),

M: 12% (10%-13%)

F: N/A,

M: 13%

3
F: 10% (8%-11%),

M: 9%

F: 10% (9%-11%),

M: 10% (8%-11%)

F: 10% (8%-11%),

M: 10% (9%-12%)

F: N/A,

M: 10%

4
F: 8% (7%-8%),

M: 7%

F: 8% (7%-9%),

M: 7% (6%-9%)

F: 8% (7%-9%),

M: 7% (6%-9%)

F: N/A,

M: 7%

5
F: 6% (5%-6%),

M: 7%

F: 6% (5%-7%),

M: 6% (5%-7%)

F: 6% (5%-7%),

M: 6% (5%-7%)

F: N/A,

M: 6%

6
F: 5% (5%),

M: 4%

F: 5% (5%-6%),

M: 5% (5%-6%)

F: 5% (5%-6%),

M: 5% (4%-6%)

F: N/A,

M: 5%

7
F: 5% (4%-5%),

M: 5%

F: 4% (4%-5%)

M: 4% (4%-5%)

F: 4% (4%-5%),

M: 4% (4%-5%)

8
F: 4% (4%-5%),

M: 4%

F: 4% (4%),

M: 4% (4%)

9
F: 4% (4%),

M: 4%

Total
F: 73% (71%-74%),

M: 71%

F: 69% (68%-72%),

M: 70% (67%-73%)

F: 66% (65%-68%),

M: 66% (65%-68%)

F: N/A,

M: 63%
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APPENDIX B: PCA PATTERN MATRICES FOR FEMALE (1) AND MALE (2)478

SPEAKER GROUP ANALYSES.479

1. PCA pattern matrix for female speaker group analysis. ‘CoV’ = coefficient of480

variation.481

PC Variable group Variables Weight Variance explained

1

spectral shape variability H2kHz*-H5kHz CoV 0.82

18%
noise variability CPP CoV 0.76

spectral shape variability
H4*-H2kHz* CoV 0.59

H2*-H4* CoV 0.57

2 formant frequencies

F4 0.90

11%FD 0.83

F3 0.70

3

spectral shape H4*-H2kHz* -0.85

10%
formant frequencies F2 -0.76

spectral shape H2kHz*-H5kHz 0.65

formant frequency variability F2 CoV 0.62

4
spectral shape H2*-H4* 0.83

8%
formant frequency F1 0.76

5

spectral shape H1*-H2* -0.73

6%
F0 F0 -0.53

spectral shape variability H1*-H2* CoV 0.52

noise SHR 0.42

6

noise variability SHR CoV -0.71

5%
F0 variability F0 CoV -0.68

noise variability energy CoV -0.57

noise CPP 0.50

7 formant frequency variability

FD CoV -0.93

5%
F4 CoV -0.90

F3 CoV -0.52

F1 CoV -0.43

8 noise energy 0.79 4%
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2. PCA pattern matrix for male speaker group analysis. ‘CoV’ = coefficient of482

variation.483

PC Variable group Variables Weight Variance explained

1

spectral shape variability H2kHz*-H5kHz CoV 0.81

20%

noise variability CPP CoV 0.76

spectral shape variability

H1*-H2* CoV 0.69

H2*-H4* CoV 0.65

H4*-H2kHz* CoV 0.56

2

spectral shape H4*-H2kHz* -0.82

10%
formant frequencies F2 -0.69

spectral shape H2kHz*-H5kHz 0.66

formant frequency variability F2 CoV 0.63

3 formant frequencies

F4 0.97

9%FD 0.92

F3 0.54

4

F0 F0 -0.73

7%noise energy -0.57

spectral shape H2*-H4* 0.57

5

spectral shape H1*-H2* -0.79

6%
noise

SHR 0.69

CPP 0.52

6
formant frequencies F1 0.90

5%
formant frequency variability F1 CoV -0.35

7

F0 variability F0 CoV 0.70

5%
noise variability

SHR CoV 0.69

energy CoV 0.46

8 formant frequency variability

FD CoV 0.96

4%F4 CoV 0.93

F3 CoV 0.53
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Papçun, G., Kreiman, J., and Davis, A. (1989). “Long-term memory for unfamiliar voices,”583

J. Acoust. Soc. Am. 85(2), 913–925.584

Patel, A. D. (2008). “Music and the brain: Three links to language,” in The Oxford Hand-585

book of Music Psychology, edited by S. Hallam, I. Cross, and M. Thaut, 1st ed. (Oxford586

Univ. Press, Oxford), pp. 208–216.587

Patterson, K. E., and Baddeley, A. D. (1977). “When face recognition fails,” J. Exp. Psy-588

chol. Learn. Mem. Cogn. 3(4), 406–417.589

Pisanski, K., Fraccaro, P. J., Tigue, C. C., O’Connor, J. J. M., Röder, S., Andrews, P. W.,590
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