
UCSF
UC San Francisco Previously Published Works

Title
Reconciling heterogeneous dengue virus infection risk estimates from different study 
designs.

Permalink
https://escholarship.org/uc/item/3hq135mf

Journal
Proceedings of the National Academy of Sciences, 122(1)

Authors
Huang, Angkana
Buddhari, Darunee
Kaewhiran, Surachai
et al.

Publication Date
2025-01-07

DOI
10.1073/pnas.2411768121
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3hq135mf
https://escholarship.org/uc/item/3hq135mf#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE MEDICAL SCIENCES OPEN ACCESS

Reconciling heterogeneous dengue virus infection risk estimates
from different study designs
Angkana T. Huanga,b,c,1 ID , Darunee Buddharib , Surachai Kaewhirand , Sopon Iamsirithawornd , Direk Khampaend , Aaron Farmerb ID , Stefan Fernandezb ,
Stephen J. Thomase ID , Isabel Rodriguez-Barraquerf ID , Taweewun Hunsawongb , Anon Srikiatkhachornb,g ID , Gabriel Ribeiro dos Santosa ID ,
Megan O’Driscolla ID , Marco Hamins-Puertolasf ID , Timothy Endyh , Alan L. Rothmang ID , Derek A. T. Cummingsc ID , Kathryn Andersone , and
Henrik Saljea,1 ID

Affiliations are included on p. 7.

Edited by Nancy Reid, University of Toronto, Toronto, ON, Canada; received June 13, 2024; accepted November 23, 2024

Uncovering rates at which susceptible individuals become infected with a pathogen,
i.e., the force of infection (FOI), is essential for assessing transmission risk and
reconstructing distribution of immunity in a population. For dengue, reconstructing
exposure and susceptibility statuses from the measured FOI is of particular significance
as prior exposure is a strong risk factor for severe disease. FOI can be measured via
many study designs. Longitudinal serology is considered gold standard measurements,
as they directly track the transition of seronegative individuals to seropositive due
to incident infections (seroincidence). Cross-sectional serology can provide estimates
of FOI by contrasting seroprevalence across ages. Age of reported cases can also be
used to infer FOI. Agreement of these measurements, however, has not been assessed.
Using 26 y of data from cohort studies and hospital-attended cases from Kamphaeng
Phet province, Thailand, we found FOI estimates from the three sources to be highly
inconsistent. Annual FOI estimates from seroincidence were 1.75 to 4.05 times higher
than case-derived FOI. Seroprevalence-derived was moderately correlated with case-
derived FOI (correlation coefficient = 0.47) with slightly lower estimates. Through
extensive simulations and theoretical analysis, we show that incongruences between
methods can result from failing to account for dengue antibody kinetics, assay noise,
and heterogeneity in FOI across ages. Extending standard inference models to include
these processes reconciled the FOI and susceptibility estimates. Our results highlight
the importance of comparing inferences across multiple data types to uncover additional
insights not attainable through a single data type/analysis.

force of infection | catalytic model | seroprevalence | seroincidence | susceptibility

Quantifying historical infection intensity of pathogens is essential to assess infection
burden and susceptibility of populations through time, insights that are pivotal in pre-
dicting future transmission potentials and shaping effective intervention strategies (1–4).
Force of infection (FOI), the rate at which susceptible individuals become infected, is
a typical measure for the infection intensity (which may lead to immune responses but
not necessarily onward transmissions). For dengue virus (DENV) infections, quantifying
infection risk through FOI is of particular significance, as infection burden is nonlinearly
linked to the observable disease burden. First infection by one of the four DENV serotypes
is primarily subclinical but the generated immune response is the most widely recognized
risk factor for severe disease following a second infection by a different serotype (5).
Assuming infection generates immunity, the FOI can also be used to estimate how
immunity is distributed in the population (by age, for example) to identify who is at
risk of infections and/or disease (6–8). Information on infection risk in populations and
the distribution of immunity are integral to optimizing the impact of the two currently
licensed vaccines and avoiding deleterious outcomes (9–15).

Typically, two main sources of data are employed to estimate historical infection
intensity, or FOI, in populations: serological data and case count data. In parallel, two
different study designs have been used to estimate forces of infection: longitudinal
and cross-sectional. Longitudinal serological studies are often considered the gold
standard, as they directly track the transition of seronegative individuals to seropositive
(seroincidence) (8, 16), Fig. 1. Cross-sectional serological data, which includes individuals
of different ages, can provide estimates of FOI by drawing upon differences in exposure
histories across birth cohorts (17–21). Similarly, age-stratified case count data can
extract information from age distribution of cases over time which reflects the variation
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Fig. 1. Data to inform infection risk estimates.

in exposure histories among different age groups (22–25). To
infer FOI from age-stratified case counts, models are employed
to link the infection process with the generation of reported
cases. The model typically accounts for reporting rates but can
also include processes that influence illness manifestations (24).

These approaches rely on different assumptions about anti-
body responses following infection, age-specific differences in
infection risk, the role of cross-reactivity from infection or
vaccination from related viruses, accuracy of the serological
assay, and how immunity preceding infections affects the risk
of symptoms. However, the importance of these different
assumptions on the resulting FOI estimates is largely unknown.
Further, little is known about the consistency in estimates derived
from the different approaches. For instance, whether reporting
rates included in case-based models would sufficiently account
for unreported infections typically captured through serology
(26). In this study, we leverage 26 y of data from a single
location to compare FOI estimates obtained from various data
types. In this single location, both serological and clinical case
data are available from longitudinal cohorts and from a passive
surveillance system. We compare estimates derived from different
subsets of the available data, identify the sources of discrepancies,
and develop methods to reconcile the estimates. Finally, we
discuss implications of our assessment for dengue and broadly
across infectious diseases.

Results

Dengue Data in Kamphaeng Phet. Kamphaeng Phet province,
Thailand (KPP) represents a dengue hyperendemic region with
four consecutive longitudinal cohort studies conducted from
1998 to the present: Kamphaeng Phet Prospective Study 1
(KPS1, 1998–2002), KPS2 (2004–2007), KPS3 (2010), and
Kamphaeng Phet Family Cohort Study (KFCS, 2015-ongoing)
(27–30), Fig. 2 and SI Appendix, Table S1. KPS1 and KPS2
were school children cohorts while KPS3 was a one-year cohort
of children in the community. KFCS is a community cohort
focused on multigenerational households (30). Individuals were
bled every 3, 6, 6, and 12 mo in these cohorts, respectively, and
tested for anti-DENV antibodies via hemagglutination inhibition
assay (HAI). Percentages of seropositive samples [geometric mean
titer (GMT)≥ 10] increased with age except for samples obtained
at very young ages, attributable to the presence of maternally
derived antibodies and cross-reactive antibodies from Japanese
Encephalitis vaccination (31, 32), Fig. 2B. Among participants
aged nine, 75%, 57%, 53%, and 49% have GMT ≥ 10,
respectively. All individuals in KFCS have GMT ≥ 10 after
age 30 (97% with GMT ≥ 20).

Within Mueng, the capital district, the Kamphaeng Phet
Provincial Hospital (KPPH) serves as the sole tertiary care facility
in the province. Between 1994 and 2020, KPPH reported a
total of 17,773 cases suspected of dengue among KPP residents
(of which 12,819 were lab confirmed), representing an annual

incidence of 0.5 to 3.3 cases per thousand population (Fig. 2C ).
Mueng residents accounted for 55% of these cases.

Inferred FOI Differs Across Data Sources. Considering the co-
horts as both longitudinal measures (multiple samples per indi-
vidual) and cross-sectional data (single sample per individual),
we estimated the annual per-serotype FOI between 1998 and
2019 using standard models for each data type (17–21), SI
Appendix, Fig. S1. Bleeds taken before age three were excluded
to avoid interference from maternally derived antibodies and/or
cross-reactive antibodies from Japanese Encephalitis vaccination.
We derived case-based FOI by fitting a model which takes
into account differences in symptomatic rates across the four
possible infections of individuals (one by each serotype) and
variations in time and age for DENV-infected individuals to seek
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Fig. 2. Study data. (A) Map of Kamphaeng Phet province showing spatial
coverage of cohort studies (colored) and location of Kamphaeng Phet
Provincial Hospital (KPPH, blue point). (B) Number of bleeds by year (Top)
and percentages of with GMT ≥ 10 by age and year of collection (Bottom). (C)
Number of dengue cases reported at KPPH per thousand population by year
(Top), and by year and age (Bottom).
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Fig. 3. Estimates from standard force of infection (FOI) inference models.
(A) Annual FOI estimated from each of the data sources: seroincidence data
(red) and seroprevalence data (yellow) using seropositivity threshold of
GMT >= 10, and case data (blue). Annual FOI estimated from longitudinal
samples of KPS1 [black, (8)] are included for comparison. (B) Relationship
between serology-derived (y-axis, respective colors) and case-derived suscep-
tibility reconstructions (x-axis). Each point in the reconstruction represents
the proportion in each age-year that has not been infected with DENV (naive),
has been infected by one serotype (monotypic) or more than one serotype
(multitypic).

care at KPPH (24). We excluded cases under age one as their
symptomatic rate upon first DENV infection differs from the
others due to maternally derived immune-enhancement (33).
All models assumed that infection risks in the excluded ages
remained similar to the rest of the population despite differences
in test positive tendencies or clinical presentations.

Applying a standard GMT threshold of 10 to define seroposi-
tivity of serological samples, we found that the seroincidence-
derived annual FOIs were consistently higher than the case-
derived annual FOIs (2.90-fold on average, 95%CI: 1.75 to 4.05,
Fig. 3A) and seroprevalence-derived annual FOIs (95%CI: 1.17,
4.14-folds). Cross-sectional seroprevalence-derived annual FOIs
were on average lower than case-derived annual FOIs (95%CI:
0.48, 0.91-folds), with moderate correlation between the two
(correlation coefficient = 0.47). The estimates derived from both
serological sources exhibited wide uncertainty. Raising the GMT
threshold to 20 to mitigate false positives from e.g., individuals
seropositive from JEV vaccination, did not lower FOI esti-
mates from seroincidence (95%CI: 1.70, 4.18-folds). However,
it further lowered seroprevalence-derived FOI relative to case-
derived FOI (0.26 to 0.51-fold, SI Appendix, Fig. S2A). The
discrepancy patterns remained similar when compared to case-
derived FOIs inferred from lab-confirmed cases (SI Appendix,
Fig. S3).

These discrepancies and uncertainties in FOI values resulted
in notable differences in the reconstructed susceptibility fractions

across the different approaches (Fig. 3B). For instance, in the
most recent year of the study (2019), case-derived reconstructions
suggested 40% of 9 y old remained DENV-naive (95%CI: 29%,
52%) while seroprevalence-derived reconstruction suggested
38% (95%CI: 21%, 56%). Seroincidence-derived reconstruction
differed further (95%CI: 0%, 8%) but we note that seroincidence
data could only inform the FOI estimates in years where
samples were collected. Where individuals lived through many
years without data, susceptibility reconstructions are therefore
influenced by the priors used.

Simulations to Study Effects of Violated Model Assumptions
on Inferred FOI. To identify sources of the FOI discordance,
we performed an extensive suite of simulations in which data
generation and true infection rates were known. We analyzed
simulated data using our different approaches described above.
Our simulations incorporated varying assumptions of the effects
of waning antibody titers, measurement error in assay readouts,
and titers against cross-reactive pathogens. Prior research has
demonstrated that following primary DENV infections, antibody
titers rise rapidly but then wane exponentially to a steady titer
approximately 5 times lower within a year (8). After a subse-
quent infection by a different DENV serotype, titers increase to
levels that are robust to detection. Measurement error in assay
readouts can lead to titers falling below seropositivity thresholds,
while individuals without prior exposure to DENV may exhibit
seropositivity due to titers against other flaviviruses (31, 34),
Fig. 4A. Additionally, variations in infection risk across different
age groups are possible (24). We simulated infection timings
of 500,000 individuals with defined FOI by year to eliminate
imprecisions in estimates resulting from insufficient statistical
power to study effects of these processes on the inferred FOI.

We found that in the absence of random measurement error
and when the seropositivity threshold is low enough to correctly
discriminate DENV-exposed individuals from naives, waning
monotypic titers do not lead to biased FOI estimates from either
serological data types (SI Appendix, Figs. S4 A and B and S5A).
However, when the simulation included random measurement
error, using a low threshold led to false positives which inflated
seroincidence-derived FOI (SI Appendix, Fig. S4C ). The inflation
was exacerbated by the presence of cross-reactive titers (Fig.
4D and SI Appendix, Fig. S4D). While raising the threshold to
define seropositivity helped mitigate inflation if titers of exposed
individuals remained high (SI Appendix, Fig. S5D), the trade-off
for false negatives when monotypic titers did wane led to even
more pronounced overestimates of FOIs (SI Appendix, Fig. S5
E and F ). The overestimation arose from the greater chance
of testing positive in the follow-up bleed in DENV-exposed
individuals that tested falsely negative at preinterval compared
to truly DENV-naive individuals. In fact, the overestimation can
be severe even at lower thresholds where fewer false negative
individuals were expected (SI Appendix, Fig. S4 E and F and
Mathematical Analysis).

In the absence of waning titers, seroprevalence-derived FOI
appeared robust to assay noise and cross-reactive titers at both
seropositivity thresholds (SI Appendix, Figs. S4 C and D and S5
C and D). Expectedly, false negativity due to waning monotypic
titers led to underestimation of FOI, which became more extreme
with higher seropositivity thresholds (SI Appendix, Figs. S4 E and
F and S5 E and F ).

We found that age-specific differences in risk of infection
could also cause discrepancies in FOI estimates. Even when the
susceptibility status of individuals could be perfectly ascertained,
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Fig. 4. Biases in serology-derived force of infection (FOI) using simulated data with known true parameters. (A) Illustration of anti-DENV antibody kinetics
as an individual acquires a cross-reactive (CXR) virus infection or vaccination (i.e., not DENV), one DENV infection, and >1 DENV infections. Measured titers
distribute around the true underlying titers with variability depending on the assay characteristics. (B) Schematic of biases in serology-derived FOI and their
correction efficiencies at low and high seropositivity thresholds. (C–F ) Antibody kinetics, assay characteristics (rows), and distribution of infection risk in age
among susceptible individuals (columns) used to generate observed titer measurements and FOI inferred from those respective simulations using standard
models for seroincidence (red) and seroprevalence (yellow).

seroincidence-derived FOI estimates were systematically different
from seroprevalence-derived FOI. (Fig. 5E and SI Appendix, Figs.
S4G and S5G). When age-specific risk was present in conjunction
with waning titers and assay noise, the difference was exacerbated
(Fig. 4F ).

Correcting for Violated Assumptions Recovers Temporal FOI
of Simulation Ground Truth at Varying Efficiencies. In highly
powered datasets, when only assay noise was present, we
found that inflation in estimated seroincidence could be per-
fectly mitigated at both seropositivity thresholds (10 and 20,
SI Appendix, Figs. S6A and S7A) by correcting for (presumed
known) test positive probabilities given the susceptibility status
of individuals and the distribution in infection risk by age. In the
presence of both assay noise and waning monotypic titers, this
simple correction, which did not take into account exact infection
timings of individuals and the variable amounts of titers waned
across individuals, reduced but did not eliminate the inflation in
estimated seroincidence-derived FOI (SI Appendix, Figs. S6B and
S7B). Importantly, the new estimates at a threshold of 20 showed
greater discrepancies from the ground truth than at a threshold

of 10 (1.29 to 1.54-fold difference as compared to the ground
truth vs. 0.82 to 0.98-fold difference). The correction efficiencies
remained similar when additional corrections for cross-reactive
titers in DENV-naives and nonuniform risk in age were needed
(SI Appendix, Figs. S6 C and D and S7 C and D). In contrast,
the simple correction was able to efficiently correct for biases in
seroprevalence-derived FOI in all cases (SI Appendix, Figs. S6
A–E and S7 A–E).

When we reduced the size of the simulated datasets to match
the number and time points of samples available in our cohort
studies, we found that correlation with the ground truth for both
serological data types was lower despite the same adjustments to
correct for assay noise, waning monotypic titers, and age-specific
differences in risk (SI Appendix, Fig. S6G vs. SI Appendix, Fig.
S6D). Uncertainties in the estimates increased substantially (SI
Appendix, Fig. S6 F and G).

Reconciled Infection Risk in KPP Is Nonuniform Across Ages.
Taking into account sources of discrepancies in estimation
of FOI learned from the simulation studies, namely, age-
specific infection risk, antibody kinetics, and assay variability, we
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B

D

Fig. 5. Infection risks in Kamphaeng Phet. (A) Distribution of infection risk by age, (B) annual per-serotype FOI inferred from the joint serology model (brown)
and the extended case-based model (blue), and (C) relationships between the susceptibility reconstructions. Each point in the reconstruction represents the
proportion in each age-year that has not been infected with DENV (naive), has been infected by one serotype (monotypic) or more than one serotype (multitypic).
(D) Effects of presumed test positive probabilities in DENV-naives (x-axis) and long-term test positive probabilities in monotypically infected individuals (y-axis)
on the correlation and ratio between temporal FOIs inferred from the extended case-based model and temporal FOIs inferred from a single data source (either
seroincidence or seroprevalence at seropositivity threshold of 10) imposed with age-specific risk inferred from the extended case-based model. Test positive
probabilities estimated from the joint serology model are annotated as crosses for comparison.

developed a model that is jointly informed by both serological
data types to estimate the shared underlying infection risk in KPP
and a separate case-based model with age-specific risk extension.

Infection risk estimates from the ‘joint serology model’ and
the extended case-based model showed good agreement, Fig. 5
A and B. Both models suggested elevated infection risk in KPP
between ages 6 to 17 y compared to the reference class (age 0 to
5 y). Correlation between the temporal FOIs was moderate (cor.
coef. = 0.43) but without systematic differences in magnitudes
(ratio between serology-based to cased-based FOIs of 0.44 to
1.03). Reconstructions of susceptibility by age and year from the
two models were highly congruent (cor. coef ≥ 0.97 without
signs of systematic differences, Fig. 5C ).

Test Positive Probabilities Are Key to the Reconciliation. Using
multiple serological data sources with shared underlying pro-
cesses, we were able to characterize factors governing probabilities
of falsely testing positive at various thresholds when DENV-
naive, and testing positive when DENV-exposed, in tandem
with the infection risks. The factors are namely the postinfection
antibody titers captured in the serological samples and variability
in the assay measurements, SI Appendix, Fig. S10. We estimated
that the captured titer rises between bleeding intervals of
the cohort study participants in response to primary DENV
infections that occurred during the intervals were comparable
across studies: an average rise of 7.83 log2 (95%CI: 4.79, 13.06).
The titers then declined to a steady level of 2.74 log2 (95%CI:
2.51, 2.94). SD of assay readouts was estimated to be 0.51
(95%CI: 0.36, 0.65) which corresponds to 99.9% to 100% of

monotypic titers above a threshold of 10 over the long-term
(i.e., cross-sectional seroprevalence studies) or 91.8% to 93.1%
at a threshold of 20. Averaged across the studies, DENV-naive
individuals have a 6.7% to 7.9% chance of testing positive for
DENV at threshold of 10 and < 0.1% at threshold of 20.

We reinferred temporal FOIs from each of the serological data
sources presuming various other sets of test positive probabilities
and found that congruence with case-derived FOIs was reduced
(Fig. 5D and SI Appendix, Fig. S11). Importantly, FOIs from
seroincidence varied greatly across test positive probabilities
leading to pronounced changes in congruence compared to
seroprevalence-derived FOIs.

Discussion

Leveraging a unique opportunity where over two decades of longi-
tudinal serological data and hospital case count data are available
from the same community, we assessed the congruence in FOI
estimated from different data types. We found large discrepancies
between the FOI estimates. Consequently, susceptibility in the
population inferred from the estimates was drastically different.
Our investigations revealed causes of these discrepancies as a lack
of accounting for antibody kinetics and assay noise (affecting
serological data types), and age-specific infection risk (affecting
all data types).

Longitudinal serology is crucial to track infections of individu-
als and ascertain their evolving exposure statuses (6, 8). However,
we found identifying DENV infections based on seroconversion
from negative to positive at a specified threshold (whether
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arbitrarily determined or through clustering approaches) was
highly sensitive to the interplay between antibody kinetics
and assay noise. Importantly, the heterogeneous seroconversion
tendencies across sera pairs could not be efficiently corrected
for by applying average test positive probabilities across sera
pairs. Our findings support the use of individual-based titer
reconstructions, mechanistically taking into account sources of
bias, to detect infections (8, 35, 36). Longitudinal mixture
models using titer values to probabilistically assign individuals
to exposure classes may also be helpful (37) but further studies
are required to assess whether biases may exist in the probability
attributions.

Cross-sectional serology is the most common data source used
to infer dengue burden (18, 20, 38–41). While this approach
bypasses biases in case reporting, our findings highlight that the
processes that affect a test coming back positive or not should
be considered (42). Applying a single seroreversion rate to all
exposed individuals may be sufficient to account for waning
antibodies in nonendemic settings. However, given the increased
durability of antibodies in multitypically exposed individuals,
settings with multiple serotypes cocirculating will need to account
for heterogeneity in antibody kinetics across individuals with
different infection histories (43, 44). The likely exposure to cross-
reacting viruses (e.g., JEV or ZIKV) due to shared vector ecology
or vaccination will also require appropriate corrections. Our
analyses assumed that cross-reactive titers were evenly present
in DENV-naives aged ≥ 3 y. This may be true for Japanese
Encephalitis vaccine-induced titers as children were vaccinated
widely at young ages [≤ 2 y (45)] but would only be true for cocir-
culating viruses such as ZIKV (31, 46) if FOI of these viruses were
extremely high such that all children were exposed before age 3.
Further explorations are needed to assess how heterogeneous
presence of cross-reactive titers would impact estimation of FOI
of DENV, especially if these exposures alter antibody kinetics to
subsequent DENV infections (47). Mixture-based models may
be useful to account for these uncertainties (48).

Age-stratified case data provide an alternative means to
estimate past dengue burdens (22–24). As the method involves
adjusting for multiple processes to uncover the true age distribu-
tion of infections (which is informative of the infection burden)
from the observed age distribution, long periods of surveillance
are necessary to reliably estimate FOI. With 26 y of data fine-scale
age strata, our FOI estimates from case data tracked closely with
estimates from our joint serology model (our best approximation
of the underlying dengue burden). In settings with less data,
the ability to disentangle observation processes from infection
risk would be more limited making simplifying assumptions
necessary. Analytical studies and simulations are needed to assess
the impact of those assumptions on the inferred FOI.

Our inferences revealed evidence of age-specific infection
risk, a characteristic often neglected in dengue epidemiology.
Whether the variation reflects behavioral, immunological, and/or
physiological differences (49–51), the heterogeneity challenges
generalizations of risk measured in a sample to the general
population. Uncovering processes leading to these differences
is key to overcoming this challenge and will facilitate the
development and management of interventions.

The importance of characterizing antibody kinetics, assay vari-
ability, and distribution of risk in the population demonstrated
in our study applies broadly beyond dengue as serological and
case data are important tools in quantifying infection burdens in
many diseases. We have demonstrated the power of simulations
and mathematical analyses in identifying strengths and pitfalls of
inferences to guide interpretation and improvements. Our results

also highlight the need to compare inferences across multiple data
types and analysis methods both to flag blindspots in each of the
inferences to mitigate misconclusions and to uncover additional
insights not attainable through a single data type/analysis. For any
pathogen system, the comparison is necessary prior to performing
joint inferences across data types to avoid spurious conclusions.

Materials and Methods

Ethics Statement. Use of data from the Kamphaeng Phet Hospital was
reviewed and approved by Walter Reed Army Institute of Research Institutional
Review Board (protocol number 1313 and 1957). The study protocol for KPS1
was approved by the Office of the Army Surgeon General, University of the
Massachusetts Medical School, and the Ministry of Public Health, Thailand. The
protocol for KPS2 was additionally approved by the University of California-Davis
and San Diego State University (protocol number 654 and 1042). The KPS 3 and
KFCS cohort study was approved by the Thailand Ministry of Public Health Ethical
Research Committee; Siriraj Ethics Committee on Research Involving Human
Subjects; Institutional Review Board for the Protection of Human Subjects,
State University of New York Upstate Medical University; and Walter Reed
Army Institute of Research Institutional Review Board (protocol number 1552
and 2119).

Empirical Data for Serological Models. Longitudinal samples from four
longitudinal cohort studies in Kamphaeng Phet province were included in
this study: KPS1 (1998–2002), KPS2 (2004–2008), KPS3 (2010), and KFCS
(2016–2019) (30). KPS1, 2, and 3 were cohorts of school children while
KFCS focused on multigenerational households. To generate cross-sectional
seroprevalence data from the longitudinal samples, one sample was randomly
selected per individual. In the family cohort study, KFCS, only one randomly
selected individual was selected per family to avoid reported interdependence
between family members (30). Inferences involving seroprevalence data were
repeated using three independent random samples.

Antibody titers were measured using hemagglutination inhibition assay
(HAI) against DENV1 (Hawaii strain), DENV2 (New Guinea C strain), DENV3
(H87 strain), and DENV4 (814669 strain in KPS1-3 and H241 strain in KFCS)
as described elsewhere (52, 53). Measurements were done in twofold serial
dilutions between 1:10 and 1:10240. Titers < 10 and > 10,240 were imputed
as 5 and 20480, respectively. For each sample, GMT were computed from the
four serotype-specific titers. The linear scale GMT, Alinear , were log transformed
via equation log2(Alinear/10) + 1 so that samples with linear scale titers
of < 10 to all four serotypes were zero.

Empirical Data for Case-Based Models. Age-annotated cases suspected for
dengue that sought care at the Kamphaeng Phet Provincial Hospital (KPPH)
between 1994 and 2020 were included in this study. Cases were considered
lab-confirmed when acute samples from the patients were tested positive
for DENV via PCR or virus isolation, or enzyme-linked immunosorbent assays
(ELISAs) as per criteria described elsewhere (54–56). Inferences were restricted to
Mueng residents to match the spatial coverage of the cohort studies. Population
age censuses for 1994-2020 were acquired from the Department of Provincial
Administration, Ministry of the Interior through the Official Statistics Registration
Systems (57).

Simulated Data. We simulated one million observations (two bleeds of three
months apart per individual for 500,000 individuals) to eliminate imprecisions
of estimates from insufficient power. Observations were made between ages 5
to 15 y where the occurrence of first infections was expected to be concentrated.
First, we simulated ages at which the individuals acquired their first, second,
third, and fourth DENV infections under defined annual (and age-specific) force
of infections. We then used anti-DENV antibody kinetics reported in Salje,
2018 (8) to generate true underlying titers of individuals at the observation
time points. The kinetics assumes that the titer rise after the first infection
comprises a temporary increase that decays exponentially and a steady portion
that persists over time. It has been shown that in this setting, this model fits the
data equivalently well compared to including a decay in the long-term portion
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(biphasic kinetics). In other settings, especially where the duration between
exposures may be much longer, models that allow for longer-term decay of
antibodies (such as through biphasic or power law decay models) may be more
appropriate. For scenarios where assays were imperfect, the observed titers were
drawn from normal distributions with means equal to the true underlying titers
and SD � = 0.49. In scenarios where nonzero titers in DENV-naives due to the
presence of cross-reactive titers were considered, titers in DENV-naive individuals
were drawn from a normal distribution with mean 0.266 (20% of the long-term
titer in monotypic sera) and SD �0 = � = 0.49.

To simulate data with power equivalent to empirical serological data, we
performed the same procedures but with the number of individuals, observation
time points, and ages matching those in the cohort studies.

Standard Models in FOI Inferences. Inferring force of infection (FOI, �) of
dengue from non-serotype-specific datasets typically assumes equivalent FOI
across all serotypes in circulation, long-lived protection against the infecting
serotype, and no cross protection against other serotypes (5), SI Appendix,
Fig. S1. Hence, probability that an individual birth cohort h has escaped a

particular serotype up to age a is pesc = e−
∑h+a

t=h
¯�(t), where ¯�(t) is the

average per-serotype force of infection at time t. It follows that the probability
that the individual has acquired i infections is(

4
i

)
p4−i
esc (1− pesc)i

Assuming that antibodies in infected individuals are robustly above a chosen
positivity threshold, FOI can be linked to cross-sectional serology via probability
of testing positive written as 1 − p4

esc . In longitudinal serological studies, the
probability that a seronaive individual at time t tests positive at t+�t is similarly

1− e−4
∑t+�t

t
¯�(t).

Increase in the proportion of individuals in birth cohort h that have acquired
at least i infections between time t and t + �t indicates occurrence of the i-th
infection during the time interval, I�t(i, h, t). Let proportion Q(i) of the i-th
infections of individuals result in clinical presentations that are severe enough
to trigger care seeking and proportion �(a, t) of those severe infections go on
to report to KPPH, a being the age of cohort h at time t. We express �(a, t)
as �(a)�(t), where �(a) is the piecewise constant age-specific reporting rate
and �(t) is the piecewise constant time-specific reporting rate. Considering
Pop(h, t) the population size of birth cohort h at time t, we would expect the
number of dengue cases from this birth cohort in this time interval who reported
to KPPH to be ∑

i∈1,2,3,4

I�t(i, h, t) Q(i)�(a)�(t) Pop(h, t)

For case counts aggregated by age, the expected count is the sum of expected
cases of those birth cohorts contributing to the respective age bins.

Extended Models for FOI Inferences. Standard models for all data types were
extended to estimate age-specific infection risks relative to the youngest age
group. Age groups were defined with consideration of data points available to
inform estimates for the groups and consistency between data types to ease
comparison; see SI Appendix, Table S5.

The joint serology model estimates parameters characterizing antibody
kinetics and assay noise in tandem with the infection risks. Probabilities of
testing positive given susceptibility states of individuals were then derived from
those parameters. Due to known significant waning in monotypic titers, we
allowed for differing probabilities of testing positive in pre- vs. postinterval
bleeds for individuals who have been infected once to reflect their difference in
expected time since infection. To derive these probabilities, we estimate the level
of long-lasting titerslong present in both bleeds and the additional short-lived

titers short present only in postinterval bleeds (SI Appendix, Fig. S10). Cross-
reactive titers in DENV-naives, shared across studies, were estimated relative to
long. Following Salje et al (8), we formulated the relationship between true
underlying titers of individuals A, SD of assay measurement around the true titer
�, and probability of testing positive P(+|A, �) as 1−Φ((� − A)/�), where
Φ is the cumulative density function of a standard normal distribution. Because
bleeding intervals differed across cohort studies, we allowed short to differ
across studies. The test positive probability for seroprevalence data was assumed
to be the same as preinterval bleeds. Likelihood was evaluated against sero-
prevalence and seroincidence data at two seropositivity thresholds (10 and 20)
to better inform this relationship.

Model Fitting. In all models, we estimate annual FOI from ten years prior to
the first observation to the year of the last data point. FOI prior to the ten years
was assumed to be constant. We used Bernoulli likelihood to fit to serological
data and negative binomial likelihood to fit to case data with priors as defined
in SI Appendix, Table S2.

Parameters of all models were estimated from the data using Rstan v2.21.2
(58) with five independent chains, each of length 2,000 (200 discarded as warm-
up). Posteriors of all chains combined were considered converged when R-hat <
1.1 and effective sample size >300 for all parameters. Where inferences were
done for three repeated random samples (i.e. models involving seroprevalence
data), reported parameter estimates were from posterior draws pooled across
the repeats. Convergence was assessed prior to the pooling.

Quantifying Congruence. We quantify congruence between any two sets of
estimates via Pearson’s correlation and an average ratio between their posterior
medians. The average ratio was obtained by fitting a linear regression with zero
intercept between the posterior medians and 95% CI of the ratio was calculated
as the point estimate± 1.96 * SE. Calculations were restricted to estimates from
time points where there was data support for both sets as seroincidence data
can only inform estimates of times covered by intervals between bleeds.

Disclaimer. Material has been reviewed by the Walter Reed Army Institute
of Research. There is no objection to its presentation and/or publication. The
opinions or assertions contained herein are the private views of the author and
are not to be construed as official, or as reflecting true views of the Department
of the Army or the Department of Defense. The investigators have adhered to
the policies for protection of human subjects as prescribed in AR 70-25.

Data, Materials, and Software Availability. Anonymized line list and tabu-
lated data have been deposited in Zenodo (DOI: 10.5281/zenodo.11635046)
(59).
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