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“Just In Time” Representations for Mental Simulation in Intuitive Physics
Tony Chen, Kelsey Allen, Samuel Cheyette, Joshua B Tenenbaum, Kevin A Smith

{thc, krallen, cheyette, jbt, k2smith}@mit.edu
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Many models of intuitive physical reasoning posit some kind
of mental simulation mechanism, yet everyday environments
frequently contain far more objects than people could plau-
sibly represent with their limited cognitive capacity. What
determines which objects are actually included in our repre-
sentations? We asked participants to predict how a ball will
bounce through a complex field of obstacles, and probed work-
ing memory for objects in the scene that were more and less
likely to be relevant to the ball’s trajectory. We evaluate differ-
ent accounts of relevance and find that successful object mem-
ory is best predicted by how frequently a ball’s trajectory is
expected to contact that object under a probabilistic simulation
model. This suggests that people construct representations for
mental simulation efficiently and dynamically, on the fly, by
adding objects “just in time”: only when they are expected to
become relevant for the next stage of simulation.
Keywords: physics; representations; resource rationality

Introduction
Imagine throwing a Frisbee to a friend while you are both
standing near a grove of trees. Figuring out where your throw
will go clearly requires representing the Frisbee and your
friend. But you might also need to account for the nearby
trees, as the Frisbee could hit an overhanging branch, or one
of the trunks. You might not need to consider the trees fur-
ther into the grove, as the Frisbee is unlikely to make it that
far. This is emblematic of a challenge that arises any time
we must predict or act in the world: there are always a large
number of objects around us, and we do not have the cogni-
tive resources to model all possible interactions and effects
(Ludwin-Peery, Bramley, Davis, & Gureckis, 2021; Ullman,
Spelke, Battaglia, & Tenenbaum, 2017). Instead, we must
decompose our environment into a representational form that
is useful for prediction, simulation, and action; a process that
often involves picking out a subset of perceptual input to at-
tend to and ignoring the rest. But how does the mind deter-
mine what to represent and what can be thrown away? Here
we propose that this involves adding objects to our represen-
tations “just in time” as they are needed for our simulations,
thereby ignoring objects that do not become relevant.

A large body of work in attention and visual working mem-
ory has shown that people are efficient with their allocation
of cognitive resources, distributing attention to features and
objects in the environment that are relevant for the task at
hand (Bates, Lerch, Sims, & Jacobs, 2019; Bates & Jacobs,
2020; Emrich, Lockhart, & Al-Aidroos, 2017). However,
these notions of relevancy primarily take the form of percep-
tual statistics that can be easily learned through associative
learning mechanisms. But there are many situations where
relevancy cannot be estimated based on the statistics of past
experiences, and instead is dependent on the outcome of a

process that uses the mental representations in question. Do
we still flexibly allocate cognitive resources in these cases,
and if so, how do we do so?

The domain of intuitive physics is well suited for study-
ing this question. The world is a complex place, where pre-
cisely determining what happens in the future requires inter-
actions between many more objects than could reasonably
held in working memory. Yet recent research suggests that
naturalistic physical predictions are based on relatively accu-
rate simulations (Ahuja & Sheinberg, 2019; Smith, Battaglia,
& Vul, 2018), even in scenarios where there are a large set
of relevant objects, like predicting whether and how a stack
of blocks will fall (Battaglia, Hamrick, & Tenenbaum, 2013;
Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016; Zhou,
Smith, Tenenbaum, & Gerstenberg, in press). The complex-
ity of these scenarios has led to critiques of simulation as
requiring infeasibly detailed representations (Ludwin-Peery
et al., 2021). But others have begun to explore various ap-
proximations the mind might make in its representations in
order to efficiently make physical predictions (Ullman et al.,
2017), such as representing objects with coarse shape approx-
imations (Li et al., 2022), or even dropping objects from our
representations entirely (Bass, Smith, Bonawitz, & Ullman,
2022). But even with a catalogue of possible simplifications,
the question of how the mind chooses the right approximation
is an open question (Davis & Marcus, 2015).

In recent years, the framework of resource rationality
(Lieder & Griffiths, 2020) has been proposed to explain trade-
offs between accuracy and efficiency in decision making
(Bhui, Lai, & Gershman, 2021), planning (Callaway et al.,
2018), and cognitive control (Musslick, Saxe, Hoskin, Reich-
man, & Cohen, 2020). More recently, Ho et al. (2022) ex-
tended this framework to explain trade-offs in the complexity
of our representations. They showed that people construct re-
duced representations of obstacles and objects in a grid world
navigation task, and that the objects are more likely to be in-
cluded in this reduced representation if they would be relevant
to the navigation task.

Here we consider what information people use to define
relevancy, and the implication this has for how reduced rep-
resentations are constructed. Ho et al. (2022) focuses on a
value-based notion of relevancy – the probability that a given
obstacle is included in a representation depends on the dif-
ference of reward obtained when planning with and without
that object included in the representation (Fig. 1, left). This
presents a challenge for algorithmic implementations of the
construal process, since a plan is required to determine which
representation to use for planning. This is a general chal-
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Figure 1: Left: The Value-Based Construal model. The relevance of each object is determined as the difference that object would make to the
outcome, calculated as the divergence between the simulated outcome and the outcome if that object had been different or removed. Objects
with larger outcome divergence (such as the top object) are more likely to be included in the representation than objects with less outcome
divergence (such as the object in the lower left). Right: The “Just in Time” Representations model. The representation is built up iteratively,
starting with a sparse representation and simulating until an object becomes relevant to the simulation, then adding that representation “just
in time” for it to be used in simulation. In this example, the numbers index representation strength for each object: during Simulation 1
the ball collides with the top and bottom-right objects, and so these objects will be added to the representation to resolve these collisions.
In Simulation 2, the ball collides with the top object, strengthening its representation, then with the bottom left-object, necessitating the
representation of that object. In Simulation 3, the ball again collides with the top and bottom-left objects, further strengthening both those
representations.

lenge faced in resource rational systems (Gershman, Horvitz,
& Tenenbaum, 2015) that often suggested to be solved by
offline learning of efficient strategies (Erev & Barron, 2005;
Lieder & Griffiths, 2017; Siegler, 1999).

But we also consider an alternate “just in time” model of
constructing representations. Under this account, objects are
only added to one’s representation when they are needed for
simulation: people start with an extremely impoverished rep-
resentation and simulate until an object they see in the envi-
ronment would affect the outcome of the simulation (e.g., be-
cause another object is about to collide with it), at which point
they include that object into their representation. The pro-
cess of representing objects as needed continues iteratively,
with representations growing stronger for objects that are rel-
evant to simulation more often (Fig. 1, right). This model
would also explain why people look more often at the loca-
tions in scenes where they expect collisions to occur (Beller,
Xu, Linderman, & Gerstenberg, 2022; Crespi, Robino, Silva,
& de’Sperati, 2012): they are attending selectively to objects
that they are including in their representations. Under this ac-
count, relevance is not a function of how much the inclusion
of an object will affect the final prediction, but rather just how
likely that object is to be impact simulation at all.

We take a first step towards adjudicating between these

two theories of representational construction for physical rea-
soning. Because we have well described, probabilistic mod-
els of physical simulation (Battaglia et al., 2013; Smith &
Vul, 2013), we study how representations change with graded
differences in various forms of relevancy. To investigate
the principles that govern human reduced representations in
physical tasks, we test participants in a physical simulation
paradigm, in which participants were asked to predict the po-
sition of a ball as it falls down a board filled with obstacles.
On critical trials, after making their predictions, participants
were presented with a task in which their memory of specific
obstacles was tested. Crucially, the probed obstacles varied in
how relevant they were to the simulation of the ball, ranging
from not colliding at all with the ball to colliding with the ball
every time.

We find that peoples’ representations are tied to the out-
comes of simulations in these environments, with objects that
are predicted to almost certainly be in the path of the ball
being remembered best, and people having the poorest mem-
ory for objects away from the ball’s path. We additionally
find that memory for these objects is not as well explained by
alternate measures of relevance that measure how transfor-
mations or deletions of the object would affect the expected
end state of the ball. Our results provide evidence that people
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Figure 2: Schematic of the experimental paradigm. (A) Participants first perceive a scene, then (B) indicate ten locations where they expect
the ball to land. (C) After this, in one third of the trials, participants are given a memory test: the probed object is shown alongside a shifted
version of the same object, and participants must decide which object was in the original position from the previous scene. (D) Finally, at the
end of each trial a video of the actual trajectory of the ball is shown.

use mental simulation over a compressed representation of
the world that omits irrelevant objects. We hypothesize that in
domains such as planning and physics, these representations
are constructed by an interleaved process of forward simula-
tion and “just in time” construal, gradually building represen-
tations and predictions to efficiently model the world.

Experiment 1

In order to test whether people’s object representations are
constructed depending on how that object contributes to a
simulation, we test participants in a Plinko style prediction
paradigm (Gerstenberg, Siegel, & Tenenbaum, 2021; Beller
et al., 2022; Fig. 2) where they are asked to predict the trajec-
tory of a ball as it falls down through a set of obstacles. How-
ever, one third of the trials are critical memory trials, in which
participants are shown a scene with the original object and an
additional distractor object constructed by applying a shift to
the original object, and asked to judge which object was the
one that they saw in the original scene. We constructed the
memory task so that the shifted object has varying degrees of
relevance to the outcome of the simulation – from objects that
are always relevant because they are positioned directly in the
path of the ball, to never-relevant objects that are far off to the
side, and in between. Here we test whether peoples’ memory
for the correct position of objects is related to their relevance.

Participants. We recruited 220 participants from the Pro-
lific research platform. The task took approximately 25 min-
utes, for which participants were compensated $6.25. We did
not exclude any participants from our analyses.

Procedure. Participants initially viewed a still image of a
ball suspended above a series of obstacles (Fig. 2A), and
were asked to predict where the ball would touch the ground
(Fig. 2B). We asked them to provide a range of predictions by
clicking 10 times on the ground where they believed the ball
would land; participants were instructed that they could click
in the same location to indicate more confidence that the ball
would land there.

On two-thirds of the trials (the filler trials), participants
then would observe the actual trajectory that the ball took as

it bounced down the Plinko system. At the end, participants
earned points for the accuracy of their predictions. The grid
of possible end states was discretized into 10 bins, and points
were awarded proportionally to the bin distance between each
prediction and the true outcome bin. These points were only
used as a motivator and did not affect compensation.

The remaining third of the trials were critical memory tri-
als. On these trials, immediately after indicating their pre-
dictions, the screen was masked and another Plinko scene
was shown with the marked object colored in either red or
blue, and an additional distractor object marked with the op-
posite color (Fig. 2C). The colors assigned to either the orig-
inal object and the distractor were randomized across trials.
Participants were asked to judge which object was actually
present in the original scene, indicating their response on a
slider ranging from “definitely sure the red object is in the
correct position,” to “definitely sure the blue object is in the
correct position”; this response was translated to an integer
from 0 to 100 and normed so that 100 indicated full confi-
dence in the correct object, while 0 indicated full confidence
in the distractor object. After the memory task, participants
were shown the trajectory and the points earned, as was done
in the filler trials.
Stimuli. Plinko boards were created by randomly generat-
ing between 4 and 10 polygon obstacles with between 4 and
7 sides, and placing them in random locations on the screen.
The ball was then positioned at the top of the screen, and ran-
domly placed horizontally in the center 20% of the world. We
constructed 48 different trials: 32 filler trials and 16 critical
memory trials. The filler trials were constructed only subject
to the constraint that the ball did not get stuck on the obsta-
cles. All participants judged all filler trials.

The critical memory trials were constructed to produce
four qualitatively different object types, depending on how
often the ball collided with that object in a set of noisy sim-
ulations (Fig. 3). The Collision Early objects were assumed
to be most relevant, as they were objects that the ball collided
with in all simulations, and were usually the first or second
object that the ball touched. The Collision Late objects were
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Figure 3: The four types of objects probed in the memory task. Red lines represent the paths traced by 40 different noisy simulations.
The collision early objects are positioned underneath the release point of the ball, so that it will nearly certainly have an effect on the ball’s
trajectory. The collision late objects are lower in the scene, but are still in the path of the majority of simulations, so are still very likely to
impact the trajectory. The maybe collision objects are approximately the same height as the collision late objects, but are only along the path
of a portion of the simulation, making them less relevant to trajectory. The no collision objects are off to the side of all simulated paths and
are expected to have no effect on the ball’s trajectory.

assumed to be somewhat less relevant, as they were objects
that over 95% of simulations touched but were late in the
causal chain, with other collisions occurring first. The Maybe
Collision objects were assumed to be even less relevant, oc-
curring late in the causal chain but only touched by the ball
in 40-60% of all simulated paths. Finally, the No Collision
objects were assumed to be irrelevant for prediction, as the
ball never touched these objects in simulation. The simulator
and amounts of noise were identical to those used in Allen,
Smith, and Tenenbaum (2020).

Critical memory trials were constructed to have objects of
three different types: Collision Early, No Collision, and either
Collision Late or Maybe Collision (since scenes with both
of those blocks are very rare). We constructed 16 different
critical trials – 8 with Collision Late, 8 with Maybe Collision
– and provided them to participants in a counterbalanced way
such that each participant made four judgments about each of
the four collision types, observing each critical trial once.

Results Predictions of where the ball would end up were
mainly used to calibrate simulation models; see Fig. 5 for
examples.

Consistent with our expectations, we find that memory
does vary across the different relevance types (χ2(3) =
57, p = 2.4 ∗ 10−12),1 with the highest memory for Colli-
sion Early objects (71.5, 95% CI = [68.4, 74.6]), followed
by Collision Late objects (63.3, 95% CI = [59.3, 67.3]), then
Maybe Collision objects (56.3, 95% CI = [52.3, 60.3]), and
finally No Collision objects (50.3, 95% CI = [47.2, 53.4]).
Thus we find that the likelihood or detail of objects within
participants’ representations is related to gross differences in
those objects’ relevance to simulation.

Experiment 2
While the Experiment 1 results show that people’s representa-
tions are sensitive to general differences in relevance, the dis-

1For these analyses we use a random effects model with inter-
cepts varying by subject, and by relevance type nested within trial.

Figure 4: Comparison of human predictions of collision likelihood
from Experiment 2 (x-axis) vs memory ratings from Experiment 1
(y-axis). Each point is a separate critical object; color indicates the
object classification. There is a strong relationship between collision
likelihood and strength of the memory trace.
crete notion of relevance used precludes us from investigating
a potentially graded effect of relevance at the object level. We
therefore ran a second experiment to explicitly gather peo-
ples’ judgments of whether the ball will contact each target
object, as a measure of relevance.

Participants. We recruited 50 participants from the Prolific
research platform. The task took approximately 14 minutes,
for which participants were compensated $3.50. We did not
exclude any participants from our analyses.

Procedure. On each trial, participants would observe a
Plinko scene with one of the objects highlighted, and would
be asked to judge “How likely is the ball to collide with this
object?” Participants indicated their response on a slide rang-
ing from “not at all sure” to “very sure”, which was again
translated into a value between 0 and 100.

Stimuli. The scenes and highlighted objects were the same
scenes and objects used in the critical memory trials. We
counterbalanced the worlds and objects that participants saw
in the exact same manner as experiment 1, such that each
participant saw every scene once, made a collision judgment
about a single object in each world, and made a collision
judgment for each class of object four times.
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Figure 5: Four example trials and distributions of predictions for where the ball will end by participants (top) and the simulation model
(bottom). Across trials, simulation captures the modes and general distribution of peoples’ predictions, replicating the findings of Gerstenberg,
Siegel, and Tenenbaum (2021).

Results. We find that these predictions of how likely the
ball was to collide with an object act as a good proxy for rel-
evance: the judgments of likelihood to contact from this ex-
periment are well correlated with the memory for those same
objects in Experiment 1 (r = 0.81, p = 3.5∗10−13, Fig. 4).

Measures of Relevance

Here we test the form of “relevance” that people use to de-
cide which objects to include in our representations, as a way
to constrain models of the cognitive processes that we use
to construe the world. Specifically we consider two broad
definitions of relevance: simulation-based relevance under
which objects are included based on how often they would
have any effect on simulation, and value-based relevance un-
der which objects are included based on how much of an ef-
fect those objects have on the ultimate outcome of the system
(e.g., where the ball ends up). The simulation-based rele-
vance measure would better support the theory that we form
representations “just in time,” as this theory suggests that rep-
resentations should be strengthened any time those objects
will be contacted, regardless of how they change the trajec-
tory of the ball. On the other hand, the value-based measure
requires estimating the impact that an object on the outcome,
and therefore better supports construal processes that learn to
perform these estimates offline.

Simulation-based relevance. We measured simulation-
based relevance of an object by instantiating a noisy simu-
lation model, and counting the proportion of simulated paths
that made contact with that object.

We relied on a modified version of the simulation model
that was used to construct the stimuli, increasing the uncer-
tainty in resolving collisions (Smith & Vul, 2013) in order
to produce a better match between the distribution of the
model’s and human predictions of the ball’s end location (cor-
relation between average position for each trial: r = 0.73, see
Fig. 5 for examples). We used this model to simulate 100
different ball trajectories, and calculated the number of times
each object was contacted by the ball across all simulations.

This metric correlated well with participants’ average judg-
ments of how likely the ball was to contact each object in Ex-
periment 2 (r = 0.96), validating the model predictions. This
simulation-based relevance explained participants’ memory
well (r = 0.81, Fig. 6, left), at around the same level as other
participants’ judgments of collision chance.

Value-based relevance. We instantiated the value-based
relevance model as a measure of how much impact each ob-
ject had on the end position of the ball. Determining im-
pact requires comparing the outcome to alternative worlds,
so we consider two transformations that are theorized to un-
derlie how we create alternatives for counterfactual physi-
cal reasoning (Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2021): translations, where the object is shifted by a
set amount, and deletions, in which the object is removed en-
tirely from the world. The translations used to determine an
alternative world were the same as were used for the memory
test distractors (see Experiment 1: Stimuli).

In order to calculate the metric, we used the same noisy
model as for the simulation-based relevance to produce a dis-
tribution of the ball’s end location over 100 simulations, then
applied the transformation and produced another distribution
of 100 ball end locations. The relevance was calculated as the
Wasserstein distance between these two distributions.

We find that both the translation and deletion models could
explain some of the variability in participants’ memory judg-
ments (translation: r = 0.59, Fig. 6, middle; deletion: r =
0.58, Fig. 6, right), albeit not as well as the simulation-based
metric.

Comparisons of relevance. While both measures of rele-
vance explain participants’ representations to some extent, we
would expect some overlap due to correlations between the
metrics: if an object is in the simulation path, then we should
expect shifting or removing it will impact the trajectory, and
if it is not in the path, then most of the time a shift or dele-
tion will not have any effect. Indeed we do find that there is
a strong correlation between the two metrics (simulation vs.
translation: r = 0.69, simulation vs. deletion: r = 0.74), lead-
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Figure 6: Comparisons of relevance metrics from each of the three relevance models against participants’ memory judgments. Each point
represents a different critical object; color indicates object classification. The simulation-based relevance metric explains memory for specific
objects better than either value-based metric.

ing us to ask here whether they are explaining unique variance
in participants’ memory judgments.

Compared to a model that only uses simulation-based rele-
vance to explain participants’ memory judgments, adding ei-
ther value-based relevance metric does not add any explana-
tory value (p = 0.80, p = 0.52 for translations and deletions,
respectively). Conversely, adding simulation-based relevance
on top of either of the value-based relevance metrics provides
additional explanatory power (p < 10−15 for both). This sug-
gests that people rely on simulation-based relevance, provid-
ing evidence for “just in time” formation of representations.

Discussion and Future Directions
Our results suggest that people do not fully represent physical
environments, but instead track the most relevant objects, per-
haps by adding them “just in time” as they become relevant
to simulation. Across a series of behavioral and model-based
measures of relevancy, we find that humans construct object
representations that closely match the probabilistic structure
of the environment in a physical prediction task, such that re-
call for a particular object is highly tied to the probability of
that object appearing in one’s mental simulation.

We found that forward simulation measures such as the
likelihood of collision were the best predictors of memory, as
opposed to a more counterfactual measure that explicitly rea-
soned about the effects of the object change on the end state
of the trajectories. However, here we only tested two coun-
terfactual relevance measures, both measuring how a trans-
formation applied to an object would impact the end position
of the ball. Future work could investigate additional notions
of counterfactual relevance, including more varied and sys-
tematic transformations such as small rotations and edge per-
turbations. Additionally, directly eliciting behavioral judg-
ments of counterfactual relevance would potentially allow for
more insight into the role that counterfactual reasoning plays
in forming reduced representations.

While we were able to implicitly probe for information
sampling and simulation via behavioral measures such as
memory ratings and collision judgments, we are unable to

fully disentangle the role of visual attention from rational rep-
resentational compression. For instance, it is possible that the
memory effects we observed fall out of the fact that people
tend to look where they are simulating, and more relevant
objects by definition lie closer to the simulated trajectory of
the ball. A natural next step would therefore be to use eye-
tracking and more controlled stimuli to investigate the joint
roles of vision and memory in a more fine-grained way.

Finally, forming representations in more complex, real-
world scenes will require extensions to the “just in time”
framework. For instance, the current work primarily focused
on how we represent static objects when there is one moving
object. If there are more moving objects, they might collide
with the critical object in our simulations (e.g., a ball flying
in from the side), but determining whether this will happen
(and thus if the other object is relevant) requires already rep-
resenting and simulating that object’s trajectory. Understand-
ing how we choose what moving objects to represent requires
further study, but could explain errors stemming from “par-
tial simulation” (Bass et al., 2022). In addition, many scenes
will have a number of potentially relevant objects that exceed
working memory limits – such as block towers (Battaglia et
al., 2013) – and prior work has suggested that we cannot rep-
resent each object individually (Ludwin-Peery et al., 2021).
Future research should study not only how objects are added
to our mental representations, but also how we might produce
memory-constrained representations by, e.g., unloading ob-
jects from memory, or “grouping” multiple objects together.

The physical world is complex and filled with myriad num-
bers of objects, yet people can easily build a representation of
the world that is constrained by our cognitive resources but
still allows for effective predictions. Here we take a first step
in explaining how the mind accomplishes this by showing that
those representations are directly tied to their usefulness for
simulation. In the future, we hope to explain how the mind
decides what is useful in the first place, and how this repre-
sentation is built up in tandem with physical simulation.
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