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Abstract of the Dissertation

Control of an

Active Magentic Bearing-Rotor System

by

Christopher Sunghwa Kang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2014

Professor Tsu-Chin Tsao, Chair

A common disturbance encountered in rotor operations is the sinusoidal distur-

bance caused by mass unbalance. This natural phenomenon imparts a force on

the rotor with frequency equal to the rotor speed. To help regulate the rotor

and reject this disturbance, many researchers have investigated the use of Active

Magnetic Bearings (AMBs) and digital control as a viable replacement for the

traditional rotary journal bearing. The non-contact nature of AMBs allows for

greater speeds and opens the possibility for new applications. Stability is an im-

portant design consideration as is the ability to provide disturbance rejection for

varying rotor speeds and over the rotor’s operational range.

An internal model principle type controller is implemented in this disserta-

tion for its premium on stability and straightforward design parameters of the

controller characteristics. The plug-in structure provides narrow performance en-

hancements while minimally disturbing the underlying stability of the closed-loop

system. The internal model is realized through cascaded notch filters which allows

for intuitive design of the internal model. Stability can easily be satisfied through

a filter design formulation. These control strategies are applied on an AMB-rotor

system with great rejection performance.
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CHAPTER 1

Introduction

1.1 Active Magnetic Bearing-Rotor Systems

A well-known problem affecting spinning rotors is that of rotor unbalance [SBT94].

Caused by mass imperfections in the shaft, this results in a periodic disturbance

force synchronous to the rotor’s angular velocity. In traditional rotor systems, the

rotor is supported by journal bearings which are fit snugly over the outer diameter

of the rotor. The unbalance force causes mechanical wear in the bearings as well

as the force to be transmitted into the rotor housing.

An Active Magnetic Bearing (AMB) is a series of electromagnets arranged in

a circular configuration capable of fitting over the outer diameter of the rotor and

providing a non-contact force on it. Early uses of the AMBs were as a supplement

to the system as a vibrational dampener [CDD94]. With the ends of the rotor

fixed inside the mechanical bearings, a ring of electromagnets could be placed at

set positions along the rotor length. Though effective, the problems remained that

the rotor was still in contact with the stator and housing through the bearing.

AMBs are also used to replace the mechanical bearings and support the rotor

by means of magnetic levitation. Magnetic levitation allows the bearing to be

completely contact-less, which eliminates the issue of mechanical wear and friction,

allowing the rotor system to be operated at higher speeds [BLP99]. Example

applications include such systems as power generation [SL09], flywheels [CJL10],

mills [ZSL03], and even on the impeller of an artificial heart [HST06].
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Challenges associated with utilizing AMBs include their robust feedback con-

trol requirement as they are open-loop unstable [SBT94]. Furthermore, as AMBs

do not rigidly support the rotor, they are susceptible to runout and other distur-

bances.

1.1.1 Rotor Unbalance

Rotor unbalances are distinguished between static and dynamic unbalances [TD98].

Static unbalance occurs when all the mass unbalance is restricted to one plane and

can easily be remedied by adding counterweights to the disk. Modeling the rotor

as a series of disks, dynamic unbalance occurs when each disk has its own offset

center of mass. When stationary, the rotor may be statically balanced. However,

dynamic unbalance can only be detected while the rotor system is spinning as it

manifests as a sinusoidal inertial force on the rotor.

The net effect of dynamic rotor unbalance creates an inertial axis which is skew

from the geometric axis of a cylindrical rotor. This has produced two schools of

thought: 1) auto-balancing (or unbalance compensation) which allows the rotor

to spin about its inertial axis of rotation, and 2) regulation which aims to force the

rotor to spin about its geometric axis. Auto-balancing is attractive in an energy

sense as it allows the system to operate at some stable steady-state set point and

providing only necessary corrections. Some approaches include determining con-

ditions off-line and applying feedforward control [KHF95, KHT96]. Notch filters

have also been used in feedback control, though care must be taken to maintain

stability of the closed loop system [HBG96].

However, unbalance compensation is not appropriate in all applications. For

example, in machining operations the tool or workpiece must spin about its geo-

metric axis to ensure accurate cuts and finish. In some operations, safety consid-

erations may dictate that the rotor stay centered, relative to the stator, to prevent

2



any accidental collisions.

The focus of this research is the regulation problem on an AMB-rotor system.

1.2 Previous Research

In AMB-rotor systems, some important control design criteria exist. Primarily

due to safety concerns during high rotor speed operations, robust control strategies

must be employed. If the rotor were to make contact with the stator of housing

while spinning at high velocities, the collision could be damaging to the system

as well as dangerous to operators nearby. Strategies must also be effective for

changing rotor speeds over the entire operating range. Robust feedback control

implementations include a simple lead-compensator [AJE06], Linear-Quadratic-

Gaussian control [YXS07] and linear parameter varying state-feedback scheduled

on the rotor speed [LCB08].

To eliminate the unbalance vibration, sinusoidal internal models were used to

augment the system and provide disturbance rejection [MFO89,BL00]. With the

rotor stabilized with Proportional-Integral-Derivative control, an adaptive filter

was able to identify and eliminate the harmonic disturbance [BLP99]. Linear

parameter varying control was used to design controllers scheduled on the rotation

speed [BWS12]. Disturbance observers were used to identify and compensate

disturbances on a rotor during profile tracking [GL07].

When the rotor speed changes, and with it the disturbance period, the con-

troller must be able to track and compensate for this. Altering the feedback

loop has consequences to the stability of the system; which is highly danger-

ous for AMB-rotor systems. In the robust framework of H∞ controllers, loop

shaping filters for harmonic rejection were considered time-varying rotor speeds

[MNH96, SNF06]. An adaptive scheme was used to identify parameters of the

internal model during operation [LCR05].
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Another internal model principle base controller, repetitive control is well-

suited for the asymptotic tracking and rejection of harmonic signals. Researchers

have studied various schemes on an AMB-rotor systems for disturbance rejection

[ZSL03,THD07,PDA09].

1.3 Main Contributions

The goal of this research is to examine an internal model principle based controller

for sinusoidal disturbance rejection on an AMB-rotor system for both constant and

time-varying rotor speeds. The internal models are generated using peak filters

and utilized in a plug-in structure [WCT09b]. The plug-in structure allows the

stability criteria to be easily met through designing a robust feedback controller.

The internal model controller narrowly enhances the performance of the closed-

loop system, which can be controlled through intuitive design parameters.

The plug-in resonator also consists of a model inversion to provide nominal sta-

bility. The accuracy of this inversion conditions the internal model control signal,

whereby a more accurate inversion will produce better rejection performance. Due

to the non-minimum phase zeros present in the plant models, a couple standard

approximate inversion techniques were applied.

In another technique, an FIR filter was also used to approximate the direct

inversion of the non-minimum phase zero. This was at the expense of a large non-

causal preview requirement. In the repetitive control framework, this preview cost

is easily accommodated. Furthermore, the resonator was combined with repet-

itive control techniques to provide aggressive performance while simultaneously

mitigating inter-harmonic amplification common in repetitive control.

A more accurate multivariable plant model was used for control design to

improve performance. Though a multivariable model inversion is more difficult,

the plug-in resonator derivation only requires the inversion to hold at discrete

4



points in the spectrum. An FIR filter was found to perform the stable inversion.

Though the plug-in resonator is well-suited for periodic disturbances, it is

unable to handle more complex disturbances. In a collaborative effort, an adaptive

filter was designed to reject the broadband components of a disturbance while the

resonator remains in the plug-in configuration to this control loop for sinusoidal

rejection. The controllers are integrated such that each filter can be independently

designed on the pre-stabilized loop without coupling effects.

These controllers were designed and implemented on the MBC 500 Turbo, an

AMB-rotor system by Launchpoint Technologies.

1.4 Outline

The remainder of this dissertation is organized as follows: the experimental sys-

tem will first be described and discussed in Chapter 2. The modeling results will

motivate much of the subsequent design and analysis. In Chapter 3, the plug-

in resonator is introduced and discussed. The model inversion in the controller

formulation is motivated through a stability argument and a couple traditional ap-

proaches are implemented. Chapter 4 is motivated by the more accurate inversion

of the non-minimum phase systems. This cost of this inversion is easily accommo-

dated by repetitive control. This is further improved through the incorporation of

the internal models used in Chapter 3. The more accurate multivariable models

of the system are used in Chapter 5 to design a MIMO version of the plug-in res-

onator. The model inversion is more easily accomplished by using an FIR filter to

only invert the model at relevant points. In a collaborative effort, a more complex

disturbance is rejected using both an adaptive filter and the plug-in resonator in

Chapter 6.
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CHAPTER 2

System Hardware and Modeling

2.1 Experimental System

Experimental results were obtained on the MBC 500 Turbo, an AMB-rotor sys-

tem developed by LaunchPoint Technologies [PMS96]. The system consists of a

rotor of 303-stainless steel supported at each end by electromagnets. Hall Effect

sensors, collocated at each end, measure the gap distance to the rotor and provide

positional feedback. The Turbo edition features a shortened shaft designed to

push the resonant modes of the system past the maximum rotor speed.

Figure 2.1: Actuator-Sensor placement of MBC 500 Turbo

At each end of the rotor (side-1 or side-2), actuation and sensing are conducted

in the X-plane and the orthogonal Y-plane. In this coordinate system, they are

6



referred to as x1, x2, y1 and y2 directions. It is apparent that the system is a 4-

input 4-output MIMO system. Motion along the axis (z) is constrained passively

and assumed to have no effect on the dynamics of the system.

2.1.1 Hardware Implementation

Data acquisition and control were implemented using the Mathworks xPC Target

platform at a sampling frequency of 10kHz. National Instruments PCI-6052e

cards with 16-bit resolution were used for data acquisition and command. A PCI-

6601 timer card with a 20MHz clock was used to measure the encoder period. A

shaker table was installed to introduce additional disturbances to the system as

appropriate.

Figure 2.2: Experimental System Setup
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2.2 Modeling

For the purpose of controller design, analysis, and simulation, models were devel-

oped for the MBC 500 Turbo [CWW10]. An analytical first-principles model pro-

vides the justification for decoupling and simplifying the model. To fully capture

the electronic components, a closed-loop system identification was also performed.

The equation of motion, for a rigid shaft with the sensor-actuator configuration

as described, can be written to produce a coupled 4-input 4-output model; two

inputs per axial plane. For a relatively thin rotor, the gyroscopic elements will

be small, decoupling the X-plane dynamics from the Y-plane. Furthermore, from

geometric motivations, a coordinate transformation from the rotor-end coordinate

frame to the geometric center further decouples motion in each plane.xT
xR

 =

1
2

1
2

1
2
−1

2

 ·
x1

x2

 (2.1)

To more fully capture the other system components (e.g. electromagnets,

A/D), a system identification procedure was performed. The open-loop instability

of the system required a closed-loop method, with a secondary step to back out the

open-loop data. Applying the decoupling transformation on the collected data,

transfer functions could be fit to produce open-loop models of the four decoupled

SISO systems. The decoupled SISO systems [XT XR YT YR] correspond to the

Translational and Rotational coordinate of the geometric center of mass in the

X and Y planes. The data was also used to fit models to the uncoupled or raw

coordinate frame.
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Figure 2.3: Model Fit of Decoupled Open-Loop Systems (Magnitude)

Figures 2.3 and 2.4 shows the collected frequency response data compared to

the low-order fitted models. It is important to note the presence of a resonant peak

in the two translational axes. The peak occurs near 2.5kHz and is not captured by

the low-order transfer function. Higher order coupled models used for simulation

capture this peak.

Continuous time 3rd-order models satisfy physical intuition; two states describe

motion of the rotor while the electromagnet contributes an unstable pole.

PXT =
266.9(s2 + 2126s+ 5.47× 106)

(s+ 2479)(s+ 442.8)(s− 460.9)

PXR =
298.8(s2 + 942.2s+ 2.46× 106)

(s+ 2240)(s+ 394.6)(s− 392.7)

PY T =
−632.6(s− 1720)(s+ 1252)

(s+ 3602)(s+ 401.6)(s− 396.2)

PY R =
−583.6(s− 2639)(s+ 1694)

(s+ 4196)(s+ 438.3)(s− 447.8)

(2.2)
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Figure 2.4: Model Fit of Decoupled Open-Loop Systems (Phase)

In each of the identified Y-plane systems, there exists one non-minimum phase

zero. This will motivate much of the filter design considerations in subsequent

sections.

2.2.1 Model Uncertainty

Due to the safety concerns of AMB-rotors operating at high speeds, any con-

troller developed must prove a measure stability. The Robust Stability Criterion

is a classic result through the Small Gain Theorem, where if the Complimentary

Sensitivity Function T satisfies

|T | ≤ 1

|∆|
(2.3)

the system is robustly stable. Assuming multiplicative modeling error of the plant

model P∆ = (1 + ∆)P0, the model uncertainty is defined by

∆ =
P − P0

P0

(2.4)
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where P0 is the nominal plant model [ZD98].
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Figure 2.5: Multiplicative Modeling Error (∆) of Decoupled Plants

The magnitude of the model uncertainty is shown in Figure 2.5 which shows

higher uncertainty at higher frequencies. This is expected behavior for physical

systems as they tend to exhibit low-pass behavior and will corrupt the identified

data with noise.

2.3 Feedback Control

AMB systems are open-loop unstable and require a feedback controller for opera-

tion. Though designing feedback control strategies can be effective, one purpose of

this work is to demonstrate the benefits and performance achievable implement-

ing a plug-in control module. This is motivated by the fact that in most systems,

some feedback controller will already by designed and implemented. An effective

complimentary controller can be designed without disturbing the pre-stabilized

11



system. Thus the feedback controller was designed to provide good stability mar-

gins and low broadband authority without too much emphasis given to extracting

performance.

The MBC500 Turbo system is equipped with four analog Proportional-Derivative

(PD) controllers. They were replaced in favor of LQG with integral action (LQGi),

to provide stable and robust levitation over the entire operating speed range. In-

tegral action was included to center the rotor in relation to the stator housing to

prevent collisions between the rotor and housing.

2.3.1 LQGi Control Design

The state-space controller LQGi is a specific method of state-estimator feedback

using the combination of a linear-quadratic regulator with integrator (LQR) and

a Kalman filter (a linear-quadratic estimator) for state estimation of the system.

For the state-space representation of the system augmented with an integral state

x̄(k + 1) =

x(k + 1)

xi(k + 1)

 =

 A 0

−C 1

 x̄(k) +

B
0

u(k) (2.5)

y(k) =
[
C 0

]
x̄(k)

the optimal state-feedback controller given by u = −K̄x̄(k) minimizes the

quadratic cost function

Jlqi =
∞∑
k=0

x̄>(k)Qx̄(k) + u>(k)Ru(k) (2.6)

Q =

C>C 0

0 qi

 R = ρu

where Q and R are square symmetric weighting matrices on the states and

control effort respectively. R is positive definite while Q is allowed to be posi-

tive semi-definite. A typical choice of weighting matrices are used for the SISO
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case where qi and ρu are scalar weights for the integral state and control effort,

respectively.

A closed form expression for the optimal controls gains K̄ is defined as

K̄ = (R +B>PB)
−1
B>PA (2.7)

where P is found by solving the steady-state discrete-time algebraic Riccati

equation

P = A>(P − PB(R +B>PB)−1B>P )A+Q (2.8)

The Kalman estimator provides the estimates states which minimizes the error

covariance. To make a similar optimal argument, another quadratic cost function

is defined

Jkal = E

[[
e(k)− E[e(k)]

][
e(k)− E[e(k)]

]>]
= M (2.9)

where M is the state-error covariance, e is the error and the notation E[·] denotes

the expected value of the arguemnt. The states estimates are updated by

x̂(k + 1) = x̂(k) + L[y(k)− Cx̂(k)] (2.10)

which is essentially the best linear combination of the current measurement and

model propagation to minimize (2.9). The optimal Kalman gains which achieve

this is defined as

L = AMC>(CMC> +Rn)−1 (2.11)

where M is found by solving another discrete-time Ricatti equation

M = A(M −MC>(CMC> +Rn)−1CM)A> +Qn (2.12)

The sensor noise and process noise covariances, Rn and Qn respectively, are used

to characterize aggressiveness of the estimation.
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Figure 2.6: Robust Stability Analysis of Feedback Controller

An LQGi feedback controller was designed for each of the decoupled systems.

Robust stability can be verified from (2.3) and shown in Figure 2.6 to easily satisfy

the criteria with sufficient margins.

2.3.2 Experimental Results

The designed LQGi feedback controller was implemented on the experimental

system and measurements collected to establish a baseline performance.

Figure 2.7 is a time trace of the X-Translation of the rotor during two constant

rotor speeds of 200Hz and 0Hz. It illustrates the loss of regulation performance

due to the large sinusoidal disturbance. This can be further quantifies by eval-

uating the RMS of the error and organized in Table 2.1 for all the coordinates.

The measurements are converted into units of displacements; microns from trans-

lation and micro-radians for rotation. The feedback controller is successful in

maintaining stability but is unable to reduce much of the harmonic disturbance.
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Figure 2.7: Rotor Disp. - X-Translation under LQGi

RMS XT XR YT YR

[µm] [µrad] [µm] [µrad]

LQGi 5.57 1512.41 10.75 2730.2

No Spin 0.59 88.68 0.84 112.7

Table 2.1: RMS Error - Feedback Controller
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Figure 2.8: Spectrum - LQGi Feedback Control

From spectral analysis in Figure 2.8, sharp harmonic components can seen.

These correspond to the rotor speed and its first four integer overtones. A few

high-frequency components also exist. The component near 3kHz is thought to be

vibrations from the onboard electronics fan and not the resonant mode from the

modeling discussion. Under LQGi, the majority of the spectrum is at or near the

noise floor. The narrow disturbance components support the approach of utilizing

narrowband internal models for disturbance rejection.

2.4 Rotor Speed Sensing and Control

Controlling the speed of the rotor is an important aspect of the experiment to

the extent that repeatability of the process is required. More relevant yet is

to consider that the peaks of the internal model can easily be placed at any

frequency. An important aspect then is to place them appropriately, which entails

correctly identifying the disturbance period. In the case of rotor unbalance, this
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problem can be viewed as determining the speed of the rotor. Two approaches

were explored and is discussed in this section.

2.4.1 Encoder Measurement

In many rotor-based systems, a common method is to use a sensor to measure

the rotor speed. A tachometer or rotary encoder are easily implemented. The

MBC 500 Turbo is equipped with a low resolution (two counts/rev) quadrature

encoder. In essence, the rising edge of each encoder channel indicates one complete

revolution of the rotor. The pulses of a channel are used to trigger the PCI-6601

high clock rate (20MHz) timer card. This returns the period of each encoder

pulse and thus a measure of the rotor speed. The measured speed is used to close

the loop on a Proportional-Integral-Derivative (PID) controller for servo valve

command.

Furthermore, stiction was observed to cause hunting of the speed set point,

preventing the rotor from reaching any useful constant speed. To counteract stic-

tion in the servo valve, a high-frequency zero-mean dither signal was added to the

valve command. Sample regulation behavior in Figure 2.9 shows the improvement

in velocity tracking with and without stiction.

2.4.2 Online Adaptive Frequency Estimation

In the event that such hardware is not available or a possible option, online fre-

quency estimation can be used for disturbance rejection. For fast convergence and

stable estimate, an adaptive notch filter formulation was used to determine the

frequency of rotor unbalance [Li97,WCT09a]. A brief description follows.

The adaptive filter N is a constrained notch filter with zeros on the unit circle

N =
1− 2 cos θz−1 + z−2

1− 2α cos θz−1 + α2z−2
(2.13)
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Figure 2.9: Rotor Speed Regulation Improvement with Dither Signal

The cost function is defined as

J(θ, t) =
1

2t

t∑
n=1

v̂2(θ, t) (2.14)

where v̂ = Ny is the filter output to an input signal. The estimate is found

recursively using a gradient descent search.

The adaptive filter is placed as shown in Figure 2.10. Instead of feeding the

output of the plant directly, a model of the closed-loop system is used to produce

an output estimate ŷ. This can be used to estimate the disturbance signal which

provides a more robust signal to estimate the disturbance frequency.

A comparison between the two methods are made for two important rotor

conditions in Figure 2.11.
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Figure 2.11: Rotor Speed Identification Methods

When the desired speed is constant, both methods produce accurate identifi-

cations. The algorithm contains more variations due to the additional harmonic

components present in the measured output. Still, the accuracy in speed is within

±0.1Hz which satisfies the precision necessary for use in the controller. When

the rotor is changing accelerating however, the adaptive algorithm naturally lags

behind the encoder due to the necessary number of data points which must be

processed, posing a problem for applicability during these transition regions.

Certainly the plug-in controller could be designed for robustness to frequency

mismatch. By adjusting the bandwidth of the peaks, the controller can be made

to work for a variety of signal qualities. In the interest of simplifying the im-
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plementation for both time-varying and constant speed operations, the encoder

measurement will be used update the plug-in controller as well as to close the

speed feedback loop.
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CHAPTER 3

Plug-in Resonator

3.1 Introduction

Disturbance due to rotor unbalance can be modeled as a sinusoid with frequency

synchronous with the rotor’s rotational velocity. Furthermore, the rotor’s speed

may vary and thus requires the ability to keep track of it. Maintaining stability

is critical in operating the AMB-rotor system safely. To that end, a plug-in

internal model principle-based controller is proposed for the purpose of sinusoidal

disturbance rejection [WCT09b,KT14].

The plug-in structure allows disturbance rejection of specific harmonic frequen-

cies with minimal effect to the stability of the system. The resonator is generated

through inversion of 2nd-order notch filters, providing greater flexibility in tuning

performance of the controller while being easily amenable to rotor speed changes.

The following chapter will describe details of the control strategy, motivate a cou-

ple approximate model inversion methods, and provide experimental results on

the system.

3.2 Resonator

The harmonic resonator is employed as a plug-in unit to a pre-existing feedback

loop shown by the block diagram of Figure 3.1. The controller C1 can be used

to provide stability or satisfy other design criteria (e.g. LQGi), while the plug-in
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controller C supplies targeted control effort. The closed-loop system, G = PC1

1+PC1
,

is used in the plug-in controller design.

G

C1 P

Cr

e y
−

d

Figure 3.1: Block Diagram of Plug-in Controller Cr to Feedback System

The plug-in controller (Cr) is composed of two filters

Cr = D · F (3.1)

the internal model D and a stable inversion F .

L F

Cr

Figure 3.2: Components of Harmonic Resonator

3.2.1 Internal Model Design

The Internal Model Principle requires a model of the disturbance to be placed in

the feedback path [FW76]. A filter L satisfying the criteria

L =


L = 1 if ω = ωk=1,2,...p

L ≈ 0 if ω 6= ωk

(3.2)

can be placed in a positive-feedback loop to produce infinite control gains at the

p-number of interested frequencies, while remaining small elsewhere.
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Filter L is realized by first designing a series of cascaded 2nd-order notch filters

defined by

H =

p∏
k=1

1− 2βk cosωkz
−1 + β2

kz
−2

1− 2ρk cosωkz−1 + ρ2
kz
−2

(3.3)

This formulation makes specifying key parameters of the internal model straight-

forward. The parameter ωk in (4.6) represents the location of the notch in the

Nyquist band and it is quite apparent that any frequency can be specified, includ-

ing non-integer speeds. In general, the disturbance signal may be characterized by

multiple frequencies which may not share any relative relationship among them

(e.g. not harmonics). By cascading notch filters, (4.6) can provide compensation

at the appropriate frequencies with the freedom of independently selecting these

frequencies. By cascading them, the notch filters also minimally effect one another

to present a near ideal series of notches.

Furthermore, by using this 2nd-order notch filter as the basis, we can take

advantage of the direct control over the characteristic of each notch. Parame-

ters of the filter, ρ and β, shape the depth and bandwidth. They can be tuned

independently for each kth frequency. The two factors are chosen to satisfy the

relationship 0 << ρ < β ≤ 1. For the notch filter, β = 1 places the zeros on the

unit circle producing zero filter output. Once it is inverted, the peak is at unity

and satisfies the criteria of (4.8) to produce infinite gain in the feedback loop.

The parameter ρ controls radius of the poles of H. As ρ → 1, the filter becomes

more ideal in that frequencies away from the notch are less affected while ρ < 1

is maintained to keep the poles inside the unit circle to produce a stable filter.

The relationship between the two factors can be used to approximate the -3dB

bandwidth in Hertz through the expression

BWHz ≈
π(βk − ρk)

2πTs
(3.4)

where Ts is the sample time of the discrete time system. A wider notch provides

faster convergence as well as robustness to mismatches between the disturbance
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and controller frequencies. This must be balanced by the consequences of the

so-called “waterbed effect,” which describes the resulting amplification in another

part of the spectrum resulting in a loss of performance and stability.

The peak filter is made by inverting the notch filter

L = 1−H (3.5)

In Figure 3.2, the internal model is generated by wrapping the peak filter in a

positive feedback loop.

D =
L

1− L
(3.6)

3.2.2 Plant Inversion for Stability

L F G
e y

−

d
Cr

Figure 3.3: Simplified Block Diagram of Plug-In Resonator in Feedback

Filter F is motivated by a stability condition

‖L(1− FG)‖∞ < 1 (3.7)

derived from a conservative enforcement of the Nyquist Stability Criterion and

the block diagram of Figure 3.3. The encirclement criterion states that the open-

loop gain must encircle the critical point (-1,0) the proper number of times for

closed-loop stability. For stable filters L, F , and G, we require no encirclements.

To guarantee this conservatively, the magnitude of the loop gain is restricted to

remain inside the unit circle. If the contour never escapes the unit circle, it could

never encircle the critical point.
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The criterion in (3.7) is easily satisfied in the majority of the spectrum by the

explicit design of L from (4.8). The condition in (3.7) then reduces to a filter

design problem to satisfy

‖1− FG−1(ejω)‖∞ < 1 (3.8)

One approach to this design is to consider plant inversions.

For the minimum phase system of the X-plane, a complete model inversion

is possible. However, recall from (2.2) the two Y-plane systems each had one

unstable zero. A complete inversion for these systems would produce an unstable

inversion, thus require approximate model inversion techniques..

3.2.2.1 Zero Phase Error Inversion Filter

A popular method of performing the non-minimum phase plant inversion is the

Zero Phase Error Controller (ZPEC) which inverts the phase response at the

expense of the magnitude [Tom87]. For a factorization of the stable system

G =
z−dB+B−

A
(3.9)

d represents the relative system order, and A,B+, and B− are the poles, stable

zeros, and unstable zeros, respectively. The ZPEC inversion is defined as

Fzpec =
A[B−]∗

γz−dB+
(3.10)

where [B−]∗ is the complex conjugate of the unstable zeros. The accuracy of the

inversion can be examined through their product, FzpecG = B−[B−]∗

γ
which has

zero phase since the zeros are complex conjugates of one another.

Though the phase is compensated, the magnitude response is inherited from

the position of the unstable zeros. Non-minimum phase zeros near the unit circle

results in a filter which generates high gains near the Nyquist frequency [BPA12].

To maintain stability, the constant γ = [B−(ejw)][B−(e−jw)] is used to scale the
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Figure 3.4: FG comparison for various F designs at 200Hz

magnitude of the filter output to unity at a prescribed frequency (Figure 3.4

(yellow)).

Despite the idealized design of L in (4.8), the high pass magnitude response

of ZPEC was found to internally excite the resonant modes of the Translational

systems identified in Section 2.2. A notch was designed to filter out the control

component at 2.5kHz. As the feedback controller itself did not excite this mode,

and to emphasize the utility of the plug-in approach on an inherited closed-loop

system, the notch was placed in series with ZPEC in the plug-in controller to

produce the notched-version of the inversion (Figure 3.4 (red)).

3.2.2.2 Zero Magnitude Error Inversion Filter

The unfavorable magnitude inversion of ZPEC leads to the examination of an-

other approximate model inversion. The Zero Magnitude Error Control (ZMEC)

is a similar approximate model inversion technique, though it will invert the mag-
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nitude rather than the phase [RPL09]. The filter defined as

Fzmec =
A

z−dB+[B−]∗
(3.11)

produces the product FzmecG = B−

[B−]∗
which is essentially an all-pass filter with

unit magnitude. The magnitude response is more favorable as it does not cause

any internal amplification. The phase however, must be compensated similar to

the role of γ in ZPEC. An additional all-pass filter Fap

Fap =
r2 − 2 cos(ωap)z

−1 + z−2

1− 2 cos(ωap)z−1 + r2z−2
(3.12)

is designed and cascaded to adjust the phase. The corner frequency ωap deter-

mines where the phase is −π and the parameter r affects the sharpness of the

transition. By first determining the phase of FzmecG(ejw), the necessary phase

compensation can be determined and an appropriate ωap can be calculated to

provide compensation (Figure 3.4 (green)).

3.2.2.3 Causal Implementation

For strictly proper systems and/or those with non-minimum phase zeros, the

resulting inversions will be non-causal. They must be provided with enough “look-

ahead” or “preview” steps to form a causal filter. Separating into a causal filter

and non-causal previews

zm1Fzpec,caus =zm1
A[B−]∗

γz(d+2nu)B+
(3.13)

zm2Fzmec,caus =zm2
A

zdB+[B−]∗
· Fap (3.14)

where nu is the number of unstable zeros, m1 = d+ nu and m2 = d represent the

preview requirement for each respective filter.

The positive feedback loop and relative order of L in the internal model can

be exploited. Peak filter L has a relative order of one, allowing it to provide a
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one-step preview. To compensate n-step previews, the underlying notch filter can

be up-sampled to

Hn =

p∏
k=1

1− 2βk cosnωkz
−n + β2

kz
−2n

1− 2ρk cosnωkz−n + ρ2
kz
−2n

(3.15)

Then (4.7) would produce a peak filter with n-relative order. Thus, an n-step

preview requirement can be compensated by the up-sampled filter and Lnz
n will

remain proper. However, directly applying (4.7) to produce Lm will cause (m−1)

aliased peaks to show up in the band at locations

ωk,i =

∣∣∣∣(ωk ± 2πi

m

)
mod (2π)

∣∣∣∣ (3.16)

where i ∈ Z between 0 ≤ i ≤ bm
2
c. The aliased peaks are removed while main-

taining the correct filter order by combining two filters such that for an m-step

preview requirement

Lm = L1L(m−1) (3.17)

For a given system, Fzmec will require less lifting of L (i.e. only for relative order)

and yield comparatively wider notches.

3.2.3 Stability and Sensitivity Analysis

Due to the importance of stability in AMB-rotor operations, stability analysis of

the controller will be a main tool in the design process. One measure of stability,

the criterion in (3.7) is verified. Nominally, a complete inversion of the X-plane

plants can be found resulting in the left-hand side of (3.7) evaluating to 0. Thus,

only the nontrivial results for the Y-plane systems are shown in Figure 3.5.

Though the unstable zeros result in high magnitudes for the ZPEC formulation,

by using γ to scale the magnitude crossing, the L filter can work in tandem

to satisfy the criteria. Likewise, the ZMEC formulation satisfies the stability

criterion. In the transition between the two filters, the magnitude increase is
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Figure 3.5: Stability Criterion (3.7) of Y-plane Systems

caused by the imperfect phase compensation in the transition band of the all-pass

filter.

C1 P

∆Cr

−

Figure 3.6: Block Diagram with Multiplicative Model Uncertainty for Robust

Stability Analysis

The Robust Stability criterion is also verified from Figure 3.6 and (2.3) to

produce the transfer function expression

T =
C1P (1 +DF )

1 + C1P (1 +DF )
(3.18)∣∣∣∣ C1P (1 +DF )

1 + C1P (1 +DF )

∣∣∣∣ ≤ 1

|∆|
(3.19)
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Figure 3.7: Robust Stability of Plug-In Resonators

The plug-in resonator with the approximate inversion methods described are

shown to satisfy the stability criteria in Figure 3.7. The stability of the pre-

stabilizing feedback controller is mainly preserved with the addition of the plug-in

resonator. Only in the neighborhood of the designed peaks does the stability con-

dition deviate from that of LQGi. For the ZPEC controller method, the dip at

2.5kHz indicates the inclusion of the control notch filter the the resonant mode is

not excited.

Analysis of the sensitivity function can be insightful as a measure of expected

performance. From Figure 3.1, the closed-loop sensitivity function can be evalu-

ated to produce

S = SC1 · SCr =
1

1 + PC1

· 1

1 +GCr
(3.20)

This factorization highlights the property of the plug-in structure where the sen-

sitivity of the underlying pre-stabilized sensitivity SC1 is narrowly effected by the

addition of the plug-in controller. Furthermore, the resonator Cr is designed using
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Figure 3.8: Sensitivity Analysis of Plug-In Resonators

only the closed-loop plant G.

Figure 3.8 compares the sensitivity functions for plug-in controllers designed

using the inversion methods described. Again, in much of the spectrum, the trans-

fer functions overlap greatly. As expected from (3.20), the sensitivity function of

the closed-loop system is modified only at the designed frequencies. The plot

inserts in each respective subplot highlights the effect of the peak resonator in

reducing the sensitivity to disturbances in that band.

To ensure a fair comparison, the parameters of peak and inversion were chosen

identically where appropriate. This is verified by the identical controllers for the

X-plane systems. Since these systems are minimum phase systems, both inversions

yield the same filter.

The differences in the Y-plane systems then, are a result of how each algo-

rithm handles the unstable zero. Because the ZPEC method will always require

more lifting, the resulting peak filter construction in (3.17) effectively narrows the
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bandwidth for the same notch parameters. For a notch filter, the convergence

can be determined by the parameter ρ, where a smaller ρ yields faster conver-

gence [WWZ07]. In other words, a wider notch bandwidth results in faster con-

vergence, as well as being more robust to a mismatch in the identified disturbance

frequency. Consequently, a wider notch means more pronounced ripples in the

spectrum. This is evident in the insert plots of the Y-plane system of Figure 3.8.

The notch formed by ZMEC (green) is wider than ZPEC (red), while suffering

from larger amplification (notch ripple) in the regions near the notch.

It should be noted that it is more challenging to design a satisfactory ZMEC

filter. Since the all-pass filter for frequency compensation must be designed to

correct the phase at each targeted frequency, multiple all-pass sections may be

required. The addition of each filter, will affect the phase of the previously com-

pensated regions. This leaves an iterative design process for multiple targeted

frequencies. Ultimately, this makes the time-varying rotor condition challenging

to implement.

3.3 Experimental Results

In the experiments presented, the plug-in resonator is used to reject sinusoidal

disturbances on the MBC 500 Turbo. Steady-state and time-varying rotor speed

conditions are examined as well as controller design configurations.

3.3.1 Control during Constant Rotor Velocity

To examine convergence behavior of the plug-in controllers, the rotor was first

spun up to the desired speed (200Hz) under feedback control only, allowed to reach

steady-state and the resonator was connected. In the time trace of Figure 3.9,

the connection occurs at t = 20s and the resulting transient performance can be

observed.
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Figure 3.9: Rotor Disp. - Plug-In Resonator Connected at t = 20s

Disturbance rejection occurs quickly as the displacements of the four systems

reach their steady state value in less than 0.1s in all four axes. Both ZPEC and

ZMEC inversion methods are implemented and compared. The X-plane systems

produce identical results since these methods yield the same inversion filter. In the

Y-plane systems, the narrower sensitivity notches of ZPEC in Figure 3.8 reduces

the convergence rate compared to ZMEC. In Table 3.1, these values are organized.

Settling XT XR YT YT

Time ∆t[s] ∆t[s] ∆t[s] ∆t[s]

ZPEC 0.02 0.03 0.05 0.04

ZMEC 0.02 0.02 0.02 0.02

Table 3.1: Convergence Time - Plug-in Resonator using ZPEC and ZMEC
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The RMS of the displacement are organized in Table 3.2. The displacements

are shown in the decoupled transformed coordinates. The translational systems

are measured in microns while the rotational systems are in micro-radians. Com-

pared to the results under LQGi control only, inclusion of the plug-in resonator

with both ZPEC and ZMEC inversion techniques show large reductions indicating

the rotor is spinning tighter about its geometric axis and appropriate rejection is

taking place. Since β = 1 in both peak filter designs, the steady-state performance

is identical.

Two additional rotor conditions are included. With the LQGi loop closed,

the rotor is regulated at the center of the stator. Without any angular velocity,

‘Levitate Only’ represents a best-case in terms of disturbance rejection. For com-

pleteness, the ‘Sensor Noise’ is also provided to quantify the noise floor of the

system. No control action is applied and the rotor is resting against the stator.

After removing the bias from this signal, the resulting RMS provides a baseline

reading.

Both 1-peak plug-in resonators nearly achieve the ideal rejection mark. The

radial vibration in rotor unbalance primarily consists of the primary harmonic

at the rotor speed. Designing the filter to target this frequency yields the most

performance gains. Though additional performance can gained by designing more

peaks in the internal model, the diminishing returns on effort can also be consid-

ered. Higher harmonics do exist and their contributions can be better visualized

by observing the spectral analysis in Figure 3.10.

When only LQGi is used to stabilize the rotor, the largest spectral component

is clearly the shaft speed of 200Hz. The plug-in controllers achieve complete

rejection at the designed frequency. The components at the higher harmonics

of the rotor speed remain unchanged as no peaks were designed there for these

experiments. The remaining spectral disturbances are not amplified beyond what

is produced by the LQGi feedback controller.

34



LQGi ZPEC ZMEC Levitate Sensor

(200Hz) (200Hz) (200Hz) Only Noise

XT [µm] 5.71 0.66 0.65 0.59 0.57

XR [µrad] 1509.6 95.09 95.21 88.25 85.55

YT [µm] 11.20 0.98 1.01 0.84 0.75

YR [µrad] 2770.3 121.31 124.44 111.76 103.01

Table 3.2: RMS of Displacement - Plug-in Resonator using ZPEC and ZMEC
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Figure 3.10: Spectrum - Plug-In Resonator using ZPEC and ZMEC
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3.3.2 Control during Time-Varying Rotor Velocity

In these experiments, the plug-in resonator for disturbance rejection is examined

under time-varying rotor speeds. The velocity profile in Figure 3.11 was specified,

though achieving this trajectory is less important than measuring the actual in-

stantaneous velocity of the rotor and placing the peaks at the correct frequencies.

The encoder measurement updates the peak filter frequency to place the internal

model at the correct position which generates control commands at the first three

harmonics of the rotor speed.

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

Rotor Speed

S
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ed
 [H

z]

elapsed time [sec]

Figure 3.11: General Rotor Speed Profile

From examining the initial PSD in Figure 3.10, the 2nd and 3rd harmonics

of the rotor speed also contribute to the disturbance and are natural extensions

of the controller. The ZPEC inversion is used to ensure phase compensation

over the rotor speed range. The gain γ can be scheduled easily according to the

measured rotor speed and provides some stability against the high magnitude of

ZPEC. Though ZMEC would produce an ideal magnitude response, the phase

compensation aspect made implementation for multiple peaks/time-varying rotor

speed difficult.

This profile represents a general velocity change in rotor systems between

various set points. The profile was selected to emphasize the various capabilities

of the plug-in harmonic resonator. The velocity set points are specified to 200Hz,
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Figure 3.12: Rotor Disp. - 3-Peak Plug-in Resonator for Varying Speed

100Hz and 149.4Hz to demonstrate the flexibility of disturbance rejection. The

rates of acceleration and deceleration are also selected with similar intent.

The plug-in resonator is connected throughout the entire run to reduce runout

at all rotor speeds. Figure 3.12 compares the measured displacements with and

without the plug-in controllers. Additionally, the inversion methods for ZPEC

with and without the notch filter are implemented. The plug-in controllers are

successful in reducing the large amplitude displacements in all channels. However,

there is a loss of performance in the Translational systems when using the standard

ZPEC formulation. This is explained by the resonant mode excitation alluded

to from Section 2.2. When utilizing the control notch, consistent disturbance

rejection is achieved. The RMS of the displacements are compared in Table 3.3

over the entire run.

Figure 3.13 shows the PSD during 36s ≤ t ≤ 41s corresponding to a rotor

speed of 149.4Hz. This section was chosen to demonstrate performance when the
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LQGi 3-peak 3-peak Levitate

w/ Notch Only

XT [µm] 5.23 1.17 0.60 0.59

XR [µrad] 1231.6 97.27 95.05 88.25

YT [µm] 9.60 1.60 0.97 0.84

YR [µrad] 2182.4 135.57 129.75 111.76

Table 3.3: RMS of Displacement - 3-peak Plug-in for Varying Speed

disturbance period is not integer valued nor a multiple of the sample period. Note

the excitation of the 2.4kHz mode in the translational systems when using the

3-peak controller. The fact that LQGi does not excite this mode indicates this

is a controller excitation and not an exogenous disturbance. An additional peak

in the internal model would prove unsuccessful. The 3-peak w/Notch controller

addresses this issue and the 2.4kHz component remains at LQGi levels.
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Figure 3.13: Spectrum - 3-Peak Plug-in Resonator at 36 ≤ t ≤ 41s
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3.4 Summary

In this chapter a plug-in resonator based on the Internal Model Principle was

applied to reject harmonic disturbances in an AMB-rotor system. The peak filters

of the controller can be designed to reduce any number of frequencies at any

location. The frequencies can easily be updated making this controller attractive

for time-varying disturbance periods. A stability argument motivated the need

for a model inversion filter. Furthermore, system properties required approximate

inversion techniques to handle the non-minimum phase zeros of the model. Two

traditional approaches were examined. Results presented show superior rejection

over feedback control.
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CHAPTER 4

Plug-in Repetitive Control

4.1 Introduction

In Chapter 3, a plug-in resonator was presented and implemented on an AMB-

rotor system. An approximate model inversion was necessary to satisfy a stability

condition. It was noted that due to the nature of the approximations in the

methods presented, there were additional filter design considerations.

In this chapter, a more accurate inversion method is explored to improve re-

jection performance. It will be shown that the main cost of this inversion method

is in the number of preview steps required. A better structure to provide this

requirement is another plug-in internal model principle type controller, repeti-

tive control. To further improve performance of repetitive control, the peak filter

will be incorporated into the design. Experimental results on the system will be

presented.

4.2 Direct Inversion of Non-minimum Phase Zeros

The Zero Phase Error Controller (ZPEC) inversion is a classic approach to invert

non-minimum phase systems due to the benefits of phase inversion. However,

with unstable zeroes close to the unit circle, the magnitude response can be quite

high in high frequency. An FIR approximate inversion of the non-minimum phase

zeros, referred to as Direct Inversion (DI), was implemented in [CT14].
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Using the same factorization as (3.9), the Direct Inversion filter is defined as

FDI(z
−1) =

A(z−1)

z−dB+(z−1)
·BDI (4.1)

which inverts the stable portion and approximates the unstable zero inversion by

1

B−
=

[
1

[B−]∗

]∗
(4.2)

≈
[

1

[B−]∗

]∗∣∣∣∣
NDI

(4.3)

= BDI

where the ∗ denotes conjugation of the filter. The direct inversion of the unstable

zero produces an unstable IIR (4.2). The conjugate filter is stable (poles reflected

inside the unit circle). Conjugation is also equivalent to a reflection of the impulse

response across t = 0 in the time-domain. This produces a non-causal stable filter

with infinite impulse response. The IIR can be approximated sufficiently with an

NDI number of taps which require NDI preview steps for causality (4.3).

As a measure of accuracy of the inversion method, the product with the plant

model is shown in Figure 4.1. Compared to the previously utilized ZPEC, the

DI method yields a vastly more accurate magnitude response for the two non-

minimum phase systems. Recall, the X-plane systems are minimum phase and

thus can be fully inverted without approximation.

The cost of the DI filter is in the increased amount of preview steps required,

given by m = d+NDI for the system delay d and the filter order NDI . Compared

to the ZPEC requirement of d+nu, where nu is the number of unstable zeros, this

preview cost will be substantially higher. In the plug-in resonator formulation,

the preview step requirement was provided by lifting the peak filter to generate an

m-order internal model. As the lifting requirement gets larger, the internal model

become cumbersome and susceptible to numerical issues as the m−1 aliased peaks

begin to crowd the spectrum.
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Figure 4.1: Comparison of Plant Inversion Methods

4.3 Plug-in Repetitive Control

To make use of this more accurate inversion method, incorporation into the plug-

in repetitive control structure is proposed. The Prototype Repetitive Controller

(PRC) [TTC89] exhibits many of the same useful properties in stability and per-

formance as the plug-in resonator. Similarly, the repetitive controller is connected

as a plug-in module to a pre-closed feedback loop in Figure 4.2.

C1 P

z−N1

z−N2

Q Fzpec

e y

d

−
G

Crep−Q

Figure 4.2: Block Diagram of Prototype Repetitive Controller
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The internal model is generated by wrapping a positive feedback loop around

an integer delay block. The delay length Np =
1/Ts

ω
represents the disturbance

period in multiples of the sample time. This generates infinite control action

at primary disturbance period, as well as all integer multiples up to the Nyquist

frequency. Control generated at these higher harmonics can destabilize the system.

To provide robustness, a zero-phase low-pass filter

Q(z, z−1) = (.25z + .5 + .25z−1)nq (4.4)

is typically included to attenuate control signals past the cutoff frequency where

the order nq of the filter adjusts the cutoff. The symmetric coefficients determine

the sharpness of the corner inQ and can similarly be used to design the appropriate

filter. The delays in Figure 4.2 are then given by N1 = Np −m− nq and N2 = m

where m is the required preview steps to emulate depending on the inversion filter

method.

The benefits of the DI filter are first examined in the PRC formulation. Fig-

ure 4.3 compares the repetitive controller gains

Cr,Q =
Qz−Np

1−Qz−Np
(4.5)

where the low pass filter Q is designed to primarily satisfy the robust stability

criterion in the closed-loop system.

Though the positive delay feedback generates many harmonics of the primary

disturbance period, depending on the conservativeness of the low-pass filter, these

harmonics are attenuated. In primarily satisfying the robust stability criteria,

the magnitude amplification of the ZPEC inversion requires Q to be quite con-

servative and essentially attenuate all signals except the primary harmonic. The

DI inversion method produces a more favorable magnitude inversion and thus al-

lows the Q-filter order to be relaxed. The cutoff frequency is higher and more

harmonics are generated. Allowing the controller to generate more harmonics at
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Figure 4.3: Repetitive Controller Gains using Different Inversion Methods

higher amplitudes will positively effect the convergence and steady-state rejection

performance when using the DI algorithm.

4.3.1 Repetitive Control with Peak Filter

Yet, the use of the low-pass filter for robustness presents some shortcomings.

From Figure 4.3, even in the pass-band of Q, the expected infinite gains at the

harmonics of 200Hz are attenuated. Because the cutoff of Q is not ideal, the pass-

band gain is close to but not exactly unity. Stability must strictly be enforced,

yet no additional parameter other than the order of Q is available for design. The

bandwidth of each peak nor the gains are easily tuned but are at the mercy of

the design of Q. In short, the quality of the controller peaks cannot be directly

governed. To address this, higher-order repetitive control can be used to shape

the controller [Ste02,PDD08].

The block diagram in Figure 4.4 is proposed to take advantage of both the
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more accurate Direct Inversion method as well as to use peak filters in place of

the low pass filter.

C1 P

z−N1

z−N2

Lz FDI

e y

d

−
G

Crep−L

Figure 4.4: Block Diagram of Plug-In Repetitive Controller with Peak Filter

These peak filters were generated by first designing a series of 2nd-order notch

filters and inverting them.

H =

p∏
k=1

1− 2βk cosωkz
−1 + β2

kz
−2

1− 2ρk cosωkz−1 + ρ2
kz
−2

(4.6)

L = 1−H (4.7)

Filter L is an attractive alternative to Q in that it is 0 mostly everywhere, serving

the same purpose as Q to eliminate unwanted high-frequency harmonic control

components.

L(z−1) =


L = 1 if ω = ωk=1,2,...p

L ≈ 0 if ω 6= ωk

(4.8)

In other words, the feedback loop will generate the infinite gain integer harmonic

control effort and the designed peak filters turns the relevant harmonics on and off.

An added benefit of this filter design is to reduce the inter-harmonic amplification

common to PRC. The Bode sensitivity integral states that a reduction in closed-

loop sensitivity in some band, must be balanced by an equal amplification in
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another band. This so-called “Waterbed Effect” in PRC is a significant factor

since the notches generated are numerous and wide.

Design of parameters β and ρ provides direct control over the shape and quality

of the notches (and eventual peaks). β can be interpreted as the aggressiveness of

the notch. β = 1 will place the zeros on the unit circle resulting in infinite gains. It

can also be tuned to satisfy stability conditions on the closed-loop system. ρ < β

maintains the correct shape of the filter while their relative relationship

BWHz ≈
π(1− ρk)

2πTs
(4.9)

can be used to determine the -3dB bandwidth of each notch. The bandwidth of

each peak provides direct design over the robustness to uncertainty in frequency.

Thus, the number of harmonics, the aggressiveness (gain) and the bandwidth of

the control peak can all be designed independently to preserve stability of the

system while enhancing performance.

Figure 4.5 compares a set of L parameters and their subsequent control gains.

A set of narrower but taller peaks is useful when the disturbance frequency remains

constant. Narrower peaks will disturb the stability less while the taller peaks allow

higher control gains. Another shorter yet wider set is more forgiving of frequency

mismatches, useful in varying or uncertain rotor speed conditions. Note that even

within each set, each peak can be designed independently providing the designer

more freedom to make appropriate choices given the makeup of their disturbance.

For the disturbances in the MBC 500 Turbo, it was determined that five har-

monics of the rotor speed are significant thus the filters were designed to include

only those that were relevant. Higher harmonics were also found to contribute less.

In one set, the first three harmonics have infinite gains while the 4th and 5th har-

monics are reduced to prevent unnecessary inter-harmonic amplification. When

the rotor speed is constant, these aggressive parameters can be used for better
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Figure 4.5: Repetitive-L Controller Gains - Different Peak Filter Parameters

rejection. For cases near stability conditions or if the rotor is changing speeds, the

controller can be designed to be more forgiving. These gains are reduced to allow

the peaks to be wider and absorb more uncertainty in the disturbance frequency.

4.3.2 Stability and Sensitivity Analysis

The robust stability analysis is similar to that presented in Chapter 3 and thus

only the results are presented here. The complimentary sensitivity function can

be found from (3.19) and the stability condition verified.

In Figures 4.6 and 4.7, the robust stability criterion is investigated for the

repetitive controllers designed. For comparison, the results of LQGi are also in-

cluded. The three versions of repetitive control are presented; RepetQ-ZPEC,

RepetQ-DI, and RepetL-DI. Firstly, it is clear that all formulations are robustly

stable. Using this robust stability condition as the primary design tool, the filters

were allowed to be as aggressive as possible without violating this condition.
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Figure 4.6: Robust Stability of Plug-In Repetitive Controllers - X-axis
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Figure 4.7: Robust Stability of Plug-In Repetitive Controllers - Y-axis
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In the X-plane systems in Figure 4.6, both Q-filter methods produce the same

result and thus their results overlap. The RepetL-DI disturbs the stability of

the closed-loop system less and only narrow peaks are generated. In the Y-plane

systems in Figure 4.7, the results are similar. We note the tight margins in the

RepetQ methods. The amplifications in the pass-band of Q requires conservative

design which effect the expected performance seen in the sensitivity analysis.
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Figure 4.8: Sensitivity Analysis of Plug-In Repetitive Controllers

The closed-loop sensitivity functions of (3.20) are examined in Figure 4.8.

The decrease in controller gains by the Q-filter results in a reduction in sensi-

tivity to disturbances at the harmonic frequencies. Also evident are the regions

of inter-harmonic amplification that occurs in both Repet-Q formulations. Any

performance gains made by reducing the disturbances could be diminished by the

increase in signal components in these amplified bands. The use of the L improves

both the aggressiveness of the harmonics as well as reduces the Waterbed Effect.
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4.3.3 Fractional Delay Filter

The internal model in repetitive control is generated by integer delays. In practical

rotor-bearing applications, the rotor speed is a continuous spectrum and will often

be a non-integer multiple of the sample time. Mismatches between the integer

delay lengths and the true disturbance period cause loss in rejection performance

[THD07]. For these time-varying cases, the delay lengths must be updated on-line

to provide proper compensation. One approach calculates the desired delay length

and rounds to the nearest integer [TQN98]. Of course, the problem remains that

when the disturbance period is between integer values, performance will suffer.

Some researchers have made use of fractional delay filters which approximate the

non-integer portion of the delay as an FIR filter in order to capture inter-sample

behavior [YH00,WWZ07].

The Lagrange interpolator provides a simple implementation method since the

filter coefficients can be given in closed-form [LVK96]. Linear interpolation was

found to provide adequate response in the AMB-rotor operating range.

The required delay can be calculated from

Np =
1/Ts

ω

= bNpc+ d

(4.10)

where the integer delay is used to update the integer delay block the non-integer

portion is used in the linear interpolation fractional delay FIR filter given by

X = (1− d) + dz−1 (4.11)

4.4 Experimental Results

In the experimental results presented, the designed controllers were applied to the

AMB-rotor system to reject the sinusoidal disturbance caused by rotor unbalance.

Both constant and time-varying rotor speed conditions are presented.
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Figure 4.9: Rotor Disp. - Repetitive Control Connected at t = 20s

4.4.1 Control during Constant Rotor Velocity

In the time trace of Figure 4.9, the rotor is spun to a desired speed (200Hz) under

feedback control only. The repetitive controller is connected at t = 20s and the

resulting transient performance can be observed. Disturbance rejection occurs

quickly as the displacements of the four systems reach their steady state value in

less than 0.1s in all four axes.

Both Q-filter formulations converge much faster than Repet-L, also seen in

Table 4.1. This is due to the width of each peak generated in the controllers

shown in Figures 4.3 and 4.5. The peaks of Repet-L are designed to be much

more narrow to improve steady-state rejection performance of these controllers.

The L-filter is designed to generate much higher control authority at the interested

frequencies while simultaneously reducing inter-harmonic amplification.

Steady-state rejection performance is quantified through the RMS error in

Table 4.2. The displacements are shown in the decoupled transformed coordinates.
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Settling XT XR YT YT

Time ∆t[s] ∆t[s] ∆t[s] ∆t[s]

Repet-Q-ZPEC 0.02 0.02 0.01 0.02

Repet-Q-DI 0.01 0.02 0.03 0.02

Repet-L-DI 0.25 0.31 0.25 0.23

Table 4.1: Convergence Time - Plug-in Repetitive Controllers

LQGi Repet-Q Repet-Q Repet-L Levitate

only ZPEC Dir.Inv Dir.Inv Only

XT [µm] 5.71 0.75 0.74 0.61 0.59

XR [µrad] 1509.6 139.13 136.52 95.65 88.25

YT [µm] 11.20 2.18 1.19 0.90 0.84

YR [µrad] 2770.3 289.10 168.83 132.49 111.76

Table 4.2: RMS of Displacement - Plug-In Repetitive Controllers

The translational systems are measured in microns while the rotational systems

are in micro-radians. Column ‘LQGi’ represents the stable levitation of the rotor

during constant rotational velocity when only LQGi is used. The RMS is clearly

larger due to the strong disturbance caused by rotor unbalance. Implementing

the plug-in repetitive controllers show large reductions indicating the rotor is

spinning tighter about its geometric axis and appropriate rejection is taking place.

Since β = 1 in the L-filter design, there is increased rejection performance. Even

between the two Q-filter methods, using the Direct Inversion method allows the

low-pass filter to be less restrictive and thus enjoys better performance as well.

An additional rotor condition measurements is included for comparison. Without

any angular velocity, ‘Levitate Only’ represents a best-case in terms of disturbance

rejection.
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Spectral analysis over this same interval is compared in Figure 4.10. When

only the LQGi controller is used, the main disturbances represent the unbalance

due to rotor unbalance and the first four overtones. In the X-plane systems,

both Q-filter methods yield the same performance since both inversions will yield

the same filter. Using the peak filter increases the rejection performance and

completely removes the disturbance to the noise floor.
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Figure 4.10: Spectrum - Plug-In Repetitive Controllers

In the Y-plane systems, the consequences of each controller strategy is more

apparent. The DI filter allows the Q-filter to be less restrictive, thus removing

more of the disturbances through the spectrum. Yet, both Repet-Q methods

suffer from inter-harmonic amplification as indicated by the ripples in the spectral

analysis. Using both L and DI filters produce the best results in both narrowly

removing the disturbances without amplifying any unwanted bands.
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4.4.2 Control during Time-Varying Rotor Velocity

These control strategies can be further examined under time-varying rotor speed

conditions. The speed trajectory in Figure 4.11 was applied to the system for

each of the repetitive control versions. The plug-in controllers are active during

the entire duration and the delay lengths adapted using the encoder measurement

of the system.

0 5 10 15 20 25
0

50

100

150

200

Rotor Speed

S
pe

ed
 [H

z]

elapsed time [sec]

Figure 4.11: Applied Rotor Speed Profile

The Repet-Q controllers are unchanged as they were designed at the limit

of the stability bounds. Considering L-filter design, if the bandwidth of each

peak is not sufficiently wide, the controller will not be robust to mismatches in

rotor speed. Taking advantage of the design freedoms provided by the peak filter

formulation, a more forgiving parameter set can be determined.

In the rotor speed profile applied in Figure 4.11, the displacements in the speed

up-to-constant speed region is highlighted in Figure 4.12. The two parameter

sets of the L-filter are switched at t = 5s when the rotor speed transitions from

ramping to constant. A simple first-order rate limiter on the parameters reduces

any instability caused by a sudden change in control signal.

Compared to LQGi only, all repetitive controllers are capable of tracking the

rotor speed and reducing the runout effects. As expected, Repet-L outperforms

the other two methods over the course of the entire run. The RMS of these
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Figure 4.12: Rotor Disp. - Ramp-up Region (0 ≤ t ≤ 15) of Figure 4.11

displacements are organized again in Table 4.3.

LQGi Repet-Q Repet-Q Repet-L

only ZPEC Dir.Inv Dir.Inv

XT [µm] 5.29 0.74 0.74 0.66

XR [µrad] 1387.3 137.99 137.4 112.25

YT [µm] 11.09 2.07 1.36 1.16

YR [µrad] 2668.2 270.82 186.11 162.83

Table 4.3: RMS of Displacement - Time-Varying Speed

4.5 Summary

In this chapter a plug-in repetitive controller with peak filter and direct inver-

sion filter was presented and implemented on an AMB-rotor system. This was
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compared against a more typical repetitive control strategy as well as the Q-filter

with direct inversion method. The inclusion of repetitive control shows marked

improvement in reducing the effects of rotor unbalance when compared to sta-

bilizing feedback controller only. Due to the superior design freedoms and more

direct control over controller properties, Repet-L provides more disturbance re-

jection over the two Repet-Q methods in both constant and time-varying speed

conditions.
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CHAPTER 5

Multivariable Plug-in Resonator

5.1 Introduction

The underlying approach in the previous chapters was based on a decoupling as-

sumption which allowed for single-input single-output (SISO) design and analysis.

Given that the AMB-rotor system is naturally a multi-input multi-output (MIMO)

system, a more accurate model based on the coupled coordinate is examined.

In this chapter, the higher order coupled models of the system are used to

perform multivariable control design. A periodic trajectory will be applied to the

rotor ends while the disturbance due to rotor unbalance is minimized. A multi-

variable version of the plug-in resonator will implemented. The plant inversion

used previously to satisfy a stability condition will be accomplished through a

simple method. The controller will be implemented on the system and results

presented.

5.2 Modeling

In Chapter 2, system ID data collected was manipulated using a geometric argu-

ment to produce four decoupled SISO plant models representing the translation

and rotational of the rotor in the X and Y-planes. This was done to simplify the

design and analysis process. To regulate each rotor end within the center of the

AMB, it is also possible to control the system in the original coordinate system.
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Using the same collected data, the inter-planar decoupling assumption is re-

moved and higher order 2x2 multivariable models are developed. Figures 5.1 to 5.4

show the results of the multivariable model fit onto the X-plane and Y-plane data.

The resonance mode is captured in these models as well as the cross-channel be-

havior.
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Figure 5.1: Model Fit of X-Plane Raw Coordinates (Magnitude)
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Figure 5.2: Model Fit of X-Plane Raw Coordinates (Phase)
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Figure 5.3: Model Fit of Y-Plane Raw Coordinates (Magnitude)
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Figure 5.4: Model Fit of Y-Plane Raw Coordinates (Phase)

Many of the SISO model properties apply to the MIMO systems: the open-

loop requires a robust stabilizing controller and the Y-plane system also contain

unstable zeros. Following the same procedure, a multivariable LQGi feedback

controller was used to stabilize the system.

5.3 Multivariable Plug-in Resonator

The plug-in harmonic resonator can be easily generalized as a MIMO formulation.

As a plug-in to the pre-stabilized system G, the block diagram can be reorganized

into Figure 5.5.
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Figure 5.5: Components of Harmonic Resonator in MIMO

Discussion of the design of the internal model and peak filters from Chapter 3

are directly applicable and will be omitted here in the interest of brevity.

5.3.1 Discrete Approximate Inversion for Stability

The motivation for the F filter still applies from the conservative Nyquist stability

argument of (3.7). Rewritten in matrix notation as

‖L(I − FG))‖∞ < 1 (5.1)

where the internal model filter L here is a diagonal transfer function matrix where

` are the SISO inverted notch filters. The MIMO peak filter easily satisfies (5.1)

by design, and the stability criterion can be reduced to a similar filter design

problem

‖I − FG‖∞ < 1 (5.2)

In the SISO approach, this was satisfied through plant inversion methods like

ZPEC. In the multivariable case, these methods become complex to apply. Thus,

a more simple and straightforward approach of finding a filter such that

F (ejωi) = G−1(ejωi) (5.3)

is applied since it is only necessary at those ejωi .

For the w(k) frequencies the peak filter is designed at, the plant model can

be evaluated to generate complex matrices. A matrix inversion will provide then
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Figure 5.6: Discrete Point Multivariable Inversion for X-plane Model

produce the g(k) set of of complex “coordinates” the inversion filter must pass

through. This simply becomes a filter design problem for each of the fmn shown in

Figure 5.5. The search is conducted over FIR filters to produce a stable inversion

where the identified filter coefficients will minimize a weighted sum of the fit error

between the data g and filter B

min
b

n∑
k=1

wt(k)‖g(k)−B(w(k))‖2 (5.4)

The weighting vector wt(k) is an additional design tool to allow tolerance in the

fit to produce well-behaved filters over the spectrum.

The accuracy of the discrete point-wise inversion is seen in Figures 5.6 and 5.7

to satisfy (5.3) within tolerance. At the prescribed frequencies, the magnitude

response is approximately the identity matrix. The peak filter in the internal

model is designed to track a 20Hz sinusoidal profile while rejecting the rotor

unbalance at 200Hz and a few of its harmonics.
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Figure 5.7: Discrete Point Multivariable Inversion for Y-plane Model

5.4 Experimental Results

The results presented demonstrate the efficacy of the multivariable approach in

tracking a sinusoidal profile in each of the rotor endpoints while simultaneously

rejecting the radial vibration due to rotor unbalance. The same conditions are

applied for a SISO design on the MBC 500 Turbo and the results are compared.

5.4.1 Control during Constant Rotor Velocity

The rotor was spun up to the desired speed (200Hz) before the reference trajectory

was applied. The trajectory applied to each rotor end is a sinusoid with amplitude

20µm. The X-coordinate and Y-coordinate are pi
2

radians out of phase. This

produces the circular trajectory of diameter 40µm.

The improvements in tracking performance for both rotor ends is evident in

the time traces shown in Figure 5.8. Under LQGi control, the MIMO controller
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Figure 5.8: Rotor Disp. - Rotor-End View in Steady-State

outperforms the SISO version. This is most likely attributed to the coordinate

transformation performed in the decoupling process. Recall that the SISO systems

are interested in the geometric center of the rotor. The reference signal also

undergoes the same coordinate transformation, and by this metric, the geometric

centers appear well regulated. However, this allows the rotor ends to traverse a

more exaggerated trajectory. Once the resonator is connected, even in the SISO

case, the disturbance and tracking error are driven down.

The RMS of the error is organized in Table 5.1 and show the improvement in-

dicated by the time traces. In both approaches, the incorporation of the resonator

drives the error down to equivalent levels.

The spectrum of the error signal is also analyzed in Figures 5.9 and 5.10.

The plug-in resonator eliminates error due to both tracking and disturbances.

The MIMO version maintains all the stability and sensitivity benefits the SISO

formulation has. The spectrum is narrowly effected with minimal amplification
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RMS X1 Y1 X2 Y2

Error [µm] [µm] [µm] [µm]

SISO-LQGi 19.32 18.52 10.58 34.96

MIMO-LQGi 14.99 17.02 20.03 30.00

SISO-Reson 0.97 1.13 0.90 1.42

MIMO-Reson 0.89 1.13 0.97 1.44

Table 5.1: RMS of Error - Plug-in Resonator SISO vs. MIMO

in the other bands.

Because the inversion applied here is inherently discrete, it would be difficult

to operate when the rotor speed is changing. The stability condition would not

be satisfied for the other frequencies. Further work would be required to make it

applicable for time-varying rotor speed cases.

5.5 Summary

In this chapter, the plug-in resonator was extended to the multivariable case.

Much of the derivation was similar including the benefits of the peak filter sat-

isfying the sufficient stability condition most everywhere. The model inversion

was performed using the strict interpretation of the stability condition which only

requires the inversion to hold at discrete points. An FIR filter was used to inter-

polate the resulting inverted points. A profile tracking component was included in

the experiments to illustrate the benefits of designing the controller in the coupled

domain.
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Figure 5.9: Spectrum - MIMO Plug-in Resonator
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Figure 5.10: Spectrum - SISO Plug-in Resonator
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CHAPTER 6

Plug-In Resonator with Adaptive Filter

for Complex Disturbances

6.1 Introduction

In the work presented thus far, the disturbance has been sinusoidal stemming

from rotor unbalance. The plug-in resonator and repetitive control strategies have

been well-suited for disturbances of this type. However, if the disturbance were

more complex in nature and contained broadband elements, the internal model

approach would no longer be effective. This chapter presents some collaborative

work with Nolan Tsuchiya, from the Beam Control Laboratory at UCLA, aimed

at rejecting complex disturbances on the AMB-rotor system.

Aside from the disturbance characterization, the remaining design consider-

ations remain unchanged. Stability remains of critical importance. In a dual

control strategy, a receding-horizon adaptive controller is designed for broadband

disturbance rejection [TGV13,TGT13]. The peak resonator is utilized as a plug-in

module to this loop. This chapter will describe the control structure and present

experimental results on the system.

6.2 Control Design

The disturbances can be separated into a sinusoidal component and a broadband

sequence. The harmonic components are a result of rotor unbalance, which gen-
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erates disturbances at the rotor speed and a few of its harmonics. The broadband

noise is produced through a shaker installed under the AMB-rotor system.

The Resonator and Receding-Horizon controllers are implemented in the block

diagram structure shown in Figure 6.1. This configuration allows the pre-stabilized

closed-loop system, G = PC1

1+PC1
to remain relatively undisturbed. The feedback

controller C1 (e.g. LQG with integral action) is used to stabilize the system while

the additional controllers enhance the performance in a narrow capacity.

Cr G

Ĝ

FcopyU

H

z−hF

e vres v

w

−

y−

ŷ

vadap

ŵ

F

Adaptive

Controller

Adaptive Filter

Figure 6.1: Block Diagram of Resonator and Adaptive Controllers Structure

For an accurate plant model (Ĝ = G), it can be shown from Figure 6.1 that

the equivalent transfer function the resonator sees will reduce to Ĝ. This makes

designing the plug-in resonator independent of the adaptive filter. Furthermore,

Ĝ = G also implies that ŵ = w and thus the adaptive filter also can be designed

independently of the internal model controller.

e = − 1

1 + CrĜ
· (1 + UFĜ)w (6.1)
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This result makes this structure quite attractive in rejecting complex distur-

bances with both deterministic and stochastic components. The resonator can

be designed to eliminate the harmonic components while maintaining stability of

the closed-loop system. Simultaneously, the adaptive controller can focus on the

broadband disturbances to improve the performance over any one controller alone.

The plug-in resonator, described in Chapter 3 is implemented and discussion

will be omitted here. It was designed to reject the first five harmonics of the rotor

speed.

6.2.1 Receding-Horizon Adaptive Control for Broadband Disturbance

Rejection

The receding-horizon adaptive controller uses a model of the plant to identify the

disturbance and generate a control command by adapting filter F to minimize the

variance of the error e due to ŵ and subject to the quadratic cost defined as

Jh(x̂(t), ŵh(t), vh(t)) =
h∑
k=1

[
eT (t+ k)Q1e(t+ k) + x̂T (t+ k)Q2x̂(t+ k)

]
+

h−1∑
k=0

[
uT (t+ k)Ruu(t+ k)

]
+ x̂T (t+ h)Q3x̂(t+ h)

(6.2)

to weight the error, estimates states, and control effort. This cost is taken over

a fixed-length horizon h, where the vectors wh(t) and vh(t) are predicted distur-

bances and control commands, respectively, h-steps into the future. The weighting

matrix Ru is used penalize control effort in the frequency domain. Essentially, it

allows the control authority to be strong in the lower frequencies where most of the

disturbances reside. Simultaneously, the higher frequency components of vadap are

more heavily penalized, reducing the excitation of high-frequency plant modeling

errors and nonlinearities which can degrade performance and cause instability in

extreme cases.
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The receding-horizon control command is a linear function of the estimated

states and estimated disturbance

vadap(t) = UFŵ(t) (6.3)

= −Kxx̂(t)−Hwŵh(t) (6.4)

which minimizes the performance index, where Kx and Hw are defined in terms

of the state-space matrices and the weighting matrices in (6.2).

For closed-loop stability, from Figure 6.1, U must be stable:

U(z) = (Â− B̂Kx, B̂,−Kx, I) (6.5)

This can be guaranteed by choosing the weighting matrices in (6.2) such that the

resulting gain matrix Kx makes Â− B̂Kx stable. One way to guarantee stability

of Â− B̂Kx is to then choose the weighting matrix Q3 in (6.2) such that

ĈTQ1Ĉ +Q2 +Q3 = P (6.6)

where the symmetric matrix P is a stabilizing solution to the algebraic Riccati

equation associated with the estimated disturbance and (6.2).

6.3 Experimental Results

In the following experimental results, the rotor is spun to 200Hz to generate the

harmonic disturbances. The shaker also connected to generate a broadband vi-

bration between 50-100Hz. The results of the experiment are represented by the

translational system in the X-plane and the rotational system of the Y-plane.

These were chosen as illustrative examples of the full data set and reduce redun-

dant display of results.

To study both transient and steady-state performances, only the feedback

controller is used to bring the rotor to the desired speed. At time t = 20s,
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Figure 6.2: Rotor Disp. - Resonator Connected at t = 20s and Adaptive

Filter Connected at t = 30s

the resonator is first connected to eliminate the harmonic components. Then at

t = 30s, the adaptive filter is connected. The controllers connected in this order

allows the adaptive filter to learn mostly the broadband disturbance.

From Figure 6.2, when the resonator is connected, the XT time trace shows

a large reduction in amplitude fairly quickly indicating strong rejection. The

broadband shaking is also apparent from jagged appearance. When the adaptive

filter is connected, no change in the displacement is visible for a short duration

while the filter is learning the disturbance. Once it does, it reaches its steady-state

levels quickly.

In the YR time trace, the resonator performs as expected by reducing much

of the harmonic disturbance. However, the shaker disturbance does not seem to

contribute much this axis and when the adaptive filter is connected, there is clear

and evident loss in rejection performance. The spectrum of the measured outputs
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Figure 6.3: Spectrum - Translational Displacement Systems

indicate amplification of the spectrum by the adaptive filter in Figure 6.4.

From Figures 6.3 and 6.4, the disturbances can be seen via the spectrum of

the measured output. When under LQGi control only, the rotor remains under

stable operation though disturbance rejection is minimal and thus their spectral

components are distinctly visible. The Translational systems shown in Figure 6.3,

exhibit the full shaker disturbance. When using the resonator only, this band

between 50-100Hz is unaffected. Connecting the adaptive filter reduces this dis-

turbance roughly 20dB. In the Rotational systems shown in Figure 6.4, we note

that the shaker disturbance do not contribute much. And as indicated by the time

trace, once the adaptive filter is connected, portions of the spectrum are amplified

above the LQGi output including near the rotor speed harmonics.

The RMS of the output error is tabulated in Table 6.1 for all the four systems.

In the XT system, as well as the YT system, the best result is had when both

controller are used together to narrowly target each disturbance. In the Rotational

72



0 500 1000 1500 2000

−200

−150

−100

−50

0

[d
B

]

XR − Displacement

 

 
LQGi
LQGi+Reson

0 500 1000 1500 2000

−200

−150

−100

−50

0

Freq [Hz]

[d
B

]

XR − Displacement

 

 
LQGi
All

0 500 1000 1500 2000

−200

−150

−100

−50

0
YR − Displacement

 

 
LQGi
LQGi+Reson

0 500 1000 1500 2000

−200

−150

−100

−50

0

Freq [Hz]

YR − Displacement

 

 
LQGi
All

Figure 6.4: Spectrum - Rotational Displacement Systems

systems, the RMS performance when using both controllers is worse than when

only the Resonator is used due to the amplification caused by the aggressive

adaptive filter. This is most likely due to the over-parameterization of the adaptive

filter order for a relatively minimal disturbance.

LQGi LQGi+Reson LQGi+Reson+Adapt

XT [µm] 6.57 3.15 0.97

XR [µrad] 1498.54 108.71 155.68

YT [µm] 13.24 7.26 4.85

YR [µrad] 2679.28 201.06 279.83

Table 6.1: RMS of Displacement - Plug-In Resonator with Adaptive Filter
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6.4 Summary

In this chapter the plug-in resonator was combined with a receding-horizon adap-

tive controller to reject both harmonic and broadband disturbances in an AMB-

rotor system. The controllers were applied in a plug-in architecture to minimally

effect the stability of the underlying stabilizing controller while also not affecting

the other control scheme. Results presented show superior rejection over feedback

control, though certain cases showed loss of rejection performance.
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CHAPTER 7

Conclusion

This dissertation presented the use of a plug-in resonator for harmonic disturbance

rejection on an AMB-rotor system. Due to the specific design consideration, the

plug-in resonator is an appropriate candidate for control. The plug-in structure

provides robustly stable design and implementation while also increasing the rejec-

tion performance of the disturbance. The formulation of the controller motivated

a model inversion for stability, which required some approximate inversion tech-

niques due to the non-minimum phase zeros present in a couple of the models. A

few traditional approaches were applied.

The shortcomings identified in the traditional approximate inversion meth-

ods presented an opportunity to explore other more accurate inversion methods.

An FIR approximation of the direct inversion of the unstable zero was found to

produce superior inversions. The high non-causal requirement was provided by

the repetitive control structure. The standard low-pass filter for robust stability

in repetitive control make the controller much too conservative. It was further

improved by incorporating the peak filters from the plug-in resonator to produce

better rejection performance.

Furthermore, the inter-planar decoupling assumption was removed to extend

the plug-in resonator into a MIMO formulation. The more accurate plant model,

which accounted for the resonant mode of the system as well as the cross-coupling,

was better able to track a profile with the rotor ends while simultaneously rejecting

the harmonic disturbances from rotor unbalance.
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Lastly, a complex disturbance was rejected using an adaptive filter and the res-

onator in tandem. The controllers were arranged such that each controller could

be designed independently on the pre-stabilized system. A shaker was used to em-

ulate a broadband disturbance. When the complex disturbance existed, the dual

controller method showed superior rejection performance. When the shaker did

not contribute disturbance, the adaptive filter was over-parameterized and thus

amplified other regions of the spectrum which resulted in a loss of performance.
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