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ARTICLE OPEN

Effects of context on the neural correlates of attention in a
college classroom
Jennie K. Grammer 1✉, Keye Xu1 and Agatha Lenartowicz 2

Activities that are effective in supporting attention have the potential to increase opportunities for student learning. However, little
is known about the impact of instructional contexts on student attention, in part due to limitations in our ability to measure
attention in the classroom, typically based on behavioral observation and self-reports. To address this issue, we used portable
electroencephalography (EEG) measurements of neural oscillations to evaluate the effects of learning context on student attention.
The results suggest that attention, as indexed by lower alpha power as well as higher beta and gamma power, is stronger during
student-initiated activities than teacher-initiated activities. EEG data revealed different patterns in student attention as compared to
standardized coding of attentional behaviors. We conclude that EEG signals offer a powerful tool for understanding differences in
student cognitive states as a function of classroom instruction that are unobservable from behavior alone.
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INTRODUCTION
Online measures of student attention have long been of interest
to educators seeking to promote student learning1,2. Under-
standing individual differences in student attention and the
classroom activities that can support engagement has important
implications for academic success3–5. However, field studies of
attention in the real-world setting of the classroom are limited.
This is in large part because measuring attention in real-world
settings is challenging. Methods commonly employed to assess
attention during learning— including self-report6–8, behavioral
observation1,9, and assessment of learning-related activities and
outcomes10—are each indirect and cannot pick up the dynamic
changes in student engagement. As a result, these tools are
limited in the extent to which they capture individual differences
and fluctuations in attention during instruction11. There exists a
need, therefore, for new methodology for objective real-time
assessment of attention in the classroom setting.
Advances in portable EEG technology have made it possible to

collect high-quality data in real-world settings. These methods
have recently been used to explore student’s cognitive processes
in the classroom12,13. In the current study, we leverage the high
signal-to-noise ratio, strong mechanistic bases, and clear func-
tional association of “alpha” range (8–12 Hz) neural oscillations
with attention system functionality14–16, to quantify attentional
engagement of undergraduate students. Decreases in alpha
power (i.e., squared magnitude of the oscillations) have been
extensively associated with engagement of attentional circuitry17,
and increased perception, visual attention and encoding18. Here,
we measure alpha power in EEG data collected from multiple
participants concurrently engaged in classroom instruction during
a college lecture across four types of instructional context typical
of college classrooms (instructor initiated: lecture, video watching;
student initiated: group work, and independent work) and
compare these data with video-based observer ratings of student
attentiveness. We hypothesized that passive activities (lecture and
video watching) would be less engaging, and thus should show
greater indices of inattention, than interactive activities (group

and independent work). In doing so, we demonstrate the benefits
of EEG methods for assessing attention in real-world settings,
which provide access to understanding cognitive processes that
are difficult for teachers to observe directly.

RESULTS
EEG as a function of instructional context
Student attention during lectures, as indexed by normalized alpha
power, varied significantly as a function of instructional activity type
(χ2(3)= 41.39, p < 0.001). Alpha power over the occipital cortex (see
Fig. 1a) was greatest, supporting the inference that students were
least attentive, during video watching (see Fig. 1b). Planned
contrasts revealed that alpha power was significantly higher,
consistent with lower student attention, in teacher-initiated activities
(lecture and video watching) than in student-initiated activities
(group work and independent work), b=−0.43, t (55)=−6.32, p <
0.001, r= 0.65. Students were also found to be significantly more
disengaged while watching the video (MVideo= 2.96) than when
listening to the lecture (MLecture= 2.17, b=−0.41, t(55)=−4.47, p <
0.001, r= 0.52), whereas no differences were observed between
student-driven group work (MGroup= 1.78) and independent work
(MIndependent= 1.80, b= 0.01, t(55)= 0.14, p= 0.89, r= 0.02).
Widely cited anecdotal reports indicate that student attention is

limited to 10–15min, changing dynamically and increasing during
activity transitions7,11. We examined this claim by comparing
alpha power across activities for the 2min at the start versus the
end of each 10min-activity. Alpha power was significantly lower
during the starting period (MStart= 2.08) of the activity then the
ending period of each activity (Mend= 2.20), χ2(1)= 7.81, p=
0.005, and showed a significant interaction effect with activity
type, χ2(3)= 14.93, p= 0.002. Further comparisons indicated that
alpha was significantly lower in the starting 2min than the ending
2min during the independent work only, b=−0.43, t=−3.72,
p < 0.001, r= 0.21, suggesting that time-related differences in
student attention only occurred when students finished work
independently.
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Student behavior
We also compared student attention quantified by observer ratings,
the dominant metric used to examine attention in real-world
settings. As seen in EEG data, observational data revealed a
significant effect of activity type on students’ inattentiveness,
χ2(3)= 9.30, p < 0.05. Consistent with neural measures, students
were rated as showing marginally higher level of inattentiveness in
video watching (MVideo= 17%) compared to lecture (MLecture= 2%,
b=−0.07, t(41)=−1.96, p= 0.06, r= 0.29). In contrast to neural
measures, there were no observable differences in teacher-initiated
relative to student-initiated activities (b=−0.02, t(41)=−0.71,
p= 0.48, r= 0.11), and attention was rated as lower during the
group (MGroup= 22%) relative to independent work
(MIndependent= 6%, b= 0.08, t(41)= 2.28, p= 0.03, r= 0.34).

DISCUSSION
In the current study, we directly linked classroom experience to
brain function to examine the ways in which classroom experience
impacts student attention. Neural measures of attention differed
significantly across instructional activities, revealing that attention
was highest during student-initiated activities, followed by lecture.
Despite student’s preference for videos incorporated in classroom
lecture, our data also suggest that this type of classroom activity
provides opportunities for disengagement that could have
implications for learning.

Oscillatory EEG signals recorded over visual cortex are regarded
as one of the most stable of human oscillatory patterns and have
been associated with attentional processes18. Extensive evidence
indicates that increases in alpha power are associated with
disengagement of attention14,18 and weakened alpha modulation
has been linked to ADHD16,19. The use of alpha signal as an index
of attention has been further validated in concurrent EEG-fMRI16,20

studies, that have linked this signal to occipital, thalamic and
fronto-parietal activation, all substrates supporting visual attention.
It is notable, that alpha power also increases any time that visual
sensory input decreases, such as when the eyes are closed or when
auditory inputs dominate14,18. This alternate explanation is unlikely
in the current study, however, because light levels were compar-
able, and eyes were open across all conditions. Arguably visual
stimulation was elevated for video presentation, which showed the
highest rather than the lowest alpha power. Furthermore,
supplemental analyses (c.f., SI) additionally reveal that teacher-
initiated activities also increased theta-band (4–7 Hz) power and
decreased both beta (13–20 Hz) and gamma (30–50 Hz) power,
consistent with a neural shift from higher to lower oscillations,
typical of transitions to lower wakefulness21,22. This offers
convergent evidence for the interpretation of the results as
consistent with a shift in visual attention. However, we note that
the current approach would require further study in learning
context dominated by auditory content, as alpha modulation in
auditory attention has been less consistently assessed18.

Fig. 1 Effects of instructional activities on student attention as indexed by normalized alpha power and observer rating. a Topographic
maps for alpha power revealed that alpha power was higher during lecture and video watching and had a posterior scalp distribution.
b Student attention was measured as mean normalized alpha power for each instructional activity, with error bars representing 95% confident
interval (calculated by bootstrapped standard error). c Student attention was rated by trained observers as the proportion of inattentive
intervals over all codable intervals in each activity, with error bars representing 95% confident interval (calculated by bootstrapped standard
error). Same planned contrasts were performed for measures of alpha power and observer rating portrayed in b and c, *p < 0.05, **p < 0.01,
***p < 0.001.
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Broadly, the goal of this work is to help teachers better
understand the behavioral manifestations of attention in the
classroom, and this investigation represents a first step in our
efforts to examine the feasibility of using EEG to examine
unobservable cognitive states in naturalistic classroom settings.
Notably, neural data revealed a different, more nuanced story than
was provided by behavioral coding alone. This direct contrast was
particularly apparent in divergent conclusions drawn from
behavioral ratings versus EEG data during lecture versus group
work. Students were more frequently observed looking away
during group work than during lecture, contributing to behavioral
ratings identifying the former as more inattentive. However, EEG
data suggested the opposite conclusion, which may indicate that
these instances during group work might be periods of attentional
engagement instead of distraction.
Few studies have examined EEG in real-world classroom

settings and, of those, fewer still have linked aspects of instruction
to student’s cognitive states12,23 and student learning23,24. It is
important to note that some results we report here—namely that
alpha power was greatest during video viewing—differ from those
found in two similar investigations13,25. Although the reasons for
this divergent pattern of findings are unclear, it is likely that
differences in EEG methodology and in the nature of experimen-
tally manipulated instruction were contributing factors. In terms of
methods, in contrast to other recent studies involving classroom-
based EEG13,25, our EEG measures do not include inter-brain
synchrony. Issues of data loss and data quality have emerged as a
key limitation and concern in real-world neuroscientific research26.
In contrast to previous studies, in this investigation we used
research-grade EEG equipment resulting in limited loss across
conditions, which could have impacted our results. In addition, the
instructional activities were standardized and materials—includ-
ing the video and lesson content—were drawn directly from
existing undergraduate lectures. We suspect that differences in
instructional materials, content, and duration of lessons play an
important role in student engagement and see this as a rich area
for future research. More research is also needed to understand
how neural measures of attention relate to student outcomes.
Similarly, convergent measures of student attention—including
self-report—would further clarify the ways in which EEG measures
relate to behavior.
Although we were unable to counterbalance activity type and

observed students in only one session in this investigation,
notably, activities where neural measures of attention were
highest occurred during the last half of the lessons, suggesting
that students growing bored or fatigued across activities did not
account for the patterns observed. These results also highlight
that interpretation of behavioral cues (e.g., looking away) may be
more nuanced than previously reported1. Furthermore, behavioral
observations were more subjective and error prone than the EEG
metrics, suggesting that observations yield less reliable measure-
ment. This provides evidence that the behavioral cues relied on to
evaluate student attention—which are limited to gaze and overt
motor movements—may be less sensitive to covert processes
associated with attention. Through years of experience in school,
students are socialized in behaviors that reflect positive
approaches to learning, such as making eye contact, potentially
resulting in inaccurate perceptions of student engagement on the
part of the instructor. Given the challenges associated with using
behavioral and report measures of attention2, these results are
particularly promising for understanding cognitive processes that
are difficult to observe directly in the real-world.
In conclusion, leveraging portable EEG neural measures to

examine attention in naturalistic settings, we have not only
demonstrated differences in attention as a function of classroom
activity, but we have also observed individual differences in
attention across students concurrently experiencing the same
lessons. This work contributes to a growing body of research

demonstrating the feasibility of using EEG to examine the covert
processes of attention in the classroom setting using naturalistic
and task-based12 paradigms. Further research on the types of
activities that best support attention for individual learners will
allow us to make evidence-based suggestions to teachers about
how to structure classroom instruction.

METHODS
Sample
A diverse group of 23 healthy college students (Nmen= 5, ages 18 to 23
years old) from a large public university participated (35% White, 17%
Latinx, 39% Asian, and 8% other). Six participants reported speaking
another language than English growing up. Written informed consent was
obtained from each participant in advance of the study in accordance with
the University of California, Los Angeles Office of the Human Research
Protection Program (OHRPP) approval.

Procedure
Data were collected in a college classroom where students participated in
a lesson on educational neuroscience taught by a graduate teaching
assistant. Students participated in groups of 4–9. In total eight groups of
students participated. From each group, two to three students were
randomly selected to be assessed with portable EEG. Lessons consisted of
four 10–15-min instructional activities reflective of those common in a
college course, taught in the following order: (1) whole-group lecture, (2)
video watching, (3) group discussion, and (4) independent work. Socio-
demographic data were collected for all of the participants and lessons
were video-recorded.

EEG data recording, reduction, and analysis
EEG was recorded using the SMARTING mobile EEG amplifiers (mBrain-
Train, Belgrade, Serbia) with 24 Ag/AgCl active scalp electrodes. Data were
digitized at 250 Hz, with AFz as the ground and FCz as reference during
recording, and re-referenced offline to the average of all the scalp
electrodes. Electrode impedances were <50 kΩ. Data were examined and
analyzed using BrainVision Analyzer 2 (Brain Products, Germany). Data
were first screened by visual inspection to remove extreme artifacts. A
band-pass filter of 1–50 Hz using 0-phase shift was then applied, followed
by screening using automated algorithms that marked epochs in which (a)
voltage step changes exceed 50mV/ms or (b) absolute voltage exceeded
300mV or (c) peak-to-peak activity was greater than 500mV within 200ms
or (d) maximum voltage difference less than 0.5 mV within a trial. Ocular
movement artifact correction was conducted using a regression-based
algorithm in BVA and FP1/FP2 were used as eye-movement indicators.
EEG data were then segmented based into four types of instructional

activity and within each segment, continuous EEG signal were further
segmented into 20 s-length epochs with 50% overlapping between two
consecutive epochs. Epochs that were marked as bad were deleted during
this step and participants with >40% EEG data eliminated due to artifacts
were not included in the EEG analysis (N= 2). For detailed information
regarding EEG data loss in each instructional activity, see Supplementary
Table 2.
A band of 7.5–12.5 Hz was determined as the alpha frequency band for

the study based on previous literature. Alpha power value was calculated
using the mean power value for each spectrum range, normalized by the
global power (1–50 Hz range) per channel. For additional information
regarding power at beta, gamma, and theta as well as alternative
processing procedures, please refer to Supplementary Results Figs. 1–10.

Behavioral coding for lesson videos
Behavioral indicators of attention were coded for those participants in EEG
assessments. Video tapes of each instructional session were dual coded by
trained and reliable coders (Ncoders= 5), with each participant being the
focus of an individual coding pass. Inter-rater reliability was calculated
using an agreement, average-measure intra-class correlation (ICC) and the
resulting ICC was in the excellent range (ICC= 0.97). Although rare, in
instances where coders disagreed, decisions were made by consensus.
Reliability was obtained coding to master videos. The coding scheme was
modified from that which was developed by Rapport and colleagues4.
Attention was coded into three categories: Attentive, Inattentive, or
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Missing, reflecting the primary state of participants based on behavioral
cues, including body positioning, eye gaze, and activity engagement in
1-min intervals (see Supplementary Table 1). Percentage of Inattentive
intervals was calculated as the behavioral indicator of attention for each
participant in each activity.

Statistical analyses
Multilevel linear regressions were used to explore effects of activity on
alpha power and behavioral rating of inattentiveness, with the benefit of
overpassing sphericity check in conventional repeated-measures analysis
of variance. Planned contrasts were subsequently conducted to explore
differences as a function of individual activity.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon request.
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