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ABSTRACT: Alchemical free energy methods are useful in
computer-aided drug design and computational protein design
because they provide rigorous statistical mechanics-based estimates
of free energy differences from molecular dynamics simulations. λ
dynamics is a free energy method with the ability to characterize
combinatorial chemical spaces spanning thousands of related
systems within a single simulation, which gives it a distinct
advantage over other alchemical free energy methods that are
mostly limited to pairwise comparisons. Recently developed
methods have improved the scalability of λ dynamics to
perturbations at many sites; however, the size of chemical space
that can be explored at each individual site has previously been
limited to fewer than ten substituents. As the number of
substituents increases, the volume of alchemical space corresponding to nonphysical alchemical intermediates grows exponentially
relative to the size corresponding to the physical states of interest. Beyond nine substituents, λ dynamics simulations become lost in
an alchemical morass of intermediate states. In this work, we introduce new biasing potentials that circumvent excessive sampling of
intermediate states by favoring sampling of physical end points relative to alchemical intermediates. Additionally, we present a more
scalable adaptive landscape flattening algorithm for these larger alchemical spaces. Finally, we show that this potential enables more
efficient sampling in both protein and drug design test systems with up to 24 substituents per site, enabling, for the first time,
simultaneous simulation of all 20 amino acids.

1. INTRODUCTION
Alchemical free energy methods utilize molecular dynamics
simulations to make high quality free energy predictions useful
for biophysical insight and biomolecular design. Specific
applications include computer-aided drug design,1−6 pH-
dependent effects,7−13 and protein mutation and design.14−18

These methods evaluate the relative free energy between
related chemical systems for some slowly converging physical
process such as ligand binding or protein folding. Such free
energy methods are called alchemical because they evaluate
free energy differences for the rapidly converging alchemical
processes rather than the slowly converging physical processes.
Typically they introduce a coupling parameter λ into the
potential energy function, such that λ = 0 and λ = 1 correspond
to two distinct physical chemical states, and other λ values are
nonphysical alchemical intermediates (Figure 1). Many
alchemical free energy methods are available including free
energy perturbation (FEP),19 thermodynamic integration
(TI),20 the multistate Bennett acceptance ratio (MBAR),21

nonequilibrium methods,22 enveloping distribution sam-
pling,23,24 Gibbs sampling,25−27 orthogonal space random
walk,28 and λ dynamics.29

λ dynamics is a particularly scalable and efficient alchemical
free energy method that has developed rapidly in recent years.
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Figure 1. Thermodynamic diagram for computing a relative binding
free energy (ΔΔGbind). The physical process of binding transfers the
ligand from a solvent environment (white) to a protein (gray)
environment. The alchemical process converts from ligand 1 (L1 in
red) to ligand 2 (L2 in blue). To obtain ΔΔGbind, alchemical methods
take the difference between the two rapidly converging vertical
alchemical processes, rather than the two slowly converging horizontal
physical processes. Similar thermodynamic diagrams can be
constructed for other free energies of interest (see Supporting
Information).
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The multisite generalization30 enabled exploration of combi-
natorial chemical spaces within a single simulation that would
otherwise require hundreds of FEP or TI simulations.5,17,31

The development of implicit constraints focused sampling
away from the alchemical intermediates and more onto the
physical states of the system.32 Both biasing potential replica
exchange33 and adaptive landscape flattening (ALF)17,34

further improved sampling by accelerating transitions between
physical states. Adopting soft cores34 and particle mesh Ewald
(PME) electrostatics10,17,35,36 from other methods further
improved robustness and accuracy.

The power of λ dynamics lies in the fact that one can
generalize from a single dimensional λ variable to a
multidimensional alchemical λ space. This enables the
characterization of combinatorial chemical spaces for hundreds
of systems within a single simulation, in contrast to an
infeasible number of pairwise comparisons that would be
needed with conventional alchemical free energy methods. As a
result, speedups of 1 to 2 orders of magnitude have been
observed in various systems.2,5,30,31 Previous studies have
explored hundreds of drug molecules5,31 or hundreds to
thousands of protein sequences17,37 but have been limited to
sampling a maximum of 8 or 9 substituents per site. This limit
arises because the volume of phase space corresponding to
alchemical intermediates grows exponentially with the number
of substituents, and beyond this cutoff, the implicit constraints
are less effective at focusing sampling on the physical end
states. In prior studies examining more perturbations per site,
including a D3R grand challenge38 and a commercial λ
dynamics benchmark study,5 substituents had to be divided
into multiple groups sampled in separate simulations to obtain
adequate sampling of all physical end states. For a single site,
this is not a significant problem, but in protein design problems
where one may wish to sample all 20 amino acids at several
sites, the number of λ dynamics simulations would rapidly
grow.

In this work, we address this limitation by introducing new
biasing potentials that refocus sampling on the physical end
states of the system and a more scalable ALF algorithm that
flattens alchemical barriers in these higher dimensional spaces.
Two biasing potentials on the implicit constraint variable θ are
presented. The second bias scales well to 1000 substituents or
more. Next, we note that the current ALF algorithm, which
makes a linear approximation leading to a quadratic loss
function, scales as Ns

4, where Ns is the number of substituents.
Implementing a full nonlinear loss function improves the
scaling to Ns

2 and allows ALF to converge with fewer cycles of
molecular dynamics sampling. Adding a small likelihood term
to the loss function further improves convergence. These
developments are tested on solvation free energies of 1,4-
substituted benzene derivatives, on folding free energies for
sampling all 20 amino acid mutations within protein G, and
with the protein receptor p38 and the calculation of small
molecule binding free energies with 16 and 12 substituents
sampled at two sites. Together, these developments increase
the limit on the number of substituents that can be practically
sampled with λ dynamics to between 40 and 100 per site.

2. THEORETICAL METHODS
2.1. λ Dynamics. The λ dynamics potential energy for a

system, (U), is given by
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where U0, U0,si, Usi,si, and Usi,tj are the interactions within the
environment, between alchemical groups and the environment,
within an alchemical group, and between different alchemical
groups, respectively. These interaction terms may also be
functions of λ for soft-core interactions,34 soft bonds,39 or
PME electrostatics.10,35,36 UBias is a biasing potential on the set
of λ variables to optimize sampling by flattening alchemical
barriers, M is the number of sites, and Ns is the number of
substituents at site s. In addition, the constraints
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where c = 5.5 is typically chosen, and the θ variables are
allowed to propagate according to the forces − ∂U/∂θ exerted
by the potential energy function in a molecular dynamics
simulation.

In order to obtain free energies, λ values near the alchemical
end points are binned, and the relative populations are used to
estimate relative free energies.

G l kT U( ) ln ( ) ( )E
s

M

si t t l, c Biasl
= { }

(5)

where GE(l) is the free energy of ligand (or sequence) l in the
ensemble E, si t,l

is the λ value of the substituent il of ligand l at
site s at time t, angle brackets denote the ensemble or
trajectory average over time, λc is a cutoff of typically 0.99 that
defines when a substituent is in an approximately physical state
rather than an alchemical intermediate state, Θ(x) is the
Heaviside function (a boolean indicator whether x > 0), the
product over s ensures a frame is only counted if si t,l

is above
λc at all M sites, and UBias({λ}l) is the value of the bias potential
for ligand l. Alchemical free energy differences for a particular
ensemble are given by

G l l G l G l( ) ( ) ( )E E E1 2 2 1= (6)

and the difference in ΔGE(l1 → l2) between two different
ensembles gives the ΔΔG of interest.

Other approximate estimators are available for systems with
multiple sites, including the independent site estimator

G l kT U( ) ln ( ) ( )E
s

M

si t t l, c Biasl
= { }

(7)

that neglects coupling between sites5 or the Potts estimator
that only includes pairwise couplings.40 Unbiased estimators
that do not depend on λc are also available,21,25−27 but are
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prohibitively expensive for continuous λ dynamics simulations
in large alchemical spaces (see Supporting Information).

2.2. Bias on θ to Focus Sampling on End Points. In eq
5, states for which si cl

> for all sites are considered
approximately physical and represent the fraction of time that
one ligand is sampled. Summing over all ligands gives the
fraction physical ligand (FPL).

FPL ( )
l s

M

si t t, cl
=

(8)

Conversely, 1 − FPL corresponds to the fraction of the time
the simulation samples nonphysical alchemical intermediates.
The time sampling alchemical intermediates does not
contribute to the free energy estimates (eq 5) and is largely
wasted, but it should not be eliminated entirely because it is
required to maintain high transition rates between physical
states that promote converged free energy estimates. For
optimal sampling, the FPL should be high and evenly
distributed between ligands because if ( )s

M
si t t,l

is too
low for a ligand, estimates of GE(l) for that ligand may be
noisy. In practice, values of at least 0.01 are usually sufficient,
but values above 0.5 may indicate low transition rates or
uneven sampling.

For a single site with two or three substituents, the FPL is
high on a flat alchemical landscape34 (0.44 and 0.28,
respectively), but at 9 substituents, the FPL falls below 0.01,
and it continues to fall by a factor of 2 for each additional
substituent added thereafter (Figure 2). The problem is
exacerbated if multiple sites are perturbed concurrently. For
independent, noninteracting sites, the full FPL is the product
of the individual site FPL values.

Several strategies exist for increasing the FPL. A single λ
value will be greater than the λc = 0.99 cutoff when a single
term in the sum in the denominator of eq 4 is sufficiently
dominant. This occurs when one θ value is near π/2 and the
remaining θ values are near − π/2. Since each substituent has
its own value of θ, the probability of only having one θ value

near π/2 becomes vanishingly small for large numbers of
substituents. Increasing the constant c in the implicit
constraints is one way to raise FPL, but large increases
compromise numerical stability, so modest increases to no
more than 15.5 are preferred,31,40 but these only stave off low
FPL for a few extra substituents (Figure 2). An alternative
strategy is to add biasing potentials to penalize alchemical
intermediates. In previous work, small barriers were placed
between the alchemical end points to decrease the population
of alchemical intermediates; however, these barriers must
remain small or they will slow transition rates and convergence
of the alchemical simulations.31,40 For large numbers of
substituents, these small barriers were insufficient. We briefly
considered new biases on λ (see Supporting Information) but
found biases on θ more effective.

In order for a bias on θ to maintain high FPL, it must favor
states with a single θ value near π/2 and all remaining θ values
near − π/2. The following collective bias on θ does this by
counting the θ values near π/2 as n+ and the θ values near
− π/2 as n−
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n+ and n− are then harmonically restrained to their desired
values of 1 and Ns − 1.
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With a modest coefficient of α = kT, this bias maintains high
values of FPL between 0.16 and 0.21 for 10 to 30 substituents
(Figure 2). For hundreds of substituents, the FPL falls
precipitously by about a factor of 10 per hundred substituents,
though this decay can be slowed with a higher c constant in the
implicit constraints (Figure 2).

An alternative independent bias is comparably effective for
dozens of substituents and more effective for hundreds of
substituents. In this case, a bias is added for every single θ
coordinate
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The bias coefficient b is calibrated to ensure high FPL.
Calibrating the bias so that on average one θ coordinate is
between 0 and π, and the remaining θ coordinates are in the
trap between π and 2π (independent-1) lowers transition rates
below the rates observed with the collective bias (see
Supporting Information eq S7). Instead, the bias is calibrated
so that on average two θ coordinates are between 0 and π
(independent-2), which gives comparable transition rates to
the collective bias (Table 1). The independent-2 coefficient is
given by

i
k
jjjjj
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N b
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2

ln
8

s
2
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(12)

which is solved iteratively for b/kT (see Supporting
Information for derivation). For two and three substituents,
no solution exists, and b = 0 is used to turn off the bias.

The independent bias (independent-2) using the coefficients
in eq 12 has slightly lower FPL than the collective bias, but the
comparable transition rates and superior scaling to hundreds of
substituents make it a better choice. If higher FPL is needed, it

Figure 2. With no bias (red curve) and the standard implicit
constraint value of c = 5.5 (solid line), the FPL with λ > 0.99 falls to
0.01 at just 9 substituents. Increasing c only helps a little. The
collective bias on θ (green) preserves a much higher FPL, but begins
to fail between 100 and 200 substituents. The independent biases on
θ (black and blue) are much more effective. The standard c value of
5.5 fails between 300 and 400 substituents because even when one λ
value is clearly dominant, it cannot reach 0.99 because of the many
terms in the denominator of eq 4. Increasing c to 8.5 (dashed line)
suppresses these terms and allows the independent bias to maintain
high FPL beyond 1000 substituents.
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can be achieved by raising the implicit constraint c parameter.
Supporting Information Figure S1 shows the significant
improvement in sampling given by the independent-2 bias.
There are still some applications where the collective bias may
be desirable, for example, when trying to significantly increase
the FPL of just a few substituents in constant pH or semigrand
canonical sampling where nonphysical intermediate states
should be avoided. Consequently, the independent bias
(independent-2) with the coefficients in eq 12 is used for
the remainder of this study.

2.3. Nonlinear Adaptive Landscape Flattening with
Improved Scaling. With the independent bias, one can in
principle characterize arbitrarily large numbers of substituents
at a single site; however, one immediately runs into limitations
in the adaptive landscape flattening (ALF) algorithm. The bias
on θ to increase FPL is added to eq 1 along with the existing
bias UBias that is tuned by ALF to flatten alchemical barriers.
Because the system freely diffuses through alchemical space,
large free energy barriers or traps can slow convergence
beyond accessible time scales and must be flattened to
optimize sampling. ALF runs many cycles. Each cycle consists
of a very short simulation followed by calculation of Ns

2 free
energy profiles and estimation of changes in Ns + 5Ns(Ns − 1)/
2 bias parameters that lower barriers in those free energy
profiles (see Supporting Information for a description of
profiles and bias potentials). The current linearized ALF
algorithm performs well for 9 substituents, but its computa-
tional cost scales like Ns

4, so it quickly becomes rate limiting for
larger numbers of substituents. For the folded ensemble of the
22 substituent protein G test system described later, molecular
dynamics takes 23 000 s on an NVidia A30 GPU, but bias
parameter optimization takes over five times longer (Table 2).
Consequently, we introduce a new nonlinear ALF algorithm
that scales like Ns

2, which reduces the time for bias parameter
optimization (Table 2). This improved ALF algorithm

becomes rate limiting between 30 and 40 substituents and
should allow sampling of 50 to 100 substituents before ALF
becomes impractical. While this is a significant improvement
over the previous ALF algorithm, it is still significantly less than
the 1000 substituents enabled by the bias on θ; thus, ALF
determines the limit in the number of substituents that can be
sampled.

The loss function for nonlinear ALF is

L k G G G

P k

( ( ) )

( ) ( )

p b
pb pb pb p

i
i i i

Nonlinear

Profiles Bins

,Imp
2

lnL

Biases

,0
2

=

+ +
(13)

In the first term, the sum on p runs over all 1D, transition,
2D, and intersite 2D profiles, as described previously,17,40 and
the sum on b runs over all bins of each free energy profile that
were sampled. Both B = 64 and B = 256 bins were considered,
but B = 256 typically converges to the optimal biases in fewer
cycles of sampling (Figures 3 & S2). The coefficient kpb

penalizes deviations from flat profiles and is scaled to eliminate
B dependence, G ( )pb is the free energy of profile p and bin b,
reweighted to bias parameters α⃗ by WHAM/MBAR41 (see
Supporting Information), Gpb,Imp is the intrinsic free energy of
the implicit constraints when sampling a flat landscape,
determined by Monte Carlo sampling, and Gp is the weighted
average of the free energy profile after subtracting Gpb,Imp. The
second term P ( )lnL is the negative log likelihood, as described
below. In the third regularization term, αi is biasing potential
parameter i, and ki and αi,0 are regularization terms to prevent
excessive changes in αi. Following the approach in ref 42, we
minimize the loss function with a limited memory Broyden−
Fletcher−Goldfarb−Shanno algorithm. We halt the minimiza-
tion after the root-mean-square change in the biasing
coefficients is lower than 1.25 × 10−3 kcal/mol two steps in
a row (see Supporting Information).

Linearized ALF employs a similar loss function, but without
the log likelihood term, with B = 400, and with the
approximation

Table 1. Transition Rates Reveal Improved Sampling for
Many Substituent Systems with New θ Biasesa

1,4-benzene system

θ bias 8 × 8 24 × 24

none 73.4 ± 0.5 14.3 ± 0.1
collective 120.5 ± 0.8 114.3 ± 0.6
independent-1 87.8 ± 0.5 99.8 ± 0.4
independent-2 113.1 ± 0.8 121.4 ± 0.5

aTransition rates per ns during 20 ns production runs of 1,4-
substituted benzene derivatives in the solvated ensemble after
landscape flattening. Results are averaged over both sites in 5 trials
with 2 (8 × 8) or 5 (24 × 24) replicas each. Uncertainties are the
standard error of the mean.

Table 2. Timing 330 Cycles of ALF Loss Function
Optimization in Protein G with 22 Substituents on an
NVidia A30 GPU Shows New Nonlinear ALF Scales Better
than Linearized ALF

ALF Bins Pln L time (s)

linearized 400 no 124 311
nonlinear 64 no 11 818
nonlinear 64 yes 11 400
nonlinear 256 no 9 541
nonlinear 256 yes 10 306

Figure 3. Convergence of the linear bias parameters as a function of
ALF cycles for the folded ensemble of the 22 substituent Protein G
test system. Convergence is quantified by the root-mean-square
difference (RMSD) of all bias parameters relative to final biases
obtained from an independent ALF run comprising 5 × 100 ns
production runs, using nonlinear ALF with likelihood optimization
and B = 256. Nonlinear ALF with likelihood optimization (+LM) for
256 bins provides the fastest convergence.
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where Gpb is the free energy with the current bias parameters
and Δαi is the proposed change in bias coefficient αi.
Nonlinear ALF scales like Ns

4 because there are O(Ns
4)

derivatives that must be computed.
The log likelihood optimization term finds the most likely

bias away from a flat free energy landscape to have produced
the observed distribution of states. Likelihood optimization is
an intuitive way to perform ALF but fails badly when applied
alone. Likelihood optimization is helpful for driving flattening
of trapped degrees of freedom early in flattening when most
bins of the corresponding profile are unsampled and the first
term of eq 13 only provides a weak drive to improve the bias.
Consequently, adding likelihood optimization with a small
coefficient significantly improves the convergence of ALF
(Figures 3 & S2). The negative log likelihood is given by

P w P w( ) ln( ( ))/
t

Kt t
t

KtlnL

Frames Frames

= |
(15)

where wKt is the weight of each frame of the trajectory
determined by WHAM (see Supporting Information), t is the
state of the alchemical variables in that frame, and α⃗ is the
proposed value of the biasing potentials. The log probability of
observing t given α⃗ is then

P U kT Zln( ( )) ( )/ ln ( )t t MC| = (16)

where U ( )t is the energy of the alchemical biases, and ZMC is
an estimate of the partition function

Z U kT( ) exp( ( )/ )
t

tMC MC,=
(17)

The partition function is estimated using a Monte Carlo
sampled trajectory tMC, with the same number of frames as
the actual trajectory. This trajectory is obtained by sampling
the θ variables subject to the biases described above to
calculate the λ variables. This trajectory is also used to
compute Gpb,Imp values instead of using pretabulated values as
in the linearized case.

While the linear bias coefficients must converge to the same
values every time ALF is run (Figure 3), other coefficients do
not converge to unique values (see Supporting Information
Figure S2), and end point biases can differ by 5 to 7 kcal/mol
between runs. This variation occurs in both linearized and
nonlinear ALF and is undesirable as it blocks a few transition
paths with very large barriers to make the remaining profiles
flatter. This variation did not occur as extensively for smaller
numbers of substituents and suggests that the existing bias
potentials do not fit higher dimensional alchemical landscapes
as well.

3. TEST SYSTEMS
Three systems are examined to test the θ bias and nonlinear
ALF methods described above. We begin with solvation free
energies for a previously described symmetric set of 1,4-
substituted benzene derivatives.26 These solvation free energies
converge rapidly and include many copies of the same ligand,
so they provide an initial test for correctness. Next, we look at
folding free energies of all point mutations to T16 in protein
G43 and compare them against pairwise calculations and
experiment. Finally, we look at a complex set of free energy

Figure 4. Perturbations considered in the 1,4-substituted benzene system. All 8 perturbations are considered at both sites.
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calculations for ligand binding to the protein receptor p38 with
two sites of substitution on the ligand. We compare these to
calculations carried out in smaller sets as well as the
experimental findings.44

3.1. Simulation Methods. Simulations were run using the
BLaDE module45 within the CHARMM molecular dynamics
package.46,47 Simulations utilized the TIP3P force field for
water,48 the CGENFF force field for small molecules49

(parametrized with MATCH50 or paramchem51,52), and the
CHARMM36 force field for proteins.53 Force switching was
used for van der Waals interactions with a switching radius of 9
Å and a cutoff radius of 10 Å.54 PME electrostatics were used
for long-range electrostatics by scaling charges by λ, as
described previously,10,35,36 using a cutoff of 10 Å, an
interpolation order of 6, κ = 0.32 Å−1, and a grid spacing of
approximately 1.0 Å. Simulations were run with a time step of
2 fs, a Langevin thermostat, and a Monte Carlo barostat.45

Ligand perturbations were set up with msld-py-prep.55 Protein
perturbations were set up with the recently developed whole
residue perturbation strategy.39 Bonds, angles, and improper
torsions are unscaled by λ, while dihedrals and CMAP terms56

are scaled by λ. Uncertainties in the free energy are reported as
the standard deviation from bootstrapping over the 5
independent trials. Uncertainties in error metrics are reported
as symmetric 95% confidence intervals from bootstrapping
over different ligands or sequences (see Supporting Informa-
tion).

3.2. 1,4 Benzene Derivatives. We chose to evaluate
solvation free energies for a previously studied set of 1,4-
disubstituted benzene derivatives26 as an initial test of our
methodology (Figure 4). We include 8 identical substituents at
both sites for an 8 × 8 system, giving two copies of each
differently substituted molecule and one copy of each
identically substituted molecule. This system is near the edge
of what can be sampled with current methods and allowed
comparison of transition rates for different biases, as described
previously in Table 1. Furthermore, we studied another system
with three copies of each substituent at each site giving a 24 ×
24 system, with 18 copies of each differently substituted
molecule and 9 copies of each identically substituted molecule.

The system was parametrized with MATCH50 because
MATCH uses bond charge increment rules for charge
assignment, and this provides more localized perturbations to
charges, which is necessary due to the close proximity of the
alchemical regions. CATS restraints39 were added to the
benzene carbon in each substituent to allow scaling of double
counted angles from that carbon to the core hydrogens;
otherwise, the double counted interactions increase hydrogen
oscillation frequency beyond the point of numerical stability.
Ligands were placed in a cubic box with edges of
approximately 35 Å. No ions were included, and periodic
boundary conditions were employed for simulations with or
without water. Multiple copies of the system are simulated in
parallel to provide the increased sampling required to explore

the increased number Ns(Ns − 1)/2 of transition paths during
flattening. ALF scripts allow Hamiltonian replica exchange, so
multiple copies of the system were implemented as trivial
replica exchange with identical Hamiltonians to allow minimal
modification of ALF scripts. Simulations used 2 replicas for the
8 × 8 system and 5 replicas for the 24 × 24 system. Flattening
was run for 200 cycles of 100 ps, followed by 20 cycles of 1 ns.
Production utilized 5 independent trials to assess statistical
reproducibility and included 5 ns to further improve biasing
potentials followed by 20 ns simulations for final production.
This is significantly more sampling than is required to merely
determine relative free energies and further serves to decrease
statistical noise to expose systematic errors.

The centered root-mean-square error (RMSE)

x x2 2 between free energy estimates for identical
molecules was evaluated to assess convergence. The centered

RMSE is preferred over the raw RMSE x2 because the raw
RMSE is more susceptible to errors in the arbitrary zero point
of the relative free energy estimates, usually a reference
compound or the native sequence. Comparisons were made
between identical molecules within the 8 × 8 system, within
the 24 × 24 system, and between the 8 × 8 and 24 × 24
systems for the vacuum ensemble, the solvated ensemble, and
the solvation free energy (Table 3). These RMSE values are
small and consistent with uncorrelated Gaussian noise as well
as with computational uncertainty (see Supporting Informa-
tion Table S1). Furthermore, the results of λ dynamics
calculations were compared to systems for which experimental
results57,58 are known (Figures 5 & S3). RMSE values of 0.450
± 0.102 and 0.493 ± 0.038 kcal/mol and Pearson correlation
values of 0.987 ± 0.007 and 0.985 ± 0.003 were obtained for
the 8 × 8 and 24 × 24 systems, respectively.

3.3. Amino Acid Mutations in Protein G. Next we
demonstrate the ability of these methods to sample all 20
amino acids at a single site. We chose protein G as a test
system because of a recent experimental study exploring all
possible mutations except C and W at all sites on the protein.43

After eliminating sites with mutation effects beyond exper-
imental sensitivity, we selected T16 because it had the largest
standard deviation of mutation effects. T16 is not a buried site
that will be excessively difficult to sample, but it is also not a
trivial surface site where mutations have a negligible effect.

Simulations considered all 20 possible amino acids,
including 3 possible protonation states for histidine, for a
total of 22 substituents. Folded and unfolded simulations of all
22 substituents were run using nonlinear ALF; in addition, 21
pairwise perturbations from threonine to each other sub-
stituent were run with linearized ALF as controls. Folded
simulations were run starting from the PDB structure 1PGA59

at pH 7 with 100 mM NaCl and a 55 Å box providing 10 Å on
all sides. At pH 7, all residues were predicted by PropKa to
have default protonation.60 The unfolded ensemble was
simulated with a pentapeptide from residues 14 to 18 in a

Table 3. Computational Consistency of 1,4-Substituted Benzene Solvation Free Energies Assessed by RMS Differences in Free
Energy between Distinct Identical Molecules (kcal/mol)

vacuum solvent solvation

ΔG ΔG ΔΔG

8 × 8 vs 8 × 8 0.053 ± 0.009 0.113 ± 0.023 0.139 ± 0.027
24 × 24 vs 24 × 24 0.118 ± 0.003 0.180 ± 0.004 0.215 ± 0.005
8 × 8 vs 24 × 24 0.094 ± 0.004 0.155 ± 0.007 0.178 ± 0.008
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40 Å box under the same solution conditions. Pairwise
unfolded simulations used a cubic box set up with CHARMM-
GUI.61 All other simulations used a rhombic dodecahedron
box with 29% less volume than a cubic box set up using in
house python scripts. Previous studies17,40 have observed that
PME electrostatics give marginally improved results over force
switching (fswitch) electrostatics,54 especially for longer
simulations; we test both approaches for completeness,
although PME is clearly more widely used. Several mutations
include charge changes, and correction terms for charge
changes with PME electrostatics have been developed.62 For
neutral boxes, the discrete solvent correction is the dominant
term, so we apply it to PME calculations, following previous
work.10,37,40

Comparing results obtained from 21 pairwise simulations
run without θ biases to results obtained from the full 22
substituent simulations with θ biases reveals very close
agreement (Figures 6A & S4A & Table 4). The centered
root mean squared differences are quite small for ΔG in both
the folded and unfolded ensembles and for the stability
ΔΔGfold.

To compare the results of λ dynamics simulations with
experimental data, we must combine the results from δ-, ε-,
and di-protonated histidine into a single ΔΔGfold value. These
three protonation states are denoted as HSD, HSE, and HSP,
respectively. One may estimate the ΔG of the folded and
unfolded states using

G kT G kTln( exp( / ))
i

iHIS

HSD,HSE,HSP

=
(18)

and take their difference to determine ΔΔGfold. Unfortunately,
raw ΔGi* values from simulation include an additive constant γi
that is independent of the ensemble and depends only on force
field and perturbation pathway.

G Gi i i= * (19)

This constant is typically forgotten because it cancels out
between the two ensembles when computing ΔΔGfold,i, but it
must be determined to accurately compute ΔGHIS and
ΔΔGfold,HIS from eq 18.

To obtain the actual ΔGi values for use in eq 18 from the
raw ΔGi* values, γi must be determined by running a
simulation in a reference ensemble in which ΔGref,i is known.
For a reference system of histidine with neutral caps on the N

Figure 5. Correlation between λ dynamics calculations and
experimental results for solvation free energies of 1,4-substituted
benzene derivatives in the 24 × 24 system setup. RMSE and Pearson
correlation values of 0.493 ± 0.038 kcal/mol and 0.985 ± 0.003 are
obtained. Experimental data taken from refs 57, 58. The regions
between ±1 kcal/mol and ±2 kcal/mol are shaded in green and
orange, respectively. The solid black line is y = x.

Figure 6. (A) 21 pairwise simulations (x-axis) and a single 22
substituent simulation (y-axis) run with PME electrostatics show
excellent agreement in predicted folding free energies. (B) The single
22 substituent simulation also agrees quite well with the 18
experimental measurements with an RMSE of 0.946 ± 0.289 kcal/
mol and a Pearson correlation of 0.937 ± 0.086. The experimental
data are taken from ref 43. The regions between ±1 and ±2 kcal/mol
are shaded in green and orange, respectively. The solid black line is y
= x.

Table 4. Consistency between Pairwise and 22 Substituent λ
Dynamics Assessed by RMS Differences (kcal/mol)

unfolded folded stability

ΔG ΔG ΔΔG

pme 0.21 ± 0.07 0.26 ± 0.15 0.33 ± 0.11
fswitch 0.15 ± 0.04 0.24 ± 0.09 0.20 ± 0.04

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00514
J. Chem. Theory Comput. 2024, 20, 6098−6110

6104

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00514/suppl_file/ct4c00514_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00514?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00514?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and C termini, the pKa is 6.53 for protonation at the δ nitrogen
(HSE-HSP) and is 6.92 for protonation at the ε nitrogen
(HSD-HSP).63 We assume a pH of 7, since ref 43 does not
indicate the experimental pH. Then, ΔGref,i can be computed
from pKa and pH

G G kT pK( ln 10)( pH)ref,HIS ref,HIS a0 =+ (20)

as −0.109, −0.641, and 0.000 kcal/mol for HSD, HSE, and
HSP relative to HSP in the reference system at a pH of 7.
Rather than simulate the true reference ensemble, we note that
the capped histidine reference and the unfolded ensemble have
similar solvation and lack of nearby monopoles, so we
approximate the raw reference free energy ΔGref,i* by the raw
unfolded free energy ΔGunfolded,i* . The correction is then

G Gi i iunfolded, ref,= * (21)

which is subtracted from the raw results ΔGi* for each
ensemble. The predicted ΔΔGfold,HIS depends on the
experimental pH due to the pH dependence of eq 20 (see
Supporting Information Figure S5) but remains within 0.6
kcal/mol of the value for a pH of 7 between pH values of 6 and
8.

With a prediction for histidine, we may compare simulation
results with experimental values (Figures 6B & S4B & Table
5). Both electrostatic truncation methods give excellent

agreement with experiment, but both overpredict the
magnitude of mutational effects because the slope of best fit
(1.81 for PME and 2.07 for fswitch) is greater than unity. This
effect has been observed previously in T4 lysozyme,17 where
overprediction was also worse for fswitch than for PME
electrostatics. Here, PME has a better RMSE, while fswitch has
a marginally better Pearson correlation, but the Pearson
correlation is less relevant because it does not penalize
overprediction. While the 95% confidence intervals in Table 5
from bootstrapping over mutations are large, the RMSE of
PME is better than the RMSE of fswitch in 91% (linearized
ALF) or 98% (nonlinear ALF) of bootstrap samples.
Consequently, this confirms previous observations that PME
gives better results for protein mutations.17,40 Furthermore, the
RMSE of nonlinear ALF is better than the RMSE of linearized
ALF in 100% (fswitch) and 93% (PME) of bootstrap samples.

3.4. Ligand Binding to p38. We further demonstrate the
utility of these methods by calculating the free energy
differences for small molecule ligands binding to a protein
receptor, p38. This system has been thoroughly tested via
multiple free energy calculation protocols and methods.1,5

Twenty-seven (27) ligands with experimental binding affinities
were selected as the basis for multisite λ dynamics simulations.
The 27 ligands were parametrized using ParamChem,51,52 and
a multiple topology model was generated using msld-py-

prep.55 The multiple topology model consists of 2 sites with 16
substituents at one site and 12 at another−a 16 × 12 system of
a combinatorial set of 192 ligands (Figure 7). Because this
system is too large for convergence with linearized ALF, the
ligands were divided into nine subsets (see Supporting
Information Table S2) sharing the first substituent at each
site as a common reference across subsets. The nonlinear ALF
simulations included all fragments from both sites. Ligand free
energies were computed assuming that the sites are
independent, and their free energies are additive, using the
independent site estimator in eq 7, originally described as
additive estimates by Raman and co-workers.5 The multiple
topology model included charge renormalization, so the
computed relative binding free energies were corrected using
a bookending protocol described in ref 55.

A 38.50 Å box providing a 10 Å buffer on all sides was used
for the ligand-in-water simulations. The bound simulations
were run starting from the PDB ID 3FLZ44 at pH 7.4 with 100
mM NaCl and a 92 Å box, again providing 10 Å on all sides.
Both simulation boxes for p38 were set up via CHARMM-
GUI.61 The protocols for both linearized and nonlinear ALF
were kept as similar as possible for comparison purposes.

The ligand-in-water and bound ligand simulations were run
using the ALF schedules described in Tables S3 and S4,
respectively. To ensure convergence, final production simu-
lations were extended until an uncertainty of 0.2 kcal/mol or
less and of 0.5 kcal/mol was observed for each calculated free
energy for the ligands in water and protein environments,
respectively. This ensured that the final relative binding free
energy value had an uncertainty of roughly 0.5 kcal/mol or
less.

Comparing the single ensemble λ dynamics results obtained
in either ligand-in-water or bound ligand simulations from
both ALF protocols reveals that nonlinear ALF results are very
close to those of linearized ALF, as shown in Figure S6. The
Pearson R and Spearman coefficient ρ are 1 regardless of the
ligand environment being simulated due to the wide range of
the data. Likewise, the MUE and RMSE values fall within less
than 0.5 and 0.6 kcal/mol, respectively.

When looking at the ΔΔGbind values which result by
subtracting the unbound ΔG values from those of the bound
environment, the agreement between the results of both ALF
protocols is slightly weaker (Figure 8). While there is a strong
linear correlation between the free energies ΔG for both
unbound and bound ligand environments, as shown in the
previous paragraph, the Pearson R and Spearman ρ for the
relative binding free energies ΔΔGbind fall to 0.775 ± 0.058
and 0.774 ± 0.068, respectively. This is largely due to the
narrower range of values covered by ΔΔGbind than that of the
ligand free energy ΔG in each environment. Consequently, the
magnitude of the error remains relatively low, as quantified by
the MUE and RMSE values of 0.429 ± 0.048 and 0.543 ±
0.057 kcal/mol, respectively. While this error is larger than
initially expected, it falls within the statistical variability of the
results, given practical limits of finite sampling and
convergence. The variability for both ALF protocols is
quantified by dividing trajectories into two groups that were
processed independently and compared to each other. The
deviation between halves was similar for both protocols, with
MUE and RMSE values between halves of roughly 0.4 and 0.5
kcal/mol, respectively (see Supporting Information Figure S7).
This suggests that comparable levels of statistical variation arise
from both linearized and nonlinear ALF simulations and that

Table 5. Comparison of λ Dynamics Results with
Experiment Suggests that PME Electrostatics Provide
Superior Free Energy Estimates

linearized ALF nonlinear ALF

PME
RMSE 1.124 ± 0.427 0.946 ± 0.289
R 0.940 ± 0.092 0.937 ± 0.086

fswitch
RMSE 1.283 ± 0.414 1.165 ± 0.376
R 0.943 ± 0.066 0.943 ± 0.064
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with longer sampling, improved agreement between both
protocols is expected.

Despite the moderate deviations between ALF protocols,
both ALF protocols correlate well with experimental results. As
shown in Table 6, the MUE and RMSE for both methods fall

within 1 kcal/mol and show strong linearity and monotonicity
(ranking capability) with experiment, as evidenced by the
Pearson R and Spearman ρ coefficients, respectively.

The lower accuracy of the full system results obtained with
nonlinear ALF compared to those of the subsetted linearized
ALF simulations is likely due to the larger chemical space
involved. Nonlinear ALF and the independent bias on θ are
improvements that made sampling the larger chemical space
possible. Several factors may contribute to difficulty in
sampling the larger chemical space, including poor bias
potentials and slow degrees of freedom. First, as mentioned
in the methods, for larger chemical spaces, some of the bias
parameters converge to different values each time ALF is run,
suggesting that the biases fit the higher dimensional alchemical
landscapes less well. Improved bias functions are expected to
improve sampling and convergence in high dimensional
chemical spaces and will be the focus of future studies.
Second, slow degrees of freedom that nonlinear ALF had less
time to sample may have hindered convergence. The largest
contributions to the difference arose from the bound
calculations of subsets 2, 4, and 7, which contained some of
the tightest bound ligands. These ligands also show some of
the largest variability between the two halves of the linearized
ALF results (Supporting Information Figure S7). Focusing

Figure 7. Fragments at each site of variation for the p38 ligand set
were subsetted into 3 different groups for both sites 1 and 2. The
common core output from msld-py-prep is shown at the top. A total
of 9 sets of simulations for each combination of a subset (groups A−
C) from site 1 and site 2 were performed using linearized ALF.

Figure 8. Correlation of ΔΔGbind values obtained with nonlinear vs
linearized ALF protocols for the 192 combinatorial p38 ligands
explored.

Table 6. P38 System Comparison of λ Dynamics Results
with Experiment

subsetted system full system

linearized ALF nonlinear ALF

R 0.753 ± 0.156 0.638 ± 0.229
Spearman ρ 0.735 ± 0.182 0.614 ± 0.271
MUE 0.545 ± 0.116 0.616 ± 0.147
RMSE 0.603 ± 0.125 0.713 ± 0.153
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more sampling on these tightly bound ligands with the
screening methods described below in the discussion may
improve accuracy.

Regardless of the lower accuracy observed for the nonlinear
results, they require much less computational time with
significantly less manual intervention. When comparing the
ALF schedules for both protocols and the total simulation time
needed to complete the sampling (as shown in Tables S2 and
S3 for nonlinear and linearized ALF schedules, respectively),
the single pair of nonlinear ALF simulations yielded converged
results at 2.7 times less simulation time than the nine pairs of
linearized ALF simulations. Notably, nonlinear ALF also
needed much less manual intervention than did the linearized
ALF approach, wherein one has to manually subset ligands and
manipulate the input files accordingly. Thus, nonlinear ALF
provides a more streamlined workflow for λ dynamics, allowing
direct use of msld-py-prep output to examine a large series of
ligand analogues. Furthermore, with a slight decrease in
accuracy, at least in the case of p38, nonlinear ALF not only
reduces potential for human error but also allows for a faster
setup of the simulations, less simulation time, and greater
exploration of chemical space.

4. DISCUSSION
This work illustrates our development of a θ biasing potential
and nonlinear ALF scheme for exploration of a significantly
increased number of perturbations at a single site with λ
dynamics. This new capability has significant implications in
computational protein design and computer-aided drug design.

In protein design, there are 20 naturally occurring amino
acids, and experimental design protocols often employ site-
saturation mutagenesis to explore all substitutions at a single
site. Previous simulations were limited to examining only a
subset of these mutations at one time. For example, if all 20
amino acids were of interest, they could be grouped into three
or more separate calculations with a shared reference sequence,
but this required more user effort and more computational
resources. This scaled poorly if interactions between M
different interacting sites were important because 3M

calculations were required to capture all interactions between
possible amino acids. Experimental studies of all possible
mutations at four interacting sites are common,64,65 and larger
numbers of sites would be of interest if they were accessible.
Previous studies with λ dynamics have focused on making
robust free energy predictions for large numbers of sites,37,40

and together with the present work, they enable exploration of
all possible amino acids at each of those sites simultaneously.

In computer-aided drug design, different considerations
apply. One can explore coupling between many substituents at
multiple ligand perturbation sites more efficiently with the
developments presented in this work. The p38 system
described above previously required breaking the first site
into 3 groups and the second site into 3 groups for 9 total
simulations but can now be evaluated within a single
simulation. However, medicinal chemists typically optimize a
single site at a time, assume sites are largely independent, and
are interested in more than 20 possible chemical substituents
at each site. Consequently, the approaches described here are
likely to be of greater interest for sampling 20 to 50
perturbations at a single site, rather than exploring coupling
between sites.

The ability to evaluate many substituents within a single
simulation makes λ dynamics significantly more efficient than

conventional free energy methods like FEP and TI, which
require roughly a dozen simulations for each pairwise
comparison. While the sampling requirements of λ dynamics
do increase somewhat for larger numbers of ligands, previous
studies tend to find the largest efficiency gains over FEP and TI
for systems with multiple perturbation sites because they
include many more ligands.5 In this study, uncertainty levels
differed but control simulations took significantly more
computational effort per ligand than the many substituent
simulations by a factor of 3.6 in 1,4-disubstituted benzene
solvation, a factor of 4.2 in protein G stability, and a factor of
2.7 in p38 ligand binding. With the ability to sample many
substituents at a single site demonstrated in this work, it is
likely that the relative efficiency of single site λ dynamics
simulations will also improve significantly. Benchmarking
studies are needed in this area, as it is possible that a few
poorly behaved ligands could distort the structure or lead to
unbinding and compromise the accuracy of λ dynamics for the
remaining well-behaved ligands.

Early λ dynamics studies frequently mentioned using λ
dynamics in screening mode,29,66,67 analogous to a competitive
binding assay, but this idea has not been explored further. In
screening mode, ALF is used to flatten the alchemical
landscape in the reference ensemble (the solvated ensemble
for ligand binding or the unfolded ensemble for protein
folding), which is often the less expensive ensemble to
simulate. Simulations are then run in the other ensemble
using the biases from the reference ensemble. Consequently,
only the most favorable ligands or sequences are sampled, and
sampling time is not wasted quantifying exactly how
unfavorable bad ligands or sequences are. This idea is worth
revisiting in future studies in light of the ability to sample much
larger numbers of perturbations within a single calculation.
Such a scheme would also discourage poorly behaved ligands
from disrupting the binding site.

Finally, while these methods significantly increase the
number of substituents which may be sampled at a single
site, limitations still apply. In principle, the independent bias
on θ can sample arbitrarily large numbers of substituents at a
site due to the careful balancing between the free energy of the
one dominant substituent and the remaining substituents in eq
12, (provided the implicit constraint c value is slowly increased
to appropriate values to allow the dominant substituent to
reach λ values of 0.99, e.g. 8.5 for 1000 substituents). In
contrast, nonlinear ALF scales like Ns

2 because there are O(Ns
2)

coefficients that must be optimized to independently flatten
barriers from any of the Ns substituents to any of the other Ns
− 1 substituents. This limits nonlinear ALF to roughly 50 to
100 substituents. Further developments to overcome this limit
may be possible, as many bias coefficients are correlated,34 and
will be the subject of future work.

5. CONCLUSIONS
λ dynamics is a highly efficient and scalable alchemical free
energy method, but in practice, λ dynamics was limited to
exploring 8−9 different substituents per site. In this work, we
presented a bias on θ to significantly increase the fraction of
time spent sampling physical states, and an adaptive landscape
flattening algorithm with improved scaling, raising this limit to
50−100 substituents. The ability to look at large numbers of
perturbations raises new possibilities for applying λ dynamics
in computational protein design and computer-aided drug
design.
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