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ABSTRACT OF THE DISSERTATION 
 
 

Motivated Learning: The Influence of Reinforcers 
 

by 
 
 

Russell Cohen Hoffing 
 

Doctor of Philosophy, Graduate Program in Psychology 
University of California, Riverside, September 2018 

Dr. Aaron R. Seitz, Chairperson 
 
 
Extant research suggests a number of systems, including reinforcement and attentional 

systems, contribute to learning. The overall goal of this dissertation is to expand our 

understanding of how reinforcement systems contribute to learning. Chapters 1 and 2 use 

a task-irrelevant learning paradigm, which has been used to study the role of reinforcement 

systems in learning. To first understand how reinforcement systems influence learning, 

Chapter 1 tests the hypothesis that task-irrelevant learning is mediated by the 

norepinephrine reinforcement system, by using pupillometry as an indirect measure of 

norepinephrine system activity. Consistent with this hypothesis results indicate an 

increased change in pupil size accompanying learning. Chapter 2 investigates how emotion 

stimuli, which are thought to activate distinct reinforcement systems than the 

norepinephrine system, influence learning. Consistent with this hypothesis, results indicate 

that learning, found to be influenced by the norepinephrine system, is moderated by 

emotion stimuli. Chapter 3 used a task-switching training task manipulating explicit 

feedback (i.e. points), to investigate how reinforcement systems influence learning in the 

executive function domain. Consistent with the hypothesis that reinforcement systems ‘tag’ 

task-relevant brain states, results indicate that feedback schedules which favored speeded 



 vi 

responses, biased response strategies to sacrifice accuracy for speed.  In conclusion, this 

dissertation furthers our understanding of the role of reinforcement systems in learning by 

providing a method of measuring norepinephrine reinforcement system activity during 

learning as well as provides a novel framework to understand how multiple reinforcement 

systems contribute to learning.   
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General Introduction 
 

How do we learn? 

From the time we are born, each second our sight, smell, hearing, taste and touch 

are bombarded with a vast amount of sensory input. Yet, from this vast amount of 

stimulation we are able to make sense of the world. It is clear that to do this sense-making 

we select some input over others. Extant research implicates a multiplicity of systems that 

are involved in the selection and subsequent learning process (Seitz & Dinse, 2007), though 

the manner in which each system influences learning and how they interact is still not well 

understood. This dissertation aims to further our understanding of a key set of systems that 

influence learning: reinforcement systems. Here, techniques and theories derived from the 

field of perceptual learning, are used as a framework to formalize how reinforcement 

systems influence learning. 

Chapters 1 and 2 use a task-irrelevant learning paradigm (Seitz & Watanabe, 2005; 

further discussed below), which has been used to study the role of reinforcement systems 

in learning. In Chapter 1, we test the hypothesis that the norepinephrine reinforcement 

system mediates task-irrelevant learning, by using pupillometry data as an indirect measure 

of the norepinephrine reinforcement system. Chapter 2 investigates how emotion stimuli, 

which are thought to activate a distinct reinforcement system than the norepinephrine 

system, influences task-irrelevant learning. Chapter 3, investigates how the role of 

reinforcement systems differ across cognitive domains by investigating how explicit 

feedback (i.e. points) influences learning in a task-switching paradigm. Overall, this 

dissertation furthers our understanding of the role of reinforcement systems in learning by 
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providing a method of measuring norepinephrine reinforcement system activity during 

learning as well as providing a novel framework to conceptualize how multiple 

reinforcement systems contribute to learning.   

 

Dissertation Structure 

The overarching goal of this dissertation is to further our understanding of how 

reinforcement systems contribute to learning. First, the introduction briefly reviews 

reinforcement learning. Then, current models of perceptual learning are discussed and a 

novel framework –the perception-reinforcement-action framework—is introduced to 

further elaborate on the role of reinforcement systems in learning. Next, three Chapters 

investigating how reinforcement systems contribute to learning are presented. Finally, in 

the discussion we interpret results from the Chapters in context of the aforementioned 

conceptual models of learning and discuss implications for the field of perceptual learning.  

 

A brief history of reinforcement 

The term “reinforcement” was first coined by physiologist Ivan Pavlov to describe how 

associations are formed (Pavlov, 1928). Specifically, he used the classical conditioning 

paradigm, where pairing of an unconditioned stimuli with a conditioned stimulus reinforces 

(i.e. strengthens) the association between the two stimuli. Other researchers have 

investigated how associations are made, including Edward Thorndike, who investigated 

how stimuli can reinforce responses via instrumental conditioning paradigms (Thorndike, 

1898). B. F. Skinner investigated the relationship between stimulus-response-outcome 

relationships using operant conditioning paradigms (Skinner, 1958).  
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This research has expanded to include a vast field studying the role of reinforcement 

in perceptual learning (Seitz, Kim, & Watanabe, 2007; Seitz & Watanabe, 2005; Seitz & 

Dinse, 2007; Seitz, Kim, & Watanabe, 2009; Seitz & Watanabe, 2009), cognitive training 

(Deveau, Jaeggi, Zordan, Phung, & Seitz, 2015; Deveau, Lovcik, & Seitz, 2014; Deveau, 

Ozer, & Seitz, 2014; B. Katz, Jaeggi, Buschkuehl, Stegman, & Shah, 2014; Benjamin Katz, 

Jones, Shah, Buschkuehl, & Jaeggi, 2016), clinical psychopathologies (Graybiel, 2008), 

behavioral economics and others (Gershman & Daw, 2017; Montague et al., 2006). With 

the development of electrophysiological and imaging techniques, the initial animal work 

done by Pavlov has expanded to investigate the neurobiological mechanisms underlying 

reinforcement including neurochemical systems and neural circuits. For example, multiple 

neurochemical systems have been identified, which may underlie the process of 

reinforcement, including systems that release dopamine (Bao, Chan, & Merzenich, 2001; 

Schultz, 2002), acetylcholine (Bakin & Weinberger, 1996; Kilgard & Merzenich, 1998; 

Thiel, Friston, & Dolan, 2002), and norepinephrine (Bear & Singer, 1986; Gordon, Allen, 

& Trombley, 1988; Witte & Marrocco, 1997). These neurochemicals systems are candidate 

reinforcement systems due to their diffuse connectivity throughout the brain. It has been 

hypothesized that these neurochemical systems act as a mechanism of reinforcement via 

the release of neurochemicals throughout the brain to “tag” activity to be learned (Seitz & 

Dinse, 2007; Seitz & Watanabe, 2003). Imaging techniques have also identified multiple 

reinforcement systems that respond to more abstract stimuli than primary reinforcers 

including money, beliefs, social responses, art, and bodily states (Montague et al., 2006; 

Ochsner & Gross, 2014). For example, the orbital frontal cortex has been implicated in the 



 4  

processing of more abstract reinforcers (Ochsner & Gross, 2014) while subcortical 

structures like the striatum and insula are thought to be more involved in concrete 

reinforcers (Ochsner & Gross, 2014). 

Overall, the crucial observation made by this body of research is that there exist 

multiple interacting reinforcement systems. To account for this, the role of multiple 

reinforcement systems is conceptualized in context of evidence that a multiplicity of 

systems contribute to learning. First, two conceptual perceptual learning models are 

reviewed, which account for a multiplicity of systems contributing to learning. Afterwards, 

a novel framework –the Perception-Reinforcement-Action processing framework—is 

introduced to expand on these models to understand how reinforcement systems influence 

learning.  

 

A Learning Threshold Model of Perceptual Learning 

Perceptual learning is typically defined as the improvement in the perception of a stimulus, 

such as improvement in the discrimination of orientation, spatial frequency or contrast, 

following training (Ahissar & Hochstein, 2004; Fahle & Poggio, 2002; Gibson, 1963). 

Over the past three decades of perceptual learning research, models of perceptual learning 

have suggested that there is a multiplicity of systems involved in learning. A model 

proposed by Seitz & Dinse (2007) takes into account perceptual learning found in 

conditions with attention, without attention and passive stimulation. Attention has been 

thought to act as filter on sensory input and select relevant information that is subsequently 

encoded into memory (Seitz & Dinse, 2007). For example, in Ahissar and Hochstein (1993) 
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participants trained on an array of oriented lines that could either be categorized by one of 

two tasks: its global orientation (i.e. vertical or horizontal) or whether an aberrant line was 

present (i.e. missing or present). When participants were trained on one task (e.g. global 

orientation) and subsequently switched to train on the other task (e.g. line detection), no 

transfer of learning was found, despite using the same stimuli. This result indicated that 

attentional mechanisms, were influencing learning. A number of studies have replicated 

findings of the influence of attention in perceptual learning (Seitz & Dinse 2007).  

However, follow up research paints a more complicated picture of learning with 

findings that indicate that perceptual learning can occur without attention. For example, 

pairing of stimuli with electrical stimulation of reinforcement systems, like the ventral 

tegmental area (Schultz, 2002; Bao, Chan, & Merzenich, 2001) and nucleus basalis (Thiel, 

Friston, & Dolan, 2002; Kilgard & Merzenich, 1998; Bakin & Weinberger, 1996), are 

sufficient to induce learning. Research using task-irrelevant learning (TIL) paradigms have 

found similar results where a subliminal stimulus (i.e. upward moving dots at 5% 

coherence) are paired with a target stimulus. After consistent pairing of the stimulus and 

targets, discrimination for the stimulus improves despite there being no overt target 

detection benefit for learning the stimulus, thus this phenomenon was dubbed ‘task-

irrelevant’ learning (Seitz & Watanabe, 2005; Seitz & Dinse, 2007; Seitz et al., 2009; Seitz 

& Watanabe, 2009). TIL has been thought to be mediated by activation of reinforcement 

systems during target detection, leading to the release of a learning signal. The learning 

signal which would normally induce learning of the target, ‘spills’ over to tag the 

temporally paired stimulus. Overall, this phenomenon is similar to learning found in 
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operant conditioning paradigms where stimulus-response-outcome states are reinforced. In 

context of TIL, target detection acts as a reinforcer. 

Finally, the learning threshold model takes into account findings of passive learning 

where coactivation of sensory systems in the brain with passive stimulation (i.e. where no 

decision is required) leads to cortical reorganization and learning (Schultz, 2002; Bao, 

Chan, & Merzenich, 2001; Seitz and Dinse 2007). Furthermore, direct stimulation of brain 

regions, using techniques such as transcranial magnetic stimulation, can also enhance 

learning (Seitz & Dinse 2007).  

To explain the aforementioned results, Seitz & Dinse (2007) suggest that learning 

occurs only after a learning threshold is surpassed. Thus, sensory inputs are not typically 

sufficient to surpass the learning threshold, allowing behaviorally irrelevant information to 

be ignored. However, when sensory information interacts with reinforcement systems, 

attention or brain stimulation, sensory signals are pushed past a learning threshold and are 

subsequently learned. Below, a conceptual model which elaborates on the role of attention 

in perceptual learning is discussed.  

 

An Attentional Gating Model of Perceptual Learning 

A model proposed by Seitz & Watanabe (2009) expands on the learning threshold model 

by further elaborating how attentional mechanisms interact with task-irrelevant learning 

(TIL). Various studies have indicated that attention can enhance or impair TIL. For 

example, manipulations of exogenous attention been found to suppress TIL (Choi, Seitz, 

& Watanabe, 2009; Leclercq & Seitz, 2012b). In other studies attention manipulations have 
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led to the enhancement of TIL including increased TIL for stimuli presented after a cue 

(Leclercq & Seitz, 2012a) or a target (Cohen Hoffing & Seitz, 2015; Leclercq & Seitz, 

2012a). TIL has also been found to vary by its spatial proximity to the task target, where 

irrelevant stimuli closer to the task target result in increased learning, indicating that the 

spatial profile of attention is modulating TIL (Nishina, Seitz, Kawato, & Watanabe, 2007).  

To account for these results, Seitz & Watanabe (2009) suggests that there exist a 

multiplicity of reinforcement and attentional systems at work in shaping TIL. For example, 

the Petersen and Posner (2012) attention network model suggests that there exist three 

attentional systems: the alerting, orientation and executive attention networks. According 

to the Seitz & Watanabe (2009) model each of these attentional networks act on their own 

spatial and temporal time course to filter sensory input. Task-irrelevant learning 

suppression occurs because the irrelevant stimulus is distracting and is filtered out by 

attentional systems. Conversely, the presence of task-irrelevant learning suggests that the 

irrelevant stimulus is not filtered out by the attentional system and thus the task-relevant 

stimulus learning signal “spills over” to the task-irrelevant stimulus. 

 

The Perception-Reinforcement-Action Processing Framework 

The perception-reinforcement-action (PRA)  framework aims to extend previous models 

by elaborating on how reinforcement systems influence learning. This model is adapted 

from the perception-valuation-action processing framework (Ochsner & Gross, 2014). 

While, the aforementioned perceptual learning models suggest that attentional systems and 

reinforcement systems may share a neural substrate, the PRA model assumes that they do 
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arise from the same neural substrates based on evidence that the same reinforcement 

systems are involved in downstream behavior. The PRA framework incorporates a 3-stage 

cycle (Figure 1): 1) the perception stage (P), 2) the reinforcement stage (R) and 3) the 

action stage (A). In the perception stage (P) external and internal sensory inputs from the 

world (W) are passed onto the reinforcement systems. The PRA process model unfolds in 

real time in a cyclical manner where the output of action informs the new state of the world. 

Furthermore, W1, W2, and Wn represent multiple reinforcement systems. Below, the task-

irrelevant perceptual learning paradigm is first used to expand on the reinforcement stage 

of the PRA process and then second, the action stage is elaborated on by discussing how 

the reinforcement stage influences subsequent behavior.  

 

The Reinforcement Stage 

In the reinforcement stage (R), reinforcement systems are activated by reinforcers that 

create associations between the world and internal sensory inputs. Reinforcers range from 

primary to secondary reinforcers. Primary reinforcers are stimuli that activate basic 

survival functions, such as food, water, and bodily states (Gershman & Daw, 2017; 

Montague et al., 2006). Secondary reinforcers are stimuli which are associated with 

primary reinforcers, such as points in a game, money (Gershman & Daw, 2017; Montague 

et al., 2006), and social responses (Ochsner & Gross, 2014). Reinforcers can also be 

internal, as is the case in task-irrelevant learning (TIL) where target detection leads to 

activation of reinforcement systems (Cohen Hoffing & Seitz, 2015; Seitz & Watanabe, 

2005; Seitz et al., 2009). In TIL, stimuli that are temporally paired with targets are learned 
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even when the learned stimuli are subliminal, and no task is associated with the stimuli 

(Cohen Hoffing & Seitz, 2015; Seitz et al., 2009). For example, in Seitz et al. (2009) 

participants viewed oriented gratings, while undergoing continuous flash suppression 

rendering the gratings imperceptible. One of the oriented gratings (e.g. 45 degrees) was 

continually paired with a water reward and resulted in learning of only the paired oriented 

grating. This result provided further support that TIL is mediated by reinforcement 

systems. The learning threshold and attention gating model predict that the norepinephrine 

reinforcement system mediates TIL (Seitz & Watanabe, 2005; Seitz et al., 2009).  

The largest source of norepinephrine in the brain is located in the locus coeruleus 

(Aston-Jones, 2005). The fact that the locus coeruleus has diffuse connections throughout 

the brain is consistent with the hypothesis that release of norepinephrine can ‘tag’ a brain 

state to be learned. Aston-Jones (2005) proposes that the norepinephrine system has two 

modes: a phasic mode involved in exploitation of currently available information and a 

tonic mode involved in exploration of the environment. In a pupillometry study in humans, 

participants discriminated tones of increasing difficulty (Aston-Jones, 2005). At the end of 

each trial participants were given the option to reset difficulty.  As hypothesized, large 

phasic changes in pupil size were seen at the beginning of difficulty sets and tonic baseline 

pupil size was greatest right before participants decided to reset difficulty. These results 

have been further replicated in animal studies which indicate increased engagement and 

accuracy during phasic activation of the norepinephrine system, while tonic activation of 

the norepinephrine system is associated with task-disengagement (Aston-Jones, 2005). 

Consistent with this hypothesis, studies investigating learning, have found evidence that 
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norepinephrine increases in a phasic manner during learning (Cohen Hoffing & Seitz, 

2015; Nassar et al., 2012). In addition to the norepinephrine systems, extant research has 

implicated other neurochemical systems in learning including dopamine (Bao, Chan, & 

Merzenich, 2001; Schultz, 2002) and acetylcholine (Bakin & Weinberger, 1996; Kilgard 

& Merzenich, 1998; Thiel, Friston, & Dolan, 2002). Overall, the PRA conceptual model 

accounts for findings that suggest multiple reinforcement systems contribute to learning, 

by explicitly including multiple PRA cycles.  

 

The Action Stage 

After the reinforcement stage, reinforcement systems give rise to action. Actions can be 

either cognitive (i.e. attention processes, memory retrieval, mental imagery) or physical 

(i.e. eye movement, physiological responses like changes in pupil size or heart rate). To 

expand on this, two models which implicate the involvement of reinforcement systems in 

attention processes are discussed. Specifically, theories suggest that reinforcement, arousal 

and attention processes arise from the same neural substrates. As discussed above, Aston-

Jones (2005) suggests that the norepinephrine system has phasic and tonic activation 

patterns, which encourage different forms of behavior to allow for optimized behavior. 

Petersen & Posner (2012) put forth a framework suggesting that reinforcement systems 

like norepinephrine and acetylcholine play distinct roles in attention. In this framework the 

norepinephrine system is hypothesized to be involved in the alerting of attention while the 

acetylcholine system is involved in the orientation of attention (Petersen & Posner, 2012). 

In context of the PRA model, these two theories suggest that the attentional systems put 
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forth by Peterson & Posner (2012) are actions that arise from engagement of the 

neurochemical reinforcement systems. For example, the norepinephrine system, when 

phasically activated, may give rise to activation of the alerting attention system, while tonic 

activation of the norepinephrine system may give rise to activation of the orienting 

attention system.  Although, in the Petersen & Posner (2012) model, it is thought that the 

orienting of attention is mediated by the acetylcholine system. These conflicting accounts 

of the underlying neurochemical systems of attention suggest that these neurochemical 

systems are not fully independent.  

 

Reinforcement, Emotion Stimuli, and Attention 

There are other types of reinforcers that have been found to drive attentional systems. For 

example, emotion-laden stimuli have been found to be involved in learning by influencing 

memory encoding (Mather & Sutherland, 2011). One possible mechanism of influencing 

memory encoding is by acting as a reinforcer. Consistent with this hypothesis, research has 

found that emotion stimuli activate the orbitofrontal reinforcement system (Oschner & 

Gross, 2014; van Rooijen, Ploeger, & Kret, 2017). Positive emotions are thought to serve 

as social rewards which reflect a desirable setting that should be exploited. Consistent with 

the PRA model, emotion stimuli have been linked to actions, with positive emotions 

leading to a broadening of spatial attention (Fredrickson & Branigan, 2005; Gasper & 

Clore, 2002; Rowe, Hirsh, & Anderson, 2007; Srivastava & Srinivasan, 2010) while 

negative emotions lead to a narrowing of spatial attention (Easterbrook, 1959). Overall, the 

aforementioned evidence is consistent with the PRA model in that reinforcement systems 
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give rise to actions.  Below, Chapters, which further our understanding of the role of 

reinforcement systems in learning, are introduced. 

 

Research Questions 

Chapter 1 

Chapter 1 tests the hypothesis that norepinephrine reinforcement systems mediate task-

irrelevant learning (TIL). A study using a standard TIL paradigm while collecting 

pupillometry was conducted. In the TIL paradigm images are paired with targets and 

distractors (Leclercq & Seitz, 2012a, 2012b, 2012c, 2012d). Participants complete a dual 

task of detecting targets and memorizing the paired images. Pupillometry is used as an 

indirect measure of the norepinephrine system, (Aston-Jones, 2005; Rajkowski, Kubiak, & 

Aston-Jones, 1993; Steinhauer, Siegle, Condray, & Pless, 2004) based on evidence that 

recordings of neuronal activity in the monkey locus coeruleus, the main source of 

norepinephrine in the brain (Aston-Jones, 2005), are coupled with changes in pupil size 

(Rajkowski, Kubiak & Aston-Jones, 1993). Follow-up research, indicating that pupil size 

changes are correlated with learning, (Nassar et al., 2012) is consistent with the hypothesis 

that norepinephrine influences learning and pupil size. Based on the aforementioned 

results, we hypothesize that results will replicate previous findings of enhanced accuracy 

for targets compared to distractors (i.e. TIL; Leclercq & Seitz, 2012a, 2012b, 2012c, 

2012d) and that TIL will be accompanied by increased changes in pupil size.  
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Chapter 2 

In Chapter 2 we investigated how emotion stimuli, which are thought to activate distinct 

reinforcement systems than the norepinephrine system, influence TIL. To test this 

hypothesis, we used a TIL learning paradigm where emotion stimuli were paired with 

emotion face targets (i.e. positive, negative and neutral faces) and distractors. Participants 

completed the dual task of reporting targets and memorizing images and were tested on 

recognition of the images and face targets. To further illuminate the influence of emotion 

stimuli on reinforcement systems we collected pupillometry data. Based on findings of a 

broadening of attention for positive emotion stimuli and narrowing of attention for negative 

emotion stimuli, we hypothesized that TIL would be enhanced for positive emotion stimuli 

and suppressed for negative emotion stimuli. Furthermore, we hypothesized that pupil size 

change patterns would  reflect TIL patterns. 

Chapter 3  

The study in Chapter 3 was motivated by our interest in applying methodologies of 

perceptual learning, shown to increase transfer of learning, to create efficacious training 

paradigms targeting executive function abilities. To create an efficacious training 

paradigm, we first wanted to understand how reinforcement systems influence learning in 

context of other cognitive abilities such as executive functions. To study this, we 

investigated how various forms of explicit feedback (i.e. points) influenced performance 

on a task-switching training task. Participants received various feedback conditions that 

have been used in the literature but not systematically studied. We also used drift diffusion 

modeling (DDM) to understand how training altered decision processes. 
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Figure 1: The perception-reinforcement-action cycle of the PRA process 
framework. The world (W) stage is processed by the perception stage (P) 
which then passes sensory input to the reinforcement stage (R) where 
associations between the internal and external states are created which then 
give rise to actions (A) which then further inform the current state of the 
world. Multiple PRA cycles interact to create learning. Adapted from 
Ochsner & Gross (2013).  
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Abstract 

 

Neurochemical systems are well studied in animal learning, however ethical issues limit 

methodologies to explore these systems in humans. Pupillometry provides a glimpse into 

the brain’s neurochemical systems, where pupil dynamics in monkeys have been linked with 

locus coeruleus activity, which releases norepinephrine (NE) throughout the brain. Here, 

pupil dynamics are used as a surrogate measure of neurochemical activity to explore the 

hypothesis that NE is involved in modulating memory encoding. A task-irrelevant learning 

paradigm is used, in which learning is boosted for stimuli temporally paired with task-

targets. Results show that participants better recognize images that are paired with task-

targets than distractors, and in correspondence that pupil-size changes more for target-paired 

than distractor-paired images. To further investigate the hypothesis that NE non-specifically 

guides learning for stimuli that are present with its release, a second procedure was used 

that employed an unexpected sound to activate the LC-NE system and induce pupil-size 

changes; results indicated a corresponding increase in memorization of images paired with 

the unexpected sounds. Together, these results suggest a relationship between the LC-NE 

system, pupil-size changes and human memory encoding.  
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Introduction 

Converging evidence from animal research and theoretical models (Hassani, Cromwell, & 

Schultz, 2001; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003; A. R. Seitz & Dinse, 

2007; Yu & Dayan, 2005) suggest a key role of neurochemicals like dopamine (Bao, Chan, 

& Merzenich, 2001; Schultz, 2002), acetylcholine (Bakin & Weinberger, 1996; Kilgard & 

Merzenich, 1998; Thiel, Friston, & Dolan, 2002) and norepinephrine (NE) (Bear & Singer, 

1986; Gordon, Allen, & Trombley, 1988; Witte & Marrocco, 1997) in the plasticity 

underlying learning; yet little is known about their role in humans. The study of 

neurochemical involvement in human learning is difficult because invasive methods are 

required to directly measure neurochemical release.  

However, non-invasive measures such as pupillometry can provide clues into 

neurochemical activity. For example pupil-size changes have been suggested as surrogate 

measure of locus coeruleus (LC) activity and its release of norepinephrine (Nassar et al., 

2012). This relationship is primarily supported by reports of a coupling of activity in the 

monkey LC and pupil dilation (Aston-Jones, 2005; Rajkowski, Kubiak, & Aston-Jones, 

1993). However, recent studies in humans show that show that pupil-size changes were 

positively associated with a learning rate (Nassar et al., 2012; Silvetti, Seurinck, van 

Bochove, & Verguts, 2013) and increased task performance (Murphy, Robertson, Balsters, 

& O'connell, 2011). These data provide evidence that pupil dynamics are related to learning 

and are consistent with the hypothesized role of NE-LC activity in driving pupil-size 

dynamics and learning.  
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Here the hypothesis that NE causes learning for stimuli present during its release 

regardless of their relevance to the inducing stimuli is explored (A. Seitz & Watanabe, 2005; 

A. R. Seitz & Watanabe, 2009).  To explore this hypothesis, pupillometry is collected in the 

context of task-irrelevant learning (TIL), in which learning occurs without attention being 

directed to the learned stimuli (A. R. Seitz & Watanabe, 2003, 2009; Watanabe, Nanez, & 

Sasaki, 2001). TIL is a robust learning phenomenon with demonstrations ranging from 

critical flicker fusion thresholds (A. R. Seitz, Nanez, Holloway, & Watanabe, 2005, 2006), 

motion (Watanabe et al., 2002), orientation processing (Nishina, Seitz, Kawato, & 

Watanabe, 2007), contour integration (Rosenthal & Humphreys, 2010), phonetic processing 

(Vlahou, Seitz, & Protopapas, 2009) and memory encoding (Leclercq, Le Dantec, & Seitz, 

2013). Seitz and Watanabe (2005) suggested a model of perceptual learning where learning 

results from interactions between spatially diffusive task-driven signals (such as NE) and 

bottom-up stimulus signals.  

While TIL was discovered in low-level perceptual learning (A. R. Seitz & 

Watanabe, 2003; Watanabe et al., 2001), recent research of fast task-irrelevant learning 

(fast-TIL) (Leclercq & Seitz, 2012a, 2012b, 2012c, 2012d; Lin, Pype, Murray, & Boynton, 

2010; Swallow & Jiang, 2010) shows increased memorization of images even after a single 

pairing with a target of a target detection task. We note, that “task-irrelevant” in the context 

of fast-TIL is used to maintain consistent terminology with prior works on the topic and 

refers to the fact that the memorized images have no predictive relationship to presentation 

of targets of the target-detection task, nor are the targets informative of which scene will be 

tested in the scene-recognition task. Fast-TIL like effects have also been shown in other 
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studies, such as in Krebs et al. (2013) where increased recognition was found for faces 

paired with incongruent words.  

Here the fast-TIL paradigm is adopted and used to examine the relationship between 

pupil dynamics and image recognition. We find that larger pupil-size changes correspond 

with improved image memorization through TIL. To further test the TIL model, a second 

study is conducted, in which novel sounds (following methods of Nassar et al., 2012 and 

Seitz et al., 2009) are paired with images to induce NE release. Results of this study are 

consistent with the first showing increased pupil-size changes and increased memorization 

for those images. These results suggest that TIL is a basic mechanism of learning in the 

brain and is a useful tool by which to understand the involvement of neurochemical signals 

in learning independent of task-related processing.  

 

Materials and Methods 

Participants  

A total of 70 participants were run, 43 in Experiment 1 and 27 in Experiment 2. All 

participants had normal or corrected-to-normal visual acuity and received course credit for 

the 1.5hr session. Participants were excluded due to excessive eye-movement (12 in 

Experiment 1 and 7 in Experiment 2). This left a final sample of 31 participants (19.28 ± 

1.4 y.o.; 20 females, 11 males) in Experiment 1 and 20 participants (19.85 ± 1.5 y.o.; 9 

females, 11 males) in Experiment 2. All participants gave written informed consent, as 

approved by the University of California, Riverside Human Research Review Board.  
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Apparatus and Stimuli 

An Apple Mac Mini running MATLAB (MathWorks, Natick, MA) and Psychophysics 

Toolbox Version 3.0.8 (Brainard, 1997; Pelli, 1997) was used for stimulus generation and 

experiment control. Stimuli were presented on a ViewSonic PF817 monitor with resolution 

of 1600 X 1200 resolution, and a refresh rate of 100 Hz. Display items consisted of 2112 

scenes depicting natural or man-made environments to ensure that every trial contained a 

unique set of images. Scenes were obtained from the Massive Memory database (Konkle, 

Brady, Alvarez, & Oliva, 2010) at 256 X 256 pixels of resolution, then up-sampled and 

presented at 768 X 768 pixels (18.3° of visual angle). In Experiment 2, environmental 

sounds were obtained from an online library (Marcell, Borella, Greene, Kerr, & Rogers, 

2000). We extracted the first 133ms of each sound and played them at a sampling rate of 

22kHz through Sennheiser HD 202 headphones, which have a frequency range of 18Hz-

18kHz. The background for all displays was a gray (luminance of 10cd/m2). Participants sat 

with their eyes approximately 57cm from the screen using the Eyelink 1000 tower-mount, 

which was used to track eye movement and pupil-size fluctuations of the right eye during 

every 10ms screen refresh. The eye tracker measured pupil diameter with a resolution of 

0.2% of diameter, corresponding to a resolution of 0.01 mm for a 5 mm pupil, and has a 

spatial resolution of <0.01° RMS (S.R. Ltd, 2005). Pupil dynamics are known to be 

influenced by luminance levels (Winn, Whitaker, Elliott, & Phillips, 1994), thus each scene 

was matched to the average luminance distribution of the 2112 scenes using the histMatch 

function of the SHINE toolbox to control for luminance fluctuations across the image set 

(Willenbockel et al., 2010).  
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Procedure and Design  

At the start of the experiment, a randomized target 9-point calibration and validation routine 

was performed using the EyeLink 1000 software to calibrate gaze and ensure accuracy of 

pupil dynamic readings.  

Each trial consisted of an 8-scene Rapid Serial Visual Presentation (RSVP) stream, 

each presented for 133ms followed by an ISI (blank gray screen) of 1000ms (Figure 1.1). 

Targets or Distractors were randomly selected each trial and presented within a gray 

aperture presented in the middle of each scene. Each participant performed 120 trials of the 

main procedure (described below). Each trial began with the message, “Blink! Whenever 

you are prepared to not blink press any key to continue,” to ensure participants were 

prepared for each trial. 15 Blocks of 8 trials each were separated at minimum by 10-second 

breaks. If a participant blinked or moved their eyes more than 1.5° from fixation during the 

RSVP stream they were alerted with the message “Please refrain from blinking or moving 

your eyes” and the trial was replaced with a new trial containing a novel set of images. 

Before each trial started participants were required to maintain fixation on a central red dot 

(0.1° of visual angle) for a random period of 300-600ms.  To ensure that participants could 

conduct the task they performed a practice block of 8 trials prior to initiating the main 

procedure. 

In Experiment 1, participants were instructed to complete two tasks (Target 

Detection and then Scene Recognition) in each trial. The Target Detection task was on the 

RSVP stream of alphanumeric characters; Targets (numbers ‘1’, ‘2’, or ‘3’) and Distractors 

(‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’). 
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For the Target Detection task, participants had 1500ms to report the Target identity via the 

number pad keys ‘0’ (if no Target presentation), ‘1’, ‘2’, or ‘3’. For the Scene Recognition 

Task participants were presented with two side-by-side scenes for 3000ms and reported 

which scene had appeared in that trial via the number pad keys ‘1’ or ‘2’.  

In Experiment 2, alphanumeric characters were replaced with environmental sounds, 

which were randomly selected from a list of 97 sounds. Participants were told that the 

sounds were irrelevant to the Scene Recognition task, which was their single task. In the 

place of Targets, a sound-change occurred (Novel Sound); in place of Distractors one 

repeating sound (Repeat Sound) was used. The trial retained the same statistical properties 

of Experiment 1.  

In both experiments, three types of trial conditions were utilized: Distractor (n=48), 

Target (n=48), and Catch Trials (n=24). In Distractor (Repeat Sound) trials no target was 

shown and one random scene was tested in the Scene Recognition Task. In Target (Novel 

Sound) trials the Target-paired scene was tested. In Catch trials, a target was presented and 

one of the Distractor-paired (Repeat Sound) scenes was tested. Catch trials were introduced 

so that participants couldn’t predict when a Target would occur or which scene would be 

tested. Tested scenes and Target presentation were counterbalanced across item positions 

3-6 to avoid primacy and recency effects. 

Data Analysis 

We calculated accuracy on the Target Detection Task and the Scene Recognition Task by 

dividing the number of correct trials by the total number of responses made for each task, 
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excluding missed trials. In Experiment 1, 7.74 ± 0.93%  (serr) of trials were missed in the 

Target Detection Task and 9.11 ± 0.96% in Scene Recognition Task. In Experiment 2, 13.67 

± 2.54% were missed in the Scene Recognition Task. 

For the analysis of pupil dynamics, pupil diameter was normalized by dividing each 

data point by each subjects’ pupil-size session mean. Analysis of pupil-size only examined 

Target and Distractor Trials, and excluded trials with eye-movements during the RSVP 

scene stream (6.77 ± 0.47 %) resulting in inclusion of 90 trials on average per participant. 

Baseline pupil-size (BPS) was defined as the trough-to-trough mean of pupil-size before 

stimulus presentation. This period was used because it provides an estimate of the pupil size 

immediately prior to the stimulus of interest, however it should be noted that it is not a stable 

baseline, due to the influence of processing the previous image. Alternative choices of 

baselines were more problematic because they were less temporally proximal to the stimulus 

of interest and eye movements and blinks contaminated pre-trial intervals. Pupil-size change 

(PSC) was defined as the difference between the trough and peak of pupil-size after stimulus 

presentation (Figure 1.2).  

Results 

Experiment 1 – Task Irrelevant Learning 

To evaluate whether our procedure led to TIL recognition rates in the Scene Recognition 

Task were examined (Figure 1.3). As hypothesized, accuracy (Figure 1.3a) for Target-

paired scenes (73.41 % ± 1.50%) was significantly greater than that for Distractor-paired 

(63.94 % ± 1.16%) scenes, t(30)= 3.7534, p=0.0004. Likewise, reaction-times were 
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significantly faster for Target-paired (1101 ± 13.2ms) compared to Distractor-paired (1147 

± 8.2ms) scenes, t(30)=-2.1947, p=0.0179 (Figure 1.3b). These increased memorization 

rates and faster reaction times for Target-paired scenes over Distractor paired scenes 

confirm a TIPL effect. 

Pupillometry of TIL 

A key question is whether there is a relationship between TIL and pupil-size changes during 

task performance (Figure 1.4a). We observed that participants showed a larger pupil-size 

change (Figure 1.4b) for Target-paired scenes (6.01 ± 0.38%) over Distractor paired scenes 

(4.33 ± 0.35%), t(30)=9.5410, p<0.0001, which is consistent with our hypothesis that NE 

release is associated with Target-processing. On the other hand, we found no baseline pupil-

size (t(30)=-1.1237, p=0.8650) differences (Figure 1.4c) between Target-paired scenes 

(99.91 ± 0.23%) and Distractor paired scenes (100.26 ± 0.18).  

While we failed to find a relationship between baseline pupil-size and TIL, previous 

studies (e.g. Murphy et al., 2011), have shown that baseline pupil-size is related to 

performance outcomes. To test for this, we examined pupil-size and pupil-size changes as 

a function of Performance Outcome [Correct, Incorrect] (Figure 1.4d). Consistent with 

previous findings, participants showed significantly lower (t(30)=-2.1386, p=0.0407, two-

tail) baseline pupil-size (Figure 1.4f) for Correct trials (99.84 ± 0.20%) than Incorrect trials 

(100.44 ± 0.24%). On the other hand, we failed to find any significant differences (t(30)=-

0.9283, p=0.3607 ) between pupil-size changes (Figure 1.4e) and Correct (5.09 ± 0.35%) 

vs. Incorrect scenes (5.22 ± 0.39%).  
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These results support a dissociation between pupil-size changes as regulating TIL, 

and baseline pupil in regulating overall performance, with lower baseline pupil-size leading 

to more accurate responses and greater Target-related pupil-size changes leading to TIL. 

Experiment 2 - Memory Enhancement due to Alerting Sounds 

While the results of Experiment 1 are consistent with our hypothesis for the role of 

NE in TIL, the dual task in Experiment 1 may recruit processes that may impact pupil 

dilation and thus confound the results. Thus to find independent evidence of the role of NE 

in TIL, we adopted an approach suggested by (Nassar et al., 2012 ) where alerting sounds 

were played as task-irrelevant stimuli drove learning on a numerical inference task. This is 

consistent with Seitz and Watanabe’s model of TIL which predicts that rewarding or alerting 

signals are sufficient to induce TIPL (A. Seitz & Watanabe, 2005); this is also consistent 

with research that unexpected stimuli have been shown to phasically drive LC neurons (Sara 

& Bouret, 2012) and pupil dynamics (Murphy et al., 2011).  We thus hypothesized that 

unexpected (alerting) sounds would lead to larger pupil size changes than expected sounds 

and that these alerting sounds would also lead to greater memorization of the paired scenes. 

To test this hypothesis, we replaced the Target Detection Task with a stream of task-

irrelevant sounds, where one sound (Repeat Sound) replaced Distractors and a set of Novel 

Sounds replaced Targets (Figure 1.1b).  

Results on the scene memorization task showed significantly increased accuracy for 

Novel Sound paired scenes (73.35 % ± 1.38%) compared to Repeat Sound paired scenes 

(69.15% ± 1.15%) (t(19)=1.84, p=0.039) (Figure 1.5a) and also significantly faster RT 

(t(19)=-2.85, p=0.0051) for Novel Sound paired scenes (1213 ± 14.4ms), compared to 



 29  

Repeat Sound-paired scenes (1291 ± 14.2ms) (Figure 1.5b). This significant increased 

memorization and faster RT for Novel Sound paired scenes over Repeat Sound paired 

scenes suggests a TIL effect. 

Pupillometry due to Alerting Sounds 

 Examination of pupil-size dynamics revealed significantly increased pupil-size 

change for Novel Sound paired scenes (4.74 % ± 0.15%) compared to Repeat Sound paired 

scenes (3.67% ± 0.13%) (t(19)=4.2147, p=0.0002) (Figure 1.6b) and no difference 

(t(19)=0.913, p=0.19) between baseline pupil-size for Novel Sound paired scenes (99.93 ± 

0.21%), compared to Repeat Sound-paired scenes (99.66 ± 0.21%) (Figure 1.6c). These 

replicate the pattern of results seen for TIL. 

Interestingly, we also found a relationship between Performance Outcome (Figure 

1.6d) and pupil changes, with significantly (t(19)=1.99, p=0.031) increased pupil-size 

changes during the to-be-tested scene that was Correct (4.12 % ± 0.06%) compared to 

Incorrect (3.71% ± 0.15%) (Figure 1.6e). However, no difference (t(19)=0.873, p=0.20) 

between baseline pupil-size before scenes that were Correct (99.97 ± 0.12%), compared to 

Incorrect (99.97 ± 0.31%) (Figure 1.6f). While these results are different than those of the 

first experiment, the dynamics of the pupil-size changes were different in this experiment, 

with a faster initial rise in pupil-size and prolonged elevation of pupil-size after the Novel 

sounds. Furthermore, even Repeat sounds may have had a different impact on pupil-size 

changes than the Distractors in Experiment 1. While these differences between experiments 

are interesting and warrant further study, they don’t strongly bear on our central 

observation that Novel sounds led to a TIL-like effect. 
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Prolonged Effects of Alerting  

As stated above, the Novel Sounds produced a prolonged change in pupil size that persisted 

into the stimulus presentation periods following that of the Novel Sound. This prolonged 

effect is consistent with subjective observations of a prolonged “arousal/alerting effect” 

following the Novel Sounds which was experientially different from a more stayed effect 

following the Targets in Experiment 1. We hypothesized that a component of this effect 

was due to the prolonged release of NE that would in turn lead to improved memorization 

for scenes presented after the Novel sounds compared to scenes presented before the Novel 

sounds. To test this hypothesis, we examined performance in trials in which the tested 

scene was presented earlier or later in the image sequence relative to the Novel Sound.  

Results of the Scene Recognition Task revealed a significant main effect of 

accuracy as a function of Trial-Type [Pre-Novel Sound, Novel Sound, Post-Novel Sound] 

with Pre-Novel Sound paired scenes having significantly (F(2,38)=4.78, p=0.014, one-way 

ANOVA) lower accuracy (66.12 % ± 4.04%; Figure 1.7a) and significantly slower 

(F(2,38)=58.702, p<0.0001) RTs (1340 ± 23.5ms; Figure 1.7b) compared to Novel Sound-

paired scenes (73.35% ± 1.38%; 1213 ± 14.4ms) and Post-Novel Sound paired scenes 

(79.95% ± 3.10%; 1264 ± 28.1ms). These results show that Novel Sounds not only 

benefited the paired scene but also had a prolonged effect that lead to increased accuracy 

and decreased RTs for scenes presented after the Novel Sound. 1 
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Discussion 

Our results show that pupil-size dynamics are associated with increased memorization of 

images. In Experiment 1 pupil-size change was related to the performance advantage that 

arises from Target-processing in a standard TIL paradigm. Experiment 2, further tested 

this model by testing whether Novel sounds, which also stimulate the LC, would lead to 

TIL. Consistent with the model, Novel Sounds led to increased pupil-size changes and 

learning. Together these data support the hypothesis that NE release guides human 

memory. 

These results are consistent with a model of TIL put forth by Seitz and Watanabe 

(2005) where “phasic” activation of the LC, which results in NE release throughout the 

nervous system (Bouret & Sara, 2005; Harley, 1987, 2004; Sara, Vankov, & Hervé, 1994) 

was hypothesized to lead to both task-relevant and task-irrelevant learning. This idea was 

built upon extant models of arousal and alerting, for which Petersen and Posner (2012) 

hypothesized to rely upon NE release, and also upon models of unexpected uncertainty in 

learning (Yu & Dayan, 2005) where NE release occurs for unpredictable stimuli, such as 

the unpredictable onset of a target in the stimulus stream. However, until now, there was 

no experimental evidence testing this hypothesis. Here, building upon findings of a 

connection between NE release and pupil dilation (Aston-Jones, 2005; Rajkowski et al., 

1993) we find that pupil-size changes are transiently related to the difference in accuracy 

for the Target and Distractor paired scenes.  
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Apart from phasic changes in the LC, longer-term “tonic” changes in the LC have 

been shown to relate to performance reflective of the Yerkes-Dodson curve (Yerkes & 

Dodson, 1908). The Yerkes-Dodson curve has provided evidence of LC activation in which 

the low and high ends of the curve are associated with low performance and low task 

engagement whereas activation in the middle of the curve is associated with optimal 

performance and increased task engagement. Previous studies have suggested that baseline 

pupil-size reflects the tonic activation of the LC. In Experiment 1, correct trials exhibited 

lower average pupil-sizes, while incorrect trials had higher average pupil-sizes. However, 

this pattern was not replicated in Experiment 2. Still it is difficult to directly compare 

Experiments 1 and 2 since the tasks (dual vs. single) and stimuli were different. Further, in 

Experiment 1 the pupil-size change is transiently associated with an increase in TIL while 

in Experiment 2 there is a prolonged effect of an increase in pupil-size change, which may 

have contaminated our estimates of baseline pupil size. This transience may also explain 

why it has no relation to overall accuracy (regardless of condition) while baseline pupil-size 

is related to overall accuracy. Moreover, given that the Yerkes-Dodson curve is non-

monotonic, we are left without the ability to make strong conclusions regarding the 

relationship between baseline pupil-size and performance as the full range of baselines is 

unknown and was not manipulated in this experiment.  

An important factor in learning research is one concerning the impact of individual 

differences. Previous studies have found that significant individual differences can occur 

in the fast-TIL paradigm (Leclercq, Hoffing, & Seitz, 2014; Leclercq & Seitz, 2012c). As 

such, one question to address is whether these individual differences in TIL also contribute 
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to differences in pupil dynamics. We first examined whether there were significant group-

wise differences when participants in Experiment 1 were separated into those who showed 

TIPL (Learners Group, n=14) and those who didn’t (Non-Learners Group, n=17). Learners 

performed at least 60% on Target paired scenes and at least 10% greater on tested Target 

over tested Distractor paired scenes; cut-offs were determined through a binomial 

cumulative distribution fit. A significant interaction between Group and Trial-type shows 

that the pupil-size changes differ as a function of condition between groups (F(1,29)=5.12, 

p=0.031) and this interaction was driven by a greater difference between Target and 

Distractor pupil-size changes in the Learners compared to Non-learners (t(29)=2.26, 

p=0.016). However, we didn't have sufficient power to conduct this same analysis in 

Experiment 2, where only 6 (of the 12 participants who showed better performance on 

novel compared to repeated paired sounds) met our strict criteria of “Learners”. 

Furthermore, there were no correlations between the difference scores of Target-Distractor 

Accuracy and Target-Distractor Pupil Size change (Experiment 1: r=0.21, p=0.26; 

Experiment 2: r=-0.01, p=0.96). Thus, while we are intrigued by larger pupil sizes changes 

in Experiment 1 for the Learners, this relationship wasn’t highly consistent. Similarly, 

previous studies (Murphy et al.  2011) have shown negative correlations between pupil size 

change and baseline pupil size. In the present study we failed to observe a consistent pattern 

across experiments between Target and Distractor pupil size change and baseline pupil size 

(Experiment 1, r=-0.35, p=0.26; Experiment 2, r=0.11 p=0.49). Altogether, it is difficult to 

know whether the lack of consistencies of the quantitative relationships between TIL, 

pupil-size and pupil-size-changes at the individual subject level reflect the noise in the 
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estimates of each of these measures or that we are failing to take into account non-linear 

interactions between these factors. An issue may be that fast-TIL relies upon a single 

pairing between an image and a target and that this may not produce as reliable of an 

induction of learning as found in slow TIL experiments, which involve many thousands of 

stimulus-reinforcement pairings. 

An interesting finding in Experiment 2 was that scenes tested after the Novel Sound 

also showed enhanced memorization. These results are consistent with previous findings 

of fast-TIL where prolonged benefits for scenes were found after the presentation of a 

target-arrow, which was similarly thought to alert participants to the RSVP stream of 

scenes (Leclercq & Seitz, 2012d). This result is also in line with findings from Murphy et 

al. (2011) where large pupil-dilations led to an increase in performance followed by a 

diminishing baseline pupil-size and decreased performance in the context of an oddball 

task where a key was pressed when an unpredictable sound occurred. They proposed that 

this pattern of task reengagement and disengagement was reflecting norepinephrine’s role 

in regulating task engagement levels.  

It is possible that eye movements made within the 1.5-degree fixation window may 

have influenced Target or Novel Sound mediated pupil measurements through direct 

influence on the pupil or through measurement error. Recent research has detailed that 

pupil-size can be confounded by eye-position with standard eye-trackers, such as the 

Eyelink that we used here (Gagl, Hawelka, & Hutzler, 2011). To avoid this potential 

confound, all experiments were conducted using a gaze-contingent display where fixation 

was required during all points of task-performance. Errors induced by gaze-position are 
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minimal within the central 2 degrees (Gagl et al., 2011) and are unlikely an influence in 

our data. To address whether there were movement differences we conducted a 2x2 

repeated measures ANOVA on Condition [Target, Distractor] by Coordinate [X, Y] using 

the mean X and Y position during the Target and subsequent ISI presentation across trials 

for each subject and found no interaction in either Experiment 1 (F(30,90)= 1.875 

p=0.1811) or Experiment 2 (F(19,57)=2.177 p=0.1565). Another concern is that even 

though luminance was equated across all images, Targets and Distractors may have 

exhibited local scene content and luminance differences, both of which have been 

demonstrated to influence pupil dynamics (Naber & Nakayama, 2013). While unlikely, as 

Target and Distractor scenes were randomly selected from a set of 960 scenes and 

randomized across participants, we confirmed that Targets were equally likely to be 

Distractors by computing the conditional probability of an image being a Target given it 

was tested. Out of the 2112 scenes that could possibly be presented (including the Blink 

set) and tested participants were tested on 1,315 of these scenes. A one-sample t-test on the 

Tested Target conditional probability from .5 (whether it was equally likely to be tested as 

a Distractor) (t(1314)= 0.3388, p= 0.7348) fails to find any difference in probability that a 

given image was tested as a Target or as a Distractor. As such we are reasonably confident 

that our findings of pupil size are not simple confounds of eye-movements or image 

content. 

Our results suggest that pupillometry combined with TIL, in which task-factors can 

be manipulated independently from the stimuli that are being learned, provides a useful 

approach to study the mechanisms of learning and memory. While these results are 
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consistent with the effects of arousal or alerting on learning, we suggest that a mechanistic 

model that relates arousal and learning to neurochemical systems like the LC-NE system 

provides a more parsimonious model of the processes involved. However, while our results 

demonstrate a relationship between pupil dynamics and TIL, there are substantial individual 

subject differences and further work will be required to clarify the quantitative relationship 

between pupil dynamics and TIL and ultimately, further research such as 

psychopharmacological and fMRI studies is required to confirm that the underlying 

mechanism is indeed NE.  
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Figures 
 

 

 Figure 1.1: Cartoon of trial structure. Each scene was presented for 133ms with an ISI 
of 1000ms, eye tracking is recorded every 10ms. A) In Experiment 1 each scene could 
either be Distractor Paired (DP) or Target Paired (TP). For the Target Detection Task, 
after the RSVP stream, participants reported the number if presented, or 0 if not. In the 
Scene Detection task, participants reported which of the two images was shown in that 
trial. The Test Scene could either be a DP or TP scene. B) In Experiment 2, each scene 
could be a Repeat Sound paired (RS) scene or a Novel Sound paired (NS) scene. The 
Target Detection Task was removed but the Scene Recognition Task remained the same. 
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Figure 1.2: Quantification of Pupil dynamics. Baseline pupil-size (BPS) defined as the 
average of the period denoted by BPS. Pupil-size change (PSC) defined as the difference 
from the peak minus the trough denoted by PSC. 
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Figure 1.3: Scene Recognition Task Performance. Participants exhibited A) increased 
accuracy for Target-paired scenes over Distractor-paired scenes and B) decreased RTs for 
Target-paired scenes compared to Distractor-paired scenes.  
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Figure 1.4: Pupil Dynamics in Experiment 1.  A & D) Pupil-size fluctuates with each 
stimulus presentation with 0 representing the onset of the to-be-tested Target or 
Distractor-paired scene. Dashed lines represent times of stimulus onset. B) Significant t-
tests indicated that Targets compared to Distractors induced larger pupil-size changes 
while C) no differences in baseline pupil-size were observed. Shading (A) represents 
within-subject standard error (Loftus & Masson, 1994). E) No difference was found in 
stimulus induced pupil-size change between Correct and Incorrect trials. F) Correct trials 
show a lower baseline pupil-size than Incorrect trials. Shading (D) represents within-
subject standard error. 
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Figure 1.5: Scene Recognition Task Performance. Participants exhibited A) increased 
accuracy for Novel Sound-paired scenes over Repeat Sound-paired scenes and B) 
decreased RT for Novel Sound-paired scenes compared to Repeat Sound-paired scenes. 
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Figure 1.6: Pupil Dynamics in Sound Experiment . A & D) Pupil-size fluctuates with each stimulus 
presentation with 0 representing the onset of the to-be-tested Novel or Repeat Sound-paired scene. 
Dashed lines represent times of stimulus onset. B) Significant t-tests indicated that Novel compared to 
Repeat Sounds induced larger pupil-size changes while C) no difference between baseline pupil-size 
was observed. D) Pupil dynamics during Correct and Incorrect trials showed E) increased pupil-size 
change during Correct trials compared to Incorrect trials. F) No significant difference in baseline 
pupil-size between Correct and Incorrect trials was observed. Shading (A, D) represents within-
subject standard error. 
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Figure 1.7: Catch Trial Accuracy and RT. Performance by condition before and after 
Novel Sound presentation during Catch trials indicates A) increased accuracy for Post-
Novel Sound-paired scenes compared to Pre-Novel Sound-paired scenes and B) 
decreased RT for Post-Novel Sound-paired scenes, compared to Pre-Novel Sound-paired 
scenes. Error bars are within-subject standard error. 
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Chapter 2 

 

The Influence of Emotion Reinforcers on Memory and Pupil Size 
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Abstract 

 

How do we select which information to learn when our environment has an overwhelming 

number of stimuli? One way this selection process occurs is through reinforcement of 

stimuli that are behaviorally relevant. Research indicates that different types of 

behaviorally relevant stimuli lead to different patterns of behavior and subsequent learning. 

For example, positive and negative emotion stimuli have been found broaden and narrow 

attention respectively and influence learning accordingly. Here we focus on how emotion 

stimuli influence task-irrelevant learning (TIL). We tested they hypothesis that positive 

emotions lead to a broadening of attention, and subsequent increase in TIL, while negative 

emotions lead to a narrowing of attention and a reduction in subsequent TIL. In Experiment 

1 we tested this hypothesis by presenting a rapid-serial visual presentation of images paired 

with emotion targets (i.e. positive, negative and neutral faces). Afterwards, we tested 

recognition of the paired images. Results indicate an increase in TIL for positive images, 

thus supporting the hypothesis that positive emotions lead to a broadening of attention, but 

we did not support the hypothesis that negative images lead to a narrowing of attention. To 

follow up on this result, we conducted Experiment 2, where we followed the same 

procedure as in Experiment 1 but additionally tested for recognition of the emotion targets. 

In addition, we collected pupillometry to investigate the role that reinforcement systems 

plan in the influence of emotions on TIL. Results indicate the opposite pattern of results 

with an increase in TIL for negative targets but not positive targets. A number of 

methodological differences between Experiment 1 and 2 contributed to an increase in 
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difficulty in Experiment 2 and the discrepancy of results. Overall, these results suggest that 

TIL is influenced by a number of reinforcement systems and further research is needed to 

investigate these influences.  
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Introduction 

Our cognitive systems do not have enough capacity to process the wealth of information 

in our environment. How then do we select which information to pay attention to? One 

manner in which selection occurs, is revealed in the task-irrelevant learning (TIL) 

paradigm. In this paradigm, stimuli, which temporally co-occur with goal-related tasks, are 

better encoded (A. R. Seitz & Watanabe, 2009). For example, stimuli presented with a task-

target are better learned than those presented with task distractors (Dewald, Sinnett, & 

Doumas, 2011; Leclercq & Seitz, 2012a, 2012b, 2012c, 2012d; Lin, Pype, Murray, & 

Boynton, 2010; Swallow & Jiang, 2010, 2011). TIL has been studied in detail in the case 

of low-level perceptual learning (A. Seitz & Watanabe, 2005; A. R. Seitz & Watanabe, 

2009), and more recently for perceptual memories with the study of a fast form of TIL  

(Cohen Hoffing & Seitz, 2015; Leclercq & Seitz, 2012a, 2012b, 2012c, 2012d). According 

to these studies, learning and memory are superior for stimuli that are presented with 

important events whether or not these stimuli have been deemed ‘relevant’ to task goals or 

whether subjects are even aware of the presence. Thus, TIL, and selection of information, 

and subsequent learning, occurs at times of behavioral relevance (A. R. Seitz & Watanabe, 

2009). The mechanism of TIL has been attributed to reinforcement learning (A. Seitz & 

Watanabe, 2005; A. R. Seitz & Watanabe, 2009), with neurochemical systems such as 

norepinephrine releasing at times of behavioral relevance and acting as a learning signal, 

subsequently leading to learning of task-irrelevant stimuli.  

One important question that arises, is how different types of behaviorally relevant 

stimuli influence learning, and specifically TIL. In the memory literature, studies indicate 
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that emotion-laden information influences memory (Mather & Sutherland, 2011) but the 

results are mixed as to whether emotion content enhances or impairs memory. While some 

of this discrepancy can be explained by differences in paradigms (Chiu, Dolcos, Gonsalves, 

& Cohen, 2013), few studies have addressed the individual contributions of arousal (how 

exciting or calming) and valence (how pleasant or unpleasant; (Russell, 1980) ). Some 

studies looking at valance have indicated better memorization for information associated 

with positive stimuli compared to information associated with negative information 

(Guillet & Arndt, 2009; Okada et al., 2011; Zimmerman & Kelley, 2010). Other studies 

have also found impaired memorization with negatively valanced stimuli (Bisby & 

Burgess, 2014). As proposed by Murray et al. (2013), this could indicate that the learning 

benefit may depend on the valence of the information to be remembered. This valence-

dependent effect on memorization is consistent with the hypothesis that negative valence 

leads individuals to focus attention on local details (Easterbrook, 1959) whereas positive 

valence leads to a broadening of attention (Fredrickson & Branigan, 2005; Gasper & Clore, 

2002; Rowe, Hirsh, & Anderson, 2007; Srivastava & Srinivasan, 2010). In typical TIL 

experiments, learning is induced using neutral targets, such as squares or letters, but have 

not yet looked at the impact of emotion stimuli. 

In the present study we investigate the influence of emotion stimuli on TIL. TIL is 

sensitive to attentional manipulations (Choi, Seitz, & Watanabe, 2009; Leclercq & Seitz, 

2012d) and is thus a good paradigm for understanding the influence of emotion stimuli on 

attention and subsequent learning. Specifically, if positive emotions broaden attention, then 

TIL should be enhanced with the temporally-paired image, whereas learning should be 
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impaired for images paired with a negative emotion target. In Experiment 1 we first 

investigate the influence of emotions on TIL and confirm the hypothesis that positive 

emotion stimuli lead to a broadening of attention, but we did not confirm the hypothesis 

that negative emotion stimuli lead to a narrowing of attention. In Experiment 2 we run a 

replication and add a recognition test of the centrally presented emotion targets to test 

whether negative emotion stimuli lead to the narrowing of attention. We hypothesize that 

if negative emotion stimuli lead to a narrowing of attention than participants should show 

improved recognition on the added recognition test.  To further shed light on the role of 

reinforcement systems in the influence of emotion stimuli on TIL we collect pupil data, 

which has been used as an indirect measure of reinforcement system activity. We 

hypothesize the different patterns of TIL induced by emotion stimuli will be accompanied 

by distinct patterns of pupil size fluctuations.  

 

EXPERIMENT 1 

Participants 

Thirty-seven participants (Age, M = 26.51 ± 2.24 ; Females, n = 20) gave informed consent 

to participate in this experiment, which was approved by the University of California, 

Riverside. All participants reported normal or corrected-to-normal visual acuity and 

received course credit and financial compensation for the one-hour session. Participants 

were excluded (n = 10) either because they had more false-positives than hits on the Image 

Recognition Task (six subjects), because of their poor overall performance on image 

recognition (three subjects with less than 10% accuracy) or because they failed to respond 
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on the majority of trials (one subject with response rate of less than 34% on the target 

detection task). 

 

Apparatus and Stimuli 

An Apple Mac Mini running MATLAB (MathWorks, Natick, MA) and Psychtoolbox 

Version 3 (Brainard, 1997; Pelli, 1997) was used for stimulus generation and experiment 

control. Stimuli were presented on a 22” CRT monitor with resolution of 1600 x 1200 

resolution and a refresh rate of 100 Hz. Participants sat with their eyes approximately 60 

cm from the screen. The backgrounds of all displays were a mid-gray. Display items 

consisted of 216, 700 x 700 pixel (18.3 degrees of visual angle), photographs depicting 

natural or urban scenes from eight distinct categories (i.e., mountains, cityscapes, etc.). 

These images were obtained from the LabelMe Natural and Urban Scenes database (Oliva 

& Torralba, 2001) at 250 x 250 pixels of resolution, then up-sampled to 700 x 700 pixels 

of resolution. Target faces were created to convey three different valanced emotions: 

positive, negative and neutral. distractor face was a made with mixed elements of the target 

faces. (Figure 3.1). 

 

Procedure 

Participants viewed a rapid serial visual presentation (RSVP) of images. Each image was 

presented 133ms, followed by a blank ISI of 367ms for an SOA of 500ms.  
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Face Detection Task – In the middle of each image a cartoon face was presented. This 

cartoon face could be a distractor face or a target face. Three types of target faces were 

used: happy, threat and neutral (Figure 3.1). The cartoon face had the same onset and offset 

time as the image with which it was paired. The RSVP stream consisted of 480 trials, with 

the presentation of 9 images per trial. In each trial, one image was paired with a target 

cartoon face (each type of target cartoon face was presented in one third of the trials); the 

other 8 images were paired with a distractor cartoon face. Participants were unaware of the 

start and ending of each trial. The target cartoon face could appear in position 2 to 7. Thus, 

the minimal interval between two targets was 3 images and the maximal interval was 13 

images. Of the 216 photographs depicting natural or urban scenes used in this experiment, 

8 were paired with the happy cartoon face, 8 with the threat cartoon face, 8 with the neutral 

cartoon face and the remained 192 photographs were paired with the distractor cartoon 

face. Each image was presented 20 times during the all experiments. Image assignment to 

target and distractor pairing was random for each participant. Participants were asked to 

press the ‘Left Arrow key’ as quickly as possible whenever they saw a target cartoon face 

(happy, threat or neutral) and to make no response when a distractor cartoon face appeared. 

Participants were instructed to memorize all of the images presented during the experiment 

for a later recognition test. Each participant was presented 480 trials, in 20 blocks of 24 

trials. Blocks were separated by brief breaks. 

 

Image Recognition Task – Following the presentation of the stream of images, participants 

performed an image recognition task. 64 images were presented to the participants: All 24 
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target paired images (8 images per emotion target), 8 images paired with the distractor and 

32 new images never presented in the experiment. Each image was presented until a 

response was made. For each image, participants were asked to report whether the image 

was present in the previous streams of images.  

 

Results 

To replicate previous findings of TIL on accuracy we compared performance on the Image 

Recognition Task between distractor- and target-paired images, where a benefit of targets 

is an indicator of task-irrelevant learning (TIL). Results indicate that target accuracy 

(M=64.41 ± 1.82%) was significantly higher than distractor accuracy (M = 43.98 ± 4.74%, 

t(26)=3.95, p = 0.001). This result replicates previous findings of increased accuracy for 

images paired with detected targets, and thus TIL.  

 To follow up on the effect of emotion targets on TIL we take the difference of 

distractor and target-paired image accuracy (Figure 3.2). A one-way repeated measures 

ANOVA indicates a significant difference between the three types of emotion targets 

(Positive, Negative, Neutral; F(2,52) = 5.00, p = 0.01). Follow-up paired t-tests indicate 

positive emotion TIL (M = 22.68 ± 6.00%) was significantly greater than negative ( t(26) 

= 3.14, p = 0.004) and neutral emotion TIL ( t(26) = 2.02, p = 0.054), but negative emotion 

TIL (M = 12.04 ± 6.49%) was no different than neutral emotion TIL (M = 14.81 ± 6.47%; 

t(26) =-0.88, p = 0.39).   
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Discussion 

In this experiment we tested the influence of emotion stimuli on task-irrelevant learning 

(TIL). The results support the hypothesis that positive stimuli lead to a broadening of 

attention as indicated by an increase in TIL for positive emotion targets compared to neutral 

emotion TIL. Our hypothesis that negative targets would lead to a narrowing of attention 

was not supported by the results which showed no difference in negative compared with 

neutral emotion target TIL. Because the neutral targets also lead to TIL it’s possible that 

the learning effects are obscured due to learning induced by a target. In Experiment 2, we 

follow up by testing the hypothesis that negative targets lead to a narrowing of attention by 

adding a face recognition test where participants are asked to recognize faces. To further 

shed light on the role of reinforcement systems in the influence of emotion stimuli on TIL 

we collect pupil data, which has been used as an indirect measure of reinforcement system 

activity.  

 

EXPERIMENT 2 

Here we follow up on results from Experiment 1, which showed that positive emotion 

targets lead to a broadening of attention, as indicated by enhanced TIL for positive 

compared to negative images. We also test the hypothesis that attention is reoriented to 

local details in negative emotion conditions by testing recognition of the target faces. We 

hypothesize that if negative emotions lead to reorientation of attention to local details than 

negative faces will show enhanced recognition compared to neutral images. Furthermore, 
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we use pupillometry to gain insight into how reinforcement systems influence attention 

and learning.   

Pupil size has been used extensively for decades as a window into the mind, as 

pupil size is under the control of the sympathetic and parasympathetic nervous systems 

(Steinhauer, Siegle, Condray, & Pless, 2004). For example, pupil size has been reliably 

used as a biomarker of a variety of cognitive processes such as arousal (Beatty, 1982), 

emotion (Bradley, Miccoli, Escrig, & Lang, 2008), and learning (Cohen Hoffing & Seitz, 

2015; Nassar et al., 2012). For example, research has suggested that neuromodulators like 

norepinephrine are involved in phasic responses of the pupil while acetylcholine may be 

more involved in driving tonic responses of the pupil (Aston-Jones, 2005; Cohen Hoffing 

& Seitz, 2015; Yu & Dayan, 2005). Similar studies have found correlations with pupil size 

changes and learning rate ((Nassar et al., 2012); (Silvetti, Seurinck, van Bochove, & 

Verguts, 2013) as well as pupil size and increased task performance (Murphy, Robertson, 

Balsters, & O'connell, 2011). These data provide evidence that pupil dynamics are related 

to learning and are consistent with the hypothesized role of neurochemical activity in 

driving pupil size dynamics and learning. Here we explore the hypothesis that the 

differences in TIL as induced by emotion stimuli will be accompanied by independent pupil 

dynamics.  
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Methods 

Participants 

Thirty-three participants (M= 20.81 ± 4.07; Females, n = 19) gave informed consent to 

participate in this experiment, which was approved by the University of California, 

Riverside. All participants reported normal or corrected-to-normal visual acuity and 

received course credit and financial compensation for the 1.5-hour session. 

 

Apparatus and Stimuli 

An Apple Mac Mini running MATLAB (MathWorks, Natick, MA) and Psychtoolbox 

Version 3 (Brainard, 1997; Pelli, 1997) was used for stimulus generation and experiment 

control. Stimuli were presented on a 22” CRT monitor with resolution of 1600 x 1200 

resolution and a refresh rate of 100 Hz. The backgrounds of all displays were a mid-gray. 

Display items consisted of 216, 700 x 700 pixel (18.3 degrees of visual angle), photographs 

depicting natural or urban scenes from eight distinct categories (i.e., mountains, cityscapes, 

etc.). These images were obtained from the LabelMe Natural and Urban Scenes database 

(Oliva & Torralba, 2001) at 250 x 250 pixels of resolution, then up-sampled to 700 x 700 

pixels of resolution. Target faces were created to convey three different valanced emotions: 

positive, negative and neutral. In order to probe learning of the target faces, a surprise 

memory task was conducted at the end of the experiment. Eight different faces per emotion 

were created by varying three parameters: face color (pink or orange), face shape (round 

or oval) and hair color (yellow or red). Finally, a dot was added on each face in one of 6 

locations (Figure 3.3). Participants sat with their eyes approximately 57cm from the screen 
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using the Eyelink 1000 tower-mount, which was used to track eye movement and pupil-

size fluctuations of the right eye during every 10ms screen refresh. The eye tracker 

measured pupil diameter with a resolution of 0.2% of diameter, corresponding to a 

resolution of 0.01 mm for a 5 mm pupil, and has a spatial resolution of <0.01° RMS (Ltd). 

 

Procedure 

Eight images were presented for 133ms each, followed by a blank inter-stimulus interval of 

667ms for a SOA of 800ms. 

 

Calibration and eye tracking – At the start of the experiment, a randomized target 12-point 

calibration and validation routine was performed using the EyeLink 1000 software to 

calibrate gaze and ensure accuracy of pupil dynamic readings. Each trial only began after 

the participant fixated on the central cross for 450ms. Fixation was followed by a rapid 

sequence of 8 full-field images.  

 

Face Detection Task – In the middle of each image either a target or distractor face was 

presented. The face had the same onset and offset time as the image with which it was 

paired. The experiment consisted in 240 trials, with the presentation of 8 images per trial. 

In each trial, one image was paired with a target face while the other 7 images were paired 

with the distractor cartoon face with similar face color, face shape, and hair color to the 

target face. The target face could appear in position 2 to 6. Each emotion was presented in 

one third of the trials. Thus, each target face was presented 10 times for total of 80 trials 
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per valanced target face. Participants had the dual task of detecting the target face and 

memorizing the image for the recognition task at the end of each trial. In the face detection 

task, participants pressed the ‘Left Arrow key’ as quickly as possible whenever they saw a 

target face (happy, threat or neutral) and made no response when a distractor face appeared. 

Each participant was tested for a total of 240 trials, in 10 blocks of 24 trials. Blocks were 

separated by brief breaks. 

 

Image Recognition Task – Following each trial, subjects were presented with a test image 

and were asked to report (by pressing the up-arrow or down-arrow key) whether the test 

image had appeared in the previous stream of images. The test image was presented for 

3,000ms or until subjects’ response. On 50% of the trials (120 trials), the test image was 

an image presented in position 2-6 of the RSVP sequence. The target-paired images were 

tested on 45 of trials (15 trials for each valanced face). Images presented in the position 

just after the target were tested 24 times (8 per valance). Images presented two positions 

after the target were tested 9 times, and images presented three positions after the target 

were tested 6 times. The other positions were tested on the remaining trials to ensure that 

there was no positional relationship between target presentation and test image 

presentation. On the other 50% of the trials, the test image was drawn from the set of 

images not presented on that trial. Of note, the target in the face detection task did not 

predict which image would be tested in the image recognition task, and thus any benefit in 

processing of the image was task irrelevant in regard to the detection task. 
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Face Recognition Task – At the end of the 240 trials, a surprise recognition task was 

administered. This task consisted of 96 trials. At each trial, two faces were presented to the 

subjects, one to the left and one to the right of the fixation point. One of the faces was one 

used during the experiment, while the other was the same but with the black spot located 

at the symmetric position (Figure 3.4). On each trial, subjects were asked to report (by 

pressing the right-arrow or left-arrow key) which face was presented in the experiment. 

Each face used in the experiment was presented four times. 

 

Data Analysis 

For behavioral analysis participants were excluded if target detection task accuracy was 

below 70% (n=3). To ensure that our analysis reflected the influence of the target we only 

analyzed trials in which the target was successfully detected. For the analysis of pupil 

dynamics seven participants were excluded due to experimenter errors leaving a total of 26 

participants. Pupil diameter was normalized by dividing each data point by each subjects’ 

pupil-size session mean. Pre-trial intervals were not used as a baseline because they were 

contaminated by the Image Recognition Task. Analysis of pupil-size only examined Target 

and Distractor trials. Distractor trials that only had tested trials before target presentation 

were used. To analyze effects of target and distractors on pupil size fluctuations we 

extracted pupil data so that it was time-locked to the onset of the presentation of one image 

before the tested image. Blinks were interpolated and smoothed using the algorithm 

developed in Siegle, Steinhauer, Stenger, Konecky, and Carter (2003). Based off of 

previous research we quantified two pupillometric measures which might reflect distinct 
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neurochemical systems (Cohen Hoffing & Seitz, 2015): pupil size change and pupil size 

baseline. Pupil size change is defined by taking 50ms window around the max value from 

150 to 230ms and subtracting a 50ms window around the min value after target 

presentation from 100 to 172ms. Pupil size baseline is defined by taking 50ms window 

around the min value from 172 to 258ms. The selection of time windows was based on 

visual inspection of individual participants. Error bars reflect standard error of the mean. 

Reported p-values from t-tests reflect two-tailed tests.  

 

Results 

To replicate previous findings of TIL on accuracy we compared performance on 

the Image Recognition Task between distractor- and target-paired images. Accuracy results 

indicate a significant effect of Trial Type (Targets vs. Distractors; F(1,32)=4.26, p=0.047) 

with target-paired images (M= 58.03 ± 3.13%) showing increased accuracy compared to 

distractor-paired images (M= 54.82 ± 3.1%), suggesting that we replicated the TIL effect 

found in Experiment 1. To further test the effect of emotion targets on TIL, and whether 

we also replicate findings from Experiment 1 we compared TIL by emotion (Figure 3.5). 

Results indicate a trending effect of Emotion Type (F(2,64)=2.21, p=0.12) with paired t-

tests indicating significant increase in accuracy for negative TIL (M= 6.91 ± 1.93%) 

compared with positive TIL (M= 0.24 ± 2.79%; t(32) = 1.88, p = 0.07) and trending when 

compared with neutral TIL (M= 2.30 ± 2.46%; t(32) = 1.51, p = 0.14). No significant 

difference between positive and neutral TIL (t(32) = -0.66, p = 0.52). This result indicates 

that we replicated findings of TIL, but were unable to replicate findings of increased TIL 
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induced by positive emotion targets. While the pattern of TIL is different in Experiment 2, 

we also note that there are significant differences in baseline accuracy between the two 

experiments with Experiment 1 showing overall increased accuracy in the image 

recognition task (M= 64.41 ± 1.82%) compared to Experiment 2 (M= 54.43 ± 3.44%). The 

accuracy difference between Experiment 1 and 2 was significant, (t(58)=2.14, p = 0.04) 

suggesting that the pattern of TIL in Experiment 2 might arise from methodological 

differences. Overall, these results indicate that negative targets lead to a broadening of 

attention as indicated by an increased image recognition accuracy, however we can’t make 

any strong conclusions because the difference between positive, negative and neutral 

targets was trending. 

Previous research shows that TIL is moderated by sex (Leclercq & Seitz, 2012c). 

To ensure that TIL isn’t present in the neutral and positive emotion targets, as was 

predicted, we investigated whether TIL is moderated by sex. Results looking at the 

difference of target and distractor accuracy indicate no significant main effect of Sex 

(Female, Male; F(1,31) = 0.79, p=0.38), Emotion Type (Positive, Negative, Neutral; 

F(2,62) = 2.15, p = 0.12) or interaction (F(2,62) = 0.25, p = 0.78). This result suggests that 

both males and females showed TIL, but also that neither sex showed a benefit of positive 

emotion targets.  

To test the hypothesis that negative emotions lead to a narrowing of attention, we 

looked at how emotion targets influenced performance on the face recognition task (Figure 

3.6).  Because accuracy was at a chance performance we focused on RT from correct trials. 

Reaction time results indicate a trending main effect of Emotion Type (F(2,64)=2.462, 
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p=0.093) with positive targets leading to faster responses (Mpositive = 1,414 ± 58ms, Mneutral 

= 1507 ± 71ms) compared to the neutral emotion targets (t(32) = -2.00,p = 0.05) but no 

difference between the negative (Mnegative = 1454 ± 67ms) and positive emotion targets 

(t(32) = -1.30, p = 0.20). No significant accuracy difference between emotion type was 

found (F(2,64) = 0.26, p = 0.77). Overall, these results indicate that positive targets lead to 

a narrowing of attention as indicated by a faster RT, however we can’t make any strong 

conclusions because the difference between negative, positive and neutral face recognition 

was trending. 

 

Pupillometry 

A key question in this experiment is whether pupillometry can shed light on the behavioral 

results of increased accuracy for negative target-paired images and faster reaction time for 

positive face recognition. To investigate this, we compared the time course of pupil 

dilations and constrictions (Figure 3.7A) for each emotion target type (Positive, Negative 

and Neutral) by trial type (Target, Distractor) using pupil size change and pupil size 

baseline.  

 Pupil size change results (Figure 3.7B) indicate a significant main effect of trial 

type  (F(1,25) = 30.48, p < 0.001) with a larger pupil size change for targets (M= 10.98 ± 

0.69%) compared with distractors (M= 7.52 ± 0.67%). A significant main effect of emotion 

type (F(2,50)=4.40, p = 0.017) is driven by a larger pupil size change for positive (M=9.54 

± 0.75%) and negative targets (M= 9.66 ± 0.81%) than for neutral targets (M= 8.54 ± 

0.79%). No significant interaction was found (F(2,50)=1.318, p = 0.28). Follow-up paired 
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t-tests comparing pupil size change between emotion type indicate a significant difference 

between negative and neutral (t(25)= 2.85, p = 0.008), and positive and neutral (t(25) = 

2.08, p = 0.05), but no significant difference between negative and positive pupil size 

change (t(25) = 0.34, p = 0.73). Pupil size baseline results indicate no significant difference 

between trial type (F(1,25)=2.08, p=0.16), emotion type (F(2,50)=0.55, p = 0.58), or 

interaction (F(2,50)=0.10, p = 0.90; Figure 3.7C). These results replicate previous findings 

of increased pupil size change for targets compared with distractors. Additionally, in line 

with results indicating that emotions lead to increased arousal, we find increased report 

findings of increased pupil size change for emotion targets compared with neutral targets. 

Here we find no difference between negative and positive pupil size change or baseline 

indicating that pupil measures do not only reflect mechanisms underlying TIL, per se. 

  To ensure that incorrect trials aren’t obfuscating pupillometric differences we 

followed up by comparing correct and incorrect target trials (Figure 3.8A). One participant 

was excluded from this analysis because they had no incorrect target trials. Pupil size 

change results indicate a significant effect of Emotion Type (F(2,24) = 6.07, p = 0.005) 

indicating the same pattern as found before with increased pupil size change for emotion 

targets compared with neutral targets (Figure 3.8B). No significant effect of Target 

Accuracy (Correct, Incorrect; F(2,24) = 1.7, p = 0.20) or interaction (F(2,24) = 0.98, p = 

0.38) was found. Pupil size baseline results indicate no significant difference between 

Target Accuracy (F(2,24) = 0.56, p = 0.46), Emotion Type (F(2,24)=0.95,p=0.40) or 

interaction (F(2,24) = 1.22, p = 0.31; Figure 3.8C). These results indicate that pupil size 

changes induced by targets occurred regardless of subsequent image accuracy and that 
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emotion targets led to increased pupil size change compared to neutral emotion targets. 

These results further suggest that pupil measures do not only reflect underlying TIL.  

 

Post-Target Behavioral Effects 

Previous research has indicated that images following targets also receive behavioral 

benefits from target processing (Cohen Hoffing). In the current data set we followed up on 

these effects by investigating performance changes to images that followed the target. First, 

we looked at how emotional targets affect subsequent recognition. Next, we looked at the 

benefit of target processing on image recognition in relation to the target position.  

 To look at the effect of emotion targets on subsequent recognition we compared 

accuracy of tested images that came before versus after the target (Figure 3.9). Results 

indicate a main effect of Target Relation (Before, After; F(1,32) = 25.41, p < 0.001) with 

tested images after the target showing an increase in accuracy (M= 54.85 ± 3.41%) 

compared with tested images before the target (M= 49.18 ± 3.96%). No significant effect 

of Emotion Type (F(2,64) = 0.16 , p = 0.85) or interaction was found (F(2,64) = 0.881, p = 

0.42). To follow up on whether this effect can be explained by pupil size metrics, we 

compared pupil size change and pupil size baseline on tested images that were positioned 

before and after target presentation. Pupil size change results indicate a trending non-

significant main effect of Target Relation (F(1,25) = 3.35, p = 0.08), and non-significant 

effect of Emotion Type (F(2,50) = 0.24, p = 0.79) and interaction. The trending effect was 

driven by a significantly larger pupil size change (t(25)= 1.76, p = 0.09) for images 

presented after a target (M= 7.52 ± 0.66) compared to before the target (M= 6.62 ± 0.64%). 
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Pupil size baseline results indicate a non-significant effect of Target Relation (F(2,50) = 

1.71, p = 0.20), Emotion Type (F(2,50) = 0.28, p = 0.76), and interaction (F(2,46) = 0.12, 

p = 0.89). While non-significant, we numerically found a difference in baseline pupil size 

after the target (M= 96.33 ± 0.90) compared to before (M= 94.60 ± 0.74). 

 To look at the effect of target on tested image position we looked at the accuracy 

of  

tested images that were one, two, and three images after target presentation (Figure 3.10). 

Results indicate no significant effect of Position (F(1,32) = 0.866, p = 0.43). Overall, we 

find that the presentation of a target leads to a temporary shift in pupil size change and 

pupil size baseline that accompanies an increase in accuracy. However, because effects are 

non-significant we cannot make any strong conclusions.  

 

Discussion  

In Experiment 2 we followed up on the results of Experiment 1 by attempting to replicate 

an increased task-irrelevant learning (TIL) for positive but not negative or neutral emotion 

targets. We additionally investigated whether negative emotion targets led to a processing 

benefit for target recognition compared with positive and neutral emotion targets. 

Additionally, pupil size dynamics were measured to shed light on the neurochemical 

processes involved in the benefits of emotion stimuli to learning found in experiment 1. 

Behaviorally, Experiment 2 results failed to replicate the effects seen in Experiment 1 and 

instead showed the opposite pattern of TIL with negative emotion targets showing TIL, 

while positive and negative emotion targets did not induce TIL. Results from the face 
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recognition task indicate a benefit of positive target processing compared to neutral and 

negative emotion target processing as indicated by a reduced reaction time for recognizing 

positive emotion faces. Together, results from Experiment 2 support the hypothesis that 

negative emotion targets lead to a broadening of attention while positive emotion targets 

lead to a narrowing of attention. However, due to the aforementioned effects showing 

trending significance we are unable to make strong conclusions. 

Pupillometry results replicated previous findings of increased pupil size change for 

targets compared to distractors. We report the novel finding in TIL of an increase in pupil 

size change for emotional targets compared with the neutral target, however pupillometry 

measures were unable to dissociate the accuracy differences found between valence of 

emotion of increased recognition for negative target-paired images and decreased reaction 

time for recognizing positive targets. We also looked at effects of targets on image 

recognition by comparing recognition of images presented before a target compared to after 

a target. Results indicate that there is increased accuracy for images tested after the target 

compared to before the target. Furthermore, non-significant trends indicate that this 

increase in post-target accuracy is accompanied by an increase in pupil size change and 

pupil size baseline suggesting an overall increase in arousal.  

 

General Discussion 

In this study we investigated how emotions, which have been found to influence memory 

formation, affect task-irrelevant learning (TIL). Previous research suggests negative 

emotions lead to a narrowing of attention while positive emotions leading to a broadening 
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of attention (Easterbrook, 1959; Fredrickson & Branigan, 2005). We hypothesized that if 

positive emotions lead to a broadening of attention than there should be an increase in TIL 

as indicated by an increase in accuracy for images paired with positive emotional targets.  

Conversely, if there is a narrowing of attention from negative emotions than there should 

be a decrease in TIL.  In Experiment 1 results indicated an increase in TIL in positive 

emotion targets, which supports the hypothesis that positive emotions lead to a broadening 

of attention. While we hypothesized that negative emotion targets would lead to a decrease 

in TIL due to a narrowing of attention, our results did not support this hypothesis. 

To follow up on these results we added a face recognition task that would assess 

learning of the targets themselves as the lack of a reduced TIL effect for negative targets 

may have been due to an overall increase in TIL that is typically induced by targets. Thus, 

if a narrowing of attention as induced by negative emotional targets does occur, there 

should be a benefit to negative emotion target recognition. Results did not support this 

hypothesis and indicated the opposite pattern of results from Experiment 1, as such we did 

not combine results across experiments. 

This pattern of results may have been due to differences in the paradigm of 

Experiment 2 that inadvertently increased difficulty, as evidenced by the overall decrease 

in accuracy compared to Experiment 1. First, the inter-stimulus interval was extended to 

accommodate the longer time course of the pupillary response, which may have resulted 

in taxing the memory systems more. Second, the addition of the eye tracking component 

itself may have increased difficulty as participants were required to maintain gaze on the 

central cross at the beginning of each trial to proceed. However, these two reasons are not 



 72  

likely to be the primary cause of a decrease in accuracy because previous experiments using 

a similar paradigm have used longer ISIs without a substantial decrease in accuracy (Cohen 

Hoffing & Seitz, 2015). Lastly, in Experiment 1 the stream of images was continuous with 

the image recognition test at the end of image stimulation. In contrast, in Experiment 2 the 

image recognition test was presented after every trial. This repeated testing in combination 

with the fact that images in Experiment 2 were also presented in other trials, but not 

necessarily tested each trial, could have caused memory interference. This memory 

interference may have resulted in the observed near chance accuracy. 

All together, these methodology changes could likely lead to differences in 

attentional demands which TIL has been shown to be sensitive too (Leclercq & Seitz, 

2012b, 2012d). Nonetheless, these changes do not necessarily explain our results which 

indicate TIL induced by negative emotion targets. In fact, our results also show a decrease 

in reaction time for recognition of positive emotion targets suggesting that negative 

emotional targets led to a broadening of attention, while positive emotion targets led a 

narrowing of attention. These results are in line with findings from the dot-probe task 

literature where attentional biases to positive stimuli are found (van Rooijen, Ploeger, & 

Kret, 2017). These findings have been suggested that positive stimuli attract attention, 

because they act as a positive reinforcer related to pro-sociality and may indicate desirable 

environmental conditions (van Rooijen et al., 2017). Though, the question remains as to 

why we see the opposite pattern of TIL in Experiment 2. We address this below, with 

evidence from pupillometry.  
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 Pupillometry results indicate that we did replicate previous findings of TIL of 

overall benefit for targets compared with distractors accompanied by an increased pupil 

size for targets compared with distractors (Cohen Hoffing & Seitz, 2015). However, the 

increase in TIL for experiment 2 was driven by negative targets, which were not 

accompanied by differences in pupil measures for negative and positive targets. Instead, 

we find that both positive and negative emotion targets show an increased pupil size change 

compared to neutral emotion targets. Previously, we had suggested that the increase in 

pupil size is reflective of neurochemical processes involved in TIL. Here, we find that even 

without showing TIL we find an increase in pupil size induced by target presentation. One 

possible interpretation is that pupillometry does not, in fact, reflect the neurochemical 

processes involved in TIL.  

An alternative explanation is that pupil size does indeed reflect TIL but to the extent 

that TIL is driven by arousal effects and not effects of valance. Pupil size has been 

extensively studied in context of arousal manipulations (Beatty, 1982; Bradley et al., 2008; 

Cohen Hoffing & Seitz, 2015; Steinhauer et al., 2004; Wierda, van Rijn, Taatgen, & 

Martens, 2012) such as arousal induced by uncertainty and difficulty load (Beatty, 1982; 

Nassar et al., 2012). Previous research conducted in our lab has also indicated that TIL and 

pupil size changes are sensitive to arousal manipulations using surprising noises (Cohen 

Hoffing & Seitz, 2015); see experiment 2). Here, our results suggest that pupil size may be 

sensitive to arousal but not valance as indicated by no difference between the emotion 

conditions. Thus, arousal effects due to methodological differences in Experiment 1 and 2 
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may account for differences in TIL and pupil size dynamics. However, this remains 

speculative as arousal was not explicitly manipulated in our experiment.   

A model proposed by (Seitz & Dinse, 2007) further support the explanation that 

increased difficulty interfered with learning and the lack of detecting pupil size differences 

between valance. In their model they suggest that there exists a learning threshold that must 

be passed to select what sensory input should be learned. Other processes such as 

neuromodulatory activity and attention alter the sensory input and push it past the learning 

threshold. Thus, in Experiment 2 pupil size measures do reflect reinforcement learning but 

that learning differences, as induced by the effect of reinforcement systems, might not have 

been sufficient to be picked up by pupil size measures.  

Another possibility for not finding pupil size differences between valanced stimuli, 

is that averaging across trials obfuscates any pupil size differences. As such, more 

advanced statistical techniques may be needed to make use of trial-by-trial data. One 

candidate technique is signal detection analysis that is frequently applied in studies using 

electroencephalography and function magnetic resonance imaging. For example, time-

frequency analysis can be applied to trial-by-trial data to extract oscillatory patterns of 

different frequencies (i.e delta, alpha, theta, etc.; Cohen, 2014). In context of pupillometry, 

this analysis technique might better be able to identify phasic and tonic fluctuations 

contributing to behavior. For example, in our results we find phasic responses to targets 

related to increased accuracy, as well as find a baseline shift in pupil size measures after 

target presentation related to increased accuracy for all images occurring after the target. 
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Altogether, these results suggest that differences between Experiment 1 and 2 may 

have contributed to overall increase in difficulty, leading to a change in overall levels of 

arousal or and decrease in learning signals, which together, may  account for the 

discrepancies in TIL. The perception-reinforcement-action process framework suggests 

that discrepancies between Experiment 1 and 2 could be due to a difference in the relative 

activation of multiple reinforcement systems. For example, it is possible that emotion 

targets, such as the ones used here activate different reinforcement systems than those 

involved in TIL. Research suggests that emotion content is processed by different 

reinforcement systems involving the orbitofrontal cortex (Ochsner & Gross, 2014), while 

TIL implicates reinforcement systems involving norepinephrine (A. R. Seitz & Watanabe, 

2009). Supporting this conjecture, Experiment 1 results indicate that TIL is induced 

regardless of target emotion type which is in line with the literature that shows many types 

of target stimuli induce TIL such as arrows, numbers, letters, shapes and sounds (Cohen 

Hoffing & Seitz, 2015; Leclercq & Seitz, 2012a, 2012b, 2012c, 2012d; A. R. Seitz & 

Watanabe, 2009).  However, experiment 2 did not show similar patterns of TIL, suggesting 

other factors at play in TIL. Overall, our results fail to show a consistent effect of emotion 

targets on TIL. These inconsistencies indicate that TIL is sensitive to the influence of 

multiple reinforcement systems indicating that TIL paradigms along with pupillometry can 

be a rich methodology for understanding learning, but to understand these inconsistencies 

further research is needed. 
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Figures 

 

 
 
Figure 2.1: Participants were instructed to respond to target faces and not respond during 
distractor faces (far right). Cartoon faces were either positive, negative, or neutral.  
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Figure 2.2: Image recognition task accuracy indicates task-irrelevant learning (TIL) for 
all target stimuli but an increase in task-irrelevant learning for positive compared to 
negative and neutral emotion targets suggesting that positive emotion targets lead to a 
broadening of attention. Error bars reflect standard error of the mean. 
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Figure 2.3: Cartoon faces used in Experiment 2 were altered for later testing on the face 
recognition task. Faces could vary by hair color, face color, face shape and spot position. 
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Figure 2.4: Participants were instructed to choose the face presented in the previous 
streams of images. Each face was the same with the exception of the dot being placed in a 
symmetric location. 
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Figure 2.5: Image recognition task accuracy indicates no significant effect of emotion on 
TIL indicating a failure to replicate results from Experiment 1. This result may be due to 
an increase in difficulty in Experiment 2. Error bars reflect standard error of the mean. 
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Figure 2.6: Face Recognition Test Performance results indicate that positive targets had faster 
RT compared to neutral targets but there was no difference between negative and neutral target 
RT suggesting a narrowing of attention induced by positive targets. No difference in accuracy 
between emotion type was found. Error bars reflect standard error of the mean. 
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Figure 2.7:  Pupil size over time on target and distractor trials (A). Pupil size measures 
indicate an increased pupil size change from both emotion targets (B) while no 
difference was found between emotion targets using pupil size baseline (C), suggesting 
that pupil size may not be sensitive to effects of valence on TIL. Error bars and shading 
reflect standard error of the mean. 
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Figure 2.8:  Pupil size over time on target correct and incorrect trials (A). Pupil size 
measures indicate no significant difference in target incorrect and correct pupil size 
change (B) or baseline (C) suggesting that pupil size may not be sensitive to valence 
effects on TIL. Error bars and shading reflect standard error of the mean. 
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Figure 2.9: Image recognition task accuracy indicates increased accuracy for images 
tested after compared to before the target but no difference between emotion type was 
found suggesting an attentional boost for all images post-target presentation. Error bars 
reflect standard error of the mean. 
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Figure 2.10: No image recognition accuracy differences between positions, in relation 
to target presentation, were found suggesting an attentional boost for all images post-
target presentation. 
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Abstract 

Task-switching is an important cognitive skill that facilitates our ability to choose 

appropriate behavior in a varied and changing environment. Task-switching training 

studies have sought to improve this ability by practicing switching between multiple tasks. 

However, an efficacious training paradigm has been difficult to develop in part due to 

findings that small differences in task parameters influence switching behavior in a non-

trivial manner. Here, for the first time we employ the drift diffusion model to understand 

the influence of feedback on task-switching and investigate how drift diffusion parameters 

change over the course of task switch training. We trained 316 participants on a simple 

task where they alternated sorting stimuli by color or by shape. Feedback differed in 6 

different ways between subjects groups, ranging from no feedback to a variety of 

manipulations addressing trial-wise vs block feedback, rewards vs punishments, payment 

bonuses and different payouts depending upon the trial type (switch/non-switch). While 

overall performance was found to be affected by feedback, no effect of feedback was found 

on task-switching learning. DDM revealed that the reductions in RT switch cost over the 

course of training were driven by a continually decreasing decision boundary. Furthermore, 

feedback effects on RT switch cost were also driven by differences in decision boundary, 

but not in drift rate. These results reveal that participants systematically modified their task-

switching performance without yielding an overall gain in performance. 
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Introduction 

Task-switching is an important cognitive skill that facilitates our ability to choose 

appropriate behavior in a varied and changing environment. Task-switching ability 

changes throughout the lifespan (Cepeda, Kramer, & Gonzalez de Sather, 2001; Davidson, 

Amso, Anderson, & Diamond, 2006; Huizinga, Dolan, & van der Molen, 2006; Kray & 

Lindenberger, 2000; Wasylyshyn, Verhaeghen, & Sliwinski, 2011), suggesting that this 

ability may be malleable. Consistent with this, training studies show that task-switching 

can, at least in certain circumstances, be improved through training (Karbach & Kray, 

2009; Minear & Shah, 2008; Strobach, Liepelt, Schubert, & Kiesel, 2012). These training 

paradigms are promising as a method to improve task-switching functions but give rise to 

inconsistent learning outcomes (Karbach & Kray, 2009; Minear & Shah, 2008; Pereg, 

Shahar, & Meiran, 2013).  It is likely that part of these training outcome inconsistencies 

are due to the use of different task structures and parameters across studies 

(Vandierendonck, Liefooghe, & Verbruggen, 2010). In task-switching training, different 

preparatory times (Monsell, 2003), cues (Monsell, 2003) and predictability of the task 

switch (Minear & Shah, 2008) have been found to influence performance and learning. In 

the present paper, we add to this literature by examining the influence of feedback on 

training, which has not been well explored in the context of task-switching.  

 Feedback on the accuracy and timeliness of one’s performance can provide critical 

information to guide behavior (Yeung, Botvinick, & Cohen, 2004). While the role of 

external feedback is critical to achieve accurate proficiency in tasks where the correct 

response can only be learned operantly (such as in the Wisconsin Card Sorting Task), 
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feedback can be less important in tasks where the participant knows which answers are 

correct and those which are not (Herzog & Fahle, 1997; Liu, Dosher, & Lu, 2014; Seitz, 

Nanez, Holloway, Tsushima, & Watanabe, 2006). For example, in typical task-switching 

tasks, participants will know whether their responses are correct or incorrect and thus 

feedback may be more relevant as a motivational signal rewarding participants for a job 

well done (Seitz, Kim, & Watanabe, 2007; Seitz & Dinse, 2007). For example, feedback 

has been used to study motivated decision making by associating different reward values 

to correct stimulus-response mappings with results suggesting that higher valued responses 

are related to increases in performance (Botvinick & Braver, 2015). Consistent with this 

motivational framework, in some cases people show more learning when falsely inflated 

feedback is provided than when accurate feedback is provided, suggesting models where 

feedback serves to increase learning rates rather than to supervise learning (Shibata et al. 

2011). On the other hand, feedback meant to provide motivation can also impair learning 

(Katz, Jaeggi, Buschkuehl, Stegman, & Shah, 2014), perhaps due to the distracting role 

that some feedback can have during task performance. Given these conflicting roles of 

feedback in the literature, we sought to determine both the extent to which feedback alters 

performance during task-switching and to understand what components of the decision 

process are altered. 

 While multiple studies have looked at which task parameters influence task-

switching learning and performance, few have shed light on the changes to decision 

processes that underlie that learning. With current computational techniques it is possible 

to model decisional processes during task-switching. In particular, the Drift Diffusion 
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Model (DDM) (Ratcliff, 1978) decomposes the decision process into different components, 

addressing biases, information integration rates, and the amount of accumulated 

information required to make a decision; each component offers insight into changes in the 

decisional process responsible for differences at the behavioral level. A benefit of the DDM 

is that it can jointly account for both the reaction time and accuracy distributions providing 

a more informative description of behavior than summary statistics such as the mean RT. 

The DDM has been successfully applied to understand processes involved in a variety of 

two-alternative forced choice tasks, such as recognition memory tasks, lexical decision and 

visual-scanning tasks (Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; 

Strayer & Kramer, 1994).  

While some studies have applied the DDM to understand task-switching 

(Karayanidis et al., 2009; Madden, Bennett, & Song, 2009; Schmitz & Voss, 2012), here, 

for the first time we employ the DDM to understand the influence of feedback on task-

switching and how drift diffusion parameters change over the course of task switch 

training. To accomplish this, we trained 316 participants on a simple task-switching task 

where they alternated sorting stimuli by color or by shape. Feedback differed in 6 different 

ways between subjects ranging from no feedback to a variety of manipulations addressing 

trial-wise vs block feedback, rewards vs punishments, payment bonuses and different 

payouts depending upon hard or easy trial types. This way we could look at how different 

feedback conditions may lead to different patterns of performance change across 10 blocks 

of training trials. Results showed that the most significant distinction was between the no 

feedback condition compared to the other feedback conditions, and that while reaction time 
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and accuracy data provided a pattern of results that was difficult to interpret, the DDM 

model parsimoniously accounted for the data through differences in both integration rate 

and decision boundaries.  

Materials and Methods 

Participants  

A total of 316 participants (Female=202; Age:, Mean=19.66, STD=2.84) were recruited to 

participate in the experiment. All participants had normal or corrected-to-normal visual 

acuity and received course credit for the 1hr session. All participants gave written informed 

consent, as approved by the University of California, Riverside Human Research Review 

Board.  

 

General Procedure and Training Task 

Participants trained for one session on a task-switching task. Each session is comprised of 

10 training blocks and 4 pre/post blocks (2 pre, 2 post) with 60 trials a block for a total of 

840 trials. Participants switched between two tasks categorizing colored shapes. In Task 1 

participants categorized images by color (Blue or Green) and in Task 2 stimuli are 

categorized by shape (Circle or Square). Eight stimuli were randomly chosen from a set of 

25 stimuli comprised of multiple exemplars of the rule categories. For example, 5 shades 

of Blue and Green, and 5 sizes of Circles and Squares were used. Stimuli appeared for 2s 

or until a response was made. Afterwards, a blank screen was displayed during the 

randomized inter-trial-interval of 0.5-0.9s. Trials in which a switch occurs are referred to 

as “switch trials” and trials in which a task repeats are referred to as “non-switch trials”. 
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Switch trials occurred every 4 trials and were cued (i.e. “Rule Change” was displayed) for 

1s whereas non-switch trials appeared after the Inter-Trial-Interval (ITI). In the rest of the 

paper we analyze only training block performance because feedback conditions differed 

only on these blocks. 

 

Experimental Manipulation on Feedback 

Participants were randomly assigned to one of the six training conditions based on subject 

number. Conditions consisted of No Feedback (NFB, N=51), Accuracy Feedback (AFB, 

N=53), Difficulty Aware (DFB, N=57), Punishment (PFB, N=55), Monetary Bonus (MFB, 

N=52), or Block Feedback (BFB, N=48). Each condition only differed on the 10 training 

blocks. Feedback (if provided) was given in the form of gold coins immediately after a 

response. Standard correct responses received 1 gold coin, and bonuses are provided based 

on difficulty and speed in relation to a 600ms response time criterion. The speed criterion 

was taken from the average reaction time (600ms) from a pilot study of 306 participants. 

In the NFB condition participants did not receive any feedback. In the AFB condition 

participants were only given feedback indicating correct or incorrect responses. In the DFB 

condition, participants received bonuses according to performance during difficult trials as 

described in the bonus structure above. In the DFB condition, we took into account the fact 

that responses are slower on switch trials by giving 1 bonus coin if an accurate response is 

within 20% of the speed criterion on switch trials and 5% of the speed criterion on non-

switch trials, and 3 bonus coins if an accurate response is within 5% of the speed criterion 

on switch trials. In the PFB participants received feedback as described above, however 
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incorrect or slow responses were punished with a -1 gold coin. The MFB condition was the 

same as the PFB condition except that participants received .2 cents per coin they won. The 

BFB condition was the same as the PFB condition except participants received feedback 

at the end of each block indicating the percent of total coins received.  

 

Data Analysis 

Out of 316 participants, 11 were excluded based on a 80% accuracy criterion (Figure S3.1). 

In addition to analyzing mean RT and accuracy across participants we looked at switch 

cost which is defined as a ratio of switch and non-switch trials to determine relative changes 

in performance. Defining switch cost as a ratio (as opposed to the difference) better 

accounts for relative changes from baseline RT (e.g., a 200ms slow down represents a 

greater change from a 400ms baseline than from a 1200ms baseline). Furthermore, this 

allows for simpler comparison between switch costs as estimated from RT and estimated 

from model parameters. Finally, using switch cost differences rather than switch cost ratios 

produced qualitatively similar results.  

 

Modelling 

To better understand how the different feedback conditions influence decision processes 

we fitted a drift diffusion model (DDM; see Figure 3.1) to our data. DDM construes the 

decision making process as a random walk which can be simulated using the equation: 

 W(t + dt) = W(t) + v · dt + n ,                                                    (1) 
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where dt is a time step in simulation, v is the mean drift rate and n is random Gaussian 

noise. W is a location at any given time between the two boundaries 0 and a. The decision 

is made once either of the boundaries is reached. In our case, reaching 0 corresponds to an 

incorrect response, while reaching a corresponds to a correct response. W(t=0) is a starting 

point that reflects any bias towards a particular stimulus, but since we fit correct/ incorrect 

responses no such bias is possible, therefore we fixed the starting point at an equal distance 

from the two boundaries, that is W(t=0) = a/2.  

Drift rate (v) reflects the efficiency with which stimulus information is used to 

select a response; it can be affected by task difficulty, individual differences in intelligence 

and working memory capacity, as well as motivation, fatigue or inattention (Schmiedek, 

Oberauer, Wilhelm, Süss, & Wittmann, 2007). In the task-switching paradigm, the drift 

rate might be affected by the activation of S-R mapping rules (e.g., carry-over effects), 

task-set biasing, or other factors contributing to task readiness (Schmitz & Voss, 2012).  

Decision Boundary (a) is normally regarded as a measure of caution or 

conservatism: larger values of the boundary result in slower responses but higher accuracy 

(Schmiedek et al., 2007). In other words, it captures speed-accuracy trade-off effects. Some 

studies suggest that in a task-switching paradigm, the decision threshold can vary on trial-

by-trial basis: caution can be reduced for predictable repeat trials (Schmitz & Voss, 2012) 

or increased for predictable switch trials (Karayanidis et al., 2009).  

 Non-decision time (t0) is thought to reflect the duration of pre-decision processes 

such as encoding, preparation of the right task set, and motor processes of the response 

system (Ratcliff & McKoon, 2008). Previous studies have found that, non-decision time 
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on switch trials was the same as on non-switch trials with a cue-stimulus interval as low as 

600ms (Madden et al., 2009). Because we used 1500-1900ms cue-stimulus interval, we 

assumed the non-decision time to be fixed across switch and non-switch trials.  

To fit the DDM we used a hierarchical Bayesian parameter estimation toolbox 

(Wiecki, Sofer, & Frank, 2013) which enabled us to get more robust fits as it makes use of 

commonalities among individuals (both individual and group-level parameters are fitted at 

once, where group-level parameters function as a prior for individual fits). This is 

especially advantageous in datasets with small number of trials. DDM parameters can be 

very sensitive to outliers in individual responses, especially when arbitrarily quick 

responses are made. To account for the fraction of random responses, we assumed a lapse 

rate of 10% (i.e. drawn from a uniform distribution). 

Results 

Behavioral data 

To understand how the feedback manipulations influenced task performance, we 

performed a mixed ANOVA on Block X Trial Type X Feedback Condition with subjects 

as random effects. Examining average task performance showed a main effect of Block on 

RT (F(9,295) = 16.87, p < 0.001) and Accuracy (F(9,295) = 7.94, p < 0.001), indicating a 

decrease in RT (Block 1: 710ms, Block 10: 659ms ) and Accuracy (Block 1: 95.07%, Block 

10: 92.64%). The fact that both RT and Accuracy decreased as a function of training block 

demonstrates a speed-accuracy tradeoff (Figure 3.2; A, B). However, a significant 

interaction for Block X Trial Type for RT (F(9,295) = 5.61, p < 0.001) but not accuracy 

(F(9,295) = 1.68, p = 0.088) suggests that improvements in RT are not solely due to the 
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speed-accuracy tradeoff (Figure 3.2 C, D), which complicates interpretation of the raw 

behavioral data. To quantify changes in switch cost with time, we performed paired t-tests 

on changes in switch cost between Blocks 1 and 10, and found a significant decrease in 

both RT and accuracy (Figure 3.2E ; t(304) = 988.1, p < 0.001; and t(304) = 606.3, p < 

0.001, respectively), with a proportionately greater change in RT than in accuracy, 

suggesting a reduction in switch costs. Altogether, direct examination of RT and accuracy 

provide a mixed story: it is unclear whether something other than a speed-accuracy 

tradeoff, such as learning, is occurring.  

 We next examined whether the different feedback conditions impacted 

performance and learning (Figure 3.3 A, B). A main effect of Condition (F(5,299)=3.868, 

p=0.002) on RT suggests that feedback did influence participants’ performance. The two-

way interaction between Condition X Block found for RT (F(45,1475) = 1.67, p = 0.004) 

but not for accuracy (F(45,1475) = 1.03, p = 0.425), suggesting that task feedback also had 

an effect on learning, where with time participants became faster in some of the feedback 

conditions. The three-way interaction term between Condition X Trial-Type X Block, 

however, failed to reach significance for either RT (F(45, 1475) = 1.0,  p=0.458) or 

accuracy (F(45, 1475) = 0.8, p=0.854), suggesting that different feedback conditions had 

minimal effect on the change in task switching performance over training. To look at 

changes in switch cost over the course of training by condition we conducted a one-way 

ANOVA (Figure 3.4) on the change in switch cost between Block 1 and 10 and failed to 

find a significant difference across conditions in either RT (F(5,299)=1.41, p=0.222) or 

Accuracy (F(5,299)=1.39, p=0.229). These results suggest that while feedback affected 
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overall task performance and learning, it did not significantly impact changes in switch 

costs. 

 

Modelling 

We used a DDM to investigate what aspects of the decision process are affected by training 

and feedback and to determine to what extent speed-accuracy tradeoff was driving the 

observed behavioral effects. We fitted a set of DDMs, each of which differed in what 

parameters were allowed to vary across blocks and trial types. If conditioning a parameter 

on trial type or block improves the model fit, it means that that parameter does vary across 

trial types or blocks, respectively. The set of models were compared based on Deviance 

Information Criterion (DIC), which is a standard measure for comparing hierarchical 

models (Wiecki, 2013). In the following, we present only the results for our winning model, 

which conditions drift rate (v) and decision boundary (a) on trial type and block (see 

Supplement Table S3.1 for the alternative models). 

 First, we looked at the change in parameters on switch and non-switch trials 

averaged across conditions (Figure 3.5A,B). As with the behavioral data, we performed a 

3-way mixed ANOVA to determine changes in parameters driving overall performance 

and switch cost effects. We found that there was a significant main effect of Block with a 

decrease in both drift rate ( F(9,295) = 53.27, p <0.001) and decision boundary (F(9,295) 

= 82.03, p < 0.01). For the drift rate this decrease was significantly different between trial 

types (Block X Trial Type (F(45,1475) = 50.57, p < 0.001) with a greater decrease in switch 

trials (Block 1: 2.87; Block 10: 2.15) than in non-switch trials (Block 1: 2.58; Block 10: 



 102  

2.49). The same was true for the decision boundary (Block X Trial type: F(45,1475) = 

62.80, p < 0.001), with a greater decrease in switch (Block 1: 3.22; Block 10: 2.45) than in 

non-switch trials (Block 1: 2.00; Block 10: 1.75). While a decrease in drift rate alone would 

result in increased RT and decreased accuracy, a decrease in decision boundary would lead 

to decreased RT and also decreased accuracy. Taking this into consideration, the results 

suggest that the observed decrease in RT switch cost over the course of training was solely 

due to the decrease in decision boundary, with changes in the switch trial parameter driving 

these improvements. To quantitatively compare the changes in drift rate and decision 

boundary, we performed a paired t-test on the difference of switch costs between Block 1 

and 10, and found that decision boundary decreased significantly more than drift rate 

(t(304) = 1378.1, p < 0.001; Figure 3.5C).  

To determine what effect different feedback conditions had on decision making 

processes we looked at the effect of condition on the model parameters (Figure 3.6 

A,B,C,D). We found that task feedback only affected the decision boundary (F(9, 

295)=5.46, p<0.001), but had no effect on the drift rate (F(9, 295)=0.9, p=0.484). This 

suggests that the overall variation in RT and accuracy for different task feedback (Figure 

2) originates from variation in the decision boundary. Furthermore, the interaction between 

trial type and feedback was significant for decision boundary (Trial Type X Condition: 

F(5,299)=3.23 p=0.007), but not drift rate (Trial Type X Condition: F(5,299)=0.42, 

p=0.834), indicating that differences in switch cost for different feedback conditions also 

originated from differences in decision boundary. However, it must be noted that the 

condition that most differed from the rest was the NFB condition (Figure 3.6E).  Finally, 
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a non-significant 3-way interaction between Block, Condition and Trial Type for drift rate 

(F(45,1475)=1.1, p=0.299) and decision boundary (F(45,1475)=1.25, p=0.123) indicated 

that feedback did not affect the changes in switch costs during training (Supplementary 

Figure S3.2).  

 

Discussion 

In this study we investigated the effects of feedback and training on task-switching 

performance. Behavioral results showed that both task feedback and training had an effect 

on task switching performance as reflected by differences in switch costs across feedback 

conditions and across blocks. We used Drift Diffusion Modelling (DDM) to understand 

the effects of feedback and training on the underlying decisional processes. DDM results 

revealed that differences in performance across feedback conditions were driven by 

differences in decision boundary, but not drift rate. In comparison to when no feedback 

was given, feedback that motivated faster performance (e.g. Difficulty, Monetary, 

Punishment and Block FB conditions) led to a decreased decision boundary on switch 

trials, reflecting speed-accuracy tradeoffs. Furthermore, the effects of training – reduction 

in RT switch costs – were also found to be driven by the reduction in the decision boundary, 

while a simultaneous but smaller reduction in drift rate only served to partly counter such 

effects.  

DDM parameter analysis also revealed that participants accumulated information 

slower and used higher decision boundaries on switch compared to non-switch trials. These 

findings are in line with the interpretation that drift rates primarily reflect carry-over 
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interference from the task on the previous non-switch trial while a larger decision boundary 

reflects a preparatory response to adapt to more difficult trials (Karayanidis et al., 2009; 

Schmitz & Voss, 2012).  Moreover, the continuous decrease in drift rate and decision 

boundary was found only on switch trials while it stayed relatively constant on non-switch 

trials, reflecting that changes in performance over the course of training were due to 

changes in the decisional process on switch trials. Learning that is reflected in the decrease 

of decision boundary is consistent with other training studies (Dutilh, Krypotos, & 

Wagenmakers, 2011; Liu & Watanabe, 2012; Petrov, Van Horn, & Ratcliff, 2011; Zhang 

& Rowe, 2014). Such decreases have been interpreted as a change in behavior due to 

complying with speed-accuracy tradeoff instructions. Another possible interpretation of 

the decreased decision boundary is that it reflects task learning (Dutilh et al., 2011). Zhange 

& Rowe (2014) found that when an untrained stimulus was tested, decision boundary did 

not change while drift rate did, suggesting that the decision boundary reflected learning 

that transferred across tasks.  

The decrease in drift rate over the course of training is more difficult to explain in 

terms of learning. Learning, as studied outside of task-switching research, has typically 

been shown to be driven by an increase in drift rate rather than a decrease (Dutilh et al., 

2011; Liu & Watanabe, 2012; Petrov et al., 2011; Zhang & Rowe, 2014). Thus, one 

possible explanation for the decrease in drift rate could be fatigue that arises over the course 

of the task (Schmiedek et al., 2007). However, the largest decrease occurs within the first 

few blocks with incremental changes thereafter and only on switch trials suggesting that 

this effect may reflect more meaningful changes in the decision process itself.  
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  In our study, the decrease in decision boundary on switch trials may reflect learning 

to anticipate when switches would occur and participants choosing increased speed at the 

expense of accuracy. This learning effect is in line with previous research showing that 

task switching performance is altered by task predictability. For example, Dreisbach et al. 

(2002) found that switch cost was increased when a switch was preceded by a 75% valid 

cue compared to a 100% valid cue (Dreisbach, Haider, & Kluwe, 2002). Minear & Shah 

(2008) also found that switch costs performance varied with the predictability of the 

switches.  

Adjusting speed-accuracy tradeoff over the course of training also explains why 

some feedback conditions had an overall decrease in decision boundaries on switch trials. 

An effect of task learning is evident in the Accuracy and No Feedback conditions where 

feedback did not motivate optimizing the speed-accuracy trade-off on switch trials 

compared to non-switch trials. In comparison, the Difficulty, Punishment, Monetary and 

Block feedback conditions, switch trial performance was rewarded more for correct and 

faster performance leading to an overall decrease in switch trial decision boundary which 

explains the overall decrease in RT for these conditions.  

Finally, our results are relevant to the task switch training literature in that feedback 

can be used to successfully motivate behavior that coincides with training goals. To achieve 

training goals, behavior must change on the relevant task dimension.  In the case of task 

switching training the typical goal is to improve the ability to switch to another task. While 

results in the present study indicate that feedback is not improving task switching ability, 

we show that feedback can motivate participants to specifically modify behavior on switch 
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trials. This result indicates that reward structures, if properly constructed to align with 

training goals, may be able to modify behavior in a manner consistent and beneficial to 

training outcomes. 

 

Conclusion 

We found that both feedback and training can have significant effects on task-switching 

performance. We used DDM modeling to account for speed-accuracy trade-offs and, for 

the first time, to show how decisional processes change over the course of task-switching 

training. Specifically, we found that participants show a decreased drift rate and increased 

decision boundary on switch trials compared to non-switch trials, possibly reflecting task 

set interference and a preparatory response before more difficult trials. Moreover, the 

change in switch cost over the course of training was driven by a decrease in the decision 

boundary, reflecting speed-accuracy tradeoffs. Finally, task feedback effects on RT switch 

cost were also driven by differences in decision boundary, but not drift rate. These results 

help show that learning is not necessarily best described as improvements of task 

performance, but instead should be characterized by how participants adapt their behavior 

to the training procedure that are made most relevant to them by feedback on their 

performance. Overall, our results suggest that DDM can provide additional insight into 

feedback and training effects on task-switching performance.  
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Figure 3.1. illustration of drift-diffusion model. Thin black lines represent trajectories of 
individual random walks. Each walk captures noisy accumulation of evidence in time on a 
single trial. The speed of accumulation is determined by the drift-rate (v). A response is 
initiated when either of the boundaries (a or 0) is reached. The upper (blue) and lower (red) 
panels represent RT distributions for correct and incorrect responses, respectively. The 
time gap between the onset of a stimulus and start of the evidence accumulation is non-
decision time, denoted by t0. 
 

  



 111  

Figure 3.2. A,B: Average reaction time and percent correct by block. Results indicate a decrease in 
Average RT (top left) and Accuracy (top right) for switch and non-switch trials. C,D: Switch cost 
is calculated by dividing switch by non-switch performance. A larger decrease in switch trials is 
reflected in a reduction in switch cost RT and switch cost accuracy. E: Switch cost change is 
calculated by subtracting Block 10 performance from Block 1. The bar plots indicate that change 
in RT and accuracy switch costs are significantly greater than 0. Error bars represent within-subject 
errors. 

A
) 

B) 

C) D) 

E) 
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Figure 3.3 A,B: Average reaction times and accuracy (B) for non-switch (A,B) and switch 
trials (C,D) in each block and corresponding switch costs (E,F). Results indicate that 
feedback condition influences overall performance in average RT and switch cost RT but 
not RT switch cost change. Each color corresponds to a different condition (NFB – No 
feedback, AFB – Accuracy feedback; correct or incorrect feedback, DFB – Difficulty 
aware feedback; bonus if fast and correct, PFB – Punishment feedback; punishment, -1 
coin for incorrect responses, MFB – Monetary Feedback; same as PFB, but each coin is 
worth 0.2 cents, BFB – Block feedback; same as PFB, but at the end of each block they are 
given block accuracy performance.  

A) B) 

C) D) 

E) F) 
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Figure 3.4. Change in Switch Cost from blocks 1-10 for RT and Accuracy by Condition. 
NFB –No Feedback, AFB- Accuracy Feedback, DFB- Difficulty Aware Feedback, MFB- 
Monetary Feedback, BFB- Block Feedback. Results indicate no difference between 
conditions in RT or Accuracy in switch cost change. Error bars represent standard errors 
 

  

A) B) 
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Figure 3.5. Group level parameters for all participants (n=305) for switch trials (green) and 
non-switch trials (blue). A,B: Results indicate a decrease in drift rate (A) and decision 
boundary (B). C) A larger change in decision boundary than in drift rate from blocks 1 to 
10 indicates that the decrease in RT and Accuracy is driven by a decrease in decision 
boundary. Error bars represent within-subject errors.  
 

  

A) B) 

C) 
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Figure 3.6. A,B,C,D: Group level parameters for each feedback condition for switch trials 
and non-switch trials, drift rate, decision boundary. Results indicate that behavioral 
changes by condition are primarily due to differences in decision boundary. E: Decision 
boundary by condition and trial type. Results indicate an overall decrease in decision 
boundary as feedback motivates good performance on switch trials, with the decrease being 
driven by the switch trial boundary. Error bars represent within-subject errors.   

E
) 

C) D) 

A) B) 
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Supplementary Material 

Figure S3.1. Mean accuracy of every individual on switch (right panel) and non-switch 
(left panel) trials. The dashed line indicates exclusion criterion and red dots are individuals 
that did not satisfy the criterion. Across the two trial types this resulted in excluding 11 
participants.  
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Model DIC 

DDM_11 (v, and a depend on trial type and block; t fixed; z=0.5) 31088 

DDM_25 (v depends on trial type and block; a, t fixed; z=0.5) 56681 

DDM_24 (a depends on trial type and block; v, t fixed; z=0.5) 40582 

DDM_21 (v, and a depend on trial type only; t fixed; z=0.5) 68488 

DDM_22 (v depends on trial type only; a, t fixed; z=0.5) 77260 

DDM_23 (a depends on trial type only; v, t fixed; z=0.5) 71611 

Figure S3.2. Model evidence for different model assumptions. Lower DIC value indicates 
a better model. The best model here is DDM_11. 
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Figure S3.3: Change in switch cost drift rate and decision boundary by condition from 
block 1 to 10. A one-way ANOVA on the switch cost difference between Block 1 and 10 
and found no significant difference between conditions for Drift Rate (F(5,299)=1.28, 
p=0.27) and a trending difference in Decision Boundary (F(5,299)=1.79, p=0.12). 
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General Discussion 

Extant research suggests that learning is the consequence of a number of interacting 

including reinforcement systems. The overall goal of this dissertation is to further 

understand how reinforcement systems contribute to learning. This was accomplished by 

conducting a series of studies investigating how different types of reinforcers activate 

reinforcement systems and influence subsequent learning. In Chapter 1 we tested the 

hypothesis that the norepinephrine reinforcement system mediates task-irrelevant learning 

(TIL), by using pupillometry, which is an indirect measure of norepinephrine activity. 

Consistent with this hypothesis results indicated that increased recognition accuracy for 

target-paired images (i.e. TIL) is accompanied by phasic changes in pupil size. In Chapter 

2 we studied how TIL is influenced by reinforcement systems underlying emotion 

processing and find that emotion targets can lead to the enhancement (Experiment 1) or 

suppression (Experiment 2) of TIL. Furthermore, compared to neutral targets, emotion 

targets are accompanied by an increased change in pupil size. Together, these results are 

consistent with the hypothesis that multiple reinforcement systems contribute to TIL, and 

specifically, that emotion targets activate a distinct reinforcement system than the 

norepinephrine system. In Chapter 3 we studied how explicit reinforcers (i.e. feedback) 

influence learning in a task-switching training task. We show that feedback rewarding 

speeded responses influence behavior to adopt strategies that sacrifice accuracy in favor of 

speed.  

In sum, we find four distinct learning effects from our studies: 1) Learning for 

stimuli that are task-irrelevant as indicated in Chapter 1 and 2 with increased recognition 
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accuracy for target-paired images in Chapter 1 and suppression and enhancement of TIL 

by emotion targets in Chapter 2, 2) Learning for stimuli that are task-relevant as indicated 

in Chapter 2, with decreased RT for recognition of positive emotion targets, 3) Learning 

that is temporally proximal to task-relevant events, as indicated in Chapter 1 and 2 with 

increased recognition accuracy of images that follow target presentation, and 4) Changes 

in behavioral strategies as indicated in Chapter 3, with changes in the speed-accuracy 

tradeoff. Below, these results are interpreted in context of the perception-action-

reinforcement (PRA) framework, the threshold model of perceptual learning and the 

attentional gating model of perceptual learning. 

 

A Multiplicity of Mechanisms Underlying Learning 

The perceptual learning models account for these learning effects by invoking multiple 

processes that contribute to the learning such as reinforcement, attentional, and passive 

learning processes. The PRA framework accounts for the results by invoking multiple 

reinforcement systems which interact and give rise to actions (i.e. changes in arousal). 

Below, we discuss results in context of each of the models.  

 

Task-Irrelevant Learning 

Results from Chapters 1 and 2 indicating an enhancement of recognition accuracy for 

images paired with the target, is in line with the hypothesis, as well as the aforementioned 

models, that reinforcement systems are involved in TIL. Specifically, that reinforcement 

systems release signals which ‘tag’ brain states (i.e. the image and target) that are then 
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learned. Furthermore, findings of an increased pupil size accompanying TIL is consistent 

with the hypothesis that the norepinephrine system mediates this reinforcement signal.  

 Results from Chapter 2, indicating that emotion stimuli moderate TIL, are 

consistent with the conceptual models which predict that multiple reinforcement systems 

are involved in learning. Supporting this hypothesis are findings from the dot-probe task 

literature where attentional biases to positive stimuli are found (van Rooijen, Ploeger, & 

Kret, 2017). These findings suggest that positive stimuli attract attention, because they act 

as a positive reward which may reflect desirable environmental conditions (van Rooijen et 

al., 2017). In line with this hypothesis is research indicating that emotion stimuli activate a 

reinforcement system involving the orbitofrontal cortex (Ochsner & Gross, 2014), while 

TIL implicates the reinforcement norepinephrine system (Seitz & Watanabe, 2009).  

 While the models make clear predictions about the role of reinforcement systems 

in learning during the presentation of a reinforcer (i.e. target detection), they are less clear 

about the role of reinforcement systems in learning that happens after the target has 

disappeared. Below, we discuss the role of attention and arousal mechanisms in learning.  

 

Task-Relevant and Temporally Proximal Learning 

Results from Chapter 2, Experiment 2 are consistent with perceptual learning 

models which suggest attentional systems can influence TIL (Choi, Seitz, & Watanabe, 

2009; Leclercq & Seitz, 2012a). In Experiment 2, results indicated that negative emotion 

targets lead to increased recognition accuracy for paired images, while positive reinforcers 

led to decreased target recognition speed suggesting that positive reinforcers led to a 
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narrowing of attention and negative reinforcers led to a broadening of attention. However, 

in both Chapters 1 and 2 we find that target processing leads to increased recognition 

accuracy for images following the target, regardless of emotion content. Because no 

reinforcers are presented in this time period, it is unclear how reinforcement systems play 

a role. Within context of the perceptual learning models this can be accounted for by 

invoking attentional mechanisms, such as a temporally extended alerting signal.  In context 

of the PRA model, increased recognition accuracy post-target presentation may be due to 

sustained phasic activation of the locus coeruleus due to the target. Further research is 

needed to test these hypotheses. 

The main difference between the PRA framework and the perceptual learning 

models are conceptual. While the perceptual learning models suggest that attentional 

mechanisms and reinforcement systems might share neuromodulator substrates, such as 

the norepinephrine system that is found to be commonly involved in reinforcement learning 

and attention (Aston-Jones, Peterson & Posner 2012), this assumption is built into the PRA 

framework. The PRA framework conceptualizes changes in arousal, as changes in the 

action stage that occur due to activation of norepinephrine reinforcement systems. This 

interpretation is consistent with the model proposed by Aston-Jones (2005). Aston-Jones 

(2005) proposes that the norepinephrine system has two modes: a phasic mode involved in 

exploitation of the currently available information and a tonic mode involved in exploration 

of the environment. 

Additionally, changes in tonic mode of the locus coeruleus may account for the 

failed replication of Chapter 2, Experiment 1 patterns of TIL in Chapter 2, Experiment 2. 
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This result is likely due to an increase in difficulty due to methodological differences in 

Experiment 2. A change in difficulty would influence levels of arousal (i.e. tonic mode), 

as suggested by previous research (Beatty, 1982; Steinhauer et al., 2004), and interact with 

TIL, thus decreasing the benefits of increased recognition accuracy from phasic activation 

in favor of task-disengagement behavior elicited by tonic mode activation. 

 

Strategy Learning 

 Finally, here, the fourth learning effect, where explicit reinforcers influence a change in 

behavioral strategy, is discussed. In Chapter 3 we find that over the course of task-

switching training participants increase response speed at the expense of accuracy. This 

finding may occur from the formation of expectations of when a switch will occur, as 

switch trials consistently occurred every four trials. Drift diffusion modeling (DDM) 

results from our study and others (Cohen Hoffing, Karvelis, Rupprechter, Series, & Seitz, 

2018; Karayanidis et al., 2009) further support the formation of expectations by showing 

that participants can shift decision criterion on a trial-by-trial basis as indicated in a 

decreased drift rate and increased decision boundary on switch compared to non-switch 

trials. The formation of expectations underlying the changes in behavioral strategies can 

partially be accounted for in the perceptual learning models by invoking passive learning 

mechanisms. For example, statistical learning research suggests that statistical regularities 

of the task can be picked up and learned (Bays, 2016; Seriès & Seitz, 2013).  

One possible alternative mechanism of the change in behavior by feedback is a 

motivational one. While the role of explicit feedback can be crucial to guide behavior 
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where the correct response can only be learned operantly (such as in the Wisconsin Card 

Sorting Task), feedback can be less important in tasks where the participant knows which 

answers are correct and those which are not (Herzog & Fahle, 1997; Liu, Dosher, & Lu, 

2014; A. R. Seitz, Nanez, Holloway, Tsushima, & Watanabe, 2006). The perceptual 

learning models suggest that this motivational effect may be a learning heuristic used when 

other learning mechanisms are not yet applied (Seitz, Kim, & Watanabe, 2007; Seitz & 

Dinse, 2007). Consistent with this hypothesis, in some cases, people show more learning 

when falsely inflated feedback is provided than when accurate feedback is provided, 

suggesting feedback can serve to increase learning rates rather than to supervise learning 

(Shibata, Yamagishi, Ishii, & Kawato, 2009).  

Within the PRA framework, this motivational learning heuristic can be 

accommodated by invoking a reinforcement system, activated by explicit rewards, which 

gives rise to speeded responses at the action stage. Over the course of training, this 

reinforcement system contributes more to behavior relative to other reinforcement systems. 

In sum, passive learning, top-down control and motivational effects of feedback can 

explain changes in strategy selection. However, a speed-accuracy tradeoff invokes the 

concept of an optimization process. Extensive research has examined how cognitive 

systems assign value allowing for the balance of speed with accuracy (Khodadadi, Fakhari, 

& Busemeyer, 2014; Standage, Wang, Heitz, & Simen, 2015), but value assignment has 

been understudied in the field of perceptual learning. Below we further discuss the role of 

valuation in learning.    
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Towards a More Complete Understanding of Perceptual Learning: The Role of 

Valuation  

Our results suggest there exist multiple reinforcement systems that influence learning. For 

example, in Chapter 2, emotion stimuli can influence the pattern of TIL, suggesting the 

involvement of a distinct reinforcement system. How then, is the relative influence of 

multiple reinforcement systems on learning decided? One possibility, is that the relative 

activation of reinforcement systems is decided by the relative value assignment to stimuli, 

where increased value assignment leads to more influence on learning signals and 

subsequent behavior (Gershman & Daw, 2017; Graybiel, 2008; Montague, King-Casas, & 

Cohen, 2006). Alternatively, one possibility is that top-down signals regulate the relative 

influence of reinforcement systems. 

The role of top-down signals in directing reinforcement systems is consistent with 

the Aston-Jones (2005) model, as well as reinforcement learning literature (Gershman & 

Daw, 2017; Graybiel, 2008; Montague et al., 2006). The Aston-Jones (2005) model 

suggests the contributions of brain states to goals are evaluated. These states are then 

balanced to give rise to optimal behavior. In Aston-Jones (2005) a computation of the 

utility of how current behaviors contribute to goals, facilitate either exploration of the 

environment or exploitation of the environment. In this model it was hypothesized that the 

orbitofrontal cortex might serve the role of calculating utility and shift the norepinephrine 

system between phasic and tonic modes.  

In line with this hypothesis, research has indicated the role of valuation in 

perceptual learning. Zhang and Rowe (2014), using DDM, found that a speed-accuracy 



 126  

trade-off is involved in perceptual learning. DDM results indicated that speed-accuracy 

tradeoffs, emphasizing accuracy, occur at the beginning of training, as indicated by an 

increased drift rate, decision boundary and non-decision time, while perceptual learning 

effects, of a decreased drift rate and decision boundary, only occurred after training. 

Overall, these results suggest that evaluative processes play a role in perceptual learning, 

however more research is needed to understand their role in reinforcement systems.  

 

Conclusion 

Overall, our results are consistent with perceptual learning models that suggest that a 

multiplicity of processes contribute to learning, including reinforcement, attention and 

valuation systems. Here we further the understanding of the role of reinforcement systems 

in learning by providing evidence that suggests that pupillometry can be used to understand 

the role of the norepinephrine reinforcement system in the brain. Furthermore, a novel 

framework is presented, the perception-reinforcement-action framework, which 

reconceptualizes the role of reinforcement systems, such that actions (i.e. arousal) arise 

from activation of reinforcement systems, rather than arising from distinct systems. 

A significant challenge for future research will be defining how multiple 

reinforcement systems interact to influence behavior and learning. Making progress 

towards developing such a comprehensive model will not only be a boon to further 

understanding the multiplicity of mechanisms that contribute to learning but can also be 

applied to create efficacious cognitive training paradigms. 
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