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Abstract

Cytometry is an advanced technique for simultaneously identifying and quantifying many cell surface and intracellular proteins at
a single-cell resolution. Analyzing high-dimensional cytometry data involves identifying and quantifying cell populations based on
their marker expressions. This study provided a quantitative review and comparison of various ways to phenotype cellular populations
within the cytometry data, including manual gating, unsupervised clustering, and supervised auto-gating. Six datasets from diverse
species and sample types were included in the study, and manual gating with two hierarchical layers was used as the truth for
evaluation. For manual gating, results from five researchers were compared to illustrate the gating consistency among different
raters. For unsupervised clustering, 23 tools were quantitatively compared in terms of accuracy with the truth and computing cost.
While no method outperformed all others, several tools, including PAC-MAN, CCAST, FlowSOM, flowClust, and DEPECHE, generally
demonstrated strong performance. For supervised auto-gating methods, four algorithms were evaluated, where DeepCyTOF and CyTOF
Linear Classifier performed the best. We further provided practical recommendations on prioritizing gating methods based on different
application scenarios. This study offers comprehensive insights for biologists to understand diverse gating methods and choose the
best-suited ones for their applications.
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Introduction
Cytometry is a powerful single-cell assay that allows for high-
dimensional profiling of diverse cell populations in suspension
[1–3]. This technique has been widely applied to clinical diagno-
sis, immunology and cancer research, and the pharmaceutical
industry [3–5]. Flow cytometry (FCM) and mass cytometry (or
cytometry by time-of-flight, CyTOF) are two major techniques
that employ labeled antibodies to quantify the cell surface and
intracellular proteins. FCM labels the markers by fluorescence
and measures the fluorescence emitted per cell as they pass
individually through a laser beam. The traditional FCM technique
can detect ∼8–10 markers, while the recent study has developed
a 43-color flow cytometry panel [6]. As an advanced technique,
CyTOF utilizes antibodies chelated with heavy metal isotopes to
identify cell surface and intracellular proteins. The metal isotopes
are primarily from the lanthanide series of elements, making
them neither biologically derived nor radioactive. Once cell sus-
pensions are stained and introduced into the mass cytometer,
they are nebulized into droplets containing individual cells. The
droplets are then ionized with argon plasma to release the metal
isotopes attached to the antibodies in each droplet. The ions are
separated based on mass such that the lower mass biologically
derived atoms are removed and those of higher mass enter a
time-of-flight chamber to measure their mass-to-charge ratios,
allowing for the quantification of relative isotope abundance in
each droplet [7–9]. Since mass cytometry has minimal background
and high specificity, CyTOF allows for simultaneous combined
measurement of up to 40–50 different antibodies, enabling the
identification of a large number of cellular populations from an
individual sample.

Analysis of cytometry data, although a powerful technique,
brings challenges to the community. One of the major obstacles is
to properly identify cell populations among thousands to millions
of cells based on their high-dimensional markers [10]. In this
study, we performed a comprehensive quantitative evaluation of
available gating methods for high-dimensional cytometry data.
Figure 1 provides a flow chart demonstrating the cytometry data
format, composition of marker tables, and the evaluation pipeline
of three gating categories in this study: manual gating, unsuper-
vised clustering, and supervised auto-gating. The first manual 2D
gating is the most traditional method used by biologists to identify
cell populations. As illustrated in Fig. 1, in the “Manual gating”
block, pairwise makers are selected based on prior knowledge
(known markers of interest) and applied to identify a subset of
cells. This subset of cells can be further selected and grouped by
other makers to identify cell subpopulations. Eventually, hierar-
chical layers of cell populations are built according to different
markers applied. Manual gating can be performed using FlowJo
(BD Life Sciences), Cytobank (Beckman Coulter), or other software
with friendly graphical user interfaces. It has advantages in iden-
tifying different cell populations of interest straightforwardly and
flexibly. However, the gating process is experience-based, time-
consuming, and relies on prior knowledge and arbitrary cutoffs to
assign cell populations.

In addition to manual gating, computer-aided unbiased
algorithms have been developed to identify cell populations in
a more automated manner [11], including the second and third
categories: unsupervised clustering and supervised auto-gating
(which further includes semisupervised or supervised gating). For
clustering methods, as shown in the “Unsupervised Clustering”
block of Fig. 1, cells are grouped into clusters based on marker
intensities without human intervention. Cell type characteristics

of the identified clusters are, however, unknown and rely on
researchers to further annotate. The supervised auto-gating
methods (illustrated in the “Supervised Auto-gating” block of
Fig. 1) not only group cells into clusters based on the marker
intensities but also additionally curate the cell populations
identified by assigning labels to each cell cluster based on
prespecified cell-type marker tables. Compared to manual gating,
computer-aided methods are faster, can simultaneously analyze
multiple datasets in a highly efficient and reproducible manner,
and do not rely on prior knowledge to cluster the cellular
populations. However, these methods sacrifice the flexibility
afforded by manual gating.

As shown in Fig. 1, three types of gating methods (manual
gating, unsupervised clustering, and supervised auto-gating)
have been developed with increasing automation and decreasing
human intervention. With the advanced popularity and devel-
opment of cytometry technology, several review and evaluation
papers have been published in the last 10 years. Most review
literature provides descriptive introductions of clustering and
visualization tools, along with conceptual guidelines for users,
but offers little to no quantitative comparisons to support the
conclusion [11–20]. To our knowledge, only two papers have
performed numerical evaluation. Weber et al. [21] compared 18
unsupervised clustering algorithms on four CyTOF and two FCM
datasets. Liu et al. [22] evaluated seven unsupervised clustering
methods and two semisupervised methods across six datasets
to provide guidelines on choosing clustering algorithms for
cytometry data. However, a more comprehensive evaluation
of tools, especially in manual gating and supervised auto-
gating, and extensive panels of evaluation criteria are lacking
to conclude a solid guideline for users. In contrast to the
limited scope of existing papers, we performed comprehensive
investigation and evaluation in all three categories in this paper
(see Supplementary Table 1 for a side-by-side comparison of
existing literature and the current paper). Firstly, in manual
gating, we collected gating results from five raters in three
different labs and evaluated gating consistency across raters. Two
hierarchical layers of gating results further served as ground truth
to evaluate the gating performance of the other computer-aided
algorithms. Secondly, in unsupervised clustering, we attempted
32 unsupervised clustering tools previously reviewed by Liu
et al. [11] and successfully implemented and compared 23 tools
across six datasets. Based on the truth from manual gating, we
expanded evaluation criteria (adjusted Rand index [ARI] and F-
measure) and computing benchmarks to provide an evaluation
panel for prioritizing overall tool performance. We also evaluated
the tools’ ability to detect rare populations, which is critical in
many biological or clinical applications. Finally, in auto-gating, we
successfully implemented 4 out of the 6 auto-gating (supervised
or semi-supervised) methods [11] to provide guidelines on the
application of automatic cell population identification.

The innovation and merits of this evaluation paper compared
to existing review papers [11, 14, 15, 20–24] are highlighted below
(Supplementary Table 1).

Gating methods
Manual gating (5 raters), unsupervised clustering (23 tools), and
auto-gating (4 tools) methods were systematically reviewed and
compared. To the best of our knowledge, such a comprehensive
evaluation has not been performed before, particularly as previ-
ous assessments largely lacked evaluations of both manual gating
and auto-gating.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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Figure 1. Workflow of the cytometry data analysis pipeline. The cell-by-marker intensity table per study was used as the input. For the (I) manual
gating method, scatter plots on pairwise markers were drawn to define the cell populations. In this paper, manual gating was performed by five raters
independently, and their gating results were compared. For the (II) unsupervised clustering methods, cytometry data were input into multiple clustering
algorithms. Their results were compared to the manual gating and evaluated. For the (III) supervised auto-gating methods, both cytometry data and
prior knowledge (such as maker table, model, and training data) were used as input. Multiple auto-gating algorithms were applied and evaluated based
on the manual gating truth.

Datasets
Tools were evaluated by both in-house and public datasets,
including multiple species (human, mouse, and nonhuman
primates) and cell types (peripheral blood mononuclear cells
[PBMCs], placental villi, and bone marrow). For in-house data, two
hierarchical layers of manual gating were used as ground truth,
where the first layer included major populations, and the second

layer contained a more detailed identification of subpopulations.
Data for two rare populations were also used to check the tool’s
ability to detect small clusters of cells.

Evaluation benchmarking
Multiple evaluation measurements were employed, including F-
measure, ARI, and Cohen’s kappa index. In addition, performance
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in different settings for the number of clusters was compared
and discussed. Computing time was evaluated on a grid of cell
numbers to estimate the scalability of the tools for ultra-large cell
number applications in the future.

Tool recommendation
Based on comprehensive comparisons of a wide range of
computer-assisted tools, our overall recommendations align
and further extend from the previous publications, suggesting
tools based on criteria such as accuracy, runtime, cluster-setting
capabilities, graphical visualization, and performance in detecting
rare populations.

Practical guideline
All programming scripts for tool implementation and comparison
were made available on GitHub (https://github.com/hung-ching-
chang/GatingMethod_evalutation/), on Zenodo (https://zenodo.
org/records/13851548), and attached as Supplementary Files. Dur-
ing our research, we were surprised to find that implementing
many published tools was not straightforward; even after con-
tacting the original authors and making multiple attempts by
several co-authors, many tools proved infeasible to use. This paper
thus enables future users in the field to easily apply and compare
various tools on their datasets. The GitHub and Zenodo resources
also provide an evaluation platform when a new gating method is
developed in the future.

Materials and methods
Cytometry by time-of-flight experimental
pipeline for rhesus macaque non-human
primate (NHP) samples
‘Placental samples’ were collected from the California Primate
Center at the University of California–Davis as described in our
published study [25] and from which CyTOF experiment data were
extracted. Briefly, pregnant macaques were injected with either
lipopolysaccharide (LPS) or saline solution; their offspring were
delivered via Cesarean section 16 h following injection, and their
placental biopsies were collected following delivery. For cryogenic
storage, each placental layer sample was stored and processed
according to a previously published protocol [26]. Fresh tissue
samples were cut to 1 mm size and stored in 1 ml of freezing
media (10% dimethyl sulfoxide (DMSO, Sigma) and 90% fetal
bovine serum (FBS, Gibco)) by slow-freezing in a Nalgene Mr. Frosty
freezing container (Sigma). For experimental processing, fresh or
cryopreserved samples were made into single-cell suspensions
by digesting overnight with DNase and collagenase diluted
1:5000 in digestion media (Hank’s Balanced Salt Solution (HBSS)
w/o Ca++ and Mg++, containing 5 mM ethylenediaminete-
traacetic acid (EDTA) and 10 mM 2-[4-(2-hydroxyethyl)piperazin-
1-yl]ethanesulfonic acid (HEPES)) on an orbital shaker. Single-
cell suspensions underwent staining for CyTOF as described
below. Details for this dataset were described in our published
manuscript [25].

‘PBMCs’ were isolated from rhesus macaque blood via a Ficoll
gradient. Blood was diluted 1:1 with Phosphate-buffered saline
(PBS) in a conical tube, and an equal volume of Ficoll was added
below the blood layer with a Pasteur pipette. The tube underwent
a 30-min spin with low acceleration and no brake to separate the
PBMCs from the rest of the blood contents. The PBMC layer was
pipetted out and washed with PBS twice before resuspension in
freezing media and slow freezing in a Mr. Frosty for cryopreserva-
tion. They were then thawed and underwent staining for CyTOF as

described below. Data for this set of samples are publicly available
on Cytobank (Beckman Coulter).

Cytometry by time-of-flight experimental
pipeline for human samples
‘Placental samples’ were collected through the University of Pitts-
burgh Biospecimen Core as described in Toothaker et al. [27] and
from which CyTOF data were extracted. Human placental biopsies
were separated by layers for long-term cryogenic storage or imme-
diate experimental processing. They were stored cryogenically
and prepared into single-cell suspensions in the same manner as
described above for the NHP tissue samples. Single-cell suspen-
sions underwent staining for CyTOF as described below. Details
for this dataset were described in our published manuscript [27].

‘PBMCs’ were isolated from human blood draws via Ficoll
gradient and cryopreserved as described above for the NHP blood
samples. Human patients were recruited from Boston Children’s
Hospital (BCH) under the BCH Institutional Review Board protocol
number P00000529. They were then thawed and underwent stain-
ing for CyTOF as described below. CyTOF data for this dataset are
publicly available on Cytobank (Beckman Coulter).

‘CyTOF’ staining was performed according to the previously
published protocol in Stras et al. [28]. Briefly, single-cell sus-
pensions were washed in cell-staining buffer (CSB) composed of
PBS with 0.5% bovine serum albumin (Sigma) and 0.02% sodium
azide. Viability was assessed with Rh103 (Fluidigm) DNA inter-
calator. After an additional wash, cells were stained with their
respective surface-staining antibody cocktails. For intracellular
staining, cells were washed and fixed utilizing FoxP3 fixation and
permeabilization kit (Invitrogen). After fixation, cells were washed
with the FoxP3 wash buffer and then incubated in their respective
intracellular antibody cocktails. Cells were then washed with
CSB again and fixed with 1.6% paraformaldehyde (Sigma). After
storage in CSB overnight, cells were incubated with 191Ir/193Ir
DNA Intercalator (Fludigm) in Maxpar Permeabilization Buffer
(Standard Biotools) for cellular identification. On the day of anal-
ysis, cells were washed with MilliQ water and resuspended in
normalization beads at a 1:10 dilution (Fluidigm). Data collection
for the samples was done on a Fluidigm mass cytometer, and data
were exported as Flow Cytometry Standard (FCS) files.

Data description
To evaluate the gating methods, we collected datasets gener-
ated by cytometry technology from both our in-house samples
and publicly available sources. As shown in Table 1, six datasets
were used in this study: human PBMCs, rhesus macaque PBMCs,
human placental villi [27], rhesus macaque placental villi [25],
human bone marrow [29], and mouse bone marrow [30]. Among
these, the first four datasets were generated from our in-house
libraries as described above. The human bone marrow [29] and
mouse bone marrow [30] datasets were collected from the public
databases from previous studies. For all six datasets, manual
gating and cell population annotation were available (from the
original papers for public data or by our manual gating for in-
house data) that can serve as the ground truth for performance
evaluation of computer-aided gating methods. Detailed descrip-
tions of each dataset, cell population, and marker table are sum-
marized in Table 1, Supplementary Tables 2 and 3. Down-sampled
datasets to 20 000 cells were generated for tools that could not
finish running the full datasets within 3 h.

For the human PBMC study, libraries for four treatments were
included: fresh unstimulated (−) T cell, fresh stimulated (+) T
cell, frozen T cell −, and frozen T cell +. As shown in Fig. 2A

https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://zenodo.org/records/13851548
https://zenodo.org/records/13851548
https://zenodo.org/records/13851548
https://zenodo.org/records/13851548
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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w and Supplementary Tables 2 and 3, the original datasets were

based on staining for 52 markers. To serve as ground truth,
manual gating was performed at two hierarchical layers (Fig. 2B).
The first layer employed six markers (CD3, CD19, CD4, CD8a,
CD38, and CD14) to identify seven major cell populations (CD14−
innate, CD38− B cells, monocytes, Natural killer T (NKT) cells,
CD4 T cells, CD8 T cells, and CD38+ B cells). The second layer
further divided the major populations and eventually identified
14 cell types (CD14− HLADR− innate, CD38− B cells, CD4 cen-
tral memory T cells, CD4 effector memory T cells, CD4 effector
T cells, CD4 naïve T cells, CD8 central memory T cells, CD8
effector memory T cells, CD8 effector T cells, CD8 naïve T cells,
Dendritic cells (DCs), monocytes, NKT, and CD38+ B cells) using
nine markers (CD3, CD19, CD4, CD8a, CD38, CD14, CCR7, CD45RA,
and HLA-DR) [31]. To evaluate the tool’s ability to identify rare
populations, innate lymphoid cells (ILCs) and regulatory T cells
(Tregs) (each with <3% of the total cell numbers) were selected
by the manual gating based on 12 markers (CD3, CD19, CD4,
CD8a, CD38, and CD14, CCR7, CD45RA, HLA-DR, CD25, FoxP3,
and CD127).

In addition to the human PBMCs, the other three in-house
datasets were gated into two hierarchical layers. For the NHP
PBMC dataset, six samples were used and pooled together for
the evaluation. Similar to the human PBMC dataset, the first
layer included six major populations (CD14− innate, monocytes,
NKT cells, CD8 T cells, CD4 T cells, and CD38+ B cells) using six
markers (CD19, CD8a, CD14, CD38, CD4, and CD3). The second
layer contained 13 clusters (DCs, monocytes, NKT, CD14- HLADR-
innate, CD8 central memory T cells, CD8 effector memory T cells,
CD8 effector T cells, CD8 naïve T cells, CD4 central memory T
cells, CD4 effector memory T cells, CD4 effector cells, CD4 naïve
T cells, and CD38+ B cells) gated by nine markers (CD19, HLA-DR,
CD8a, CD14, CD45RA, CD38, CCR7_CD197, CD4, and CD3). For the
human placental villi study, a total of 12 samples were analyzed.
Two samples (ID1042 and ID1130) with the highest number of cells
were selected as representative data. A pooled library merging all
12 samples was also used for evaluation. Similarly, for the NHP
villi datasets, a total of 14 samples were analyzed. The top two
samples (ID430 and ID437) and the pooled library were compared
in this paper. For both human and NHP villi studies, the first layer
includes 7 major populations (CD14− innate, monocytes, NKT
cells, CD38- B cells, CD8 T cells, CD4 T cells, and CD38+ B cells)
gated by six markers (CD18, CD8a, CD38, CD14, CD3, and CD4). The
second layer contained 14 cell populations (CD4 central memory
T cells, CD4 effector T cells, CD4 effector memory T cells, CD4
naïve T cells, CD8 central memory T cells, CD8 effector T cells,
CD8 effector memory T cells, CD8 naïve T cells, DCs, monocytes,
NKT cells, CD38- B cells, CD14- HLADR- innate, and CD38+ B
cells) identified by nine markers (CD19, HLA-DR, CD8a, CD38,
CD14, CD45RA, CD3, CCR7, and CD4). Supplementary Tables 2
and 3 describe the cell population and marker table in more
detail.

Human and mouse bone marrow datasets were generated
from previous studies and downloaded from a public database
[29, 30]. For the human bone marrow study [29], one healthy
donor was measured in the first dataset with 13 markers
(Supplementary Table 3). Manual gating was available with 25 cell
populations. To avoid rare populations, several subpopulations
with fewer cells were merged or removed for our analysis.
Eventually, 8 and 20 populations derived from manual gating and
merging were used as the first and second layers of ground truth,
respectively (Supplementary Table 2). In addition, two healthy
donor samples were available for the second dataset where 32

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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Figure 2. Coherence of manual gating across five raters. (A) A hierarchical layer of the human PBMC populations gated by the selected markers. (B)
t-SNE figures indicating the manual gating cell population in Layer 1 and Layer 2 by rater L.K. (C) Average pairwise kappa index among five raters with
hierarchical clustering to illustrate the similarity of the raters based on their gating assignments. (D) Pairwise kappa index among five raters on CD4 T
cells and CD4 naïve T cells.

markers were measured. On top of the original manual gating, we
further removed or merged several smaller populations. Finally,
we applied 7 and 10 populations as the first and second layers
of underlying truth. For the mouse bone marrow datasets [30],
10 samples were available in total. We selected two mice (S01
and S02) and a pooled library of 10 samples as representative
for the following study. This dataset measured 39 markers and
manually gated cells into 7 and 24 populations for the first and
second layers. The details of the cellular populations and markers
used for gating and identification are described in Table 1 and
Supplementary Tables 2 and 3.

Data format, preprocessing, and parameter
setting
Cytometry data are commonly stored in FCS format, contain-
ing information on both metadata and marker expression. The
associated metadata table generally describes experimental and
channel information, such as marker name, marker description,
and range information. The expression file is in an array or
matrix format where each row represents an individual cell,
and each column stands for a marker/channel. These channels
correspond to fluorescent markers or heavy metals in flow or
mass cytometry data, which have been described in the metadata
table [13, 32, 33].

As the data preprocessing steps, all the negative intensities
were trimmed at zero or very small random numbers close to zero
(if the algorithms report an error when using multiple zeros as

input). Cytometry data were further scaled and inverse hyperbolic
sine–transformed (Xnew = asinh

(
a + b ∗ Xold

)+c), with a = 0, b = 0.2,
and c = 0) [34]. Tools were first applied to the full data with all cells.
If the tool could not complete the run within 3 h, down-sampled
data with 20 000 cells were used as an alternative. All the tools
were run by default parameter settings except for the number of
clusters. If the tool allowed for the specification of the number of
clusters to be generated, the true number of clusters was used as
input. For detailed scripts for preprocessing and running the tools,
please refer to the script files deposited to GitHub (https://github.
com/hung-ching-chang/GatingMethod_evalutation/) and Zenodo
(https://zenodo.org/records/13851548).

Manual gating collected from five raters
The “fresh T-cells -” library from the human PBMC study was
manually gated on the Cytobank [35] platform by five raters
(L.K., J.T., O.O., S.S., and V.M.) who were asked to manually gate
the immune cell populations based on their experience indepen-
dently. No computational algorithm was allowed. Eventually, com-
monly identified cell populations by all the raters were selected
for further evaluation. Based on the hierarchical gating structure
in Fig. 2A, these cell populations were categorized into two layers,
containing 7 and 14 populations for the first and second layers,
respectively. The cell populations gated by LK in both layers
were visualized by t-distributed stochastic neighbor embedding
(t-SNE) [36] plots in Fig. 2B, and the gating results by the other
four raters are shown in Supplementary Fig. 1. To quantitively

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://github.com/hung-ching-chang/GatingMethod_evalutation/
https://zenodo.org/records/13851548
https://zenodo.org/records/13851548
https://zenodo.org/records/13851548
https://zenodo.org/records/13851548
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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Table 2. Rank-sum for unsupervised clustering methods.

Data Major layer 1 Major layer 2 Major layer 1 Major layer 2 Rare Overall ranking Overall ranking

Measurement ARI ARI F-measure F-measure F-measure Mean rank Overall rank
ACCENSE 22 22 22 15 13 18.8 21
CCAST 4 1 8 4 1 3.6 2
ClusterX 19 20 20 21 2 16.4 19
CosTaL 14 6 9 10 20 11.8 12
Cytometree 10 16 6 5 19 11.2 9
densityCUT 9 15 19 17 17 15.4 17
DensVM 13 7 10 10 11 10.2 7
DEPECHE 1 1 5 13 3 4.6 4
FLOCK 5 5 3 7 7 5.4 6
flowClust 2 9 1 6 5 4.6 4
FlowGrid 7 12 14 20 5 11.6 11
flowMeans 15 19 18 16 10 15.6 18
flowPeaks 11 17 17 19 8 14.4 15
FlowSOM 6 3 2 2 9 4.4 3
immunoClust 20 21 15 18 21 19 22
k-means 8 10 11 9 18 11.2 9
PAC-MAN 3 4 3 1 4 3 1
PhenoGraph 17 13 7 3 12 10.4 8
Rclusterpp 15 8 13 8 16 12 13
SamSPECTRAL 18 18 21 22 14 18.6 20
SPADE 21 10 15 14 15 15 16
X-shift 11 14 12 12 22 14.2 14

Note: Tool SWIFT can only be applied to human PBMC data, so it’s not included in the overall evaluation.

evaluate the magnitude of agreement between the raters, both
kappa index and ARI measurements were employed, as described
in detail in the Methods section. A follow-up hierarchical clus-
tering analysis was performed to group the raters with similar
gating results based on cellular annotation in the two layers,
respectively.

List of unsupervised clustering algorithms
evaluated
Unsupervised clustering algorithms group cells into clusters
based solely on their marker intensities, lacking the ability to
assign the resulting clusters to known cell populations (Fig. 1).
In a previous publication [11], we summarized 32 tools for
unsupervised clustering, which were either specifically designed
for cytometry data or for general clustering. Based on the
number of input libraries, clustering methods are categorized
by the tools that can work on individual samples and tools
that need multiple libraries as input. This comparison study
only focused on the former ones. As such, we quantitatively
compared a total of 23 clustering methods (Table 2): ACCENSE
[37], CCAST [38], ClusterX [32], CosTaL [39], Cytometree [40],
densityCUT [41], DensVM [42], DEPECHE [43], FLOCK [44],
flowClust [45], FlowGrid [46], flowMeans [47], flowPeaks [48],
FlowSOM [49, 50], immunoClust [51], k-means [52], PAC-MAN
[53], PhenoGraph [29], Rclusterpp [54], SamSPECTRAL [55], SPADE
[56], SWIFT [57], and X-shift [30]. These tools have free publicly
available software and are compatible with our parameter
settings (see Data Format, Preprocessing, and Parameter Setting
section). Manual gating was employed as the underlying truth
to evaluate the performance of these unsupervised clustering
tools.

List of auto-gating algorithms evaluated
Unsupervised clustering methods can identify cell clusters
with distinct marker characteristics. However, without further
annotation of cell populations, these clusters provide no biological

insight. Manual annotation of cell clusters is time-consuming and
biased. To overcome this problem, several automated annotation
and cell-type identification algorithms have been developed.
These auto-gating algorithms are designed to identify the
resulting clusters from clustering algorithms based on either
the prior knowledge of the relationship between lineage markers
and the identity of cellular populations or learned from training
datasets (Fig. 1). Our previous publication [11] summarized six
auto-gating algorithms: DeepCyTOF [58], CyTOF linear classifier
[59], ACDC [60], MP [61], OpenCyto [62], and flowLearn [63].
DeepCyTOF [58] utilizes deep learning techniques and training
data to assign cells to known cell types. Likewise, the CyTOF
liner classifier [59] applies training data to predict cell types
based on linear discriminant analysis. In addition, ACDC [60]
uses a prespecified marker matrix to guide the grouping of
cells based on a semisupervised learning approach, and MP
[61] employs a maker matrix to predict cell types through a
Bayesian model. In this paper, we compared the performance
of the above four methods, while OpenCyto and flowLearn were
not evaluated since both of them are not fully automated and
require user supervision. As the cell types could be further
divided, the underlying truth for cell type identification is
controversial and needs to be adjusted depending on the problem
at hand. Therefore, to perform a comprehensive evaluation, two
hierarchical layers of manually gated references were used in the
manuscript.

Methods for performance evaluation
Definition
Cell population identification by manual gating is used as truth
to evaluate the performance of unsupervised and supervised
algorithms. For each individual or pooled library, a set of n cells
S = {o1, o2, . . . , on} can be grouped into two partitions with r
populations and c populations, defined as X = {X1, X2, . . . , Xr} and
Y = {Y1, Y2, . . . , Yc}. For the pairwise comparison between X and Y,
the contingency table can be defined as
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Y1 Y2 . . . Yc Sum
X1 n11 n12 . . . n1c a1

X2 n21 n22 . . . n2c a2

. . . . . . . . . . . .

Xr nr1 nr1 . . . nrc ar

Sum b1 b2 bc

For i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , c}, nij =| Xi ∩ Yj | represents
the number of overlapping cells between partition Xi and Yj, and
ai and bjindicate | Xi |and

∣∣Yj

∣∣, respectively.
When focusing on a certain population i from partition X and

population j from partition Y, the 2-by-2 confusion matrix can be
written as

Prediction

Yj
¬Yj

Truth Xi TP (true positive) FN (false negative)
¬Xi FP (false positive) TN (true negative)

In this paper, we employed the following measurements to
indicate the agreement of the two partitions.

The ‘ARI’ aims to measure the agreement of two clustering
partitions without cell population identification [64]. A value close
to 1 indicates high consistency, while a value close to zero or even
negative means decreased similarity. Assuming X represents the
true populations identified by manual gating and Y the predicted
groupings generated by clustering or auto-gating methods, the
ARI is defined as

ARI =
∑

ij

( nij

2

) −
[∑

i

( ai
2

)∑
j

(
bj

2

)]
/
( n

2

)

1
2

[∑
i

( ai
2

) + ∑
j

(
bj

2

)]
−

[∑
i

( ai
2

) ∑
j

(
bj

2

)]
/
( n

2

)

The ‘Kappa index’, also known as Cohen’s kappa coefficient,
is an indicator that measures the inter-rater reliability [65]. For a
binary scenario, the kappa index can be defined as

κ = 2 × (TP × TN − FN × FP)

(TP + FP) × (FP + TN) + (TP + FN) × (FN + TN)

‘F-measure’ (or F1 score) is an accuracy evaluation measure-
ment to balance the precision and recall in binary conditions [66].
Assuming Xrepresents the true population and Y the predicted
groupings, the precision, recall, and F-measure are defined as
follows:

precision = TP
TP + FP

recall = TP
TP + FN

F − measure = 2 × precision × recall
precision + recall

Computing time evaluation
To benchmark the computing time, the “fresh T cells –” library
from the human PBMC dataset was randomly down-sampled
to 1000, 2000, 4000, 8000, 16 000, 32 000, 64 000, and 128 000
cells. Twenty-three unsupervised clustering and four supervised

auto-gating methods were applied to these gradient cell numbers
to evaluate both the performance and computing time. For tools
where the number of clusters can be set as input, the true number
of clusters was set. Otherwise, all the tools were run based on their
default parameter settings (supplementary script files submitted
to GitHub and Zenodo). Both clustering and auto-gating tools were
run on the same Windows computer (Intel Core i7-8700 CPU @
3.20GHz 3.19GHz, 16GB RAM, 64-bit operating system, x64-based
processor) to reduce machine variability.

Results
Manual gating: consistency across multiple
raters
Manual gating has been widely applied to cytometry data to group
and annotate individual cells into populations of interest, where
researchers have the flexibility to choose the markers and set up
the cutoff to define cell populations. However, when performing
manual gating, researchers often classify cells into populations
based on their personal experience and preferred markers. Addi-
tionally, it’s rather arbitrary when one draws a line to split the
populations. To test the consistency of manual gating across
different raters, we invited five researchers from three different
labs to perform manual gating independently and compare their
performances on the “Fresh T cells – library” from the human
PBMC dataset. When excluding the “other cells,” cells from the
human PBMC study were grouped into 7 major clusters in Layer
1 and then further grouped into 14 clusters in Layer 2 (Fig. 2A).
Figure 2B and Supplementary Fig. 1 illustrated the t-SNE plots
of the cell populations gated by rater L.K. and all the other four
researchers (J.T., O.O., S.S., and V.M.). To assess the gating similarity
among the five raters, the kappa index was used as the evaluation
method, where κ = 1indicates complete agreement and κ = 0
means no agreement. As shown in Fig. 2C, the pairwise kappa
index ranged from 0.44 to 0.86, showing a significant level of
variation in manual gating by different experts. The highest kappa
index was between LK and JT, 0.86 in Layer 1 and 0.76 in Layer 2.
The lowest kappa index was the one between JT and OO in Layer 1
(0.49) and the one between LK and OO in Layer 2 (0.42). The kappa
indexes in Layer 1 were higher than that in Layer 2 for the same
pair, likely because the extra steps needed for the manual gating
for Layer 2 introduced the variation. Furthermore, CD4 T cells and
CD4 naïve T cells were selected to illustrate the agreement for
individual cell populations between the raters in Fig. 2D. The same
patterns were observed, though the actual numbers varied.

Given the raters were only instructed to gate the cell popu-
lation by their own experience, the raters not only gated com-
mon populations differently but also focused on different sets
of subpopulations. For example, LK gated 39 subpopulations in
total, while OO gated 24 subpopulations, where FoxP3+ CD4 T-
cells and GATA-3+ CD4 T cells were gated only by LK, while
Th1 CD4 T cells and Th17 CD4 T cells were gated only by OO
(Supplementary Table 4). We observed that the lines drawn to
split the populations were subjective, and the raters had their own
preferences in splitting the populations. These results gave rise
to the need for more reproducible and less labor-intensive gating
strategies, which motivated us to review the clustering and auto-
gating tools in the following sections.

Clustering: detection of major cell populations
Unsupervised clustering refers to the computational method
for cell grouping without population annotation. Thirty-two
unsupervised clustering tools were reviewed and discussed in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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our previous study [11]. When we attempted to evaluate them
comprehensively, 23 tools could be applied to individual datasets
and installed successfully on our end (Table 2). To evaluate the
performance of unsupervised clustering algorithms, we applied
them to six datasets as described in Table 1. For each study, the
major populations were identified hierarchically in two layers:
Layer 1 represented top-level major populations, and Layer 2
included lower-level and detailed populations. Both the ARI and
F-measure (described in the Methods section) were applied to
evaluate the agreement between the clustering results for each
tool and the manual gating truth. The ARI values for each dataset
and method were illustrated in heatmaps with rows representing
the tools and columns indicating datasets (Fig. 3A and B), where
ARI = 1 indicated an exact match between the two groups, while an
ARI value close to zero meant a lack of consistency. As illustrated
by the heatmap color for ARI, results for both Layers 1 and 2
indicated overall high performance for the human PBMC and
human bone marrow and mouse bone marrow studies, while
comparatively lower performance for the rhesus PBMCs, human
placental villi, and rhesus placental villi were observed. This
was potentially due to human antibodies’ suboptimal staining
of rhesus samples or the need for altered phenotyping in rhesus
samples. Additionally, staining within the tissue (placental villi)
as compared to blood resulted in less distinct marker differences
than that obtained from PBMCs.

Many clustering algorithms include random initial steps to
learn the grouping and subsequently cluster cells, which will
result in distinct clustering outcomes for different runs. To check
the robustness/consistency across multiple runs, all the tools
were applied to the human PBMC dataset for 10 independent runs.
As shown in Fig. 3C, the bar plot indicated the average and SD of
the 10 repeated runs. Among these clustering algorithms, tools
such as ACCENSE, CosTaL, FlowSOM, immunoClust, k-means, and
SPADE presented larger variations among multiple runs, while
the remaining tools generated comparatively consistent or even
identical results.

When comparing the tool’s performance in detecting top-
layer major populations and lower-layer detailed populations,
we evaluated their performance against two hierarchical truths
(described in the Methods section). For each truth layer, the
rank-sum of the tool over multiple studies was calculated and
averaged (Supplementary Table 5). Eventually, the average rank-
sum per layer was compared (Fig. 3D), and the overall ranking
was summarized in Table 2, where lower rank indicated higher
consistency with the truth. When comparing tool performance
between Layer 1 and Layer 2, Fig. 3D showed high agreement
for most tools (close to the diagonal line), except for CCAST,
CosTAL, DensVM, Rclusterpp, and SPADE. These five tools
presented comparatively lower performance in Layer 1 but higher
performance in Layer 2 (higher rank in Layer 1 than Layer 2).
These tools tended to provide a larger number of clusters in their
default parameter settings, which resulted in better detection of
more detailed subcell populations than the major ones.

In addition to the ARI measure, the F-measure was also applied
in our study as an alternative evaluation benchmark (see Methods
section). Per tool-predicted cluster, the highest F-measure was
recorded as the best match between the predicted cluster and
the true cluster. Eventually, averaged F-measures were calculated
to indicate the overall performance of the clustering algorithms.
Supplementary Fig. 2 illustrates tool performance quantified by
F-measure, and Table 2 summarizes their overall performance
ranking. When comparing the performance consistency between
multiple measurements, Fig. 3E showed the average rank-sum of

the ARI and F-measure. The majority of the tools showed high
agreement between the two measurements, while some tools
showed comparatively higher performance for one measurement
than the other. For example, CosTAL, PhenoGraph, Cytometree,
and SPADE resulted in better performance by the F-measure but
lower performance by the ARI measure. This may be due to
the mapping between tool-predicted clusters with the ground
truth. Generally, a tool yielding a larger number of clusters than
the truth will tend to perform better by F-measure, which will
choose the best cluster to match the truth. However, this tool will
receive lower performance by ARI for punishing a large number
of clusters. In conclusion, when considering both layer and mea-
surement effects, PAC-MAN, FlowSOM, CCAST, flowClust, FLOCK,
and DEPECHE performed overall the best for the selected datasets
(Table 2 and Supplementary Table 5).

Clustering: setting the number of clusters
Setting an appropriate number of clusters is crucial for clustering
cytometry data. Among the 23 tested algorithms, only eight tools
allow users to directly set the number of clusters, namely, CCAST,
DEPECHE, flowClust, flowMeans, FlowSOM, k-means, PAC-MAN,
and SPADE. Other tools adjust clustering indirectly via parameters
like resolution, settings for nearest neighbors, or other cell dis-
tance measures. To ensure a fair comparison, we only evaluated
the performance of these eight tools using the “human PBMC fresh
T cell –” library, with 7 and 14 manually gated clusters as the
ground truth for the two hierarchical layers. For each algorithm,
we set the gradient numbers of clusters close to the ground truth
to evaluate their performances. As shown in Fig. 3F and G, most
tools performed optimally at the true cluster number and had
comparable performance under other settings. Generally, tools k-
means, flowClust, and CCAST present larger variations of the per-
formance across different numbers of clusters. Tool flowMeans
presents a smaller variation in Layer 1 but a larger variation in
Layer 2. As shown in Supplementary Fig. 2F and G, the F-measure
was less sensitive to the cluster number than the ARI measure
because it will select the optimal cluster to match the truth. In
practice, without knowing the true number of cell populations,
we suggest users set a cluster number close to the anticipated
populations they want to detect. Alternatively, tools like INFLECT
[67] have been developed specifically for FlowSOM to optimize the
number of clusters. Borrowing techniques from tools designed to
estimate the number of cell types in single-cell RNA-seq data [68]
may also be beneficial.

Clustering: computing time benchmarking
Besides clustering accuracy, computational cost is another factor
in evaluating these tools. In this study, we selected the “human
PBMC fresh T cells - library” as an example for benchmark-
ing the computing time. Specifically, we subsampled cells from
this dataset by log2 gradient numbers: 1k, 2k, 4k, 8k, 16k, 32k,
64k, and 128k. All the clustering algorithms were applied to
these eight subsets based on default parameter settings to record
their computing times. Figure 4A demonstrates the computing
time (average of 10 runs) per tool per data subset. Among these
tools, k-means, FlowGrid, and densityCUT overall consumed a
shorter time for these datasets. To predict the running time
for a larger number of cells, we fitted the computing time to
logistic regression in terms of the number of cells (Fig. 4B and
Supplementary Fig. 3). Except for flowPeaks (Fig. 4B), which con-
sumed constant computing time across different datasets, all the
other tools (for example, DensVM in Fig. 4B) resulted in longer
computing time with an increasing number of cells. However,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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Figure 3. Major population detection by unsupervised clustering algorithms. (A) Performance of the clustering algorithms based on Layer 1 cell
populations using the ARI measure. (B) Performance of the clustering algorithms based on Layer 2 cell populations using the ARI measure. (C) Robustness
of the clustering algorithms on 10 runs using the ARI measure. (D) Rank-sum between Layer 1 and Layer 2 using the ARI measure. (E) Rank-sum between
the ARI and F-measure based on Layer 1 data. (F) Performance of the clustering algorithms across different settings for the number of clusters on Layer
1 cell populations using the ARI measure. (G) Performance of the clustering algorithms across different settings for the number of clusters on Layer 2
cell populations using the ARI measure.
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these tools yielded different increases in computing time for addi-
tional cells, which were reflected by the slope of the regression
model. Tools such as FLOCK, FlowSOM, and FlowGrid achieved
comparatively shorter computing costs for additional cells (with
slope to be 0.12, 0.25, and 0.43 in Supplementary Fig. 3), indicating
better compatibility to analyze larger datasets. In contrast, tools
such as ClusterX and CCAST increased the amount of computing
time fast (with slope to be 1.89 and 1.52 in Supplementary Fig. 3),
which may result in much longer computing time for larger
libraries.

For an overall evaluation of the tools, Fig. 4C and D visualized
the tool performance and the computing time simultaneously. In
Fig. 4C, tools PAC-MAN, k-means, FlowSOM, densityCUT, FLOCK,
and FlowGrid have higher ARIs with comparatively shorter com-
puting time, while in Fig. 4D, tools k-means, FlowSOM, PAC-MAN,
PhenoGraph, densityCUT, X-shift, and FLOCK yielded the best
performance quantified by higher F-measure and lower comput-
ing cost.

Clustering: detection of rare populations
We referred to a “rare population” as a cell type with fewer cells
compared with the major populations. Since each rare population
only represents <3% of the whole library, it is easily missed when
all the cells are clustered. To evaluate the capability of the cluster-
ing algorithms to identify rare populations, we selected two rare
populations from the human PBMC dataset to illustrate (Fig. 5A):
innate lymphoid cells (ILCs) and regulatory T cells (Tregs). The
number of cells within each population and the markers applied
are listed in Supplementary Tables 2 and 3. Their distributions
to the whole libraries ae shown in the t-SNE plot in Fig. 5A. When
aiming for rare population detection, parameters of the clustering
tools were adjusted to detect a larger number of small clusters,
rather than big clusters for the major population. The detailed
settings are shown in the supplementary script files. F-measure
was applied to evaluate the consistency between the clustering
algorithms and the manual gating truth. As shown in Fig. 5B, the
heatmap visualized the performance of 23 clustering algorithms
in detecting these two rare populations across the four human
PBMC libraries. In general, many tools resulted in overall high and
robust performance across multiple libraries and for both of the
rare populations, including ACCENSE, CCAST, ClusterX, DensVM,
DEPECHE, FLOCK, flowClust, FlowGrid, flowMeans, flowPeaks,
FlowSOM, PAC-MAN, and PhenoGraph.

Auto-gating: prior knowledge preparation and
performance evaluation
Supervised or semisupervised auto-gating methods refer to the
algorithms that take in prior knowledge or training sets to train
the model and then perform cell population identification based
on these parameters. In this paper, we quantitatively reviewed
four auto-gating methods: DeepCyTOF [58], CyTOF linear classi-
fier [59], ACDC [60], and MP [61]. To check the agreement between
these auto-gating algorithms and the manual gating truth, both
ARI and F-measure were applied to evaluate the performance of
these tools on the PBMC and the placental villi data. As shown in
Fig. 6A, the heatmap indicated the ARI value for each tool (row)
across each dataset (column) when using the Layer 1 manual gat-
ing as truth. Across all the datasets, DeepCyTOF and CyTOF Linear
Classifier had an overall better performance, while ACDC and MP
only performed well with the human PBMC data. The potential
reason might be that the human PBMC dataset had a higher
number of cells to cover a more robust set of different immune cell
populations when compared with the other datasets. In addition

to Layer 1, Layer 2 truth was applied and demonstrated similar
patterns (Fig. 6B). The rank-sum comparison between Layers 1
and 2 is shown in Fig. 6C, where these four tools showed a high
agreement of performance when applied to the two hierarchical
truths, and DeepCyTOF and CyTOF Linear Classifier achieved high
ARI consistently. To evaluate the robustness of these tools, we ran
all the algorithms 10 times on the human PBMC data. As shown
in Fig. 6D, all four auto-gating tools presented low variations
across multiple runs. Besides the ARI measurement, a similar
performance evaluation was measured by the F score, and the
same conclusion can be drawn (Supplementary Fig. 4). Table 3
summarizes the rank-sum per measurement and their overall
ranking, where DeepCyTOF and CyTOF Linear Classifier were the
top two algorithms recommended based on our evaluation.

In the next step, we aimed to check the computing cost of
these auto-gating tools. Figure 6E indicates the computing time
across a gradient number of cells for each algorithm (similar
pipeline as was done for the clustering methods). DeepCYTOF
achieved a low computing time and the lowest increasing slope
(0.46) for the regression model among the four tools. CyTOF Linear
Classifier resulted in the overall shortest computing time while
maintaining a linear slope (0.99) for increasing time. When con-
sidering the tool’s computing time and performance at the same
time, Fig. 6F and G illustrates that both DeepCyTOF and CyTOF
Linear Classifier achieved the highest performance and shortest
computing cost.

Discussion
This paper comprehensively investigated and compared three
main categories of methods for analyzing cytometry data:
manual gating, unsupervised clustering, and supervised auto-
gating (Fig. 1). Among them, manual gating involves visually
inspecting multidimensional plots of the data and drawing
boundaries (gates) around populations of interest. This gating
method is widely applied by expert researchers and can be
operated with flexibility and transparency. However, manual
gating has limitations when dealing with high-dimensional and
large-scale datasets, and the results are subject to the researcher’s
experience. In contrast to manual gating, unsupervised clustering
and auto-gating methods are computer-assisted algorithms,
which have the advantages of automation and reproducibility
for large datasets, but face the limitations in transparency and
parameter sensitivity. When distinguishing these two computa-
tional gating methods, clustering algorithms aim to group similar
cells into clusters without predefined populations, while auto-
gating tools are designed to mimic the manual gating process to
identify and gate cell populations. Although many automated
gating algorithms have been developed, manual gating and
unsupervised clustering followed by manual annotation are the
most widely used pipelines for cell population identification.

Overall recommendations
In this manuscript, we systematically evaluated 23 unsupervised
clustering algorithms and 4 auto-gating tools (supervised or
semisupervised). Tables 2 and 3 summarize the rank of these
tools when applied to six cytometry datasets by both ARI and F-
measure benchmarks and based on both Layers 1 and 2 truth.
Figure 7 presents a workflow and comparison for an overall
recommendation of the algorithms. Among all the computer-
assisted tools, if no prior knowledge nor training data were
available, unsupervised clustering tools were suggested. Among
them, tools with higher performance and shorter computing time

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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Figure 4. Time benchmark for unsupervised clustering algorithms. (A) Time benchmark for clustering algorithms on gradient number of cells. (B)
Computing time for two representative algorithms with linear (DensVM) and flat (flowPeaks) increasing speed. Bar graph represents the real running
time, and the dashed line is for the predicted running time when fitting into the regression model. (C) The comparison between computing time and
ARI performance. (D) The comparison between computing time and F-measure performance.

were recommended. Other specific recommendations were made
as well. For example, if the users wanted to specify the number of
clusters, tools such as DEPECHE, flowClust, FlowSOM, k-means,
and PAC-MAN would be good options. If the researchers were
interested in graphical visualization of the clustering results,
tools such as Cytometree, FlowSOM, PhenoGraph, and X-shift
could yield figures for hierarchical trees or gating networks.
If the rare populations were the major focus of the study, we
would recommend DEPECHE, flowClust, FlowGrid, and PAC-MAN.

When considering all these factors and balancing accuracy and
computing time, PAC-MAN, CCAST, and FlowSOM were the top
three recommended tools. In addition to clustering algorithms,
auto-gating methods were suggested for studies with prior
knowledge of cell populations. In general, our evaluation study
suggested DeepCyTOF and CyTOF Linear Classifier as they had
the highest accuracy and shortest computing time.

Depending on different research interests, some studies only
focus on major cell types, while other studies aim to explore
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Figure 5. Rare population detection by clustering algorithms. (A) Manual gating for the selection of the two rare populations: ILCs and Tregs. (B) Heatmap
for the performance of the clustering algorithms on the rare population based on the F-measure.

Table 3. Rank-sum for supervised clustering methods.

Data Major layer 1 Major layer 2 Major layer 1 Major layer 2 Overall ranking Overall ranking

Measurement ARI ARI F-measure F-measure Mean rank Overall rank
ACDC 3 3 3 3 3 3
CyTOF Linear Classifier 2 2 1 1 1.5 1
DeepCyTOF 1 1 2 2 1.5 1
MP (Mondrian) 4 4 4 4 4 4

detailed subpopulations or even rare populations. In this study,
we provided two hierarchical layers of truth: Layer 1 for major
populations and Layer 2 for detailed types. When comparing the
consistency of the gating results between the two layers, most of
the tools had high agreement (Figs 3D and 6C), while tools that
generally yield a higher number of clusters tended to favor Layer
2 to detect more detailed populations. As an overall suggestion,
if the researchers are interested in subpopulations or even rare
populations, tools that can specify the number of clusters or
perform well for rare populations are recommended (Figs 3 and 7).
Meanwhile, selecting appropriate biomarkers is crucial for the
detection of sub- and rare populations (Supplementary Table 3).

Among the six datasets, diverse samples were employed for
tool comparison, including multiple tissue types (PBMCs, bone
marrows, and placental villi), fresh and frozen samples, and sam-
ples from different species (human, nonhuman primate, and
mouse). In general, PBMC and bone marrow samples outper-
formed the placental villi. This is likely due to marker expres-
sion on cells within the tissue being less distinct than in the

bone marrow and the peripheral blood. As such, auto-gating
for tissue samples is not recommended. In contrast, the differ-
ence between fresh and frozen PBMC samples was trivial, which
indicated that this treatment wouldn’t influence the antibody
capture in the cytometry experiment [26]. In addition, samples
from three species were included in this study: human, rhesus,
and mouse. The human samples performed the best, likely sec-
ondary to more optimized antibodies and better phenotyping.

Compared with existing review papers [11, 14, 15, 20–24] with a
limited number of clustering tools and benchmarks, we provided
a more systematic review and overall recommendations. For clus-
tering, PAC-MAN ranks high in our study, but this tool was rarely
discussed by the current review papers. Moreover, we evaluated
the tools from the views of data types, multiple hierarchical layers,
rare populations, settings for the number of clusters, and graphi-
cal visualizations. In addition, auto-gating highlights the promis-
ing future of cytometry data analysis, where our manuscript is the
first attempt to comprehensively benchmark four cutting-edge
tools in this field.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae633#supplementary-data
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Figure 6. Population detection by supervised auto-gating algorithms. (A) Performance of the auto-gating algorithms based on Layer 1 cell populations
using the ARI measure. (B) Performance of the auto-gating algorithms based on Layer 2 cell populations using the ARI measure. (C) Rank-sum between
Layer 1 and Layer 2 using the ARI measure. (D) Robustness of the auto-gating algorithms on 10 runs using the ARI measure. (E) Time benchmark for
auto-gating algorithms on gradient number of cells. Bar graph represents the real computing time, and the dashed line is for the predicted computing
time when fitting into the regression model. (F) the comparison between computing time and ARI performance. (G) The comparison between computing
time and F-measure performance.
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Figure 7. Overall recommendation for the selection of computer-assisted algorithms. Workflow: recommendation of the cytometry tools for different
applications. Heatmap for clustering tools: including tool features, rankings for computing time, accuracy evaluation, and overall accuracy ranking.
Heatmap for auto-gating tools: rankings for computing time, accuracy evaluation, and overall accuracy ranking.

While this study aimed to provide a comprehensive evalua-
tion of cytometry gating methods, several limitations remain to
be addressed. First, given that clustering and auto-gating tools
update quickly, we’ve tried our best to apply the newest version
of the software. Tools that were no longer maintained, failed to
install on our computer, or could not complete running on some
datasets were not included in the final results. Second, although
we attempted to include diverse datasets, the comparison of the
results may differ by the specific datasets applied. In this study,
both our in-house data and public datasets were employed to
provide an unbiased evaluation. Third, the truth was generated by
the manual gating of the most experienced research in our evalu-
ation. As such, we only focused on the well-defined immune cell
populations for the purpose of this study. Lastly, the comparison
of auto-gating methods on rare populations was not performed,
given the limitation of prior knowledge and training data.

Practical guidelines for computational cytometry
data analysis
The experimental design for research and clinical applications
of cytometry data was well summarized by previous research [4,
69, 70]. In general, the computational analysis of cytometry data
involves three main steps: data preprocessing and normalization,
gating and visualization, and downstream analysis. In preprocess-
ing, tools like the R package flowClust [45] are used to import

raw FCS files, followed by quality control (QC) to filter low-quality
data, remove dead cells and outliers, and impute missing values.
To scale the cytometry data, transformation, normalization, and
batch effect correction will then be applied. All these preprocess-
ing steps can be customized by many well-established QC and
integration tools, including flowClust [45], PeacoQC [71], ANPELA
[72], CATALYST [73], swiftReg [74], CytoNorm [75], CytofIn [76], and
flowAI [77].

After preprocessing, gating will be performed to annotate the
cell types of the single-cell cytometry data. This project has
comprehensively reviewed manual-gating, 23 clustering, and 4
auto-gating approaches. In addition to the tools evaluated in this
study, clustering tools such as Citrus [78] and CellCnn [79] are
only compatible with multiple datasets. To optimize the clustering
results, tools such as Phenograph and X-shift have the embedded
algorithm to determine the optimal number of clusters. Mean-
while, tools such as INFLECT [67] are developed to identify the best
number of clusters for FlowSOM. Based on QC and gating, multiple
algorithms can be employed to visualize the high-dimensional
cytometry data. For example, principal component analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE), and Uni-
form Manifold Approximation and Projection (UMAP) are widely
applied for dimension reduction. Tools such as CosTaL, Cytome-
tree, FlowSOM, PhenoGraph, SPADE, and X-shift embed graphical
learning and visualization algorithms.
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Following this, multiple downstream analyses can be applied
based on the research purpose and experimental design. For
instance, differential abundance and state analysis aim to
discover differentially expressed markers across different
platforms, experimental conditions, or sample types within cell
populations [80]. These analyses can be performed using tools
Cydar [81], diffcyt [82], CytoGLMM [83], and CyEMD [80] following
the single-cell clustering. Moreover, phenotypic comparisons of
cell populations can be achieved by CytoCompare [84]. In addition
to the tools that are focused on a specific step of cytometry
data analysis, several pipelines have been well established for
comprehensive analyses, including platforms such as CytoBank
and FlowJo, and computational software like cytofkit [32],
PICAFlow [85], CRUSTY [86], ImmunoCluster [87], Cyclone [88],
CytoPipeline [89], CYANUS [80], and Cytofast [90].

Future opportunities for cytometry data analysis
Determining the number of clusters is a key challenge in unsuper-
vised learning. In cytometry data analysis for single-cell cluster-
ing annotation, certain tools incorporate algorithms to optimize
cluster numbers. For example, SPADE allows users to set a desired
number of cluster k, while the tool selects the optimal number
within the range of k/2 and 3 k/2 [56]. Tool INFLECT [67] is specif-
ically designed to optimize the number of clusters for FlowSOM.
However, few tools are tailored to general clustering algorithms
for cytometry data. By leveraging the clustering algorithms devel-
oped for estimating the number of cell types in single-cell RNA-
seq data [68], future methods specifically designed for cytometry
data clustering will be developed to optimize the number of cell
populations.

Graph learning has already played a crucial role in cytometry
data analysis. Among the 23 clustering tools, CosTaL, Cytometree,
FlowSOM, PhenoGraph, SPADE, and X-shift provide graphical visu-
alizations of the clustering results (Fig. 7). For instance, FlowSOM
clusters cytometry data using self-organizing maps (SOMs) [49].
The algorithm first creates an SOM to assign cells to the clos-
est nodes, followed by constructing a minimal spanning tree to
connect the nodes into a graph. By integrating advanced graph
neural network (GNN) algorithms—successfully applied in single-
cell RNA sequencing [91–93] and spatial transcriptomics data
[94]—more GNN-based clustering and auto-gating methods are
anticipated for cytometry data analysis.

Large language models (LLMs) are artificial intelligence (AI)
models designed to process and generate human language. Using
LLMs for single-cell analysis is a growing and promising frontier
in bioinformatics. For example, several machine learning models
based on transformer architectures (like bidirectional encoder
representations from transformers (BERT) [95] and generative pre-
trained transformer (GPT) [96]) are already being explored for cell-
type annotation in single-cell RNA-seq analysis. Moreover, while
LLMs specifically for single-cell analysis are still evolving, they
show great application potential for cellular interaction and tra-
jectory inference analysis [97, 98]. When evaluating auto-gating
methods in this project, state-of-the-art deep learning algorithms
have demonstrated their effectiveness in gating cytometry data
and automating cell-type annotation. LLMs and other AI models
[99] are expected to play a significant role in future systematic
cytometry data analysis, potentially integrating with traditional
clustering methods and auto-gating algorithms to enhance cell-
type annotation.

Spatial tissue cytometry is an advanced imaging technology
that analyzes the spatial organization of cells and their molecular
properties within tissue samples [100–103]. As a cutting-edge

method for spatial proteomics [104], it merges traditional flow
and mass cytometry techniques with high-resolution imaging to
preserve the spatial context of cells within tissues. However, cur-
rent algorithms for spatial tissue cytometry analysis are limited.
Models designed for spatial transcriptomics cannot fully capture
the unique characteristics of single-cell cytometry data, and the
clustering and auto-gating methods evaluated in this project are
not equipped to account for spatially resolved cell interactions.
Therefore, new computational approaches are urgently needed
to address cellular heterogeneity, cell–cell interactions, and tissue
microenvironments. In addition, leveraging the technology revo-
lution for single-cell and spatial multi-omics [105, 106], compu-
tational integration of multimodalities across diverse platforms
holds great promise in unraveling molecular mechanisms and
therapeutic targets for precision medicine [107, 108].

Key Points

• This study provided a quantitative review and compar-
ison of various ways to phenotype cellular populations
within the cytometry data. Manual gating (5 raters),
unsupervised clustering (23 tools), and auto-gating (4
tools) methods were systematically reviewed and com-
pared. To the best of our knowledge, such a comprehen-
sive evaluation has not been performed before.

• Tools were evaluated by both in-house and public
datasets, including multiple species (human, mouse, and
nonhuman primates) and cell types (peripheral blood
mononuclear cells, placental villi, and bone marrow).

• Multiple evaluation measurements (F-measure,
adjusted Rand index, Cohen’s kappa index) were
employed. Computing time was evaluated on a grid of
cell numbers to estimate the scalability of the tools for
ultra-large cell number applications in the future.

• All programming scripts for tool implementation and
comparison were made available on GitHub and Zenodo.

• We further provided practical recommendations on pri-
oritizing gating methods based on different application
scenarios. This study offers comprehensive insights for
biologists to understand diverse gating methods and
choose the best-suited ones for their applications.
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